
Math. Z.
DOI 10.1007/s00209-008-0456-9 Mathematische Zeitschrift

On some arithmetic properties of Siegel functions

Ja Kyung Koo · Dong Hwa Shin

Received: 16 June 2008 / Accepted: 7 November 2008
© Springer-Verlag 2008

Abstract We deal with several arithmetic properties of the Siegel functions which are
modular units. By modifying the ideas in Kubert and Lang (Modular Units. Grundlehren der
mathematischen Wissenschaften, vol 244. Spinger, Heidelberg, 1981), we establish certain
criterion for determining a product of Siegel functions to be integral over Z[ j]. We also find
generators of the function fields K(X1(N )) by examining the orders of Siegel functions at the
cusps and apply them to evaluate the Ramanujan’s cubic continued fraction systematically.
Furthermore we construct ray class invariants over imaginary quadratic fields in terms of
singular values of j and Siegel functions.
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1 Introduction

Let H be the complex upper half plane and N be a positive integer. We let

H∗ = H ∪ P
1(Q)

�0(N ) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(∗ ∗

0 ∗
)

(mod N )

}

�1(N ) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N )

}

�(N ) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N )

}
.

We are especially concerned with the following three modular curves

X0(N ) = �0(N )\H∗, X1(N ) = �1(N )\H∗ and X (N ) = �(N )\H∗

and their function fields

K(X0(N )), K(X1(N )) and K(X (N )),

respectively. For the sake of arithmetic applications we consider the modular curve X (N )

defined over the N th cyclotomic field, and take the integral closure of Q[ j] where j is the
elliptic modular function. The units in this ring which are called the modular units are the
objects we deal with in this paper. We are mainly interested in the following three problems.

The first is to replace the Fricke functions, which play the roles of classical generators of
the modular function fields, by the Siegel functions. The order formulas at the cusps in this
case enable us to find such generators. In Sects. 4–6 and 8, we shall examine some arithmetic
properties of Siegel functions for this purpose.

The second problem concerns about the integrality over Z[ j] for modular functions. In
Sect. 3, we shall establish a criterion for determining a product of Siegel functions to be
integral over Z[ j]. To this end, we intensively analyze the Fourier coefficients of Siegel
functions. Although Kubert and Lang [13] have already provided a criterion, it seems to be
scarcely known to experts so that we try to reveal and clarify it. If a function is integral over
Z[ j], its values evaluated at some points would become algebraic integers in many cases, for
instance, at imaginary quadratic arguments. In Sect. 7, we explain why the reciprocals of the
values of the Ramanunjan’s cubic continued fraction [6] at imaginary quadratic arguments
are algebraic integers.

The third problem is certain construction of ray class fields over imaginary quadratic fields
by means of singular values of some analytic functions. Ramachandra presented in [18] a ray
class invariant as algebraic unit, its constructions is, however, too abstract and complicated in
practical use. In Sect. 9, we find relatively simple ray class invariants in terms of the special
values of j and Siegel functions.

For generic theory of modular functions, we refer to [15,20]. Unlike the classical approach
to modular functions and the class field theory depending mainly on elliptic functions and
theory of complex multiplication, our results are based on the Galois theory and the Shimura’s
reciprocity law.
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2 Preliminaries

For a positive integer N we denote by QN and FN the N th cyclotomic field QN with ζN = e
2π i
N

and the field of modular functions of level N defined over QN , respectively. Then we have
F1 = Q( j) and K(X (1)) = C( j) [15,20]. Furthermore we let

RN = the integral closure of Z[ j] in FN

QRN = the integral closure of Q[ j] in FN .

Here, the elements of (QRN )∗ will be called the modular units of level N and those of R∗
N

will be called the modular units over Z of level N . And we have the diagram:

F1 Q[ j]

QRN ⊃(QRN )∗ : group of modular unitsFN

......................................................................................................................................................................................................................................................

.....................................................................................................

integral
closure

...................................................................................................................................................................................................................................................

.....................................................................................................

Galois
extension

The points τ on the modular curve X (N ) such that j (τ ) = ∞ are called the cusps. We
then recall the following assertion which interprets algebraic objects as geometric ones. For
the sake of completeness we give a proof.

Lemma 2.1 If f ∈ FN has zeros and poles only at the cusps, then the norm NFN /QN ( j)( f )

is a constant. Hence, so is NFN /F1( f ).

Proof As we shall summarize in Sect. 4, Gal(FN /QN ( j)) has a representation by
SL2(Z/NZ)/{±12} and the action of each element in SL2(Z/NZ)/{±12} is given by com-
position. Hence if a function f ∈ FN has zeros and poles only at the cusps, so does
NFN /QN ( j)( f ).

On the other hand, NFN /QN ( j)( f ) ∈ QN ( j) is a function on the Riemann sphere X (1).
So, if it is not a constant, it has zeros and poles at least at two distinct points on the sphere.
But this means that NFN /QN ( j)( f ) should have a zero or a pole on H, which contradicts the
first part of the proof. Therefore NFN /QN ( j)( f ) is a constant, and so is NFN /F1( f ). ��
Theorem 2.2 Let f ∈ FN . Then f is a modular unit if and only if it has zeros and poles
only at the cusps.

Proof Assume that f is a modular unit. Then f and 1/ f satisfy integral equations over Q[ j],
that is,

f n + an−1 f n−1 + · · · + a0 = 0
1

f m
+ bm−1

1

f m−1 + · · · + b0 = 0

for some an−1, . . . , a0, bm−1, . . . , b0 ∈ Q[ j]. Dividing the first equation by f n and multi-
plying the second by f m we achieve

1 + an−1
1

f
+ · · · + a0

1

f n
= 0 (2.1)

1 + bm−1 f + · · · + b0 f m = 0. (2.2)
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Suppose that f has a zero at some point τ0 ∈ H. By (2.2) we get

1 + bm−1(τ0) f (τ0) + · · · + b0(τ0) f (τ0)
m = 0,

which gives a contradiction 1 = 0. Next suppose that f has a pole at some point τ∞ ∈ H.
Then by (2.1) we have

1 + an−1(τ∞)
1

f (τ∞)
+ · · · + a0(τ∞)

1

f (τ∞)n
= 0,

which again renders a contradiction 1 = 0. Thus f does not have zeros and poles on H,
namely f has zeros and poles only at the cusps.

Conversely, assume that f has zeros and poles only at the cusps. Since Q[ j] is a Dedekind
domain, so is QRN . Hence

QRN =
⋂
P

(QRN )P (2.3)

where the intersection is taken over all prime ideals P of QRN (of height 1). On the other
hand, since NFN /F1( f ) is a constant by Lemma 2.1, we have f ∈ ((QRN )P)∗ for all prime
ideals P so that f ∈ (QRN )∗. Therefore f is a modular unit. ��

Now, we introduce the Siegel functions as modular units. For a lattice L in C the Weierst-
rass ℘-function is defined by

℘(τ ; L) = 1

τ 2 +
∑

ω∈L\{0}

{
1

(τ − ω)2 − 1

ω2

}
(τ ∈ C).

And the Weierstrass σ -function is defined by

σ(τ ; L) = τ
∏

ω∈L\{0}

(
1 − τ

ω

)
e

τ
ω

+ 1
2 (

τ
ω )

2
(τ ∈ C)

which is clearly an odd function. Taking the logarithmic derivative we come up with the
Weierstrass ζ -function

ζ(τ ; L) = σ ′(τ ; L)

σ (τ ; L)
= 1

τ
+

∑
ω∈L\{0}

(
1

τ − ω
+ 1

ω
+ τ

ω2

)
(τ ∈ C).

Differentiating the function ζ(τ +ω; L)−ζ(τ ; L) for ω ∈ L results in 0 because ζ ′(τ ; L) =
−℘(τ ; L) and the ℘-function is periodic with respect to L . Hence there is a constant η(ω; L)

such that ζ(τ + ω; L) = ζ(τ ; L) + η(ω; L).
For r = (r1, r2) ∈ Q

2\Z
2 we define the Klein form kr by

kr (τ ) = e− 1
2 (r1η1+r2η2)(r1τ+r2)σ (r1τ + r2; [τ, 1]) (τ ∈ C) (2.4)

where η1 = η(τ ; [τ, 1]) and η2 = η(1; [τ, 1]). Note that η1 and η2 satisfy the Legendre
relation η2τ − η1 = 2π i [15]. The following proposition provides us the transformation
formulas of the Klein forms.

Proposition 2.3 (1) For r ∈ Q
2\Z

2 we have

k−r = −kr .
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(2) For r ∈ Q
2\Z

2 and α = (
a b
c d

) ∈ SL2(Z) we derive

kr ◦ α = (cτ + d)−1krα.

(3) For r = (r1, r2) ∈ Q
2\Z

2 and s = (s1, s2) ∈ Z
2 we get

kr+s = ε(r, s)kr

where ε(r, s) = (−1)s1s2+s1+s2 e−π i(s1r2−s2r1).

Proof Since the Weierstrass σ -function is an odd function, we can verify (1) from (2.4). For
(2) and (3), see [13]. ��

Finally we define the Siegel function gr for any r ∈ Q
2\Z

2 by

gr (τ ) = kr (τ )η2(τ ) (τ ∈ H) (2.5)

where η is the Dedekind η-function defined by

η(τ) = √
2πζ8q

1
24
τ

∞∏
n=1

(1 − qn
τ ) (qτ = e2π iτ , τ ∈ H)

and η2 has the transformation formulas

η2 ◦ S = ζ 9
12τη2 (2.6)

η2 ◦ T = ζ12η
2 (2.7)

for S = (
0 −1
1 0

)
and T = (

1 1
0 1

)
. Thus it follows that �(τ) = η24(τ ) is a modular form for

SL2(Z) of weight 12. We then have the following transformation formulas.

Proposition 2.4 (1) For r ∈ Q
2\Z

2 we have

g−r = −gr .

(2) For r = (r1, r2) ∈ Q
2\Z

2 we get

gr ◦ S = ζ 9
12gr S = ζ 9

12g(r2,−r1)

gr ◦ T = ζ12grT = ζ12g(r1,r1+r2).

(3) For r = (r1, r2) ∈ Q
2\Z

2 and s = (s1, s2) ∈ Z
2 we have

gr+s = ε(r, s)gr

where ε(r, s) is the root of unity given in Proposition 2.3(3).

Proof We can readily verify the formulas by using Proposition 2.3, (2.6) and (2.7). ��
We define a function 〈 〉 on R whose value 〈X〉 takes the fractional part of X , namely

0 ≤ 〈X〉 < 1. Then, for α = (
a b
c d

) ∈ SL2(Z) with c > 0 we have the transformation
formula

η2
(

aτ + b

cτ + d

)
= e

2π i
(

a+d
12c + 1

2 +∑
µ(mod c) B1(〈 µ

c 〉)B1

(〈
dµ
c

〉))
(cτ + d)η2(τ )

where B1(X) = X − 1
2 is the first Bernoulli polynomial [3, (2.10)]. Thus it follows from

Proposition 2.3(2) and the definition gr = krη
2 that

gr ◦ α = e
2π i

(
a+d
12c + 1

2 +∑
µ(modc) B1(〈 µ

c 〉)B1

(〈
dµ
c

〉))
grα
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for r ∈ Q\Z
2. When one is particularly interested in constructing class fields, he may effi-

ciently use this formula.
In addition to these transformation formulas a Siegel function has a fairly simple order for-

mula. Let B2(X) = X2 − X + 1
6 be the second Bernoulli polynomial. Using the qτ -expansion

formula of the Weierstrass σ -function we get the following expansion formula of a Siegel
function gr

g(r1,r2)(τ ) = −q
1
2 B2(r1)
τ eπ ir2(r1−1)(1 − qz)

∞∏
n=1

(1 − qn
τ qz)(1 − qn

τ q−1
z ) (2.8)

where qz = e2π i z with z = r1τ + r2. By analyzing (2.8) we obtain

ordqτ g(r1,r2) = 1

2
B2(〈r1〉) (2.9)

[13, Chapter 2, Section 1].
For a given positive integer N > 1, Kubert and Lang provided a necessary and sufficient

condition for a product of Siegel functions to be of level N . Here we give a sufficient con-
dition as follows. We say that a family of integers {m(r)}r=(r1,r2)∈ 1

N Z2\Z2 with m(r) = 0

except finitely many r satisfies the quadratic relation modulo N if
∑

r

m(r)(Nr1)
2 ≡

∑
r

m(r)(Nr2)
2 ≡ 0 (mod gcd(2, N ) · N )

∑
r

m(r)(Nr1)(Nr2) ≡ 0 (mod N ).

Theorem 2.5 Let {m(r)}r∈ 1
N Z2\Z2 be a family of integers such that m(r) = 0 except finitely

many r. Then a product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r

belongs toFN , if {m(r)}r satisfies the quadratic relation modulo N and 12 divides gcd(12, N )·∑
r m(r).

Proof See [13, Chapter 3, Theorems 5.2 and 5.3]. ��

In particular, gr and g12N
r lie in F12N 2 and FN , respectively, for r ∈ 1

N Z
2\Z

2.
We can easily check by (2.8) that a Siegel function has zeros and poles only at the cusps.

Hence by Theorems 2.2 and 2.5, we conclude that a product of Siegel functions becomes a
modular unit of some level. For a given level N > 1 the products of Siegel functions of level
N generate the group of modular units of level N up to 2-torsions [13, Chapter 4].

3 Integrality over Z[ j]

A Siegel function and its inverse are integral over Q[ j] because they are modular units.
Kubert and Lang provided in [13] a criterion for determining a product of Siegel functions
to be a unit over Z. In this section, however, we shall investigate their criterion and further
develop it to have more effective test for the integrality over Z[ j].
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Let L = [ω1, ω2] be a lattice in C such that ω1/ω2 ∈ H . For a point t ∈ C\L of finite
period with respect to L , we can write t as

t = r1ω1 + r2ω2

for a unique r = (r1, r2) ∈ Q
2\Z

2. We define a function

g

(
t;

(
ω1

ω2

))
= gr

(
ω1

ω2

)
, (3.1)

which depends on the choice of ω1 and ω2. But if we raise g to the 12-th power, it becomes a
function of t and L and so we just write it as g12(t; L). Furthermore g12(t; L) has weight 0,
namely

g12(λt; λL) = g12(t; L) (3.2)

for any λ ∈ C
∗.

Theorem 3.1 Let L ′ ⊃ L be two lattices in C and let c be the smallest positive integer such
that cL ′ ⊂ L. Let

t1 = 0, . . . , tk

be a complete system of coset representatives of L ′/L. If t is a complex number such that
t �∈ L ′, dt ∈ L for some positive integer d and m = lcm(c, d), then we have

g12m(t; L ′) =
k∏

i=1

g12m(t + ti ; L).

Proof See [13, Chapter 2 Theorem 4.1(ii)]. ��
For a vector r = (r1, r2) ∈ Q

2\Z
2, a positive integer N such that Nr = (Nr1, Nr2)

belongs to Z
2 is called a denominator of r . In particular, the smallest denominator of r is

called the primitive denominator of r . When the primitive denominator has at least two prime
factors, we say that r or the primitive denominator is composite.

In what follows by the notation
.= we mean the equality = up to a root of unity. As a

corollary of Theorem 3.1, we give a so-called distribution relation of Siegel functions.

Corollary 3.2 Let pn be a prime power and let r = (r1, r2) ∈ 1
pn Z

2\Z
2. Then the Siegel

function gr can be written as a product

gr
.=
∏

s

gm(s)
s

where all indices s with m(s) �= 0 have the same primitive denominator pn.

Proof If r already has the primitive denominator pn , we are done. Suppose that r has the
primitive denominator pl with l < n. In the statement of Theorem 3.1 we set

L ′ = 1

p
[τ, 1], L = [τ, 1] and t = r1τ + r2

p
.

Then we have k = [L ′ : L] = p2, c = p, d = pl+1 and m = pl+1. Taking

aτ + b

p
with 0 ≤ a, b < p
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as a complete system of coset representatives of L/L ′ we get that

g12pl+1

(r1,r2) (τ ) = g12pl+1
(r1τ + r2; [τ, 1])

= g12pl+1
(

r1τ + r2

p
; 1

p
[τ, 1]

)
by (3.2)

=
∏

0≤a, b<p

g12pl+1
(

r1τ + r2

p
+ aτ + b

p
; [τ, 1]

)
by Theorem 3.1

=
∏

0≤a, b<p

g12pl+1
(

r1 + a

p
τ + r2 + b

p
; [τ, 1]

)

=
∏

0≤a, b<p

g12pl+1(
r1+a

p ,
r2+b

p

)(τ ).

Deleting the power 12pl+1 we establish

g(r1,r2)
.=

∏
0≤a, b<p

g( r1+a
p ,

r2+b
p

).

Note that each index ( r1+a
p , r2+b

p ) in the above product has the primitive denominator pl+1.
Applying this procedure successively we can express gr as a product of Siegel functions
indexed with vectors of primitive denominator pn . ��

Let N be a given positive integer. For a modular unit f of level N , let

f =
∑

n

cnq
n
N
τ

be its qτ -expansion. We write

cn( f ) = cn

for all n ∈ Z and, in particular,

c( f ) = the first non-zero coefficient.

When we write

f = c( f ) f ∗,

we understand f ∗ as a qτ -series with leading coefficient 1. For f, f ′ ∈ (QRN )∗ we have
obvious identities

c( f · f ′) = c( f ) · c( f ′) (3.3)

( f · f ′)∗ = f ∗ · f ′∗. (3.4)

Lemma 3.3 Let f be a modular unit of level N . If cn( f ◦ α) are algebraic integers for all
n ∈ Z and α ∈ SL2(Z), then f is integral over Z[ j]. If, in addition, c( f ◦ α) are units for
all α ∈ SL2(Z), then f is a unit over Z.

Proof See [13] Lemma 2.1. ��
Remark 3.4 [13] Lemma 2.1 is a slightly weaker version of Lemma 3.3 which will be used
in the matter of determining integrality over Z[ j].
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For N > 1 and r = (r1, r2) ∈ 1
N Q

2\Z
2, let us write

gr = c(gr )g
∗
r

g(〈r1〉,〈r2〉) = c(g(〈r1〉,〈r2〉))g∗
(〈r1〉,〈r2〉).

Since gr
.= g(〈r1〉,〈r2〉) by Proposition 2.4(3), we deduce

c(gr )
.= c(g(〈r1〉,〈r2〉))

g∗
r = g∗

(〈r1〉,〈r2〉).

Note that from the qτ -expansion formula (2.8) we see that g∗
(〈r1〉,〈r2〉) has in fact a qτ -series

all of whose coefficients are algebraic integers and has leading coefficient 1. Hence cn(gr )

are algebraic integers for all n ∈ Z if and only if c(gr ) is an algebraic integer. The same
argument holds for any conjugate of a Siegel function and any product of Siegel functions
by Proposition 2.4(2), (3.3) and (3.4). Thus we have

Lemma 3.5 Let g be a product of Siegel functions. Then g is integral over Z[ j] if and only
if c(g ◦ α) are algebraic integers for all α ∈ SL2(Z).

Proof First assume that g is integral over Z[ j], then g satisfies an equation

gm + am−1gm−1 + · · · + a0 = 0

for some am−1, . . . , a0 ∈ Z[ j]. Taking composition with any α ∈ SL2(Z) on both sides
yields

(g ◦ α)m + am−1(g ◦ α)m−1 + · · · + a0 = 0,

from which it follows that

{c(g ◦ α)}m {
(g ◦ α)∗

}m + am−1 {c(g ◦ α)}m−1 {(g ◦ α)∗
}m−1 + · · · + a0 = 0. (3.5)

When the left side of (3.5) is regarded as a qτ -series, each coefficient of the series should be
zero. Note that the coefficients of qτ -series of j and (g ◦ α)∗ are algebraic integers. Hence,
when t = ordqτ (g ◦ α)∗, the coefficient of the term qtm

τ in (3.5) is given by {c(g ◦ α)}m +
bm−1{c(g ◦ α)}m−1 + · · · + b0 = 0 for some algebraic integers bm−1, . . . , b0. This implies
that c(g ◦ α) is an algebraic integer.

Conversely, assume that c(g ◦α) are algebraic integers for all α ∈ SL2(Z). Then cn(g ◦α)

are algebraic integers for all n ∈ Z. And, the assertion is a consequence of Lemma 3.3. ��
Theorem 3.6 Let r ∈ Q

2\Z
2 have the primitive denominator N > 1.

(1) If N is composite, then g12N
r is a modular unit over Z of level N . Hence gr is a modular

unit over Z of level 12N 2.
(2) If N = pn is a prime power, then g12N

r is a unit in RN [ 1
p ]. Thus gr is a unit in R12N 2 [ 1

p ].
Proof See [13] Chapter 2 Theorem 2.2. ��

Let pn be a prime power and suppose that r = (r1, r2) ∈ Q
2\Z

2 has the primitive
denominator pn . Then the constant c(gr ) has the property

c(gr )
.= c(g(〈r1〉,〈r2〉))

.=
{

1 if 〈r1〉 �= 0

1 − e2π i〈r2〉 = 1 − ζ
pn〈r2〉
pn if 〈r1〉 = 0

from the qτ -expansion formula (2.8). Hence
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ordp(c(gr )) =
{

0 if 〈r1〉 �= 0

ordp

(
1 − ζ

pn〈r2〉
pn

)
= 1

φ(pn)
if 〈r1〉 = 0

(3.6)

where φ is the Euler φ-function, and

ordp′(c(gr )) = 0 for other primes p′. (3.7)

Lemma 3.7 For a prime power pn, consider a product of Siegel functions

g(p) =
∏

r∈ 1
pn Z2\Z2

gm(r)
r .

Then g(p) is integral over Z[ j] if and only if ordp(c(g(p) ◦ α)) ≥ 0 for all α ∈ SL2(Z).

Proof By (3.6) and (3.7), c(g(p)◦α) are algebraic integers if and only if ordp(c(g(p)◦α)) ≥ 0.
Hence we get our assertion by Lemma 3.5. ��
Lemma 3.8 For a given product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r ,

decompose it into the form

g = gcomp

∏
p

g(p)

where gcomp is the product taken over all composite r and g(p) for each prime p is the product
taken over those r whose denominator is a power of p. Then g is integral over Z[ j] if and
only if g(p) are integral over Z[ j] for all primes p.

Proof By Theorem 3.6, gcomp is a unit over Z. Hence we deduce an assertion that

g is integral over Z[ j]
⇐⇒

∏
p

g(p) is integral over Z[ j]

⇐⇒ c

(∏
p

g(p) ◦ α

)
are algebraic integers for all α ∈ SL2(Z) by Lemma 3.5

⇐⇒ ordp

(
c

(∏
p

g(p) ◦ α

))
≥ 0 for all primes p.

On the other hand, for a fixed prime p we have by (3.7)

ordp

(∏
p

c(g(p))

)
= ordp(c(g(p))).

Thus, we achieve that

g is integral over Z[ j]
⇐⇒ ordp

(
c(g(p))

) ≥ 0 for all primes p

⇐⇒ g(p) are integral over Z[ j] for all primes p by Lemma 3.7.

��
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Therefore we restrict ourselves to analyzing each g(p) separately. Let pn be the maximal
primitive denominator appearing in the indices of g(p) and ( 1

pn Z
2/Z

2)∗ be the set of all

primitive elements in the additive group 1
pn Z

2/Z
2. By Corollary 3.2 we may assume that

all indices have the primitive denominator pn . Moreover, by Proposition 2.4(1) and (3) we
take ( 1

pn Z
2/Z

2)∗/ ± 1 as the index set. And, note that the group (Z/pn
Z)∗ naturally acts on

( 1
pn Z

2/Z
2)∗/ ± 1 by multiplication.

Theorem 3.9 Let

g(p)
.=

∏
r∈( 1

pn Z2/Z2)∗/±1

gm(r)
r .

Then g(p) is integral over Z[ j] if and only if for each orbit of (Z/pn
Z)∗ we get∑

r∈orbit

m(r) ≥ 0.

Proof By Lemma 3.7 we know that g(p) is integral over Z[ j] if and only if ordp(c(g(p)◦α)) ≥
0 for all α ∈ SL2(Z). It then follows from (3.6) that

ordp(c(g(p))) ≥ 0 ⇐⇒
∑

r∈orbit containing
(

0, 1
pn

)m(r) ≥ 0.

Furthermore since SL2(Z) permutes the orbits transitively, we conclude that

ordp
(
c(g(p) ◦ α)

) ≥ 0 for all α ∈ SL2(Z) ⇐⇒
∑

r∈orbit

m(r) ≥ 0 for each orbit.

��
Before closing this section we summarize the algorithm for determining whether a product

of Siegel functions is integral over Z[ j] or not as follows:

Step 1. For a product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r ,

decompose it into the form

g = gcomp

∏
p : prime

g(p).

Step 2. For each prime number p, let pn be the maximal primitive denominator appearing
in the indices of g(p). Using Corollary 3.2 we can write g(p) as

g(p)
.=

∏
r∈

(
1

pn Z2/Z2
)∗

/±1

gm(r)
r .

Step 3. For each orbit of (Z/pn
Z)∗ in ( 1

pn Z
2/Z

2)∗/ ± 1, check if
∑

r∈orbit

m(r) ≥ 0.

Step 4. Then g is integral over Z[ j] if and only if the third step is true for each prime p.
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4 Field of modular functions of level N

For a congruence subgroup � we denote by K(X (�)) the function field of the modular curve
X (�) = �\H∗. Let h be the width of the cusp ∞. For a subfield Q

′ of the maximal abelian
extension Qab of Q, let K′ be the field of all modular functions in K(X (�)) whose Fourier

coefficients with respect to q
1
h
τ = e

2π iτ
h belong to Q

′.

Lemma 4.1 Let K(X (�)) = C(S) for a subset S in K(X (�)). If S ⊂ K′, then K′ = Q
′(S).

Proof First note that C and K′ are linearly disjoint over Q
′. Indeed, let c1, . . . , cm be the

elements of C which are linearly independent over Q
′. Assume that

∑
k=1 ck fk = 0 for some

f1, . . . , fm ∈ K′. Writing fk = ∑∞
n=−∞ cknq

n
h
τ with ckn ∈ Q

′, we have

m∑
k=1

ck fk =
m∑

k=1

ck

∞∑
n=−∞

cknq
n
h
τ =

∞∑
n=−∞

(
m∑

k=1

ckckn

)
q

n
h
τ = 0,

which yields
∑m

k=1 ckckn = 0 for each n ∈ Z. Since c1, . . . , cm are linearly independent
over Q

′, we have ckn = 0 for all k and n. Hence f1 = · · · = fm = 0.
Now consider the field tower:

Q
′

C Q
′(S)

C(S) K′

...........
...........

...........
..........

...........
...........
...........
......

...........
...........
...........
...........
..

...........
...........

...........
..........

...........
...........
...........
......

Since C(S) and K′ are linearly disjoint over Q
′(S) [14, VIII Proposition 3.1], we have

1 ≤ [K′ : Q
′(S)] ≤ [CK′ : C(S)] ≤ [K(X (�)) : K(X (�))],

which yields that K′ = Q
′(S). ��

Now we turn our interest to the study of modular function fields. Since the algebraic clo-
sure of Q in FN is QN , we have Gal (FN /QN ( j)) ∼= Gal (K(X (N ))/K(X (1))). And, as is
well-known Gal (K(X (N ))/K(X (1))) has the representation

SL2(Z/NZ)/{±12} ∼= �1/ ± �(N )

where each element of SL2(Z/NZ)/{±12} acts on modular functions by composition. For
the representation of Gal(FN /F1), we first note that

GL2(Z/NZ)/{±12} = G N · SL2(Z/NZ)/{±12} = SL2(Z/NZ)/{±12} · G N (4.1)

where

G N =
{(

1 0
0 d

)
: d ∈ (Z/NZ)∗

}
.

For an element
(

1 0
0 d

) ∈ G N , let σd be the automorphism of QN defined by ζ
σd
N = ζ d

N . This
automorphism σd is naturally extended to FN by

∑
n

cnq
n
N
τ �→

∑
n

cσd
n q

n
N
τ
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where
∑

n cnqn/N
τ is the qτ -expansion of a modular function. Then Gal(FN /F1) has the

representation GL2(Z/NZ)/{±12} from the decomposition (4.1) [15,20].
Next we exhibit generators of the function field FN in terms of Siegel functions and explain

the action of Gal(FN /F1) on them explicitly. Consider the first Weber function defined by

f0(z; L) = −2735 g2(L)g3(L)

�(L)
℘ (z; L) (z ∈ C, L a lattice in C)

where g2(L) = 60
∑

w∈L\{0} 1
w4 , g3(L) = 140

∑
w∈L\{0} 1

w6 and �(L) = g3
2(L)−27g2

3(L).

For (a, b) ∈ Z
2\NZ

2, we let

f( a
N , b

N

)(τ ) = f0

(
a

N
τ + b

N
; [τ, 1]

)
.

Then we have

FN = Q

(
j, f( a

N , b
N

)
)

∀(a,b)∈Z2\NZ2

K(X (N )) = CFN .

The action of α ∈ GL2(Z/NZ) is described by the rule

f α(
a
N , b

N

) = f( a
N , b

N

)
α

[15,20]. We can then restate these fields in terms of Siegel functions as follows:

Theorem 4.2 For N > 1, we have

K(X (N )) = C

(
j, g12N(

a
N , b

N

)
)

∀(a,b)∈Z2\NZ2

= C

(
j, g12N(

1
N ,0

), g12N(
0, 1

N

)
)

FN = QN

(
j, g12N(

1
N ,0

), g12N(
0, 1

N

)
)

.

Proof Put

E = C

(
j, g12N(

a
N , b

N

)
)

∀(a,b)∈Z2\NZ2

which is a subfield of K(X (N )) over K(X (1)). We shall show that any element γ ∈ �1

which acts trivially on E must lie in ±�(N ). Then E should be all of K(X (N )) by Galois
theory. To this end, we consider the effect of γ on two functions g12N

( 1
N ,0)

and g12N
(0, 1

N )
. Letting

γ = (
a b
c d

)
we have by Proposition 2.4(2)

(
g12N(

1
N ,0

)
)γ

= g12N(
1
N ,0

)
γ

= g12N(
a
N , b

N

)
(

g12N(
0, 1

N

)
)γ

= g12N(
0, 1

N

)
γ

= g12N(
c
N , d

N

).
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Since the action of γ is trivial, we establish

g12N(
a
N , b

N

) = g12N(
1
N ,0

) (4.2)

g12N(
c
N , d

N

) = g12N(
0, 1

N

). (4.3)

The action of
(

0 1−1 0

)
on both sides of (4.2) and (4.3) respectively yields

g12N(
− b

N , a
N

) = g12N(
0, 1

N

) (4.4)

g12N(
− d

N , c
N

) = g12N(
− 1

N ,0
). (4.5)

Then by virtue of (2.9) we can compute the orders with respect to qτ of both sides of
(4.2)–(4.5), which read

12N · 1

2
B2

(〈 a

N

〉)
= 12N · 1

2
B2

(〈
1

N

〉)
12N · 1

2
B2

(〈 c

N

〉)
= 12N · 1

2
B2(〈0〉)

12N · 1

2
B2

(〈
− b

N

〉)
= 12N · 1

2
B2(〈0〉) 12N · 1

2
B2

(〈
− d

N

〉)
=12N · 1

2
B2

(〈
− 1

N

〉)
.

Together with the fact det(γ ) = 1 we have a ≡ d ≡ ±1 (mod N ) and b ≡ c ≡ 0 (mod N ).
Hence γ lies in ±�(N ), which proves E = K(X (N )). In fact, our observation implies that

K(X (N )) = C

(
j, g12N(

1
N ,0

), g12N(
0, 1

N

)
)

. Furthermore since j , g12N(
1
N ,0

) and g12N(
0, 1

N

) have Fourier

coefficients in QN , we have FN = QN

(
j, g12N(

1
N ,0

), g12N(
0, 1

N

)
)

by Lemma 4.1. ��

5 Modular functions for �0(N)

In this section, we construct certain family of modular functions for the Hecke congruence
group �0(N ) as products of Siegel functions and find their orders, which will be used in
constructing principal divisors of X0(p) supported only at the cusps and generators of some
function fields K(X0(pq)).

Proposition 5.1 For N > 1, we define a function

gN (τ ) =
N−1∏
n=1

g
12

gcd(12,N−1)

(0, n
N )

(τ ).

Then it is modular for �0(N ) and

ordqτ gN = N − 1

gcd(12, N − 1)
.

Proof Using the indentity

1 − X N

1 − X
= (1 − ζN X)(1 − ζ 2

N X) · · · (1 − ζ N−1
N X)
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and by the qτ -expansion formula (2.8), we can easily see that

N−1∏
n=1

g(0, n
N )(τ ) = Neπ i N−1

2
η2(Nτ)

η2(τ )
. (5.1)

Thus

gN (τ ) =
(

N
η2(Nτ)

η2(τ )

) 12
gcd(12,N−1)

.

Instead of referring certain theorem about Dedekind eta functions [17, Theorem 1.64], we
shall directly verify the proposition by making use of the transformation formulas of Klein
forms.

Let α = (
a b

Nc d

)
with a, b, c, d ∈ Z be an element of �0(N ). Then by Proposition 2.3(2)

and (3) we obtain that

gN ◦ α =
{

N−1∏
n=1

(k(0, n
N ) ◦ α)(η2 ◦ α)

} 12
gcd(12,N−1)

by (2.5)

=
{

N−1∏
n=1

k(0, n
N )α(Ncτ + d)−1(η2 ◦ α)

} 12
gcd(12,N−1)

by Proposition 2.3(2)

=
{

N−1∏
n=1

k(
cn, dn

N

)
} 12

gcd(12,N−1) {
(Ncτ + d)−12(η24 ◦ α)

} N−1
gcd(12,N−1)

=
{

N−1∏
n=1

k(
0, dn

N

)
+(cn,0)

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k(
0, dn

N

)(−1)cne−π i · cdn2
N

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1) by Proposition 2.3(3)

=
{

N−1∏
n=1

k(
0, dn

N

) · (−1)
c(N−1)N

2 e−π i · cd(N−1)(2N−1)
6

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k
(0, dn

N )

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k(
0,
〈

dn
N

〉)
+
(

0, dn
N −

〈
dn
N

〉)
} 12

gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k(
0,
〈

dn
N

〉)(−1)
dn
N −

〈
dn
N

〉} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1) by Proposition 2.3(3)

=
{

N−1∏
n=1

k(0,〈 n
N 〉) · (−1)

∑
n

dn
N −∑

n

〈
dn
N

〉} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)
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=
{

N−1∏
n=1

k(0, n
N ) · (−1)

(d−1)(N−1)
2

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k(0, n
N )

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{

N−1∏
n=1

k(0, n
N )η

2

} 12
gcd(12,N−1)

(2.5)=
{

N−1∏
n=1

g(0, n
N )

} 12
gcd(12,N−1)

= gN .

Hence g is modular for �0(N ). Furthermore, by (2.9) we get

ordqτ gN = 12

gcd(12, N − 1)

N−1∑
n=1

ordqτ g(0, n
N )

= 12

gcd(12, N − 1)

N−1∑
n=1

1

2
B2(0)

= N − 1

gcd(12, N − 1)
.

��

Atkin [1] showed that for any prime p the cusp ∞ is not a Weierstrass point on the modular
curve X0(p) = �0(p)\H∗. This means that for any positive integer n with 1 ≤ n ≤ genus gp

of X0(p), there does not exist any function on X0(p) which has a pole of order n at ∞ and is
holomorphic elsewhere. Using this fact we shall completely determine all principal divisors
of X0(p) supported only at the cusps. Note that our method is totally different from that of
Ogg [16] who relied on some facts from algebraic geometry.

For this purpose we first provide some distribution relations of Siegel functions.

Theorem 5.2 (1) For an odd prime p, if a product
∏

r∈( 1
p Z2/Z2)∗/±1

gm(r)
r

is a constant, then all exponents m(r) are the same.
(2) Let l and p be odd primes. Suppose that a modular function g satisfies

gl .=
∏

r∈( 1
p Z2/Z2)∗/±1

gm(r)
r

for some family of integers {m(r)}r . Then there exists a representation

g = λ
∏

r∈( 1
p Z2/Z2)∗/±1

gm′(r)
r

for some family of integers {m′(r)}r and some λ ∈ C.

Proof See [13, Chapters 2 and 4]. ��
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Theorem 5.3 For a prime p ≥ 5, the smallest positive integer dp for which dp ((0) − (∞))

is a principal divisor of X0(p) is given as follows:

dp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p−1
12 = gp + 1 if p ≡ 1 (mod 12)

p−1
4 = 3gp + 1 if p ≡ 5 (mod 12)

p−1
6 = 2gp + 1 if p ≡ 7 (mod 12)

p−1
2 = 6gp − 1 if p ≡ 11 (mod 12)

where gp is the genus of the curve X0(p) [17].

Proof Note that ∞ and 0 are all the inequivalent cusps on X0(p) of widths 1 and p, respec-
tively [10]. And every principal divisor supported only at the cusps is a multiple of the divisor
dp((0) − (∞)). Since the cusp ∞ is not a Weierstass point, it follows that dp ≥ gp + 1.
p ≡ 1 (mod 12). Consider a function

g = g−1
p =

p−1∏
n=1

g−1(
0, n

p

).

By Proposition 5.1, g is an element of K(X0(p)) and

ord∞g = − p − 1

gcd(12, p − 1)
= − p − 1

12
= −(gp + 1).

Since dp divides the order −(gp + 1) and dp ≥ gp + 1, dp should be equal to gp + 1.
p ≡ 5 (mod 12). We also consider a function

g = g−1
p =

p−1∏
n=1

g−3(
0, n

p

) .=
p−1

2∏
n=1

g−6(
0, n

p

).

Then by Proposition 5.1 we have

ord∞g = − p − 1

gcd(12, p − 1)
= − p − 1

4
= −(3gp + 1).

Since dp divides the order −(3gp +1) and dp ≥ gp +1, we get dp = 3gp +1 or dp = 3gp+1
2 .

Suppose that dp = 3gp+1
2 , then there exists a function f ∈ K(X0(p)) such that

div( f ) = 3gp + 1

2
((0) − (∞)).

On the other hand, div( f 2g−1) = 2div( f ) − div(g) = 0 implies that f 2g−1 is a constant.
So we may assume that

f =
p−1

2∏
n=1

g−3(
0, n

p

).
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Note that dp = 3gp+1
2 = p−1

8 is an integer. Take an element α = ( a b
p 3

)
with a, b ∈ Z of

�0(p) and observe that

f ◦ α =

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

g(
0, n

p

) ◦ α

⎫⎪⎬
⎪⎭

−3

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

(k(
0, n

p

) ◦ α)(η2 ◦ α)

⎫⎪⎬
⎪⎭

−3

by (2.5)

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
n, 3n

p

)(pτ + 3)−1(η2 ◦ α)

⎫⎪⎬
⎪⎭

−3

by Proposition 2.3(2)

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
n, 3n

p

)
⎫⎪⎬
⎪⎭

−3

{
(pτ + 3)−12(η24 ◦ α)

}− p−1
8

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0, 3n

p

)
+(n,0)

⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0, 3n

p

) · (−1)
∑ p−1

2
n=1 ne−π i

∑ p−1
2

n=1
3n2

p

⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8 by Proposition 2.3(3)

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0, 3n

p

)
⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0,
〈

3n
p

〉)
+
(

0, 3n
p −

〈
3n
p

〉)
⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0,
〈

3n
p

〉) · (−1)

∑ p−1
2

n=1

(
3n
p −

〈
3n
p

〉)⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8 by Proposition 2.3(3)

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0,
〈

3n
p

〉) · (−1)

∑ p−1
2

n= p+1
3

1

⎫⎪⎬
⎪⎭

−3

(η24)−
p−1

8

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

k(
0,
〈

3n
p

〉)η2

⎫⎪⎬
⎪⎭

−3

(−1)−
p+1

2 =

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

g(
0,
〈

3n
p

〉)
⎫⎪⎬
⎪⎭

−3

(−1)

=

⎧⎪⎨
⎪⎩

p−1
2∏

n=1

g(
0, n

p

)
⎫⎪⎬
⎪⎭

−3

(−1) = − f.

The last line is obtained by verifing g(0,r2) = g(0,1−r2) for r2 ∈ Q\Z from Proposition 2.4(1)
and (3). This contradicts the fact f ∈ K(X0(p)). Therefore dp = 3gp + 1.
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p ≡ 7 (mod 12). Considering a function

g = g−1
p =

p−1∏
n=1

g−2(
0, n

p

)

and by Proposition 5.1 we see that

ord∞g = − p − 1

gcd(12, p − 1)
= − p − 1

6
= −(2gp + 1).

Since dp divides the order −(2gp + 1) and dp ≥ gp + 1, dp equals 2gp + 1.
p ≡ 11 (mod 12). We consider a function

g = g−1
p =

p−1∏
n=1

g−6(
0, n

p

) .=
p−1

2∏
n=1

g−12(
0, n

p

).

Then by Proposition 5.1 we achieve

ord∞g = − p − 1

gcd(12, p − 1)
= − p − 1

2
= −(6gp − 1).

Since dp divides the order −(6gp − 1) and dp ≥ gp + 1, dp is equal to 6gp − 1 or 6gp−1
5 .

Assume that dp = 6gp−1
5 , then there exists a function f ∈ K(X0(p)) such that

div( f ) = 6gp − 1

5
((0) − (∞)).

On the other hand, div( f 5g−1) = 5div( f ) − div(g) = 0 implies that f 5g−1 is a constant.
So we may assume that f 5 = g. Then by Theorem 5.2(2), f has a representation

f = λ
∏

r∈( 1
p Z2/Z2)∗/±1

gm′(r)
r

for some family of integers {m′(r)}r and some λ ∈ C. Decompose f 5g−1 into

f 5g−1 = λ

p−1
2∏

n=1

g
5m′

(
0, n

p

)
+12(

0, n
p

) ·
∏

r not of the form
(

0, n
p

)g5m′(r)
r = a constant.

By Theorem 5.2(1) we know that all exponents should be the same, but it is obviously
impossible because 5 cannot divide 12. Therefore dp = 6gp − 1. ��

Remark 5.4 We note from Theorem 5.3 that dp is in fact the numerator of p−1
12 . For a given

modular curve one can define the cuspidal divisor class group [13] as the additive group
of divisors of degree 0 generated by the cusps modulo the subgroup of principal divisors
obtained from the modular units. The order of this group is called the cuspidal class number.
Then our number dp in Theorem 5.3 is none other than the cuspidal class number of such
modular curve when N is a prime number larger than 3. On the other hand, Takagi also
computed in [22] the cuspidal class number of X0(N ) with N square-free. In general the
cuspidal divisor group can be identified with a group ring R of a finite group. He expressed
in the paper certain family of divisors from the modified Siegel functions as multiples of a
so-called Stickelberger element θ ∈ R ⊗ Q. He also proved that the family becomes a set of
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Table 1 The orders at the cusps on X0(pq)

Cusps Functions

gp gq gpq
gp gq

g2
pq

gq

g2
pq

∞ p−1
12

q−1
12

pq−1
12 − 2pq−p−q

12 − 2pq−q−1
12

0 − q(p−1)
12 − p(q−1)

12 − pq−1
12

p+q−2
12

pq+p−2
12

1
p

q(p−1)
12 − q−1

12 − q−p
12

pq+1−2p
12

q+1−2p
12

1
q − p−1

12
p(q−1)

12
q−p

12
pq+1−2q

12
pq+p−2q

12

generators for the subgroup of divisors from the modular units, which made him possible to
find the cuspidal class number. Observe that the subgroups of divisors from modular units is
an ideal of the ring R and is an analogue of the Stickelberger ideal in the theory of cyclotomic
fields.

Let p and q be two distinct primes such that both p, q ≡ 1 (mod 12). Consider the
functions

gp =
p−1∏
n=1

g(
0, n

p

), gq =
q−1∏
n=1

g(0, n
q ), gpq =

pq−1∏
n=1

g(0, n
pq ).

We see from Proposition 5.1 that gp , gq and gpq are modular for �0(p), �0(q) and �0(pq),
respectively. We shall view all of them as functions on the modular curve X0(pq) =
�0(pq)\H∗. Then the inequivalent cusps on X0(pq) are ∞, 0, 1

p , 1
q of widths 1, pq, q, p,

respectively [10]. For a product of Siegel functions

g =
∏

r∈ 1
pq Z2\Z2

gm(r)
r

which lies in K(X0(pq)) we can estimate the order at each cusp s as follows. Let γs be an
element of SL2(Z) such that γs(∞) = s. And, we take

γ∞ =
(

1 0

0 1

)
, γ0 =

(
0 −1

1 0

)
, γp =

(
1 0

p 1

)
, γq =

(
1 0

q 1

)
.

Then (2.9) and Proposition 2.4(2) enable us to compute the order of g at s as

ords g = width at s · ordqτ (g ◦ γs)

= width at s ·
∑

r

m(rγs)
1

2
B2 (〈(rγs)1〉)

where (rγs)1 is the first entry of the vector rγs . Here we summarize the orders of gp, gq , gpq

and the additional functions gpgq/g2
pq and gq/g2

pq in Table 1.

Note that the genus gpq of X0(pq) is given by (p+1)(q+1)
12 − 10

3 [10]. Now we know from
the Table 1 that gpgq/g2

pq satisfies

ord∞
gpgq

g2
pq

= −2gpq + p + q − 26

4
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and is holomorphic elsewhere. And gq/g2
pq satisfies

ord∞
gq

g2
pq

= −2gpq + 2p + 3q − 77

12

and is holomorphic elsewhere if q ≥ 2p − 1. At this stage we hope that these two functions
will play a certain role in examining whether the cusp ∞ is a Weierstrass point of X0(pq)

or not. On the other hand, we also have the following interesting result from the Table 1.

Theorem 5.5 Let p and q be primes such that both p, q ≡ 1 (mod 12) and q ≥ 2p − 1.

If p−1
12 and q−1

12 are relatively prime, then K (X0(pq)) = C

(
gp, gq/g2

pq

)
.

Proof For convenience, put A = 2pq−p−q
12 and B = 2pq−q−1

12 , then −A + B = p−1
12 and

2q A + (1−2q)B = q−1
12 . And by assumption A and B are relatively prime. Then the Table 1

indicates that the total degrees of poles of gpgq/g2
pq and gq/g2

pq are equal to A and B,
respectively. Hence [K(X0(pq)) : C(gpgq/g2

pq)] = A and [K(X0(pq)) : C(gq/g2
pq)] = B,

which implies that [K(X0(pq)) : C(gpgq/g2
pq , gq/g2

pq)] should be 1. Therefore gpgq/g2
pq

and gq/g2
pq (or, gp and gq/g2

pq ) are generators of K(X0(pq)).
In particular, when p = 13 and q(≥ 25) is a prime ≡ 1 (mod 12), we see that g13 and

gq/g2
13q are generators of K(X0(13q)). ��

6 Hauptmoduln of K(X1(N))

Since gN is an element of K (X0(N )), it is an element of K(X1(N )) too. However it doesn’t
seem to be good enough as a generator of K(X1(N )), because K(X1(N )) is much bigger
than K (X0(N )) in general. To find its relevant generators we need more machinery. We have
only thought of Siegel functions of the form g(0,∗) so far. From now on we shall consider
Siegel functions g(r1,r2) with r1 /∈ Z. Precisely speaking, we shall consider the functions

g( t
N ,0)(Nτ)

with t �≡ 0 (mod N ).

Lemma 6.1 For an integer t �≡ 0 mod N,

N−1∏
n=0

g( t
N , n

N )(τ ) = eπ i N−1
2 ( t

N +1)g( t
N ,0)(Nτ).

Proof One can readily prove the lemma by using the identity

1 − X N = (1 − X)(1 − ζN X) · · · (1 − ζ N−1
N X)

and the qτ -expansion formula (2.8). ��
The following theorem gives us a sufficient condition for a product of g( t

N ,0)(Nτ)’s to
be an element of K(X1(N )).

Theorem 6.2 A product

g =
N−1∏
t=1

gm(t)
( t

N ,0)
(Nτ)
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is an element of K(X1(N )) if

∑
t

m(t) ≡ 0 (mod 12) and
∑

t

m(t)t2 ≡ 0 (mod gcd(2, N ) · N ).

Furthermore, for α = (
a b
c d

) ∈ SL2(Z) we have

ordqτ g ◦ α = gcd(c, N )2

2N

N−1∑
t=1

m(t)B2

(〈
at

gcd(c, N )

〉)
. (6.1)

Proof Assume the hypothesis of the theorem. By Lemma 6.1,

g = λ

N−1∏
t=1

{
N−1∏
n=0

g( t
N , n

N )

}m(t)

for some root of unity λ. For notation, we set

g = λ
∏

r=(r1,r2)∈ 1
N Z

2\Z
2

0≤r1,r2<1

gm′(r)
r .

Then

∑
r

m′(r)(Nr1)
2 = N

∑
t

m(t)t2

∑
r

m′(r)(Nr2)
2 = (N − 1)N (2N − 1)

6

∑
t

m(t)

∑
r

m′(r)(Nr1)(Nr2) = N
∑

t

m(t)t

∑
r

m′(r) = N
∑

t

m(t).

Hence by Theorem 2.5, g is modular of level N . Note that �1(N ) = 〈�(N ), T 〉 with
T = (

1 1
0 1

)
and

g ◦ T = λ

N−1∏
t=1

{
N−1∏
n=0

(k( t
N , n

N ) ◦ T )(η2 ◦ T )

}m(t)

by (2.5)

= λ

{
N−1∏
t=1

N−1∏
n=0

k
m(t)
( t

N , t+n
N )

}
(η2 ◦ T )N

∑
t m(t) by Proposition 2.3(2)

= λ

{
N−1∏
t=1

N−1∏
n=0

k
m(t)
( t

N , t+n
N )

}
(η24)

N
12

∑
t m(t),
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and

N−1∏
t=1

N−1∏
n=0

k
m(t)
( t

N , t+n
N )

=
N−1∏
t=1

{
N−1−t∏

n=0

k( t
N , t+n

N )

N−1∏
n=N−t

k( t
N , t+n

N )

}m(t)

=
N−1∏
t=1

{
N−1−t∏

n=0

k( t
N , t+n

N )

N−1∏
n=N−t

k( t
N , t+n

N −1)+(0,1)

}m(t)

=
N−1∏
t=1

{
N−1−t∏

n=0

k( t
N , t+n

N )

N−1∏
n=N−t

k( t
N , t+n

N −1)

(
−eπ i t

N

)}m(t)

by Proposition 2.3(3)

=
{

N−1∏
t=1

N−1∏
n=0

k
m(t)
( t

N , n
N )

}
(−1)

∑
t tm(t)eπ i 1

N

∑
t t2m(t).

Since
∑

t tm(t) ≡ ∑
t t2m(t) (mod 2), it follows from our assumption that

g ◦ T = g · (−1)
∑

t tm(t)eπ i 1
N

∑
t t2m(t) = g.

Therefore g is an element of K(X1(N )). Moreover, for α = (
a b
c d

) ∈ SL2(Z) we deduce that

ordqτ g ◦ α =
N−1∑
t=1

m(t)
N−1∑
n=0

ordqτ g( t
N , n

N )β by Proposition 2.4(2)

=
N−1∑
t=1

m(t)
N−1∑
n=0

ordqτ g( at+cn
N , bt+dn

N

)

=
N−1∑
t=1

m(t)
N−1∑
n=0

1

2
B2

(〈
at + cn

N

〉)
by (2.9)

= gcd(c, N )2

2N

N−1∑
t=1

m(t)B2

(〈
at

gcd(c, N )

〉)
.

The last equality is obtained from the following well-known lemma concerning the distri-
bution relations of the Bernoulli polynomials. We only need that of the second Bernoulli
polynomial. ��

Lemma 6.3 For any y ∈ Q/Z and a positive integer D we have
∑

Dx=y, x∈Q/Z

Bn (〈x〉) = D1−nBn (〈y〉) .

Proof For the sake of completeness we give a proof. The nth Bernoulli polynomial Bn(X)

is defined by

W eW X

eW − 1
=

∞∑
n=0

Bn(X)
W n

n! .
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Here we observe directly from the above definition of Bn(X) that

∞∑
n=0

Bn (〈y〉) W n

n! = W eW 〈y〉

eW − 1
=

D−1∑
k=0

W eW (〈y〉+k)

eDW − 1
=

D−1∑
k=0

1

D

(DW )e(DW )
〈y〉+k

D

eDW − 1

=
D−1∑
k=0

∞∑
n=0

1

D
Bn

( 〈y〉 + k

D

)
(DW )n

n!

=
∞∑

n=0

D−1∑
k=0

Dn−1Bn

( 〈y〉 + k

D

)
W n

n! .

Thus we achieve

Bn (〈y〉) = Dn−1
D−1∑
k=0

Bn

( 〈y〉 + k

D

)
= Dn−1

∑
Dx=y, x∈Q/Z

Bn (〈x〉) .

��
The genus zero condition and the inequivalent cusps on the modular curve X1(N ) are

given in the following theorem.

Theorem 6.4 The genus of X1(N ) is zero if and only if 1 ≤ N ≤ 10 or N = 12. Let
N �= 1, 2, 4. All the inequivalent cusps on X1(N ) are represented by the pairs of integers
(u, v) satisfying {

1 ≤ v < N
2 , 1 ≤ u ≤ D, gcd(u, D) = 1, or

v = N
2 , N , 1 ≤ u ≤ D

2 , gcd(u, D) = 1,

where D = gcd(v, N ). If gcd(u, v) �= 1, we replace (u, v) by other pair of integers (u′, v′)
such that u′ ≡ u (mod N ), v′ ≡ v (mod N ) and gcd(u′, v′) = 1. Then all the inequivalent
cusps on X1(N ) are given by the quotients u

v
.

Proof See [10]. ��
Theorem 6.5 Assume that X1(N ) is of genus 0 and let a product

g =
N−1∏
t=1

gm(t)
( t

N ,0)
(Nτ)

be a function in K(X1(N )). For each cusp s = a
c ∈ Q with gcd(a, c) = 1 which is inequiv-

alent to ∞, g is a generator of K(X1(N )) if

N

2

∑
t

m(t)B2

(
t

N

)
= −1 and

∑
t

m(t)B2

(〈
at

gcd(c, N )

〉)
≥ 0.

Proof Note that the width of ∞ on X1(N ) is 1. From the order formula (6.1) in Theorem 6.2
we see that the hypothesis in this theorem renders the fact that g has simple pole at ∞ and
is holomorphic elsewhere. Hence X1(N ) is isomorphic to the projective line P

1
C

through the
map τ �→ [1 : g(τ )] and K(X1(N )) = C(g). ��
Remark 6.6 This result is similar to that of Yang [23, Lemma 3] developed by making use
of the generalized Dedekind eta function. But we believe that the Siegel functions are more
systematic and convenient to use than the generalized Dedekind eta functions, especially in
the matter of transformation formulas.
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Table 2 Generators of K(X1(N ))

N G N j1,N

2 g12(
1
2 ,0

)(2τ)
θ8
2 (τ )

θ8
4 (2τ)

3 g12(
1
3 ,0

)(3τ)
E4(τ )
E4(3τ)

4 g−8(
1
4 ,0

)(4τ)g8(
2
4 ,0

)(4τ)
θ4
2 (2τ)

θ4
3 (2τ)

5 g−5(
1
5 ,0

)(5τ)g5(
2
5 ,0

)(5τ)
4η5(τ )/η(5τ)+E(5)

2 (τ )

η5(5τ)/η(τ)

6 g−3(
1
6 ,0

)(6τ)g3(
3
6 ,0

)(6τ)
H (2)

2 (τ )−H (2)
2 (3τ)

2H (2)
2 (τ )−H (3)

2 (τ )

7 g−3(
1
7 ,0

)(7τ)g( 2
7 ,0

)2(7τ)g( 3
7 ,0

)(7τ)

℘( 1
7 ,0

)(7τ)−℘( 2
7 ,0

)(7τ)

℘( 1
7 ,0

)(7τ)−℘( 4
7 ,0

)(7τ)

8 g−2(
1
8 ,0

)(8τ)g2(
3
8 ,0

)(8τ)
θ3(2τ)
θ3(4τ)

9 g−2(
1
9 ,0

)(9τ)g( 2
9 ,0

)(9τ)g( 4
9 ,0

)(9τ)

℘( 1
9 ,0

)(9τ)−℘( 2
9 ,0

)(9τ)

℘( 1
9 ,0

)(9τ)−℘( 4
9 ,0

)(9τ)

10 g−1(
1

10 ,0
)(10τ)g−1(

2
10 ,0

)(10τ)g( 3
10 ,0

)(10τ)g( 4
10 ,0

)(10τ)

℘( 1
10 ,0

)(10τ)−℘( 2
10 ,0

)(10τ)

℘( 1
10 ,0

)(10τ)−℘( 4
10 ,0

)(10τ)

12 g−1(
1

12 ,0
)(12τ)g( 5

12 ,0
)(12τ)

θ3(2τ)
θ3(6τ)

As an application of Theorem 6.5 we can explicitly find generators of K(X1(N )) of genus
zero as shown in the Table 2. We denote them by G N for convenience. On the other hand,
in the Table 3 we additionally introduce relations between G N and the generators j1,N of
K(X1(N )) which appeared in [12] ahead of Yang’s [23]. As for j1,N we need the following
definitions:

θ2(τ ) =
∑
n∈Z

eπ i(n+ 1
2 )2

, θ3(τ ) =
∑
n∈Z

eπ in2
, θ4(τ ) =

∑
n∈Z

(−1)neπ in2

H2(τ ) = 2ζ(2) − 8π2
∞∑

n=1

σ1(n)qn
τ

E2(τ ) = 1

2ζ(2)
H2(τ ), E4(τ ) = 1 + 240

∞∑
n=1

σ3(n)qn
τ

H (p)
2 (τ ) = H2(τ ) − pH2(pτ) for each prime p

E (p)
2 (τ ) = E2(τ ) − pE2(pτ) for each prime p

℘(r1,r2)(τ ) = ℘(r1τ + r2; [τ, 1]) for (r1, r2) ∈ Q
2\Z

2.

Now, using our algorithm in Sect. 3 for integrality over Z[ j] we induce the following
results.

123



J. K. Koo, D. H. Shin

Table 3 Hauptmoduln of K(X1(N ))

N Hauptmoduln (unique normalized generators)

2 G2 + 24 = 256
j1,2

+ 24 = 1
qτ

+ 276qτ − 2048q2
τ + 11202q3

τ − 49152q4
τ + 184024q5

τ + · · ·
3 G3 + 12 = 240

j1,3−1 + 9 = 1
qτ

+ 54qτ − 76q2
τ − 243q3

τ + 1188qτ4 − 1384q5
τ + · · ·

4 G4 − 8 = 16
j1,4

− 8 = 1
qτ

+ 20qτ − 62q3
τ + 216q5

τ − 641q7
τ + 1636q9

τ + · · ·
5 G5 − 5 = − 8

j1,5+44 − 5 = 1
qτ

+ 10qτ + 5q2
τ − 15q3

τ − 24q4
τ + 15q5

τ + · · ·
6 G6 − 3 = 2

j1,6−1 − 1 = 1
qτ

+ 6qτ + 4q2
τ − 3q3

τ − 12q4
τ − 8q5

τ + · · ·
7 G7 − 3 = − 1

j1,7−1 − 3 = 1
qτ

+ 4qτ + 3q2
τ − 5q4

τ − 7q5
τ − 2q6

τ + · · ·
8 G8 − 2 = 2

j1,8−1 − 1 = 1
qτ

+ 3qτ + 2q2
τ + q3

τ − 2q4
τ − 4q5

τ + · · ·
9 G9 − 2 = − 1

j1,9−1 − 2 = 1
qτ

+ 2qτ + 2q2
τ + q3

τ − q4
τ − 2q5

τ + · · ·
10 G10 − 1 = − 1

j1,10−1 − 2 = 1
qτ

+ 2qτ + q2
τ + q3

τ − q5
τ − 2q6

τ + · · ·
12 G12 − 1 = 2

j1,12−1 = 1
qτ

+ qτ + q2
τ + q3

τ − q6
τ − q7

τ + · · ·

Theorem 6.7 (1) For N = 5, 7, 8, 9, 10 and 12, G N are units over Z.
(2) For N = 2, 3, 4, 6, G N are integral over Z[ j], but G−1

N are not.

Proof (1) N = 5, 7, 8, 9. For such N the indices of Siegel functions appearing in G N have
the same primitive denominator N . We shall only prove the case N = 7, because the other
cases are similar. By Lemma 6.1 we get

G7 = g−3(
1
7 ,0

)(7τ)g2(
2
7 ,0

)(7τ)g( 3
7 ,0

)(7τ)
.=

6∏
n=0

g−3(
1
7 , n

7

)g2(
2
7 , n

7

)g( 3
7 , n

7

).

The action(multiplication) of (Z/7Z)∗ groups the indices in the above product into{(
1

7
, 0

)
,

(
2

7
, 0

)
,

(
3

7
, 0

)}
,

{(
1

7
,

1

7

)
,

(
2

7
,

2

7

)
,

(
3

7
,

3

7

)}
,

{(
1

7
,

2

7

)(
2

7
,

4

7

)(
3

7
,

6

7

)}
{(

1

7
,

3

7

)
,

(
2

7
,

6

7

)
,

(
3

7
,

2

7

)}
,

{(
1

7
,

4

7

)
,

(
2

7
,

1

7

)
,

(
3

7
,

5

7

)}
,

{(
1

7
,

5

7

)
,

(
2

7
,

3

7

)
,

(
3

7
,

1

7

)}
{(

1

7
,

6

7

)
,

(
2

7
,

5

7

)
,

(
3

7
,

4

7

)}
.

It can then be directly checked that the sum of exponents for each orbit is zero. Therefore
our algorithm claims that G7 is a unit over Z.
N = 10. By Lemma 6.1 we have

G10
.=

9∏
n=0

g−1(
1

10 , n
10

)g−1(
2

10 , n
10

)g( 3
10 , n

10

)g( 4
10 , n

10

) = (G10)comp

4∏
n=0

g−1(
1
5 , n

5

)g( 2
5 , n

5

).
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From the algorithm it suffices to show that (G10)(5) = ∏4
n=0 g−1(

1
5 , n

5

)g( 2
5 , n

5

) is a unit over Z.

The action of (Z/5Z)∗ groups the indices in (G10)(5) into

{(
1

5
,

1

5

)
,

(
2

5
,

2

5

)}
,

{(
1

5
,

2

5

)
,

(
2

5
,

4

5

)}
,

{(
1

5
,

3

5

)
,

(
2

5
,

1

5

)}
,

{(
1

5
,

4

5

)
,

(
2

5
,

3

5

)}
.

And it can be readily checked that the sum of exponents for each orbit is zero. Hence G10 is
a unit over Z.
N = 12. By Lemma 6.1 we get

G12
.=

11∏
n=0

g−1(
1

12 , n
12

)g( 5
12 , n

12

) = (G12)comp.

And G12 is a unit over Z with no more argument.
(2) N = 2, 3. By Lemma 6.1 we obtain

G2
.= g12(

1
2 ,0

)g12(
1
2 , 1

2

)

G3
.= g12(

1
3 ,0

)g12(
1
3 , 1

3

)g12(
1
3 , 2

3

).

Since all the exponents are positive, G2 and G3 are obviously integral over Z[ j]. But, their
inverses G−1

2 and G−1
3 are not.

N = 4. By the proof of Corollary 3.2 and Proposition 2.4(1) and (3) we deduce that

G4
.=

3∏
n=0

g−8(
1
4 , n

4

)g8(
2
4 , n

4

) .= g8(
1
4 ,0

)g8(
1
4 , 1

4

)g8(
1
4 , 2

4

)g8(
1
4 , 3

4

)g16(
2
4 , 1

4

).

Thus G4 is integral over Z[ j], but G−1
4 is not.

N = 6. By Lemma 6.1 we obtain that

G6
.=

5∏
n=0

g−3(
1
6 , n

6

)g3(
3
6 , n

6

) = (G6)compg3(
1
2 ,0

)g3(
1
2 , 1

2

).

Thereofore G6 is also integral over Z[ j], but G−1
6 is not. ��

7 Application to the Ramanujan’s cubic continued fraction

Next, we shall investigate how to evaluate special values of the Ramanujan’s cubic continued
fraction if we know the singular j-invariants. The Ramanujan’s cubic continued fraction [19]
as a holomorphic function on H is defined by

C(τ ) = q
1
3
τ

1 + qτ + q2
τ

1 + q2
τ + q4

τ

1 + q3
τ + q6

τ

1 + · · ·

= q
1
3
τ

∞∏
n=1

(1 − q6n−1
τ )(1 − q6n−5

τ )

(1 − q6n−3
τ )2

.
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Since

g( t
N ,0)(Nτ) = −q

N
2 B2( t

N )
τ

∞∏
n=1

(1 − q N (n−1)+t
τ )(1 − q Nn−t

τ )

from the qτ -expansion formula (2.8), C can be written as

C = g( 1
6 ,0

)(6τ)g−1(
3
6 ,0

)(6τ).

Note that we have C−3 = G6 by the Table 2, which implies that C−1 is integral over Z[ j]
by Theorem 6.7(2).

We shall first find some relation between j and G3, and then find that of G3 and G6. From
these relations we will be able to estimate the values of C at some points in H whenever we
know the singular j-invariants there. To begin with, observe the following qτ -expansions

j = 1

qτ

+ 744 + 196884qτ + 21493760q2
τ + 864299970q3

τ + · · ·

G3 = 1

qτ

− 12 + 54qτ − 76q2
τ − 243q3

τ + 1188q4
τ − 1384q5

τ + · · ·

G6 = 1

qτ

+ 3 + 6qτ + 4q2
τ − 3q3

τ − 12q4
τ − 8q5

τ + · · · .

Theorem 7.1

j = (G3 + 27)(G3 + 243)3

G3
3

(7.1)

G3 = (G6 + 1)(G6 − 8)2

G2
6

. (7.2)

Proof Let us take a complete system of right coset representatives of �1/�1(3) as follows:

α1 =
(

1 0

0 1

)
α2 =

(
1 0

1 1

)
α3 =

(
1 0

2 1

)
α4 =

(
0 −1

1 0

)
.

Then the minimal polynomial of G3 over K(X (1)) = C( j) is written as

f (X) =
4∏

n=1

(X − G3 ◦ αn).

Since G3 is a modular unit, each G3 ◦ αn is also a modular unit. Hence each coefficient of
f (X) is holomorphic on H, which yields that it is a polynomial in j [15, Chapter 5]. Now
that

G3
.= g12(

1
3 ,0

)g12(
1
3 , 1

3

)g12(
1
3 , 2

3

) by Lemma 6.1,

we derive from Proposition 2.4(2) and (2.9) that

ordqτ (G3 ◦ α1) = ordqτ

(
g12(

1
3 ,0

)g12(
1
3 , 1

3

)g12(
1
3 , 2

3

)
)

= −1

ordqτ (G3 ◦ α2) = ordqτ

(
g12(

1
3 ,0

)g12(
2
3 , 1

3

)g12(
1, 2

3

)
)

= 1

3
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ordqτ (G3 ◦ α3) = ordqτ

(
g12(

1
3 ,0

)g12
(1, 1

3 )
g12(

5
3 , 2

3

)
)

= 1

3

ordqτ (G3 ◦ α4) = ordqτ

(
g12
(0,− 1

3 )
g12(

1
3 ,− 1

3

)g12(
2
3 ,− 1

3

)
)

= 1

3
.

This shows that the only nonconstant coefficient of f (X) is that of X3 which is a linear
polynomial in j . Thus we can write

j = G4
3 + A3G3

3 + A2G2
3 + A1G3 + A0

A′
3G3

3

for some A3, A′
3, A2, A1, A0 ∈ C. Now comparing the qτ -expansions of both sides we have

the formula (7.1).
Observe that the inequivalent cusps of X1(6) are ∞, 0, 1

2 , 1
3 by Theorem 6.4 and the

elements of SL2(Z)

γ0 =
(

0 −1

1 0

)
, γ 1

2
=
(

1 0

2 1

)
, γ 1

3
=
(

1 0

3 1

)

satisfy γ0(∞) = 0, γ 1
2
(∞) = 1

2 and γ 1
3
(∞) = 1

3 . And, again by Proposition 2.4(2) and (2.9)
we have

ordqτ (G3 ◦ γ0) = ordqτ

(
g12
(0,− 1

3 )
g12(

1
3 ,− 1

3

)g12(
2
3 ,− 1

3

)
)

= 1

3

ordqτ (G3 ◦ γ 1
2
) = ordqτ

(
g12(

1
3 ,0

)g12
(1, 1

3 )
g12(

5
3 , 2

3

)
)

= 1

3

ordqτ (G3 ◦ γ 1
3
) = ordqτ

(
g12(

1
3 ,0

)g12(
4
3 , 1

3

)g12(
7
3 , 2

3

)
)

= −1.

Similarly, since

G6 = g−3(
1
6 ,0

)(6τ)g3(
3
6 ,0

)(6τ)
.=

5∏
n=0

g−3(
1
6 , n

6

)g3(
3
6 , n

6

) by Lemma 6.1,

we deduce by Proposition 2.4(2) and (2.9) that

ordqτ (G6 ◦ γ0) = ordqτ

(
5∏

n=0

g−3(
n
6 ,− 1

6

)g3(
n
6 ,− 3

6

)
)

= 0

ordqτ (G6 ◦ γ 1
2
) = ordqτ

(
5∏

n=0

g−3(
1+2n

6 , n
6

)g3(
3+2n

6 , n
6

)
)

= 0

ordqτ (G6 ◦ γ 1
3
) = ordqτ

(
5∏

n=0

g−3(
1+3n

6 , n
6

)g3(
3+3n

6 , n
6

)
)

= 1

2
.

Now we consider the function

G = G3G2
6 − (G6 + 1)(G6 − 8)2.

123



J. K. Koo, D. H. Shin

Since G3 and G6 are holomorphic on H, so is G. Now that ordqτ is a valuation, for n = 1, 2, 3
it holds that

ordqτ (G ◦ γn) ≥ min
{
ordqτ (G3 ◦ γn) + 2ordqτ (G6 ◦ γn),

ordqτ (G6 ◦ γn + 1) + 2ordqτ (G6 ◦ γn − 8)
}
.

Then from our computation of orders we achieve

ordqτ (G ◦ γn) ≥ 0

for all n = 1, 2, 3, which means that G is holomorphic on X1(6) except possibly for the
point ∞. And, observe that the qτ -expansion of G is of the form

G = G3G2
6 − (G6 + 1)(G6 − 8)2

=
(

1

qτ

− 12 + 54qτ − 76q2
τ − 243q3

τ + · · ·
)(

1

qτ

+ 3 + 6qτ + 4q2
τ − 3q3

τ + · · ·
)2

−
(

1

qτ

+ 4 + 6qτ + 4q2
τ − 3q3

τ + · · ·
)(

1

qτ

− 5 + 6qτ + 4q2
τ − 3q3

τ + · · ·
)2

= O(q),

which shows that ordqτ G ≥ 1. Therefore G is holomorphic on the whole X1(6) and has a
zero at ∞, which implies that G = 0 as a function on the Riemann sphere X1(6). Therefore
we obtain the formula (7.2). ��
Corollary 7.2

j = (4C3 + 1)3(4C3 + 6C + 1)3(16C6 − 24C4 + 8C3 + 36C2 − 6C + 1)3

C3(C + 1)3(C2 − C + 1)3(2C − 1)6(4C2 + 2C + 1)6 .

Proof If we plug (7.2) into (7.1) and replace G6 by C−3, then we get the above relation
between j and C . ��
Corollary 7.3 If we know the singular value j (τ0) for some τ0 ∈ H, we can express C(τ0)

in terms of radicals. In particular, if τ0 ∈ H is imaginary quadratic, then C−1(τ0) is an
algebraic integer.

Proof By (7.1) we can express G3(τ0) in terms of radicals. Then by (7.2) we can also write
G6(τ0) in terms of radicals. Since G6 = C−3, we finally evaluate C(τ0) exactly.

If τ0 ∈ H is imaginary quadratic, j (τ0) becomes an algebraic integer [15,20]. And G3 =
C−3 is integral over Z[ j] by Theorem 6.7(2); hence C−1(τ0) is an algebraic integer, too. ��
Example 7.4 We exhibit several values C(τ0) in the following table. The singular values
j (τ0) are taken from [8, (12.20)] (Table 4).

The first six values of C(τ0) can be also found in [2,4], which were obtained by theta
function identities. Recently, Cho et al. [6] pointed out that C−1 is a generator of the function
field K(X (�1(6) ∩ �0(3))) where �0(3) = {(

a b
c d

) ∈ SL2(Z) : ( a b
c d

) ≡ ( ∗ 0∗
)

(mod 3)
}
.

Thus the special value C−1(τ0) for the maximal order [τ0, 1] of an imaginary quadratic field
becomes a ray class invariant of level 6. Further, if we use the Shimura’s reciprocity law
and some numerical approximations, we can come up with the class polynomial for each
C−1(τ0) as in [6].
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Table 4 Explicit values of the Ramanujan’s cubic continued fraction

τ0 j (τ0) C(τ0)

3+√−3
2 0

3√2− 3√4
2

3+√−3
6 0 − 1

3√4

i 1728
−1−√

3+
(

7−4
√

3
)(√

1008+582
√

3
)

4

3+i
2 1728 1−√

3
2

√−2 8000 2−3
√

2+√
6

4√−2
2 8000 −2+√

6
2

√−3 54000
−5

(
2+2 3√2+ 3√4

)
+
(
−56+18 3√2+21 3√4

)√
1641279+1302684 3√2+1033941 3√4

20
√−3

3 54000
3√−5+3

√
3

2

8 Generators of K(X1(N)) of arbitrary genus

Since the modular curve X1(N ) is a compact Riemann surface, the function field K(X1(N ))

can be generated over C by two functions. Unlike Ishida–Ishii’s result [11] we will find such
two generators of K(X1(N )) of arbitrary genus by means of Siegel functions when N ≥ 7.
As for the cases N = 2, 3, 4, 5 and 6, we refer to the Sect. 6.

Let N ≥ 2. By Proposition 2.4 and the discussion following it, we have the formula

g12N
r ◦ α = g12N

rα = g12N
(〈(rα)1〉,〈(rα)2〉) (8.1)

where r ∈ 1
N Z

2\Z
2, α ∈ SL2(Z) and rα = ((rα)1, (rα)2). For t ∈ Z\NZ we recall the

qτ -expansion formula

g( t
N ,0)(Nτ) = −q

N
2 B2( t

N )
τ

∞∏
n=1

(1 − q N (n−1)+t
τ )(1 − q Nn−t

τ ) (8.2)

whose coefficients are all rational numbers by (2.8). By Lemma 6.1 we have a distribution
relation

g12N
( t

N ,0)
(Nτ) =

N−1∏
n=0

g12N
( t

N , n
N )

. (8.3)

Furthermore by Proposition 6.2, g12N
( t

N ,0)
(Nτ) is a modular function for �1(N ) and we have

the order formula

ordqτ

(
g12N
( t

N ,0)
(Nτ) ◦ α

)
=ordqτ

(
g12N
( t

N ,0)
(N (α(τ)))

)
=6 gcd(c, N )2B2

(〈
at

gcd(c, N )

〉)
(8.4)

where α = (
a b
c d

) ∈ SL2(Z). From (8.2) we can easily verify that

N−1∏
t=1

g12N
( t

N ,0)
(Nτ) =

(
�(τ)

�(Nτ)

)N

, (8.5)

which is a modular function for �0(N ) by (5.1) and Proposition 5.1.

123



J. K. Koo, D. H. Shin

Theorem 8.1 For N ≥ 7 we have

K(X1(N )) = C

(
j, g12N(

1
N ,0

)(Nτ)

)
.

Furthermore, Q

(
j, g12N(

1
N ,0

)(Nτ)

)
is the field of all modular functions in K(X1(N )) with

rational Fourier coefficients.

Proof It is well-known that

Gal (K(X (N ))/K(X1(N ))) ∼=
{
±
(

1 b
0 1

)
∈ SL2(Z/NZ)/{±12} : b ∈ Z/NZ

}

as a subgroup of Gal (K(X (N ))/K(X (1))) ∼= SL2(Z/NZ)/{±12} whose action is given by
composition [9].

Let g = g12N
( 1

N ,0)
(Nτ). Assume that g ◦ α = g for some α = (

a b
c d

) ∈ SL2(Z), then

ordqτ (g ◦ α) = ordqτ (g). Thus from the order formula (6.1) we derive

6 gcd(c, N )2B2

(〈
a

gcd(c, N )

〉)
= 6N 2B2

(
1

N

)
.

The shape of the graph of Y = B2(X) in the interval 0 ≤ X ≤ 1 shows that the maximum
value of B2(X) is 1

6 at X = 0, 1. If gcd(c, N ) �= N , we have the inequality

6 − 6N + N 2 = 6N 2B2

(
1

N

)
= 6 gcd(c, N )2B2

(〈
a

gcd(c, N )

〉)
≤ 6 ·

(
N

2

)2

· 1

6
,

which is impossible for N ≥ 7. Hence gcd(c, N ) = N , which yields B2
(〈 a

N 〉) = B2
( 1

N

)
.

Furthermore, since α ∈ SL2(Z), we have a �≡ 0 (mod N ) so that a ≡ ±1 (mod N ) from
the shape of the graph B2(X). Lastly, since det(α) = 1, we obtain a ≡ d ≡ ±1 (mod N ).
Hence α ≡ ± (

1 b
0 1

)
(mod N ), which implies that C( j, g12N

( 1
N ,0)

(Nτ)) is all of K(X1(N )).

And, since j and g12N
( 1

N ,0)
(Nτ) have rational Fourier coefficients, we get the second assertion

by Lemma 4.1. ��
And, in particular, for a prime level p we will present generators in terms of only Siegel

functions.

Proposition 8.2 For an odd prime p all inequivalent cusps of the modular curve X1(p) are
listed as follows: ⎧⎨

⎩
1
1 , 1

2 , . . . , 1
(p−1)/2 of width p

1
p , 2

p , . . . ,
(p−1)/2

p of width 1.

Proof See [10]. ��
Theorem 8.3 For a prime p ≥ 11 we have

K(X1(p)) = C

((
p12 �(pτ)

�(τ)

)5−p

g12p(
1
p ,0

)(pτ),

(
p12 �(pτ)

�(τ)

)5−p

g12p(
2
p ,0

)(pτ)

)
.
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Table 5 The orders at the cusps on X1(p)

Cusps Functions
�p G p,1 G p,2

1
1 1 − p p p
1
2 1 − p p p

· · · · · · · · · · · ·
1

(p−1)/2 1 − p p p

1
p p − 1 6p2B2

(
1
p

)
6p2B2

(
2
p

)
2
p p − 1 6p2B2

(
2
p

)
6p2B2

(
4
p

)
· · · · · · · · · · · ·
(p−1)/2

p p − 1 6p2B2

(
(p−1)/2

p

)
6p2B2

(
p−1

p

)

Hence Q

((
p12 �(pτ)

�(τ)

)5−p
g12p(

1
p ,0

)(pτ),
(

p12 �(pτ)
�(τ)

)5−p
g12p(

2
p ,0

)(pτ)

)
is the field of all mod-

ular functions in K(X1(p)) with rational Fourier coefficients by Lemma 4.1.

Proof For convenience, we set

�p(τ ) = p12 �(pτ)

�(τ)
, G p,1(τ ) = g12p(

1
p ,0

)(pτ), G p,2(τ ) = g12p(
2
p ,0

)(pτ).

Then

�p(τ ) =
p−1∏
n=1

g12
(0, n

p )
(τ )

as we see in (5.1), which is modular for �0(p). Observe Table 5 constructed from the order
formula (2.9) for �p and (8.4) for G p,1, G p,2.

Let us take a negative integer M satisfying the inequality

6p2B2

(
2

p

)
< (−M) · (p − 1) < 6p2B2

(
1

p

)
.

We take M = 5 − p. From the shape of the graph Y = B2(X) in the interval 0 ≤ X ≤ 1 we
see that

M(p − 1) + 6p2B2

(
n

p

)
< 0 < M(p − 1) + 6p2B2

(
1

p

)

M(p − 1) + 6p2B2

(
2m

p

)
< 0 < M(p − 1) + 6p2B2

(
p − 1

p

)

for all n = 2, 3, . . . ,
p−1

2 and m = 1, 2, . . . ,
p−3

2 . Now we observe the orders and the signs
of orders of the functions �M

p G p,1 and �M
p G p,2 by Table 5.

For a function g ∈ K(X1(p)), we denote by deg(g) the total degree of the poles of g. Note
that deg(g) is equal to the total degree of the zeros of g, and the functions �M

p G p,1,�
M
p G p,2
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Table 6 The orders and the signs of orders at the cusps on X1(p)

Cusps Functions

�M
p G p,1 �M

p G p,2

1
1 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0

1
2 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0

· · · + +
1

(p−1)/2 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0

1
p 1 > 0 −(p2 − 6p + 5) + 6p2B2

(
2
p

)
< 0

2
p −(p2 − 6p + 5) + 6p2B2

(
2
p

)
< 0 −(p2 − 6p + 5) + 6p2B2

(
4
p

)
< 0

· · · − −
(p−1)/2

p −(p2 − 6p + 5) + 6p2B2

(
(p−1)/2

p

)
< 0 1 > 0

Table 7 The orders and the signs of orders at the cusps on X1(p)

Cusps Function

(�M
p G p,1)−1 + q(�M

p G p,2)−1

1
1 −(p2 − 5p + 5) < 0

1
2 −(p2 − 5p + 5) < 0

· · · −
1

(p−1)/2 −(p2 − 5p + 5) < 0

1
p −1 < 0

2
p min

{
(p2 − 6p + 5) − 6p2B2

(
2
p

)
, (p2 − 6p + 5) − 6p2B2

(
2
p

)}
> 0

· · · +
(p−1)/2

p −1 < 0

are modular units. Hence from the Table 6 we get

deg(�M
p G p,1) = p − 1

2
· (p2 − 5p + 5) + 1

deg(�M
p G p,2) = p − 1

2
· (p2 − 5p + 5) + 1.

Let us consider the function (�M
p G p,1)

−1 + q(�M
p G p,2)

−1 for a suitably large positive
integer q . Again from the Table 6 we obtain the Table 7.

Hence we deduce that

deg
(
(�M

p G p,1)
−1 + q(�M

p G p,2)
−1
)

= p − 1

2
· (p2 − 5p + 5) + 2 = deg(�M

p G p,1) + 1.

Therefore, gcd(deg(�M
p G p,1), deg((�M

p G p,1)
−1 + q(�M

p G p,2)
−1)) = 1, which leads to

the fact that K(X1(p)) = C(�M
p G p,1, �M

p G p,2), as desired. ��
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9 Ray class fields of imaginary quadratic fields

Let K �= Q(
√−1), Q(

√−3) be an imaginary quadratic field with discriminant dK . We
denote by K(1) the Hilbert class field of K and K(N ) the ray class field modulo N of K for an
integer N ≥ 2. Let OK = Z[θ ] with θ ∈ H be the ring of algebraic integers in K . By the main
theorem of complex multiplication we know that K(1) = K ( j (θ)) and K(N ) = KFN (θ),
the field generated over K by all values h(θ) with h ∈ FN defined and finite at θ . Setting
irr(θ, Q) = X2 + B X + C we take a group

WN ,θ =
{(

t − Bs −Cs
s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
.

Then by the Shimura’s reciprocity law we have a surjection with kernel {±12} given by

WN ,θ −→ Gal
(
K(N )/K(1)

)
α �−→ α = (

h(θ) �→ hα(θ)
)

where h ∈ FN is defined and finite at θ [7].

Lemma 9.1 For N ≥ 2, let A and D be positive integers such that AD = N and D ≥ 2.
Then Nθ and Aθ+B

D are not equivalent under SL2(Z) for any integer B.

Proof Take an integer B ′ such that Re(θ + B ′) = 0 or 1
2 . Since

(
1 N B′
0 1

)
(Nθ) = N (θ + B ′)

and Aθ+B
D = A(θ+B′)+(B−AB′)

D , we may assume that Re(θ) = 0 or 1
2 in the beginning. Sup-

pose on the contrary that
(

a b
c d

)
(Nθ) = Aθ+B

D for some
(

a b
c d

) ∈ SL2(Z). Then by using the
identity in [21, Lemma 1.1] we have

Im

((
a b
c d

)
(Nθ)

)
= N

|cNθ + d|2 Im(θ) = Im

(
Aθ + B

D

)
= A

D
Im(θ),

which yields N D = A|cNθ + d|2 = Ac2 N 2|θ |2 + 2Acd NRe(θ) + Ad2. Replacing N by
AD and dividing the equation by A gives

D2 = A2 D2c2|θ |2 + 2ADcdRe(θ) + d2. (9.1)

If Re(θ) = 0, then (9.1) is reduced to D2 = A2 D2c2|θ |2 + d2. Hence D divides d so that
putting d = De and dividing both sides by D2 we get 1 = A2c2|θ |2 + e2. Since |θ |2 ≥ 2,
we have c = 0 and e = ±1; hence gcd(c, d) = D ≥ 2. But this contradicts ad − bc = 1.

If Re(θ) = 1
2 , then (9.1) becomes D2 = A2 D2c2|θ |2 + ADcd + d2. Thus D divides d2,

which implies that d �= ±1 because D ≥ 2. On the other hand, since |θ |2 ≥ 2, we have

D2 ≥ 2A2 D2c2 + ADcd + d2 =
(

7A2c2

4

)
D2 + ( ADc

2 + d
)2

. This yields c = 0 so that

gcd(c, d) = |d| > 1. But it again contradicts ad − bc = 1.
Therefore Nθ and Aθ+B

D can not be equivalent under SL2(Z). ��
Lemma 9.2 Let N ≥ 2. If j (Nθ) = j (Nτ) ◦ α(θ)(= j (N (α(θ)))) for some α = ( x y

z w

) ∈
SL2(Z), then z ≡ 0 (mod N ), that is, α ∈ �0(N ).

Proof Note that j (Nτ) ◦ α(θ) = j ◦ ( N x N y
z w

)
(θ). Since

(
N x N y
z w

)
is a primitive matrix of

determinant N , we can decompose it into β
(

A B
0 D

)
for some β ∈ SL2(Z) and positive inte-

gers A, B, D such that AD = N . Then j (Nθ) = j ◦ (
N x N y
z w

)
(θ) = j ◦ β

(
A B
0 D

)
(θ) =

j ◦ ( A B
0 D

)
(θ) = j ( Aθ+B

D ), which yields that Nθ and Aθ+B
D are equivalent under SL2(Z).

Now Lemma 9.1 forces us to have D = 1 and A = N , from which we achieve z ≡ 0
(mod N ) due to the fact

(
N x N y
z w

) = β
(

A B
0 D

)
. ��
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Lemma 9.3 If N ≥ 4, we have the following inequalities∣∣∣∣g( 1
N ,0

)(Nθ)

∣∣∣∣ <

∣∣∣g( x
N ,0)(Nθ)

∣∣∣
for 1 < x ≤ [ N

2

]
.

Proof Put A = |qθ | = |e2π iθ | and observe that for 1 < x ≤ [ N
2

]

M =
∣∣∣∣∣∣
g( 1

N ,0
)(Nθ)

g( x
N ,0)(Nθ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
q

N
2 B2

(
1
N

)
θ

∏∞
n=1(1 − q N (n−1)+1

θ )(1 − q Nn−1
θ )

q
N
2 B2( x

N )

θ

∏∞
n=1(1 − q N (n−1)+x

θ )(1 − q Nn−x
θ )

∣∣∣∣∣∣∣
by (8.2)

≤ A
N
2 (B2( 1

N )−B2( x
N ))

∏∞
n=1(1 + AN (n−1)+1)(1 + ANn−1)∏∞
n=1(1 − AN (n−1)+x )(1 − ANn−x )

.

Since A = |e2π iθ | ≤ e−√
7π < 0.00025, we obviously derive

1

1 − AX
< 1 + AX−1 for any X ≥ 1. (9.2)

Furthermore we have the inequality

1 + X < eX for X > 0. (9.3)

Hence we get by (9.2) that

M ≤ A
N
2 (B2( 1

N )−B2( x
N ))

∞∏
n=1

(1+AN (n−1)+1)(1 + ANn−1)(1 + AN (n−1)+x−1)(1 + ANn−x−1)

≤ A
N
2

(
B2

(
1
N

)
−B2

(
2
N

)) ∞∏
n=1

(1 + AN (n−1)+2−1)4 by the fact A ≤ e−√
7π

≤ A

(
1
2 − 3

2N

)
e

4A
1−AN ≤ A

(
1
2 − 3

8

)
e

4A
1−A4 < 1 by (9.3) and the fact A ≤ e−√

7π .

This proves the lemma. ��
Lemma 9.4 Let N ≥ 2 and α = ( x y

z w

) ∈ �0(N ). Then for t ∈ Z\NZ we have the transfor-
mation formula

g12N
( t

N ,0)
(Nτ) ◦ α = g12N

(〈 t x
N 〉,0)

(Nτ). (9.4)

Therefore, for any integer m the functions∑
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ) and

∏
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ)

are modular functions for �0(N ) with rational Fourier coefficients. Furthermore, if∣∣∣∣g12N
( 1

N ,0)
(Nτ) ◦ α(θ)

∣∣∣∣ =
∣∣∣∣g12N

( 1
N ,0)

(Nθ)

∣∣∣∣, we get x ≡ w ≡ ±1 (mod N ).

Proof Observe by (8.1), (8.3) and the fact gcd(w, N ) = 1 that

g12N
( t

N ,0)
(Nτ) ◦ α =

N−1∏
n=0

g12N
( t

N , n
N )

◦
(

x y
z w

)
=

N−1∏
n=0

g12N(〈 t x
N 〉,〈 t y+nw

N

〉) = g12N
(〈 t x

N 〉,0)(Nτ).
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Then for any integer m we achieve∑
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ) ◦ α =

∑
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
(〈 t x

N 〉,0)
(Nτ) =

∑
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ)

and ∏
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ) ◦ α =

∏
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
(〈 t x

N 〉,0)
(Nτ) =

∏
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ)

because x is prime to N . Thus the functions
∑

1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ) and

∏
1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12Nm
( t

N ,0)
(Nτ) are modular for �0(N ) and have rational Fourier coefficients owing to the fact

that each g12Nm
( t

N ,0)
(Nτ) has rational Fourier coefficients.

Suppose |g12N
( 1

N ,0)
(Nτ) ◦ α(θ)| = |g12N

( 1
N ,0)

(Nθ)|. Then by previous observation we have

|g12N
(〈 x

N 〉,0)
(Nθ)| = |g12N

( 1
N ,0)

(Nθ)|. If N = 2 or 3, we automatically get x ≡ ±1 (mod N ).

If N ≥ 4, by Lemma 9.3 we see that x ≡ ±1 (mod N ). Moreover, since det(α) = 1, we
deduce x ≡ w ≡ ±1 (mod N ). ��
Theorem 9.5 For N ≥ 2 we have

K(N ) = K

(
j (Nθ), g12N(

1
N ,0

)(Nθ)

)
.

Proof Let F be the field on the right side. Since the functions j (Nτ) and g12N(
1
N ,0

)(Nτ) belong

to FN , F is a subfield of K(N ). Moreover, since j (Nθ) is a generator of the ring class field
of the order [Nθ, 1], F contains the Hilbert class field K(1).

Let α = (
a b
c d

) ∈ WN ,θ induce α ∈ Gal
(
K(N )/K(1)

)
which is the identity on F . For

the action of α on FN we decompose α into α = (
1 0
0 u

) ( x y
z w

)
for some u ∈ (Z/NZ)∗ and( x y

z w

) ∈ SL2(Z)(see Sect. 4). Since j (Nτ) has rational Fourier coefficients, we get

j (Nθ) = j (Nθ)α = j (Nτ)α(θ) = j (Nτ) ◦
(

x y
z w

)
(θ).

Then we have z ≡ 0 (mod N ) by Lemma 9.2, from which we get gcd(x, N ) = gcd(w, N ) =
1 because

( x y
z w

) ∈ SL2(Z). And, the fact that g12N(
1
N ,0

)(Nτ) has rational Fourier coefficients

enables us to derive

g12N(
1
N ,0

)(Nθ) =
(

g12N(
1
N ,0

)(Nθ)

)α

=
(

g12N(
1
N ,0

)(Nτ)

)α

(θ) = g12N(
1
N ,0

)(Nτ) ◦
(

x y
z w

)
(θ).

Then by Lemma 9.4 we obtain x ≡ w ≡ ±1 (mod N ); hence α = ± (
1 0
0 u

) (
1 ∗
0 1

) = ± (
1 ∗
0 u

)
.

On the other hand, since α is of the form
(

t−Bs −Cs
s t

) ∈ WN ,θ for some t, s ∈ Z/NZ, we
have s = 0 and t = ±1 in Z/NZ, namely α = ±12 ∈ GL2(Z/NZ). This shows that the
field F is all of K(N ). ��
Corollary 9.6 For N ≥ 2, let F1

N be the field of all modular functions for �1(N ) with
rational Fourier coefficients. Then we get

K(N ) = KF1
N (θ).
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Proof Since the functions j (Nτ) and g12N(
1
N ,0

)(Nτ) belong to F1
N , we have the inclusion

K(N ) ⊂ KF1
N (θ). However, the fact K(N ) = KFN (θ) implies that K(N ) = KF1

N (θ). ��
Remark 9.7 Cho and Koo also showed in [7] the above corollary purely by means of Shim-
ura’s canonical models.

Ramachandra has shown in [18] that ray class fields over imaginary quadratic fields can
be generated by elliptic units. However, the generators constructed by him involve very com-
plicated products of high powers of singular values of the Klein form and singular values of
the discriminant �. From now on unlike Ramachandra’s invariant we will construct a ray
class invariant of K(N ) somewhat in a simpler way.

Theorem 9.8 For N ≥ 2, let

TN (τ ) =
∑

1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g24N
( t

N ,0)
(τ ).

Then we have

K(N ) = K

(
j (Nθ)T −1

N (Nθ)g24N(
1
N ,0

)(Nθ)

)
.

Proof It follows from Lemma 9.4 that the function TN (Nτ) is a modular function for �0(N )

with rational Fourier coefficients. By (8.2) we easily see that g24N
( t

N ,0)
(Nθ) is a positive real

number for any t ∈ Z \ NZ, from which we get TN (Nθ) �= 0.
Let F = K ( j (Nθ)TN (Nθ)−1g24N

( 1
N ,0)

(Nθ)). Then F is a subfield of the ray class field

K(N ) because the function j (Nτ)T −1
N (Nτ)g24N

( 1
N ,0)

(Nτ) belongs to FN . For 1 ≤ m ≤ N − 1

with gcd(m, N ) = 1, decompose each
(

m 0
0 m

)
into

(
1 0
0 m2

) (
m 0
0 m−1

)
in GL2(Z/NZ). Since

j (Nτ)T −1
N (Nτ) is a modular function for �0(N ) with rational Fourier coefficients, each(

m 0
0 m

)
fixes it. Furthermore, since g24N(

1
N ,0

)(Nτ) has also rational Fourier coefficients,
(

m 0
0 m

)

acts as composition of
(

m 0
0 m−1

)
on it. Now that

(
m 0
0 m

) ∈ WN ,θ , we derive

(
j (Nθ)T −1

N (Nθ)g24N(
1
N ,0

)(Nθ)

)(
m 0
0 m

)

= ( j (Nτ)T −1
N (Nτ))

(
m 0
0 m

)
(θ)

(
g24N(

1
N ,0

)(Nτ)

)(
m 0
0 m

)

(θ)

= j (Nθ)T −1
N (Nθ)

(
g24N(

1
N ,0

)(Nτ) ◦
(

m 0
0 m−1

)
(θ)

)

= j (Nθ)T −1
N (Nθ)g24N

( m
N ,0)

(Nθ) by Lemma 9.4.

On the other hand, since K(N ) is an abelian extension of K , the intermediate field F is also
an abelian extension of K . Hence F has the following element∑

1 ≤ m ≤ N − 1
gcd(m, N ) = 1

j (Nθ)T −1
N (Nθ)g24N

( m
N ,0)

(Nθ) = j (Nθ)T −1
N (Nθ)

∑
1 ≤ m ≤ N − 1
gcd(m, N ) = 1

g24N
( m

N ,0)
(Nθ) = j (Nθ).

Here we regard F as an intermediate field between K(N ) and K(1) because K ( j (Nθ)) con-
tains K(1). Let an element α ∈ WN ,θ induce α ∈ Gal

(
K(N )/K(1)

)
which is the identity on F .
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Decompose α into α = (
1 0
0 u

) ( x y
z w

)
for some u ∈ (Z/NZ)∗ and

( x y
z w

) ∈ SL2(Z). Owing to
the fact that j (Nτ) has rational Fourier coefficients we deduce

j (Nθ) = j (Nθ)α = j (Nτ)α(θ) = j (Nτ) ◦
(

x y
z w

)
(θ).

Then by Lemma 9.2 we achieve z ≡ 0 (mod N ), from which we obtain gcd(N , x) =
gcd(N , w) = 1 because

( x y
z w

) ∈ SL2(Z). Since j (Nτ)T −1
N (Nτ) is a modular function for

�0(N ) with rational Fourier coefficients and z ≡ 0 (mod N ), it is fixed by α. Thus α fixes
the value j (Nθ)T −1

N (Nθ). Moreover, since α fixes the value j (Nθ)T −1
N (Nθ)g24N(

1
N ,0

)(Nθ),

α fixes g24N(
1
N ,0

)(Nθ). Since g24N(
1
N ,0

)(Nτ) has rational Fourier coefficient, it follows that

g24N(
1
N ,0

)(Nθ) =
(

g24N(
1
N ,0

)(Nθ)

)α

=
(

g24N(
1
N ,0

)(Nτ)

)α

(θ) = g24N(
1
N ,0

)(Nτ) ◦
(

x y
z w

)
(θ).

And, by Lemma 9.4 we have x ≡ w ≡ ±1 (mod N ) so that α = ± (
1 0
0 u

) (
1 ∗
0 1

) = ± (
1 ∗
0 u

)
.

On the other hand, since α is of the form
(

t−Bs −Cs
s t

) ∈ WN ,θ for some t, s ∈ Z/NZ, we get
s = 0 and t = ±1 in Z/NZ, that is, α = ±12 ∈ GL2(Z/NZ). This concludes that the field
F is equal to K(N ). ��

We will also construct a primitive generator as a ring or ray class invariant from a different
point of view.

Lemma 9.9 Let N ≥ 2. For any nonzero integer m, the value
(

j (Nθ) + 1
3

)m
generates the

ring class field of the order [Nθ, 1] over K .

Proof Let O be the order [Nθ, 1] and KO be the ring class field of the order O with exten-
sion degree hO = [KO : K ]. Then KO is generated by an algebraic integer j (O), and the
conjugates of j (O) are of the form j (a1), . . . , j (ahO ) where ak runs over all representatives
in the ideal class group of proper fractional O-ideals.

Let σ be a nontrivial element of Gal(KO/K ). Then σ( j (O)) = j (a′) for some proper
fractional O-ideal a′ which is not principal. Suppose that σ induces the identity on K (( j (O)+
1
3 )m). Then σ(( j (O)+ 1

3 )m) = ( j (O)+ 1
3 )m = ( j (a)+ 1

3 )m . Hence j (O)+ 1
3 = ζ( j (a′)+ 1

3 )

for some mth root of unity ζ in KO . If ζ = 1, we have j (O) = j (a′), which is impossible.
If ζ �= 1, we have j (O) − ζ j (a′) = −1+ζ

3 . Since j (O) − ζ j (a′) is an algebraic integer in
KO , its norm from KO to Q should be an integer. Letting Gal(KO/Q) = {σ1, . . . , σ2hO },
we have

0 <

∣∣∣∣NKO/Q

(−1 + ζ

3

)∣∣∣∣ =
∏2hO

k=1 |−1 + σk(ζ )|
32hO

≤ 22hO

32hO
< 1,

which contradicts the fact that the norm is an integer. Thus σ could not induce the identity
on K (( j (O) + 1

3 )m), which implies that K (( j (O) + 1
3 )m) is in fact all of KO . ��

Theorem 9.10 For N ≥ 2, let

MN (τ ) =
∏

1 ≤ t ≤ N − 1
gcd(t, N ) = 1

g12N
( t

N ,0)
(τ ).

Then we have

K(N ) = K

((
j (Nθ) + 1

3

)
M−1

N (Nθ)g12Nφ(N )(
1
N ,0

) (Nθ)

)
.
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Proof We replace the term ∑
1 ≤ m ≤ N − 1
gcd(m, N ) = 1

j (Nθ)T −1
N (Nθ)g24N

( m
N ,0)

(Nθ)

which appears in the proof of Theorem 9.8 by

∏
1 ≤ m ≤ N − 1
gcd(m, N ) = 1

(
j (Nθ) + 1

3

)
M−1

N (Nθ)g12Nφ(N )

( m
N ,0)

(Nθ).

Then the proof is quite similar to that of Theorem 9.8 except for the use of Lemma 9.9. So
we omit the remaining part. ��

Lastly, for a prime p ≥ 11 we also give a ray class invariant which is the singular value of
a product of Siegel functions without using the elliptic modular function j . When p = 7, Cho
et al. [5, Corollary 4.7] achieved such an invariant by means of singular value of a modified
theta constant.

Theorem 9.11 For a prime p ≥ 11, let �p(X, Y ) = 0 be an affine curve such that

�p(X, Y ) ∈ Q[X, Y ] and �p((p12 �(pτ)
�(τ)

)5−pg12p
( 1

p ,0)
(pτ), (p12 �(pτ)

�(τ)
)5−pg12p

( 2
p ,0)

(pτ)) = 0.

Suppose that the point ((p12 �(pθ)
�(θ)

)5−pg12p
( 1

p ,0)
(pθ), (p12 �(pθ)

�(θ)
)5−pg12p

( 2
p ,0)

(pθ)) on the curve

is nonsingular. Then we obtain

K(p) = K

((
p12 �(pθ)

�(θ)

)5−p

g12p(
1
p ,0

)(pθ)

)
.

Proof We shall use the same conventions as in the proof of Theorem 8.3. Since �
5−p
p G p,1

and �
5−p
p G p,2 are defined and finite on H, the field on the right side is contained in K(p) =

KFp(θ). For any function h ∈ Q(�
5−p
p G p,1,�

5−p
p G p,2) which is defined and finite at θ

there exist f (X, Y ), g(X, Y ) ∈ Q[X, Y ]/(�p(X, Y )) such that h = f (�
5−p
p G p,1,�

5−p
p G p,2)

g(�
5−p
p G p,1,�

5−p
p G p,2)

and g(�
5−p
p (θ)G p,1(θ), �

5−p
p (θ)G p,2(θ)) �= 0 because we are assuming that the point

(�
5−p
p (θ)G p,1(θ),�

5−p
p (θ)G p,2(θ)) of the curve is nonsingular. Hence h(θ) ∈ Q(�

5−p
p (θ)

G p,1(θ), �
5−p
p (θ)G p,2(θ)), and by Corollary 9.6 we have

K(p) = KF1
p(θ) = K

(
�

5−p
p (θ)G p,1(θ), �

5−p
p (θ)G p,2(θ)

)
.

Decompose
(

2 0
0 2

)∈Wp,θ into
(

2 0
0 2

)=( 1 0
0 22

) ( 2 0
0 2−1

) ∈ GL2(Z/pZ). Now that �
5−p
p G p,1

has rational Fourier coefficients,
(

2 0
0 2

)
acts on the function as composition with

( 2 0
0 2−1

)
.

Moreover, since �p is modular for �0(p),
( 2 0

0 2−1

)
fixes �p . It then follows that

(
�

5−p
p (θ)G p,1(θ)

)( 2 0
0 2

)
=

(
�

5−p
p G p,1

)( 2 0
0 2

)
(θ)

=
(
�

5−p
p G p,1

)( 2 0
0 2−1

)
(θ)

= �
5−p
p (θ)

(
G p,1

)( 2 0
0 2−1

)
(θ)

= �
5−p
p (θ)G p,2(θ) by Lemma 9.4,
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which shows that �
5−p
p (θ)G p,1(θ) and �

5−p
p (θ)G p,2(θ) are conjugates. Therefore, K(p)

can be generated over K by only one generator �
5−p
p (θ)G p,1(θ). ��

References

1. Atkin, A.O.L.: Weierstrass points at cusps �0(n). Ann. Math. 85(2), 42–45 (1967)
2. Adiga, C., Kim, T., Naika, M.S.M., Madhusudhan, H.S.: On Ramanujan’s cubic continued fraction and

explicit evaluations of theta-functions. Indian J. Pure Appl. Math. 35(9), 1047–1062 (2004)
3. Bringmann, K., Ono, K.: The f (q) mock theta function conjecture and partition ranks. Invent. Math.

165(2), 243–266 (2006)
4. Chan, H.H.: On Ramanujan’s cubic continued fraction. Acta Arith. 73(4), 343–355 (1995)
5. Cho, B., Kim, N.M., Koo, J.K.: Affine models of the modular curves X (p) and its application (submitted)
6. Cho, B., Koo, J.K., Park, Y.K.: On the Ramanujan’s cubic continued fraction as modular function (sub-

mitted)
7. Cho, B., Koo, J.K.: Constructions of class fields over imaginary quadratic fields and applications. Quart.

J. Math. (to appear)
8. Cox, D.A.: Primes of the form x2 + ny2: Fermat, Class Field, and Complex Multiplication. Wiley,

London (1989)
9. Diamond, F., Shurman, J.: A First Course in Modular Forms. Springer, Heidelberg (2005)

10. Harada, K.: “Moonshine” of Finite Groups. The Ohio State University Lecure Notes
11. Ishida, N., Ishii, N.: The equation for the modular curve X1(N ) derived from the equation for the modular

curve X (N ). Tokyo J. Math. 22, 167–175 (1999)
12. Kim, C.H., Koo, J.K.: Self-recursion formulas satisfied by Fourier coefficients of some modular func-

tions. J. Pure Appl. Algebra 160(1), 53–65 (2001)
13. Kubert, D., Lang, S.: Modular Units. Grundlehren der mathematischen Wissenschaften, vol. 244.

Springer, Heidelberg (1981)
14. Lang, S.: Algebra, 3rd edn. Addison-Wesely, Reading (1993)
15. Lang, S.: Elliptic Functions, 2nd edn. Springer, Heidelberg (1987)
16. Ogg, A.P.: Rational points on certain elliptic modular curves. Analytic number theory. In: Proc. Sympos.

Pure Math., vol. XXIV. St. Louis Univ., St. Louis, Mo., 1972, pp. 221–231. American Mathematical
Society, Providence (1973)

17. Ono, K.: CBMS102, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and
q-series. American Mathematical Society, Providence (2003)

18. Ramachandra, K.: Some applications of Kronecker’s limit formula. Ann. Math. 80(2), 104–148 (1964)
19. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)
20. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and

Princeton University Press, Berlin/Princeton (1971)
21. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Springer, Heidelberg (1994)
22. Takagi, T.: The cuspidal class number formula for the modular curves X0(M) with M square-free.

J. Algebra 193(1), 180–213 (1997)
23. Yang, Y.: Transformation formulas for generalized Dedekind eta functions. Bull. Lond. Math. Soc.

36(5), 671–682 (2004)

123


	On some arithmetic properties of Siegel functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Integrality over Z[j]
	4 Field of modular functions of level N
	5 Modular functions for 0(N)
	6 Hauptmoduln of K(X1(N))
	7 Application to the Ramanujan's cubic continued fraction
	8 Generators of K(X1(N)) of arbitrary genus
	9 Ray class fields of imaginary quadratic fields


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


