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Abstract. Let K be an imaginary quadratic field and let F be an abelian

extension of K. It is known that the order of the class group ClF of F is equal

to the order of the quotient UF /ElF of the group of global units UF by the

group of elliptic units ElF of F . We introduce a filtration on UF /ElF made

from the so-called truncated Euler systems and conjecture that the associated

graded module is isomorphic, as a Galois module, to the class group. We

provide evidence for the conjecture using Iwasawa theory.

§1. Introduction

Let F be a number field and OF the ring of integers of F . The ideal

class group ClF of F is related with various subgroups of the global units

UF = O×
F of F . Among the most fundamental subgroups are the circular

units, the elliptic units, and the modular units of F . When F is an abelian

field, Sinnott formulated the class number formulas of F after Kummer,

Hasse, and Iwasawa (cf. [20] and [21]). For the case of the elliptic units,

let F/Q be an abelian extension containing a quadratic imaginary field K.

The argument of the Euler system of Rubin provides us a way to reformu-

late these units as higher special units coming from the so-called truncated

Euler systems of F (cf. [9], [13], [14], [15] and [22]). In this paper, p always

denotes an odd prime. In [19], we introduced a filtration to UF made from

the truncated Euler systems having the circular units as the last term and

conjectured that the associated graded module is isomorphic, as a Galois

module, to the class group of F when F is a real abelian field. We will
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extend the conjecture above to an arbitrary abelian extension of an imag-

inary quadratic field with elliptic units. Namely, we introduce a filtration

to UF made from the truncated Euler systems having the elliptic units as

the last term and conjecture that the associated graded module is isomor-

phic, as a Galois module, to the class group of F when F is an abelian

extension of an imaginary quadratic field. For any subgroup A of UF , the

profinite p-completion lim
←−

A/Apn
of A can be identified with A⊗ Zp. Since

the Leopoldt’s conjecture is true for our abelian fields, this will be also

identified with the topological closure of A inside the group of local units of

F ⊗K Kp =
∏

B|p FB, which are congruent one modulo the primes above p

via the natural diagonal embedding F →֒
∏

B|p FB.

In Section 2, we will formulate a conjecture on the structure of the ideal

class group by using higher special units. This is an analogue of the real

abelian extension (cf. [19]). Let Sr
F/K denote the higher special units of

depth r ≥ 1 and S0
F/K = UF . For a finite abelian group A we denote by

A(p) the p-Sylow subgroup of A. For each natural number n, let grn(SF/K)

denote the quotient Sn−1
F/K/S

n
F/K of the two consecutive higher special units.

We define gr(S
(p)
F/K) to be the direct sum

gr(S
(p)
F/K) =

⊕

n≥1

grn(SF/K)(p).

For a Galois extension L/K, write G(L/K) for its Galois group. Now

we suppose that p does not divide the extension degree [F : K]. On the

structure of the ideal class group of F , we give the following conjecture.

Conjecture. If p ∤ [F : K], then Cl
(p)
F
∼= gr(S

(p)
F/K) as Zp[G(F/K)]-

modules.

Let Ξ be the set of all irreducible Zp-representations of G(F/K). For

each χ ∈ Ξ, let eχ denote the χ-idempotent

eχ = 1/[F : K]
∑

σ∈G(F/K)

Tr(χ(σ))σ−1

where Tr is the trace map from Zp[image(χ)] to Zp. For each Z[G(F/K)]-

module M of finite type and χ ∈ Ξ, we let Mχ denote the χ-component

eχ(M⊗ Zp) of M⊗ Zp. Let grn(Sχ
F/K) = Sn−1 χ

F/K /Sn χ
F/K and gr(Sχ

F/K) =⊕
n≥1 grn(Sχ

F/K). The conjecture above can be formulated in terms of χ.
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Conjectureχ. If p ∤ [F : K], then for each χ ∈ Ξ, ClχF
∼= gr(Sχ

F/K)

as Zp[G(F/K)]χ-modules.

We denote by psi the exponent of gri(S
χ
F/K). Let dim(χ) =

(Qp(image(χ)) : Qp) denote the dimension of χ. Notice that gri(S
χ
F/K)

is isomorphic to (Z/psiZ)dim(χ). As evidence for the conjecture, we give the

following theorem.

Theorem 1.1. Let F be an abelian extension of an imaginary quad-

ratic field K and p be an odd prime such that p ∤ [F : K]. Fix χ ∈ Ξ.

Let ClχF =
⊕k

i=1(Z/p
riZ)dim(χ) with 0 6= rk ≤ · · · ≤ r1. Then we have∑a

i=1 ri ≤
∑a

i=1 si for 1 ≤ a ≤ k and
∑k

i=1 ri =
∑k

i=1 si.

We now compare two conjectures using the class field theory. Suppose

now that F is an abelian extension of Q containing an imaginary quadratic

field K. Let F+ denote the maximal real subfield of F . Then we have the

following conjecture as was introduced in [19].

Conjecture+. If p ∤ [F : K], then Cl
(p)
F+

∼= gr(S
(p)
F+/Q

) as

Zp[G(F+/Q)]-modules.

Let HF and HF+ denote respectively the Hilbert class fields of F and

F+. Let N+ = NF+/F denote the norm map from F to F+. Since HF+ and

F are linearly disjoint over F+, we have the following surjection

G(HF /F )
res

H
F+

−→ G(HF+/F+) −→ 0

where resHF+
denotes the restriction map from G(HF /F ) to G(HF+/F+).

Since the Artin symbol satisfies res
H

F+
(p,HF /F ) = (N+ p,HF+/F+), we

have the following commutative diagram.

0 −−→ Ker(N+) −−→ ClF
N+
−−→ ClF+ −−→ 0

y ∼=

y ∼=

y

0 −−→ G(HF /HF+F ) −−→ G(HF /F )
res

H
F+

−−−−−→ G(HF+/F+) −−→ 0

Since all the fields are abelian over Q, the norm N+ is a Galois equivariant

map. Note also that F = F+K and F+ and K are linearly disjoint over Q.
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Hence, by applying the norm N+ to Conjecture, we have if p ∤ [F : K],

then as Zp[G(F/K)] ∼= Zp[G(F+/Q)]-modules

Cl
(p)
F+
∼= N+(gr(S

(p)
F/K)) = gr(N+(S

(p)
F/K)).

Combining this with Conjecture+ above, presumably, we have the fol-

lowing isomorphism

(1) grn S
(p)
F+/Q

∼= N+ grn(SF/K)(p)

for all n ≥ 0. Thus, Conjecture implies essentially Conjecture+,

(1) + Conjecture =⇒ Conjecture
+.

Over the cyclotomic Zp-extension F∞ =
⋃∞

n=0 Fn of F , we let Eln denote

the elliptic units of Fn, and El∞ denote the inverse limits of the profinite

p-completion of Eln with respect to the norm maps. We will use similar

notations for various Galois modules. Let Λ denote the Iwasawa algebra as

defined in page 5 of the next section. Let char(M) denote the characteristic

ideal of the finitely generated torsion Iwasawa Λ-module M. For a finite

abelian group A, we define the p-rank rkp(A) to be,

rkp(A) = dimZ/pZA⊗ Z/pZ.

Let Cln denote the ideal class group of Fn, and let w = wF denote the

maximum of rkp(Cln) as n varies, which is a well-defined invariant of F/K

from a theorem of Ferrero-Washington.

Theorem 1.2. Suppose p ∤ [F : K]. Then for all i ≥ w, the main

conjecture implies

char(Si
F/K,∞/El∞) = 1.

Moreover, if for all sufficiently large m > n ≫ 0, NFm/Fn
induces an epi-

morphism over {Si
Fm/K ⊗ Zp}m≫0 then

(Si
Fn/K/Eln)⊗ Zp = 1

for all n ≥ 0 and i ≥ w.

In the following theorems, we allow F to be any abelian field, real or

imaginary. Let Cn denote the group of cyclotomic units of Fn in the sense

of Sinnott (cf. [20], [21]). Finally, let C∞ denote the inverse limit of Cn with

respect to the norm maps.
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Theorem 1.3. Let F be an abelian extension of Q such that p ∤ [F : Q]

and i ≥ w. Then

char(Si
F/Q,∞/C∞) = 1.

Let l (6= p) be a fixed prime which is prime to [F : Q] and let Fn,l∞ =⋃
s Fn,ls denote the cyclotomic Zl-extension of the field Fn.

Corollary 1.4. If for all sufficiently large m > n ≫ 0, NFm/Fn
in-

duces an epimorphism over {Si
Fm/Q

⊗ Zp}m≫0 then (Si
Fn/Q

/Cn) ⊗ Zp = 1

for all n ≥ 0 and i ≥ w. Moreover, if for all sufficiently large s > t ≫ 0,

NFn,ls/Fn,lt
induces an epimorphism over {Si

Fn,ls
⊗ Zl}s≫0 then Cn ⊗ Zl is

equal to Si
Fn/Q

⊗ Zl.

Acknowledgement. We would like to thank the referee for his helpful

comments and suggestions.

§2. Truncated Euler systems over imaginary quadratic fields

We briefly introduce truncated Euler systems of fixed depth r. In this

and the next sections, let F be an abelian extension of K containing the

Hilbert class field of K and M the maximum of the squares of the cardi-

nalities of the χ-ideal class groups ClχF over all χ ∈ Ξ. From now on, we fix

a prime p which is prime to [F : K]. Let IrF/K,M be the set of square-free

integral fractional ideals a of K, such that each prime l dividing a has an

absolute degree of one and splits completely in F , NK/Q(l) ≡ 1 (mod M),

and the number of primes dividing a is less than or equal to r. Moreover,

if F is an abelian extension of the rational field Q, then we delete the finite

set of primes dividing the conductor of F . For each prime ideal l of K, let

K(l) denote the ray class field of K modulo l. Then we have the following

lemma.

Lemma 2.1 (= Lemma 1.1 of [14]). Suppose l ∈ IrF/K,M . There is a

unique extension F (l) of F of degree M in FK(l). Furthermore, F (l)/F is

cyclic, totally ramified at all primes above l, and unramified at all primes

not dividing l.

Let F (a) be the composite of F (l) over all prime divisors l of a. For an

integral ideal b ofK, let IrF/K,M(b) be the set of all integral ideals a of IrF/K,M

such that a is prime to b. Let Er
F/K,M(b) be the set of maps ψ from IrF/K,M(b)
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to a fixed algebraic closure F alg, such that for each m, n ∈ IrF/K,M(b) with

n|m, ψ(m) ∈ F (m),

NF (m)/F (n)ψ(m) = ψ(n)
Q

p|m,p∤n(Frobp−1)

and ψ(nl) is congruent to ψ(n)(NK/Q(l)−1)/M modulo primes over l, whenever

n is prime to l. These conditions will be called product and congruence

conditions, respectively. For the fixed power M of p, we define truncated

Euler systems Er
F/K,M of depth r to be the disjoint union

∐
Er

F/K,M(b) of

Er
F/K(b) over all ideals b of OK . Often, we will denote Er

F/K,M by Er
F/K by

omitting the subscript M . We define the higher special units Sr
F/K of depth

r to be

Sr
F/K = 〈ψ(OK) | ψ ∈ Er

F/K,MK
〉 ∩ UK .

As in the introduction, let grn(SF/K) denote the quotient Sn−1
F/K/S

n
F/K of

the consecutive higher special units and gr(S
(p)
F/K) the direct sum

gr(S
(p)
F/K) =

⊕

n≥1

grn(SF/K)(p).

Notice that for all n, grn(SF/K)(p) is finite and its order is bounded by the

p-part of class number of F . Since p is prime to [F : K] and elliptic units

are contained in the higher special units of all depths (cf. Proposition 3.1),

this follows from the class number formula of elliptic units (cf. Theorem 1.3

of [14]). We are ready to give our conjecture.

Conjecture. If p ∤ [F : K], then Cl
(p)
F
∼= gr(S

(p)
F/K) as Zp[G(F/K)]-

modules.

This conjecture is an analogue of the conjecture in [19] for an imaginary

quadratic field. If UF and S
i
F/K denote respectively the natural images of

UF and Si
F/K in lim

←−
F×/(F×)p

n
, then the free part (U

χ
F )fr of U

χ
F is a free

Zp[G(F/K)]χ-module of rank one. Since Zp[G(F/K)]χ is a free Zp-module

of rank dim(χ), we have the following isomorphisms,

(UF /S
i
F/K)χ = (U

χ
F )fr/(Si

χ

F/K)fr = (Z/peiZ)[G(F/K)]χ = (Z/peiZ)dim(χ)

for some ei. As defined in the introduction, psi denotes the exponent of the

quotient of the higher special units (Si−1
F/K/S

i
F/K)χ, and βi = si dim(χ). We

need the following proposition.
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Proposition 2.2. If Ai is any subgroup of ClF (χ) generated by i-

elements, then #(Ai) | #(Uχ
F /S

i χ
F/K) = p

Pi
j=1 βj .

Proof. It follows from the same argument of Proposition 2.2 of [19].

Theorem 2.3. Let F be an abelian extension of an imaginary quad-

ratic field K and p be an odd prime such that p ∤ [F : K]. Fix χ ∈ Ξ.

Let ClχF =
⊕k

i=1(Z/p
riZ)dim(χ) with 0 6= rk ≤ · · · ≤ r1. Then we have∑a

i=1 ri ≤
∑a

i=1 si for 1 ≤ a ≤ k and
∑k

i=1 ri =
∑k

i=1 si.

Proof. It follows similarly from Proposition 2.2 above, Theorem 3.2 of

[14] and Theorem 2.5 of [19].

Let F∞ =
⋃∞

n=0 Fn ⊃ · · · ⊃ F1 ⊃ F0 be the cyclotomic Zp-extension of

F0 = F with [Fn : F ] = pn. Note that F∞ is an abelian extension of Q.

The group G(F∞/K) has a direct decomposition G(F∞/K) = G(F∞/F )×

G(F/K) into the p-part G(F∞/F ) and the prime to p-part G(F0/K). Let

Γ = G(F∞/F ). Let R = lim
←−

Zp[G(Fn/K)] be the completed group ring of

Zp[G(F∞/K)]. We have R = Λ[G(F/K)], where

Λ = Zp[[Γ]] = lim
←−

Zp[Γ/Γn]

and Γn = Γpn
is the unique subgroup of Γ of index pn. A pseudo-isomor-

phism of Λ-modules is a map with finite kernel and cokernel. It follows

from the structure theorem of finitely generated torsion Λ-modules that

every finitely generated torsion Λ-module Y is pseudo-isomorphic to

∏
Λ/fiΛ.

The characteristic ideal char(Y ) of Y is the ideal (
∏
fi)Λ which is a well-

defined invariant of Y . In order to define the inverse limit Si
F/K,∞ of the

higher special units Si
Fn/K ⊗ Zp, we need to define a certain map from the

Euler systems Er
L/K to the Euler systems Er

F/K , where L/F is a totally

ramified extension at a prime over p and L/Q is an abelian extension.

Remark . Notice that the primes of K which splits completely in F/K

need not splits completely in L/K. However, the Chebotarev density the-

orem guarantees an existence of infinitely many primes l in each element

of the ideal class group of F such that l splits completely in L/K and the
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method of Theorem 3.1 of [13] or Theorem 3.1 of [14] works well. In the

argument to follow, in order to define Euler systems in the image of ΨL/K ,

we will use the new set Ĩ
r
F/K,M of integral ideals which are divisible by these

primes, i.e., the subset of IrF/K,M integral ideals whose prime divisors are

splits completely in L/K. We will use the same notations for these Euler

systems defined over Ĩ
r
F/K,M as those defined over IrF/K,M .

Based on the remark above, we define the map ΨL/F : Er
L/K → E

r
F/K to

be

ΨL/F (α)(n) = NL(n)/F (n)α(n)

for each α ∈ Er
L/K . We write αnor for ΨL/F (α). In this setting, we have the

following proposition.

Proposition 2.4. Let L/F be a totally ramified extension at a prime

over p and L/Q is an abelian extension. Then the map ΨL/F defined above

is well defined.

Proof. For each pair of ideals n | m which are prime to p, we have the

following field diagram which is linearly disjoint.

L(m)

� @
F (m) L(n)

�@
F (n)

By applying the norm map NL(m)/L(n) to αnor(m) = NL(m)/F (m)α(m), we

have

NF (m)/F (n)αnor(m) = NL(n)/F (n)NL(m)/L(n)α(m)

= NL(n)/F (n)α(n)
Q

l|m,l∤n(Frobl−1)

= αnor(n)
Q

l|m,l∤n(Frobl−1).

Hence, we have

NF (m)/F (n)αnor(m) = αnor(n)
Q

l|m,l∤n(Frobl−1).

The congruence conditions can be obtained by a similar method.

αnor(nl) = NL(nl)/F (nl)α(nl) ≡ NL(nl)/F (nl)α(n)(NK/Q(l)−1)/M

= NL(n)/F (n)α(n)(NK/Q(l)−1)/M

= αnor(n)(NK/Q(l)−1)/M .
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modulo primes over l. This completes the proof.

Notice that αnor(OK) = NL/Kα(OK). Hence, Proposition 2.4 induces

a natural norm map between the higher special units Sr
L/K and Sr

F/K .

Corollary 2.5. Let L/F be a totally ramified extension at a prime

over p and let L/Q be an abelian extension. Then the norm map NL/K from

Sr
L/K to Sr

F/K is well defined.

Applying Corollary 2.5 to various subfields Fn, we denote by

Si
F/K,∞ = lim

←−
Si

Fn/K ⊗ Zp

the inverse limits of the higher special units Si
Fn/K ⊗ Zp of Fn of depth i

with respect to the norm maps. In Section 3 we will consider the case when

the base field K is an imaginary quadratic field, and in Section 4 the case

when the base field K is the rational field.

§3. The higher special units over an imaginary quadratic field

We briefly recall the definition of elliptic units after [3], [5], and [14].

Fix an embedding of the algebraic closure Kalg of K into the complex field

C and let L ⊂ C be the period of some elliptic curve defined over the Hilbert

class field HK of K with complex multiplication by OK . For an integral

ideal g of K prime to 6, a meromorphic function Θ0 is defined as follows.

Θ0(z; g) =

(
∆(L)N(g)

∆(g−1L)

)1/12 ∏

u

(℘(z;L) − ℘(u;L))−1

where ∆ is the Ramanujan ∆-function, ℘(z;L) is the Weierstrass ℘-function

for the lattice L, and the product is taken over representatives of the nonzero

classes u in (g−1L/L)/ ± 1. For this function Θ0(z; g), an Euler system

ατ,g ∈ E
r
F/K,M(fg) (cf. Section 1 of [14]) is defined as follows.

ατ,g(a) = NFK(fa)/F (a)Θ0

(
τ +

∑

l|a

xl; g

)

where xl is an element of C/L of order exactly l for each l ∈ IrF/K,M , f is

an integral ideal of K such that the natural map O×
K → OK/f is injective,

τ ∈ C/L is an element of order exactly f, and g is an integral ideal of K

prime to 6f. Let EF be the group generated over Z[G(F/K)] by ατ,g(OK)σ−1
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where τ, g is as above and σ ∈ G(F/K). We denote the group of all roots

of unity in F by µ(F ). The group of elliptic units ElF is defined as follows.

ElF = µ(F )EF .

In the following proposition, we need to find an element in the truncated

Euler systems Er
K/F,M whose value at OK is a given elliptic unit and hence

the elliptic units are contained in the higher special units of an arbitrary

depth.

Proposition 3.1. If u ∈ ElF , then for every M there is an element

α ∈ Er
F/K,M such that α(OK) = u.

Proof. This follows immediately from Proposition 1.2 of [14] since the

Euler systems are contained in the truncated Euler systems.

We let Un, Eln, Cn denote respectively the global units UFn , the elliptic

units UFn and the circular units CFn of Fn. Let Cln denote the ideal class

group ClFn of Fn. We denote by

U∞ = lim
←−

Un ⊗ Zp and El∞ = lim
←−

Eln ⊗ Zp

the inverse limits of Un ⊗ Zp and Eln ⊗ Zp with respect to the norm maps

respectively. Finally, let Cl∞ = lim
←−

Cln ⊗ Zp be the inverse limit of the

p-part of the ideal class groups of Fn. The set {Eln⊗Zp}n∈N is said to have

the Galois descent property if El
G(Fm/Fn)
m /Eln ⊗ Zp = 1 for all m ≥ n. Let

rn be the exact power of p dividing #(Cln). In this case, there exist well

known invariants, Iwasawa invariants, λ, µ, and ν such that

rn = λn+ µpn + ν

for all sufficiently large values of n. On the Iwasawa µ-invariant, we need

the following theorem of Ferrero-Washington, whose proof is similar to that

of Theorem 4.4 (cf. [4]).

Theorem 3.2. (Ferrero-Washington) Let L be an abelian extension of

Q, let p be any prime, and let L∞/L be the cyclotomic Zp-extension of L.

Then the Iwasawa µ-invariant is zero.
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From Theorem 3.2 above, the p-rank rkp Cln, which is the number of di-

rect summands of p-power order when Cln is decomposed into cyclic groups

of prime power order, is bounded independently of n. As in the introduc-

tion, let w = wF be the maximum of rkp Cln as n varies. Notice that

the main conjectures of Iwasawa theory for imaginary quadratic fields are

proved by Rubin using methods of Euler systems and Iwasawa theory when

p splits in K and under some conditions when p does not split. (cf. Theo-

rem 4.1 of [14]). For the second case, we refer the reader to a preprint of

Johnson-Leung and Kings (cf. [7]). We have the following theorem.

Theorem 3.3. Suppose p ∤ [F : K]. Then for all i ≥ w, the main

conjecture implies

char(Si
F/K,∞/El∞) = 1.

Moreover, if for all sufficiently large m > n ≫ 0, NFm/Fn
induces an epi-

morphism over {Si
Fm/K ⊗ Zp}m≫0 then

(Si
Fn/K/Eln)⊗ Zp = 1

for all n ≥ 0 and i ≥ w.

Proof. Notice that since p divides [Fn : K], we can not apply the

argument of the Euler system to conclude Eln ⊗ Zp = Si
Fn/K ⊗ Zp. The

main conjecture of an imaginary quadratic field indicates

char(Cl∞) = char(U∞/El∞).

The argument of the Euler system of Rubin (cf. [14]) yields, for all i ≥ w,

char(Cl∞) = char(U∞/S
i
F/K,∞).

From the two equations above and the multiplicative property of the char-

acteristic ideals in a short exact sequence, we derive

char(Si
F/K,∞/El∞) = 1.

If for all sufficiently large m > n≫ 0, NFm/Fn
induces an epimorphism over

{Si
Fm/K ⊗Zp}m≫0, then Si

Fn/K/Eln⊗Zp = 1, for all n ≥ 0 and i ≥ w since

Si
F/K,∞/El∞ has no finite Λ-submodules.
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§4. The higher special units over the rational field

In this section, we suppose that the ground field K is the rational field.

Using the same construction of Proposition 2.4, we can define the inverse

limit Si
F/Q,∞ = lim

←−
Si

Fn/Q
⊗Zp of the higher special units Si

Fn/Q
⊗Zp coming

from the truncated Euler systems E i
Fn/Q

. The following theorem is a natural

generalization of Theorem 2.3 of [17] to arbitrary abelian extensions. In

ibid, we covered only for the case when F is the cyclotomic field. The proof

follows in the same way as that for Theorem 3.3, and Theorem 2.3 of ibid.

We will leave the proof to the reader.

Theorem 4.1. Let F be an abelian extension of Q such that p ∤ [F : Q]

and i ≥ w. Then

char(Si
F/Q,∞/C∞) = 1.

In general, the Galois descent property for the circular units over the

cyclotomic Zp-extension fails. However, the following result due to Belliard

will be enough for our purpose.

Lemma 4.2. (Belliard) Let F be a real abelian field and p ∤ [F : Q].

Then {Cn}n∈N satisfies the Galois descent property over the cyclotomic Zp-

extension F∞ =
⋃
Fn.

Proof. See [1] and [18].

Lemma 4.3. Under the same conditions of Theorem 4.1, {Cn⊗Zp}n∈N

satisfies the Galois descent property, i.e., (Cm ⊗ Zp)
G(Fm/Fn) = Cn ⊗ Zp for

all m ≥ n.

Proof. When F is real, the Galois descent property holds from Lemma

4.2. If F is imaginary, then Fn is a quadratic extension of its maximal real

subfield F+
n . Let N+ denote the norm map from Fn to F+

n . Fix m ≥ n ≥ 0.

From the exact sequence, 0 → µ(Fm) → Cm
N+
−→ N+(Cm) → 0, we obtain

the following diagram of a long exact sequence,

0−→ µp(Fn)−→ Cn ⊗ Zp
N+
−−→ C+

n ⊗ Zp−→ 0
y

y
y

0−→ µp(Fn)−→ (Cm ⊗ Zp)
G(Fm/Fn) −→ C+

n ⊗ Zp−→ Ĥ1(G(Fm/Fn), µp(Fm))
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where µp(Fn) = µ(Fn)⊗ Zp. Since G(Fm/Fn) is cyclic, we have

#(Ĥ1(G(Fm/Fn), µp(Fm)) = #(Ĥ0(G(Fm/Fn), µp(Fm)) = 1.

Hence we have, for all m ≥ n,

(Cm ⊗ Zp)
G(Fm/Fn) = Cn ⊗ Zp

which is what we wanted to show.

In the following corollary, we fix a prime l (6= p) which is prime to

[F : Q] and let Fn,l∞ =
⋃

s Fn,ls denote the cyclotomic Zl-extension of the

field Fn.

Corollary 4.4. If for all sufficiently large m > n ≫ 0, NFm/Fn
in-

duces an epimorphism over {Si
Fm/Q

⊗ Zp}m≫0 then (Si
Fn/Q

/Cn) ⊗ Zp = 1

for all n ≥ 0 and i ≥ w. Moreover, if for all sufficiently large s > t ≫ 0,

NFn,ls/Fn,lt
induces an epimorphism over {Si

Fn,ls
⊗ Zl}s≫0 then Cn ⊗ Zl is

equal to Si
Fn/Q

⊗ Zl.

Proof. From Theorem 4.1 and Lemma 4.3, the p-primary parts of the

indices (Si
Fn/Q

: Cn) are trivial since Si
F/Q,∞/C∞ has no nontrivial finite

Λ-submodules. We claim that the l-primary parts of the indices are also

trivial whenever l ∤ [F : Q]. This follows from the following observation of

the cyclotomic Zl-extension Fn,l∞ =
⋃

s Fn,ls of the field Fn.

F∞

@@

Fn

Fn,ls
Fn,l∞

��
��

@
F

Zp

Zl

For the higher special units Si
Fn,ls/Q

and the circular units Cn,ls of Fn,ls , we

obtain the same result that

(Si
Fn,ls/Q/Cn,ls)⊗ Zl = 1

for all such s≫ 0, as in Theorem 3.3, since l does not divide the degree of

the extension of the ground field Fn,l0 = Fn over Q. From Lemma 4.3, we

have the following exact sequence,

0 −→ (Si
Fn/Q/Cn)⊗ Zl −→ (Si

Fn,ls/Q/Cn,ls)⊗ Zl = 1.

Hence, if l ∤ [F : Q], Cn ⊗ Zl is equal to Si
Fn/Q

⊗ Zl.
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