Graphs with many ± 1 or $\pm \sqrt{2}$ eigenvalues

Ebrahim Ghorbani

Sharif University of Technology, Tehran, Iran \&
POSTECH

Preliminaries

The spectrum of a graph

Definition

The spectrum of a graph

Definition

- The eigenvalues of a graph G are the eigenvalues of its adjacency matrix.

The spectrum of a graph

Definition

- The eigenvalues of a graph G are the eigenvalues of its adjacency matrix.
- The spectrum of a graph G, denoted by $\operatorname{Spec}(G)$, is the set of eigenvalues of G, together with their multiplicities.

(v, k, λ)－designs

(v, k, λ)-designs

Definition

(v, k, λ)-designs

Definition

- Let $X=\left\{x_{1}, \ldots, x_{v}\right\}$, and $\mathcal{B}=\left\{B_{1}, \ldots, B_{v}\right\}$ be k-subsets (blocks) of X. The pair (X, \mathcal{B}) is called a (v, k, λ)-design if each two distinct $B_{i}, B_{j}(1 \leqslant i, j \leqslant v)$ intersect in λ elements; and $0 \leqslant \lambda<k<v-1$.

(v, k, λ)-designs

Definition

- Let $X=\left\{x_{1}, \ldots, x_{v}\right\}$, and $\mathcal{B}=\left\{B_{1}, \ldots, B_{v}\right\}$ be k-subsets (blocks) of X. The pair (X, \mathcal{B}) is called a (v, k, λ)-design if each two distinct $B_{i}, B_{j}(1 \leqslant i, j \leqslant v)$ intersect in λ elements; and $0 \leqslant \lambda<k<v-1$.
- Each combinatorial design is completely determined by its corresponding incidence matrix; this is the $(0,1)$-matrix $A=\left(a_{i j}\right)$ defined by taking $a_{i j}=1$ if $x_{j} \in B_{i}$ and $a_{i j}=0$ if $x_{j} \notin B_{i}$.

The problem

Characterization of graphs G of order n with one of the following properties:

Characterization of graphs G of order n with one of the following properties:
(i) $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$,

Characterization of graphs G of order n with one of the following properties:
(i) $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$,
(ii) $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$,

Characterization of graphs G of order n with one of the following properties:
(i) $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$,
(ii) $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$,
(iii) $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$,

Characterization of graphs G of order n with one of the following properties：
（i）$(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$ ，
（ii）$(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$ ，
（iii）$(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$ ，
（iv）$(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$ ．

Examples

Examples

$$
\operatorname{Spec}\left(\mathcal{L}_{k, k}\right)=\left\{ \pm(k-1),(\pm 1)^{k-1}\right\}
$$

Examples

Examples

$\operatorname{Spec}\left(\mathcal{S}_{2 k+1}\right)=\left\{ \pm \sqrt{k+1}, 0,(\pm 1)^{k-1}\right\}$

Examples

Examples

$\operatorname{Spec}\left(\mathcal{H}_{k, k+1}\right)=\left\{ \pm \sqrt{k^{2}-k+1}, 0,(\pm 1)^{k-1}\right\}$

Examples

Examples

The Heawood graph

Examples

The Heawood graph
The incidence graph of the Fano plane

The Heawood graph
The incidence graph of the Fano plane

$$
\operatorname{Spec}(\text { Heawood })=\left\{ \pm 3,(\pm \sqrt{2})^{6}\right\}
$$

Connections with combinatorial designs

$$
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\}
$$

Connections with combinatorial designs

$$
\frac{\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\}}{\Downarrow \Uparrow}
$$

Connections with combinatorial designs

$$
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\}
$$

$\Downarrow \uparrow$
Multiplicative designs

Connections with combinatorial designs

$$
\begin{gathered}
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\downarrow \uparrow \\
\text { Multiplicative designs } \\
\downarrow \uparrow \hat{\{ } \\
\left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\hline
\end{gathered}
$$

Connections with combinatorial designs

$$
\begin{gathered}
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\Downarrow \uparrow \uparrow \\
\text { Multiplicative designs } \\
\left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\left\{G \left\lvert\,(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\hline
\end{gathered}
$$

Connections with combinatorial designs

$$
\begin{gathered}
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\frac{\downarrow \uparrow}{\text { Multiplicative designs }} \\
\downarrow \uparrow \\
\left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\hline\left\{G \left\lvert\,(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\downarrow \Uparrow
\end{gathered}
$$

Connections with combinatorial designs

$$
\begin{gathered}
\left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\sqrt{\text { Multiplicative designs }} \\
\downarrow \uparrow \\
\left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\left\{G \left\lvert\,(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
\frac{\downarrow \uparrow}{\text { pseudo }(v, k, \lambda) \text {-designs }}
\end{gathered}
$$

Connections with combinatorial designs

$$
\begin{aligned}
& \left\{G \left\lvert\,(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
& \Downarrow \Uparrow \\
& \text { Multiplicative designs } \\
& \downarrow \uparrow \\
& \left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
& \left\{G \left\lvert\,(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)\right.\right\} \\
& \downarrow \Uparrow \\
& \text { pseudo }(v, k, \lambda) \text {-designs } \\
& \text { 师 } \\
& \left\{G \left\lvert\,(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)\right.\right\}
\end{aligned}
$$

Multiplicative designs

Multiplicative designs were introduced by Ryser (1942),

Multiplicative designs

Multiplicative designs were introduced by Ryser (1942), and have been studied by Bridges, Mena, Host (1980's),

Multiplicative designs

Multiplicative designs were introduced by Ryser (1942), and have been studied by Bridges, Mena, Host (1980's), and recently by van Dam and Spence (2004).

Pseudo (v, k, λ)-designs

Definition

A pseudo (v, k, λ)-design is a pair (X, \mathcal{B}) where X is a v-set and $\mathcal{B}=\left\{B_{1}, \ldots, B_{v-1}\right\}$ is a collection of k-subsets (blocks) of X such that each two distinct B_{i}, B_{j} intersect in λ elements; and $0<\lambda<k<v-1$.

Pseudo (v, k, λ)-designs

Definition

A pseudo (v, k, λ)-design is a pair (X, \mathcal{B}) where X is a v-set and $\mathcal{B}=\left\{B_{1}, \ldots, B_{v-1}\right\}$ is a collection of k-subsets (blocks) of X such that each two distinct B_{i}, B_{j} intersect in λ elements; and $0<\lambda<k<v-1$.

Developed by O. Marrero, H.J. Ryser, and D.R. Woodall, etc.

Examples of pseudo designs

Examples of pseudo designs

$$
\begin{aligned}
& X=\{1,2, \ldots, 7,8\} \\
& \mathcal{B}=\{124,235,346,457,561,671,712\}
\end{aligned}
$$

Examples of pseudo designs

```
- \(X=\{1,2, \ldots, 7,8\}\)
    \(\mathcal{B}=\{124,235,346,457,561,671,712\}\)
    pseudo (8, 3, 1)-design
```

- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$ pseudo (8, 4, 2)-design

Examples of pseudo designs

- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$ pseudo (8, 4, 2)-design
- $X=\{1,2, \ldots, 7\}$
$\mathcal{B}=\{235,346,457,561,671,712\}$

Examples of pseudo designs

- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$ pseudo (8, 4, 2)-design
- $X=\{1,2, \ldots, 7\}$
$\mathcal{B}=\{235,346,457,561,671,712\}$
pseudo (7, 3, 1)-design

Examples of pseudo designs

- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$ pseudo (8, 4, 2)-design
- $X=\{1,2, \ldots, 7\}$
$\mathcal{B}=\{235,346,457,561,671,712\}$
pseudo (7, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1238,1458,1678,3568,2478,3468,2568\}$

Examples of pseudo designs

- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{124,235,346,457,561,671,712\}$
pseudo (8, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1248,2358,3468,4578,5618,6718,7128\}$ pseudo (8, 4, 2)-design
- $X=\{1,2, \ldots, 7\}$
$\mathcal{B}=\{235,346,457,561,671,712\}$
pseudo (7, 3, 1)-design
- $X=\{1,2, \ldots, 7,8\}$
$\mathcal{B}=\{1238,1458,1678,3568,2478,3468,2568\}$ pseudo (8, 4, 2)-design

Types of pseudo designs

A pseudo (v, k, λ)-design is called primary if $v \lambda \neq k^{2}$ and is called nonprimary when $v \lambda=k^{2}$. It follows that in a nonprimary pseudo design, $v=2 k$. Thus a pseudo (v, k, λ)-design is nonprimary if and only if $v=4 \lambda$ and $k=2 \lambda$. In fact, the existence of a nonprimary pseudo (v, k, λ)-design is equivalent to existence of a Hadamard design:

Types of pseudo designs

A pseudo (v, k, λ)-design is called primary if $v \lambda \neq k^{2}$ and is called nonprimary when $v \lambda=k^{2}$. It follows that in a nonprimary pseudo design, $v=2 k$. Thus a pseudo (v, k, λ)-design is nonprimary if and only if $v=4 \lambda$ and $k=2 \lambda$. In fact, the existence of a nonprimary pseudo (v, k, λ)-design is equivalent to existence of a Hadamard design:

Theorem (Marrero 1974)

The incidence matrix of a given pseudo $(4 \lambda, 2 \lambda, \lambda)$-design can always be obtained from the incidence matrix A of a ($4 \lambda-1,2 \lambda-1, \lambda-1$)-design by adjoining one column of all 1 's to A and then possibly complementing some rows of A.

Primary pseudo (v, k, λ)－designs

Theorem（Marrero 1974）

The incidence matrix A of a primary pseudo (v, k, λ)－design \mathcal{D} can be obtained from the incidence matrix of a $(\bar{v}, \bar{k}, \bar{\lambda})$－design whenever \mathcal{D} satisfies one of the following arithmetical conditions on its parameters．

Primary pseudo (v, k, λ)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, λ)-design \mathcal{D} can be obtained from the incidence matrix of a $(\bar{v}, \bar{k}, \bar{\lambda})$-design whenever \mathcal{D} satisfies one of the following arithmetical conditions on its parameters.
(i) If $(k-1)(k-2)=(\lambda-1)(v-2)$, then A is obtained by adjoining a column of 1's to the incidence matrix of a ($v-1, k-1, \lambda)$-design.

Primary pseudo (v, k, λ)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, λ)-design \mathcal{D} can be obtained from the incidence matrix of a $(\bar{v}, \bar{k}, \bar{\lambda})$-design whenever \mathcal{D} satisfies one of the following arithmetical conditions on its parameters.
(i) If $(k-1)(k-2)=(\lambda-1)(v-2)$, then A is obtained by adjoining a column of 1 's to the incidence matrix of a $(v-1, k-1, \lambda)$-design.
(ii) If $k(k-1)=\lambda(v-2)$, then A is obtained by adjoining a column of 0 's to the incidence matrix of a (v, k, λ)-design.

Primary pseudo (v, k, λ)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, λ)-design \mathcal{D} can be obtained from the incidence matrix of a $(\bar{v}, \bar{k}, \bar{\lambda})$-design whenever \mathcal{D} satisfies one of the following arithmetical conditions on its parameters.
(i) If $(k-1)(k-2)=(\lambda-1)(v-2)$, then A is obtained by adjoining a column of 1 's to the incidence matrix of a $(v-1, k-1, \lambda)$-design.
(ii) If $k(k-1)=\lambda(v-2)$, then A is obtained by adjoining a column of 0 's to the incidence matrix of a (v, k, λ)-design.
(iii) If $k(k-1)=\lambda(v-1)$, then A is obtained from discarding a row from the incidence matrix of a (v, k, λ)-design.

Primary pseudo (v, k, λ)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, λ)-design \mathcal{D} can be obtained from the incidence matrix of a $(\bar{v}, \bar{k}, \bar{\lambda})$-design whenever \mathcal{D} satisfies one of the following arithmetical conditions on its parameters.
(i) If $(k-1)(k-2)=(\lambda-1)(v-2)$, then A is obtained by adjoining a column of 1's to the incidence matrix of a $(v-1, k-1, \lambda)$-design.
(ii) If $k(k-1)=\lambda(v-2)$, then A is obtained by adjoining a column of 0 's to the incidence matrix of a (v, k, λ)-design.
(iii) If $k(k-1)=\lambda(v-1)$, then A is obtained from discarding a row from the incidence matrix of a (v, k, λ)-design.
(iv) If $k=2 \lambda$, then A is obtained from the incidence matrix B of a (v, k, λ)-design as follows: a row is discarded from B and then the k^{\prime} columns of B which had a 1 in the discarded row are complemented (0 's and 1 's are interchanged in these columns).

Type (i)

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite with four distinct eigenvalues $\pm \lambda, \pm 1$, say.

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite with four distinct eigenvalues $\pm \lambda, \pm 1$, say.
- If G is regular

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite with four distinct eigenvalues $\pm \lambda, \pm 1$, say.
- If G is regular $\Rightarrow \lambda=\frac{2 \lambda^{2}+n-2}{n}$

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite with four distinct eigenvalues $\pm \lambda, \pm 1$, say.
- If G is regular $\Rightarrow \lambda=\frac{2 \lambda^{2}+n-2}{n} \Rightarrow \lambda=\frac{n-2}{2}$

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite with four distinct eigenvalues $\pm \lambda, \pm 1$, say.
- If G is regular $\Rightarrow \lambda=\frac{2 \lambda^{2}+n-2}{n} \Rightarrow \lambda=\frac{n-2}{2}$
$\Rightarrow G=K_{\frac{n}{2}, \frac{n}{2}}$ minus a perfect matching (i.e., $\mathcal{L}_{\frac{n}{2}, \frac{n}{2}}$).

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

- If G is not regular

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

- If G is not regular $\Rightarrow G$ is the incidence graph of a so called "non-symmetric uniform multiplicative design"

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

- If G is not regular $\Rightarrow G$ is the incidence graph of a so called "non-symmetric uniform multiplicative design" \Rightarrow (van Dam \& Spence, 2004) G has the adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

where

$$
N=\left(\begin{array}{cc}
J_{3}-I_{3} & J_{3} \\
O_{3} & J_{3}-I_{3}
\end{array}\right) \text { or }\left(\begin{array}{cc}
1 & \mathbf{1}^{\top} \\
\mathbf{1} & I_{4}
\end{array}\right) .
$$

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

Then G is either $\mathcal{L}_{\frac{n}{2}, \frac{n}{2}}$ or on the graph the graph G_{1} and G_{2}.

Graphs with $(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)
$$

Then G is either $\mathcal{L}_{\frac{n}{2}, \frac{n}{2}}$ or on the graph the graph G_{1} and G_{2}.

G_{1}

G_{2}

Type (ii)

Graphs with $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm 1)^{\frac{n-s}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

Graphs with $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;

Graphs with $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;
- The vertices in the smaller part of G have the same degree d;

Let G be a connected graph of order n with

$$
(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

It turns out that

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;
- The vertices in the smaller part of G have the same degree d;
- G is the incidence graph of a pseudo $(k, d, d-1)$-design.

Pseudo (v, k, λ)-design with $k=\lambda+1$

Pseudo (v, k, λ)-design with $k=\lambda+1$

Theorem

Let \mathcal{D} be a pseudo (v, k, λ)-design with $k=\lambda+1$. Then \mathcal{D} is obtained from a

$$
(v-1,1,0) \text {-design or }(v-1, v-2, v-3) \text {-design }
$$

by either adding an isolated point or a point which belongs to all of the blocks.

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

- ($v-1,1,0)$-design with a point added to all of its blocks

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

- ($v-1,1,0)$-design with a point added to all of its blocks

§
 the graph \mathcal{S}_{v}

Graphs with $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

- ($v-1,1,0)$-design with a point added to all of its blocks $\stackrel{\Downarrow}{\operatorname{graph}} \mathcal{S}_{v}$
- $(v-1, v-2, v-3)$-design with a point added to all of its blocks

Graphs with $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

- ($v-1,1,0)$-design with a point added to all of its blocks

I
 the graph \mathcal{S}_{v}

- ($v-1, v-2, v-3)$-design with a point added to all of its blocks

$$
\Uparrow
$$

the graph $\mathcal{H}_{\frac{v-1}{2}, \frac{v+1}{2}}$

Graphs with $(\pm 1)^{\frac{\pi-x}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm 1)^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$, then G is either \mathcal{S}_{n} or $\mathcal{H}_{\frac{n-1}{2}, \frac{n+1}{2}}$.

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

Corollary
The graph $\mathcal{H}_{k, k+1}$ is DS (i.e., determined by its spectrum).

Graphs with $(\pm 1)^{\frac{n-s}{2}} \subset \operatorname{Spec}(G)$

Corollary

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

Corollary
The graph $\mathcal{S}_{2 k+1}$ is DS if $k \notin S$, where

$$
S=\left\{\ell^{2}-1 \mid \ell \in \mathbb{N}\right\} \cup\left\{\ell^{2}-\ell \mid \ell \in \mathbb{N}\right\}
$$

Graphs with $(\pm 1)^{\frac{n-x}{2}} \subset \operatorname{Spec}(G)$

Corollary

The graph $\mathcal{S}_{2 k+1}$ is DS if $k \notin S$, where

$$
S=\left\{\ell^{2}-1 \mid \ell \in \mathbb{N}\right\} \cup\left\{\ell^{2}-\ell \mid \ell \in \mathbb{N}\right\}
$$

Moreover, for $k \in S$ we have

- \mathcal{S}_{17} has exactly two cospectral mates which are $\mathcal{L}_{3,3} \cup 5 K_{2} \cup K_{1}$ and $G_{1} \cup 3 K_{2} \cup K_{1} ;$
- \mathcal{S}_{31} has exactly two cospectral mates which are $\mathcal{L}_{4,4} \cup 11 K_{2} \cup K_{1}$ and $G_{2} \cup 9 K_{2} \cup K_{1}$;
- if $k=\ell^{2}-1$ and $k \neq 8,15, \mathcal{S}_{2 k+1}$ has exactly one cospectral mate which is $\mathcal{L}_{\ell, \ell} \cup(k-\ell) K_{2} \cup K_{1}$;
- if $k=\ell^{2}-\ell, \mathcal{S}_{2 k+1}$ has exactly one cospectral mate which is $\mathcal{H}_{\ell, \ell+1} \cup(k-\ell) K_{2}$.

Type (iii)

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$, then G has an adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$, then G has an adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

where N is one of the

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$, then G has an adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

where N is one of the

- incidence matrix of the Fano plane (i.e., G is the Heawood graph);

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$, then G has an adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

where N is one of the

- incidence matrix of the Fano plane (i.e., G is the Heawood graph);
- incidence matrix of the complement of the Fano plane;

Graphs with $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If $(\pm \sqrt{2})^{\frac{n-2}{2}} \subset \operatorname{Spec}(G)$, then G has an adjacency matrix of the form

$$
\left(\begin{array}{cc}
O & N \\
N^{\top} & O
\end{array}\right)
$$

where N is one of the

- incidence matrix of the Fano plane (i.e., G is the Heawood graph);
- incidence matrix of the complement of the Fano plane;
-

$$
\left(\begin{array}{cc}
N_{1} & J_{7} \\
O_{7} & N_{2}
\end{array}\right) \text { or }\left(\begin{array}{ccc}
1 & \mathbf{1}^{\top} & \mathbf{1}^{\top} \\
\mathbf{1} & I_{5} & I_{5} \\
\mathbf{1} & I_{5} & J_{5}-I_{5}
\end{array}\right),
$$

where N_{1} and N_{2} are the incidence matrices of the Fano plane and (7, 4, 2)-design, respectively.

Type (iv)
 Graphs with $(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Graphs with $(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

Then,

Graphs with $(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

Then,

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;

Graphs with $(\pm \sqrt{2})^{\frac{n-z}{2}} \subset \operatorname{Spec}(G)$

Let G be a connected graph of order n with

$$
(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

Then,

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;
- The vertices in the smaller part of G have the same degree d;

Let G be a connected graph of order n with

$$
(\pm \sqrt{2})^{\frac{n-3}{2}} \subset \operatorname{Spec}(G)
$$

Then,

- G is bipartite of order $n=2 k+1$ with five distinct eigenvalues;
- The vertices in the smaller part of G have the same degree d;
- G is the incidence graph of a pseudo $(k, d, d-2)$-design.

Pseudo (v, k, λ)－design with $k=\lambda+2$

Theorem

Let \mathcal{D} be a pseudo (v, k, λ)－design with $k=\lambda+2$ ．Then \mathcal{D}

Pseudo (v, k, λ)-design with $k=\lambda+2$

Theorem

Let \mathcal{D} be a pseudo (v, k, λ)-design with $k=\lambda+2$. Then \mathcal{D}

- is obtained by omitting one block either from the unique ($7,4,2$)-design or the unique $(7,3,1)$-design (Fano plane);

Pseudo (v, k, λ)-design with $k=\lambda+2$

Theorem

Let \mathcal{D} be a pseudo (v, k, λ)-design with $k=\lambda+2$. Then \mathcal{D}

- is obtained by omitting one block either from the unique ($7,4,2$)-design or the unique ($7,3,1$)-design (Fano plane);
- or it is one of the

$$
\begin{aligned}
& \mathcal{D}_{1}=\{1238,1458,1678,3568,2478,3468,2568\}, \\
& \mathcal{D}_{2}=\{4567,1458,1678,2478,2568,3578,3468\}, \\
& \mathcal{D}_{3}=\{4567,2367,1678,3578,2478,3468,2568\}, \\
& \mathcal{D}_{4}=\{4567,1458,1678,3578,1356,1257,2568\}, \\
& \mathcal{D}_{5}=\{4567,1458,1678,3578,1356,3468,1347\}, \\
& \mathcal{D}_{6}=\{1238,2367,2345,3578,1356,3468,1347\}, \\
& \mathcal{D}_{7}=\{4567,2367,2345,3578,2478,1257,1347\} .
\end{aligned}
$$

Graphs with $(\pm \sqrt{2})^{\frac{n-5}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If the spectrum of G contains $(\pm \sqrt{2})^{\frac{n-3}{2}}$, then G is the incidence graph of one of the following 9 pseudo designs:

Graphs with $(\pm \sqrt{2})^{\frac{n-5}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If the spectrum of G contains $(\pm \sqrt{2})^{\frac{n-3}{2}}$, then G is the incidence graph of one of the following 9 pseudo designs:

- the unique pseudo $(7,3,1)$-design;

Graphs with $(\pm \sqrt{2})^{\frac{n-5}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If the spectrum of G contains $(\pm \sqrt{2})^{\frac{n-3}{2}}$, then G is the incidence graph of one of the following 9 pseudo designs:

- the unique pseudo $(7,3,1)$-design;
- the unique pseudo (7, 4, 2)-design; or

Graphs with $(\pm \sqrt{2})^{\frac{n-5}{2}} \subset \operatorname{Spec}(G)$

Theorem

Let G be a connected graph of order n. If the spectrum of G contains $(\pm \sqrt{2})^{\frac{n-3}{2}}$, then G is the incidence graph of one of the following 9 pseudo designs:

- the unique pseudo $(7,3,1)$-design;
- the unique pseudo (7, 4, 2)-design; or
- one of the seven pseudo $(8,4,2)$-designs $\mathcal{D}_{1}, \ldots, \mathcal{D}_{7}$.

Thank You!

