
Total fractional colorings of graphs

with large girth

Daniel Král’

Institute for Theoretical Computer Science (ITI)

Charles University Prague
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Overview

• Graph colorings—basic notions

• Fractional graph parameters

• Problem and our results

• Main proof idea

2



Vertex colorings

• two adjacent vertices must receive distinct colors

• chromatic number χ(G)

• χ(G) ≤ ∆ + 1

Brooks’ theorem (1941): χ(G) ≤ ∆for a connected graph G

unless G is complete or an odd cycle
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Edge colorings

• two incident edges must receive distinct colors

• chromatic index χ′(G)

• Vizing’s theorem (1964): χ′(G) ∈ {∆, ∆ + 1}

Holyer (1981): NP-complete to decide between the two values
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Total colorings

• coloring of vertices and edges

any two adjacent/incident elements must receive distinct colors

• total chromatic number χt(G)

• Behzad’s conjecture (1965): χt(G) ≤ ∆ + 2

Molloy and Reed’s bound (1998): χt(G) ≤ ∆ + 1028
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Fractional colorings

• coloring = partitioning into disjoint color classes

• fractional coloring

each color class has weight, they need not be disjoint

every element in classes of total weight at least one

minimizing the total weightof all color classes

• total fractional chromatic number χf (G)

• weights only zero or one ⇒ coloring
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Example

1/2 1/2 1/2

1/2 1/2 1/2

χt,f = 3 and χt = 4
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Basic results

• clearly, χf (G) ≤ χ(G), χ′

f (G) ≤ χ′(G) and χt,f (G) ≤ χt(G)

• the gap between χf (G) and χ(G) can be arbitrary

χ(G) can be arbitrary and χf (G) ≤ 2 + ε

• χf (G) ≤ 2.416 if G is cubic and has large girth

examples of cubic graphs with large girth with χf (G) ≥ 2.196

• χ′

f (G) = 3 for cubic bridgeless graphs

• ∆ ≤ χ′

f (G) ≤ ∆ + ε for graphs with large girth
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Previous results

• Behzad’s conjecture is fractionally true

Kilakos and Reed (1993): χt,f (G) ≤ ∆ + 2

• When does the equality hold?

Ito, Kennedy and Reed (2009): only if G is K2n or Kn,n

• What about large girth?
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Reed’s conjecture

Let ∆ be an integer. For every ε > 0, there exists g such that

every graph G with maximum degree ∆ and girth at least g

has total fractional chromatic number at most ∆ + 1 + ε.
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Our results

• Theorem (Kardoš, Král’, Sereni):

Let ∆ be an integer. For every ε > 0, there exists g such that

every graph G with maximum degree ∆ and girth at least g

has total fractional chromatic number at most ∆ + 1 + ε.

• Theorem (Kaiser, King, Král’):

Let ∆ ∈ {3, 4, 6, 8, . . .}. There exists g such that

every graph G with maximum degree ∆ and girth at least g

has total fractional chromatic number equal to ∆ + 1.
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Decomposition into paths

• χt,f (G) ≤ α ⇔ ∃ probability distribution on independent sets,

each element included with probability at least 1/α

• exposition restricted to cubic bridgeless case for simplicity (3 slides)

α = 4 + ε

• there exists a distribution on perfect matchings such that

each edge included with probability 1/3

• remove vertices at distance g/100 from the complementary 2-factor

collection of paths of length at most g/100

each edge included with probability at least 2/3 − 200/g

each vertex with probability 1 − 100/g
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Colorings by levels

1st level
2nd

3rd

4th
5th

• split paths into 10 levels

• sweep paths in the 1st level, then in the 2nd level, etc.

include vertices and edges greedily into a total independent set

• if a vertex can be included, include it with probability 1 − ξ
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Summary for cubic graphs

• levels guarantee mutual independence of neighbors for each path

• for a suitable choice of ξ > 0

each vertex on a path included with probability 1/4

each edge in a path included with probability 3/8

• considering the distribution over perfect matchings:

each vertex included with probability 1/4 − 25/g

each edge included with probability 1/4 − 75/g

• a better resolution of coloring conflicts at the ends of the paths

needed to obtain χt,f = 4 for large g
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Differences for general graphs

• if ∆ = 4, 6, 8, . . . , uniform coverings by 2-factors exist

• if ∆ = 5, 7, 9, . . . , uniform coverings by 2-factors exist

assuming the graph is cyclically (∆ − 1)-edge-connected

• a stronger result on extending precolorings can be proven

• if the graph is not cyclically (∆ − 1)-edge-connected,

split the graph into two pieces, one inclusion-wise minimal

the minimal piece is cyclically (∆ − 1)-edge-connected

induction on the bigger piece and extend to the smaller one
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Thank you for your attention!
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