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Abstract. Robertson and Seymour (1990) proved that graphs of bounded tree-width are
well-quasi-ordered by the graph minor relation. By extending their arguments, Geelen,
Gerards, and Whittle (2002) proved that binary matroids of bounded branch-width are
well-quasi-ordered by the matroid minor relation. We prove another theorem of this kind in
terms of rank-width and vertex-minors. For a graph G = (V,E) and a vertex v of G, a local
complementation at v is an operation that replaces the subgraph induced by the neighbors of
v with its complement graph. A graph H is called a vertex-minor of G if H can be obtained
from G by applying a sequence of vertex deletions and local complementations. Rank-width
was defined by Oum and Seymour (2006) to investigate clique-width; they showed that
graphs have bounded rank-width if and only if they have bounded clique-width. We prove
that graphs of bounded rank-width are well-quasi-ordered by the vertex-minor relation; in
other words, for every infinite sequence G1, G2, . . . of graphs of rank-width (or clique-width)
at most k, there exist i < j such that Gi is isomorphic to a vertex-minor of Gj . This implies
that there is a finite list of graphs such that a graph has rank-width at most k if and only
if it contains no one in the list as a vertex-minor. The proof uses the notion of isotropic
systems defined by Bouchet.

1. Introduction

Oum and Seymour [12] defined rank-width to investigate clique-width, which was defined
by Courcelle and Olariu [5]. Rank-width is a complexity measure of graph in a kind of
tree-structure, called a rank-decomposition. Oum and Seymour showed that graphs have
bounded rank-width if and only if they have bounded clique-width and they used it to find
an approximation algorithm for clique-width.

Later the author [11] showed that the notion of rank-width of graphs has an interesting
intersection with the notion of branch-width of matroids. More specifically, the branch-width
of a binary matroid is exactly one more than the rank-width of its fundamental graph.

The branch-width of matroids generalizes the branch-width of graphs, both defined by
Robertson and Seymour [14]. Branch-width of graphs is approximately equal to tree-width,
also defined by Robertson and Seymour. Informally speaking, tree-width is a measure de-
scribing how close a graph is to being a forest.

Both tree-width and branch-width are interesting with respect to the graph minor relation.
A contraction of an edge e is an operation, that deletes e and identifies the ends of e. A
graph H is a minor of a graph G if H can be obtained from G by a sequence of contractions,
vertex deletions, and edge deletions. If H is a minor of G, then the tree-width of H is at
most that of G and the same is true for branch-width. This implies that a set of graphs of
bounded tree-width is closed under the graph minor relation.

In this paper, we consider vertex-minors of graphs, previously called l-reductions by
Bouchet [4]. For a graph G and a vertex v of G, let G ∗ v be the graph, obtained by
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local complementation at v, that is by replacing the subgraph induced by the neighbors of v
with its complement graph. We say that G is locally equivalent to H if H can be obtained
from G by applying a sequence of local complementations. A graph H is a vertex-minor
of G if H can be obtained from G by applying a sequence of vertex deletions and local
complementations. A simple fact is that if H is a vertex-minor of G, then the rank-width
of H is at most that of G. For an edge uv of G, pivoting on uv, denoted by G ∧ uv, is the
composition of three local complementations, G∧uv = G ∗u ∗ v ∗u. It is an easy exercise to
show that G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if uv is an edge of G. We say that H is a pivot-minor
of G if H can be obtained from G by applying a sequence of vertex deletions and pivots.
Every pivot-minor of G is a vertex-minor of G, but not vice versa.

In this paper, we prove the following.

Theorem 4.1. Let k be a constant. If {G1, G2, G3, · · · } is an infinite sequence of graphs of
rank-width at most k, then there exist i < j such that Gi is isomorphic to a pivot-minor of
Gj, and therefore isomorphic to a vertex-minor of Gj.

This theorem is motivated by the following two theorems. The first one is for graphs of
bounded tree-width, proved by Robertson and Seymour [13].

Theorem 1.1. Let k be a constant. If {G1, G2, G3, · · · } is an infinite sequence of graphs of
tree-width at most k, then there exist i < j such that Gi is isomorphic to a minor of Gj.

The next one, generalizing the previous one, is due to Geelen, Gerards, and Whittle [8].

Theorem 1.2. Let k be a constant. Let F be a finite field. If {M1, M2, M3, · · · } is an infinite
sequence of F-representable matroids of branch-width at most k, then there exist i < j such
that Mi is isomorphic to a minor of Mj.

It is straightforward to prove (Section 11) that Theorem 1.2 restricted to binary matroids
is equivalent to Theorem 4.1 restricted to bipartite graphs. In fact, the main idea of proving
Theorem 1.2 remains in our paper, although we have to go through a different technical
notion. In the original proof of Theorem 1.2, the authors use “configurations” to represent
F-representable matroids, and then convert the matroid problem into a vector space problem.
In our proof, we use the similar approach but a different notion. Bouchet defined isotropic
systems and developed their minors and their relation to graphs in a series of papers [1, 2, 3].
Informally speaking, an isotropic system can be considered as an equivalence class of graphs
by local equivalence. Isotropic systems also generalize pairs of a binary matroid and its dual.
A detailed definition will be reviewed in Section 3.

In sections 2 and 3, we review some notions and results. The overview of the proof is
given in Section 4. Then in sections 5 till 8, we prove several lemmas, including an extension
of Tutte’s linking theorem to isotropic systems, in Section 7. Then in Section 9 we prove
that isotropic systems of bounded branch-width are well-quasi-ordered under the “isotropic
system minor” order and in Section 10 we prove that the theorem implies the well-quasi-
ordering of graphs under the pivot-minor order. In Section 11 we explain why the result
restricted to bipartite graphs is the same as Theorem 1.2 restricted to binary matroids.
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2. Review on Rank-width

In this paper, we assume that graphs are simple, undirected, and finite. Let us review the
definition of rank-width, introduced by Oum and Seymour [12]. We will first describe the
branch-width of connectivity functions and then use this to define the rank-width.

For a finite set V , an integer-valued function c on subsets of V is called a connectivity
function if c(X) + c(Y ) ≥ c(X ∩ Y ) + c(X ∩ Y ) for all X, Y ⊆ V , c(X) = c(V \X) for all
X ⊆ V , and c(∅) = 0. A subcubic tree is a tree such that every vertex has exactly one or
three incident edges. We call (T,L) a branch-decomposition of a connectivity function c on
subsets of V if T is a subcubic tree and and L is a bijection from V to the set of all leaves
of T . For an edge e of T , connected components of T \ e induce a partition (X, Y ) of the set
of leaves of T . The width of an edge e of a branch-decomposition (T,L) is c(L−1(X)). The
width of (T,L) is the maximum width of all edges of T . The branch-width bw(c) of c is the
minimum width of a branch-decomposition of c. (If |V | ≤ 1, we define that bw(c) = c(∅).)

For a branch-decomposition (T,L) of c, let e and f be two edges of T . Let E be the set
of leaves of T in the component of T \ e not containing f , and let F be the set of leaves of
T in the component of T \ f not containing e. Let P be the shortest path in T containing e
and f . We call e and f linked if

min
h∈E(P )

(width of h of (T,L)) = min
L−1(E)⊆Z⊆V \L−1(F )

c(Z).

We call a branch-decomposition (T,L) is linked if each pair of edges of T is linked.
For a matrix M = (mij : i ∈ R, j ∈ C) over a field F, if X ⊆ R and Y ⊆ C, let M [X, Y ]

denote the submatrix (mij : i ∈ X, j ∈ Y ). For a graph G, let AG be its adjacency matrix
over the binary field GF(2).

For a graph G = (V, E) and two disjoint subsets X, Y ⊆ V , we define ρ∗G(X, Y ) =
rk(AG[X, Y ]) where rk is the matrix rank function; and we define the cut-rank function ρG

of G by ρG(X) = ρ∗G(X, V (G) \X) for X ⊆ V .
It is well-known that the cut-rank function is an instance of a connectivity function (see

[12]). A rank-decomposition of a graph is a branch-decomposition of its cut-rank function
and the rank-width of a graph is the branch-width of its cut-rank function.

3. Review on the Isotropic system

In this section, the notion of the isotropic system and a few useful theorems will be
reviewed. All material is from Bouchet’s papers [1, 2, 3]. We change some notations. The
author’s thesis [10] also contains the proofs of all theorems in this section.

3.1. Definition of the isotropic system. For a vector space W with a bilinear form 〈 , 〉,
a subspace L of W is called totally isotropic if and only if 〈x, y〉 = 0 for all x, y ∈ L.

Let K = {0, α, β, γ} be the 2-dimensional vector space over GF(2). So this means that
α+β +γ = α+α = β +β = γ +γ = 0. Moreover, let 〈 , 〉 be the bilinear form on K defined
by

〈x, y〉 =

{
1 if x 6= y and x, y 6= 0,

0 otherwise.
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Let V be a finite set. Let KV be the set of functions from V to K, and so KV is a vector
space over GF(2). We attach the following bilinear form to KV :

for x, y ∈ KV , 〈x, y〉 =
∑
v∈V

〈x(v), y(v)〉.

Definition 3.1 (Bouchet [1]). An isotropic system is a pair S = (V, L) of a finite set V and
a totally isotropic subspace L of KV with dim(L) = |V |. V is called the element set of S.

For X ⊆ V , let pX : KV → KX be the canonical projection such that

(pX(a))(v) = a(v) for all v ∈ X.

For a ∈ KV and X ⊆ V , a[X] is the vector in KV such that

a[X](v) =

{
a(v) if v ∈ X,

0 if v ∈ V \X.

Let L be a subspace of KV and v ∈ V . Let x ∈ K \ {0} = {α, β, γ}.
• Let L⊥ be the subspace of KV such that L⊥ = {z ∈ KV : 〈z, y〉 = 0 for all y ∈ L}.
• Let L|vx be the subspace of KV \{v} such that L|vx = {pV \{v}(a) : a ∈ L, a(v) = 0 or x}.
• Let L|⊆X , L|X be the subspaces of KX such that

L|⊆X = {pX(a) : a ∈ L, a(v) = 0 for all v /∈ X}
L|X = {pX(a) : a ∈ L}

Two vectors a, b ∈ KV are called supplementary if 〈a(v), b(v)〉 = 1 for all v ∈ V . We call
a ∈ KV complete if a(v) 6= 0 for all v ∈ V . For X ⊆ V and a complete vector a of KX , L|Xa
is the subspace of KV \X such that

L|Xa = {pV \X(b) : b ∈ L, b(v) ∈ {a(v), 0} for all v ∈ X}.

Note that L|v1
x1
|v2
x2
|v3
x3
· · · |vk

xk
= L|{v1,v2,...,vk}

x where x ∈ K{v1,v2,...,vk} such that x(vi) = xi.

Definition 3.2. Let S = (V, L) be an isotropic system and v ∈ V . For x ∈ K \ {0},
S|vx = (V \ {v}, L|vx) is called an elementary minor of S. An isotropic system S ′ is called
a minor of S if S ′ can be obtained from S by applying a sequence of elementary minor
operations; in other words, S ′ = S|v1

x1
|v2
x2
|v3
x3
· · · |vk

xk
for vi ∈ V and xi ∈ K \ {0}.

Bouchet [1, (8.1)] proved that an elementary minor of an isotropic system is again an
isotropic system and therefore a minor of an isotropic system is an isotropic system.

3.2. Fundamental basis and fundamental graphs. The connection between isotropic
systems and graphs was also studied by Bouchet [2].

Definition 3.3. We call x ∈ KV an Eulerian vector of an isotropic system S = (V, L) if
x[P ] /∈ L for every nonempty subset P of V .

Proposition 3.4 (Bouchet [2, (4.1)]). For every complete vector c of KV , there is an Euler-
ian vector a of S, supplementary to c.

Proposition 3.5 (Bouchet [2, (4.3)]). Let a be an Eulerian vector of an isotropic system
S = (V, L). For every v ∈ V , there exists a unique vector bv ∈ L such that

(1) bv(v) 6= 0,
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(2) bv(w) ∈ {0, a(w)} for w 6= v.

Moreover, the set {bv : v ∈ V } is a basis of L.

We call {bv : v ∈ V } the fundamental basis of L with respect to a.
It is straightforward to construct an isotropic system from every graph. Let G = (V, E) be

a graph and a, b be a pair of supplementary vectors of KV . Let nG(v) be the set of neighbors
of v. Then, we may construct an isotropic system S = (V, L) [2, (3.1)] by letting L be the
subspace of KV spanned by

{a[nG(v)] + b[{v}] : v ∈ V }.
We call (G, a, b) a graphic presentation of S.

It is interesting that the reverse direction also works. Suppose an isotropic system S =
(V, L) is given with an Eulerian vector a. Let {bv : v ∈ V } be the fundamental basis of
S = (V, L) with respect to a. Let G = (V, E) be the graph such that vw ∈ E if and only if
v 6= w and bv(w) 6= 0. Since 〈bv, bw〉 = 0 implies bv(w) 6= 0 ⇔ bw(v) 6= 0, G is undirected. We
call G the fundamental graph of S with respect to a. In fact, if S has a graphic presentation
(G, a, b), then G is the fundamental graph of S with respect to a.

Bouchet [2, (7.6)] showed that if (G, a, b) is a graphic presentation of an isotropic system
S = (V, L) and v ∈ V , then

(G ∗ v, a + b[{v}], a[nG(v)] + b)

is also a graphic presentation of S. Thus, local complementations preserve the associated
isotropic system. If G and H are locally equivalent, associated isotropic systems can be
chosen to be same by an appropriate choice of supplementary vectors. We note that if
uv ∈ E(G), then

(G ∧ uv, a[V \ {u, v}] + b[{u, v}], b[V \ {u, v}] + a[{u, v}])
is a graphic presentation of S. This fact will be used in Section 10.

Proposition 3.6 ([2, (4.5) and (7.1)]). If G1 and G2 are fundamental graphs of an isotropic
system S, then G1 and G2 are locally equivalent.

A minor of an isotropic system is closely related to a vertex-minor of its fundamental
graph as follows.

Proposition 3.7 ([2, (9.1)]). Let G = (V, E) be a graph. Let v ∈ v(G) and x ∈ K \ {0}.
If (G, a, b) is a graphic presentation of an isotropic system S = (V, L), then the elementary
minor S|vx has a graphic presentation, that is

(i) (G \ v, pV \{v}(a), pV \{v}(b)) if either x = a(v), or x = b(v) and v is an isolated vertex
of G,

(ii)
(
G ∧ vw \ v, pV \{v}(a[V \ {v, w}] + b[{v, w}]), pV \{v}(b[V \ {v, w}] + a[{v, w}])

)
if x =

b(v) and v has a neighbor w in G,
(iii) (G ∗ v \ v, pV \{v}(a), pV \{v}(b + a[nG(v)])) otherwise.

Corollary 3.8. Suppose G1 and G2 are fundamental graphs of isotropic systems S1 and S2

respectively. If S1 is a minor of S2, then G1 is a vertex-minor of G2.

Note that the choice of w in Proposition 3.7 does not affect the isotropic system because
of the following proposition, proved in [11].
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Proposition 3.9. If vv1, vv2 ∈ E(G) are two distinct edges incident with v, then, G∧ vv1 ∧
v1v2 = G ∧ vv2, and therefore G ∧ vv1 \ v is locally equivalent to G ∧ vv2 \ v.

3.3. Connectivity. For a subspace L of KV , let λ(L) = |V | − dim(L).

Definition 3.10. For an isotropic system S = (V, L), we call c : V → Z the connectivity
function of S if c(X) = λ(L|⊆X) = |X| − dim(L|⊆X).

If L is a totally isotropic subspace of KV , then L|⊆X is also a totally isotropic subspace
of KX . Thus, dim(L|⊆X) ≤ |X|, and therefore c(X) ≥ 0.

Bouchet [3] observed that the connectivity function of an isotropic system is equal to the
cut-rank function of its fundamental graph.

Proposition 3.11 ([3, Theorem 6]). Let a be an Eulerian vector of an isotropic system
S = (V, L) and let c be the connectivity function of S. Let G be the fundamental graph of S
with respect to a. Then, c(X) = ρG(X) for all X ⊆ V .

By Proposition 3.11, the connectivity function of an isotropic system S = (V, L) is indeed
a connectivity function, as defined in Section 2. A branch-decomposition and the branch-
width of an isotropic system are defined as a branch-decomposition and the branch-width of
its connectivity function, respectively. By Proposition 3.11, the branch-width of an isotropic
system is equal to the rank-width of its fundamental graph.

4. Overview of the Main Proof

Our main objective is to prove the following.

Theorem 4.1. Let k be a constant. If {G1, G2, G3, · · · } is an infinite sequence of graphs of
rank-width at most k, then there exist i < j such that Gi is isomorphic to a pivot-minor of
Gj, and therefore isomorphic to a vertex-minor of Gj.

In general, we say that a binary relation ≤ on a set X is a quasi-order if it is reflexive
and transitive. For a quasi-order ≤, we say “≤ is a well-quasi-ordering” or “X is well-quasi-
ordered by ≤” if for every infinite sequence a1, a2, . . . of elements of X, there exist i < j
such that ai ≤ aj. We may reiterate Theorem 4.1 as follows: a set of graphs of bounded
rank-width is well-quasi-ordered up to isomorphism by the vertex-minor relation and also
by the pivot-minor relation.

Here is a corollary of Theorem 4.1. Note that this corollary has an elementary proof in
[11], and is used [6] to show the existence of the polynomial-time algorithm to decide whether
rank-width is at most k for a fixed k.

Corollary 4.2. For a fixed k, there is a finite list of graphs G1, G2, . . . , Gm such that for
every graph H, the rank-width of H is at most k if and only if Gi is not isomorphic to a
vertex-minor of H for all i.

Proof. Let X = {G1, G2, . . .} be a set of graphs satisfying that for every graph H, the rank-
width of a graph H is at most k if and only if Gi is not isomorphic to a vertex-minor of
H for all i. We choose X minimal by set inclusion. There are no Gi, Gj ∈ S such that Gi

is isomorphic to a vertex-minor of Gj, because if so, then we may remove Gj from X. By
assumption, the rank-width of G\ v for v ∈ V (G) is at most k, and therefore the rank-width
of Gi is at most k + 1. By Theorem 4.1, X is finite. �
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We say that an isotropic system S1 = (V1, L1) is simply isomorphic to another isotropic
system S2 = (V2, L2) if there exists a bijection µ : V1 → V2 such that L1 = {a ◦ µ : a ∈ L2}.
A bijection µ is called a simple isomorphism. It is clear that if S1 is simply isomorphic
to S2, then every fundamental graph of S1 is isomorphic to a graph locally equivalent to a
fundamental graph of S2.

We say that an isotropic system S1 is an αβ-minor of an isotropic system S if there is
a ∈ KX with S1 = S|Xa and a(v) ∈ {α, β} for all v ∈ X. Every αβ-minor of an isotropic
system S is a minor of S, but not vice versa. Pivot-minors of graphs are closely related to
αβ-minors of isotropic systems as the follows.

Lemma 10.2. For i ∈ {1, 2}, let Si be an isotropic system with a graphic presentation
(Gi, ai, bi) such that

ai(v), bi(v) ∈ {α, β}
for all v ∈ V (Gi). If S1 is an αβ-minor of S2, then G1 is a pivot-minor of G2.

Instead of dealing with graphs, we show the following stronger proposition on isotropic
systems.

Proposition 9.1. Let k be a constant. If {S1, S2, S3, · · · } is an infinite sequence of isotropic
systems of branch-width at most k, then there exist i < j such that Si is simply isomorphic
to an αβ-minor of Sj.

We deduce Theorem 4.1 from Proposition 9.1.

Proof of Theorem 4.1. Let Si be the isotropic system with the graphic presentation (Gi, ai, bi)
where ai(v) = α, bi(v) = β for all v ∈ V (Gi). Each Si has branch-width at most k, since
its branch-width is equal to the rank-width of Gi. By Proposition 9.1, there exist i < j
such that Si is simply isomorphic to an αβ-minor of Sj, and therefore by Lemma 10.2, Gi is
isomorphic to a pivot-minor of Gj. �

The following theorem was shown by Geelen, Gerards, and Whittle [8]. It was the first step
to prove well-quasi-ordering of matroids representable over a fixed finite field having bounded
branch-width. Its analogous result by Thomas [15] was used to prove well-quasi-ordering of
graphs of bounded tree-width in [13].

Theorem 4.3 (Geelen et al. [8, 9, Theorem (2.1)]). A connectivity function with branch-
width n has a linked branch decomposition of width n.

Corollary 4.4. An isotropic system of branch-width n has a linked branch-decomposition of
width n. Equivalently, a graph of rank-width n has a linked rank-decomposition of width n.

We also use Robertson and Seymour’s “lemma on trees,” proved in [13]. It enabled them
to prove that a set of graphs of bounded tree-width is well-quasi-ordered by the graph
minor relation. Geelen, Gerards, and Whittle [8] used it to prove that a set of matroids
representable over a fixed finite field and having bounded branch-width is well-quasi-ordered
by the matroid minor relation. We need a special case of the “lemma on trees,” namely for
subcubic forests, that was also used in [8].

The following definitions are as in [8]. A rooted tree is a finite directed tree where all but
one of the vertices have indegree 1. A rooted forest is a collection of countably many vertex-
disjoint rooted trees. Its vertices with indegree 0 are called roots and those with outdegree 0
are called leaves. Edges leaving a root are root edges and those entering a leaf are leaf edges.
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An n-edge labeling of a graph F is a map from the set of edges of F to the set {0, 1, . . . , n}.
Let λ be an n-edge labeling of a rooted forest F and let e and f be edges in F . We say that
e is λ-linked to f if F contains a directed path P starting with e and ending with f such
that λ(g) ≥ λ(e) = λ(f) for every edge g on P .

A binary forest is a rooted orientation of a subcubic forest with a distinction between left
and right outgoing edges. More precisely, we call a triple (F, l, r) a binary forest if F is a
rooted forest where roots have outdegree 1 and l and r are functions defined on non-leaf
edges of F , such that the head of each non-leaf edge e of F has exactly two outgoing edges,
namely l(e) and r(e).

Lemma 4.5 ([8, (3.2) Lemma on Subcubic Trees]). Let (F, l, r) be an infinite binary forest
with an n-edge labeling λ. Moreover, let ≤ be a quasi-order on the set of edges of F with no
infinite strictly descending sequences, such that e ≤ f whenever f is λ-linked to e. If the set
of leaf edges of F is well-quasi-ordered by ≤ but the set of root edges of F is not, then F
contains an infinite sequence (e0, e1, . . .) of non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,
(ii) l(e0) ≤ l(e1) ≤ l(e2) ≤ · · · ,
(iii) r(e0) ≤ r(e1) ≤ r(e2) ≤ · · · .

Informally speaking, at the last stage of proving Proposition 9.1, we need an object describ-
ing a piece of isotropic systems such that the number of ways to merge two of such objects
into one isotropic system is finite up to simple isomorphisms. More precisely, we call a triple
P = (V, L, B) a scrap if V is a finite set, L is a totally isotropic subspace of KV , and B is an
ordered basis of L⊥/L. An ordered basis is a basis with a linear ordering, and therefore B is of
the form {b1+L, b2+L, . . . , bk+L} with bi ∈ L⊥. We denote V (P ) = V . Note that L⊥/L is a
vector space containing vectors of the form a+L with a ∈ L⊥ and a+L = b+L if and only if
a−b ∈ L. Also note that |B| = dim(L⊥/L) = dim(L⊥)−dim(L) = 2(|V |−dim(L)) = 2λ(L).

Two scraps P1 = (V, L, B) and P2 = (V ′, L′, B′) are called isomorphic if there exists a
bijection µ : V → V ′ such that L = {a ◦ µ : a ∈ L′} and bi + L = (b′i ◦ µ) + L where
B = {b1 + L, b2 + L, . . . , bk + L} and B′ = {b′1 + L′, b′2 + L′, . . . , b′k + L′}.

For x ∈ K \ {0} and v ∈ V , let δv
x ∈ KV such that δv

x(v) = x and δv
x(w) = 0 for all w 6= v.

We often write δv
x without referring to V if that is not ambiguous. If P = (V, L, B) is a scrap

and δv
x /∈ L⊥ \ L, we define

P |vx = (V \ {x}, L|vx, {pV \{v}(bi) + L|vx}i)

where each bi ∈ L⊥ is chosen to satisfy that B = {bi + L}i and bi(v) ∈ {0, x}. We will
prove that P |vx is a well-defined scrap in Proposition 6.2. Note that P |vx is only defined when
δv
x /∈ L⊥ \ L.
A scrap P ′ is called a minor of a scrap P if P ′ = P |v1

x1
|v2
x2
· · · |vl

xl
for some vi and xi.

Similarly a scrap P ′ is called an αβ-minor of a scrap P if P ′ = P |v1
x1
|v2
x2
· · · |vl

xl
for some vi and

xi ∈ {α, β}.
Two scraps P1 = (V, L, B) and P2 = (V ′, L′, B′) are called disjoint if V ∩ V ′ = ∅. A scrap

P = (V, L, B) is called a sum of two disjoint scraps P1 = (V1, L1, B1) and P2 = (V2, L2, B2)
if

V = V1 ∪ V2, L1 = L|⊆V1 , and L2 = L|⊆V2 .
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A sum of two disjoint scraps is not uniquely determined; we, however, will define the connec-
tion types that will determine a sum of two disjoint scraps such that there are only finitely
many connection types. Moreover, we will prove the following.

Lemma 8.5. Let P1, P2, Q1, Q2 be scraps. Let P be the sum of P1 and P2 and Q be the
sum of Q1 and Q2. If Pi is a minor of Qi for i = 1, 2 and the connection type of P1 and P2

is equal to the connection type of Q1 and Q2, then P is a minor of Q.
Moreover, if Pi is an αβ-minor of Qi for i ∈ {1, 2} and the connection type of P1 and P2

is equal to the connection type of Q1 and Q2, then P is an αβ-minor of Q.

Another requirement to apply Lemma 4.5 is that e ≤ f whenever f is λ-linked to e. This
condition will be satisfied by the following lemma, which is an extension of Tutte’s linking
theorem. Tutte’s linking theorem for matroids was used by Geelen, Gerards, and Whittle
[8] and is an extension of Menger’s theorem. Robertson and Seymour also used Menger’s
theorem in [13].

Theorem 7.2. Let V be a finite set and X be a subset of V . Let L be a totally isotropic
subspace of KV . Let k be a constant. Let b be a complete vector of KV \X .

Then λ(L|⊆Z) ≥ k for all Z ⊇ X if and only if there is a complete vector a ∈ KV \X such

that λ(L|V \Xa ) ≥ k and a(v) 6= b(v) for all v ∈ V \X.

The actual proof of Proposition 9.1 is based on a construction of a forest with a certain k-
labeling from branch-decompositions of isotropic systems, and applying the lemmas described
above. In the subsequent sections, we will prove these lemmas.

5. Lemmas on Totally Isotropic Subspaces

In this section, L is a totally isotropic subspace of KV , not necessarily dim(L) = |V |. We
prove some general results on totally isotropic subspaces.

Lemma 5.1. Let L be a totally isotropic subspace of KV and v ∈ V , x ∈ K \ {0}. Then,

(L|vx)⊥ = L⊥|vx.

Proof. Suppose that y ∈ L⊥|vx. There exists ȳ ∈ L⊥ such that ȳ(v) ∈ {0, x} and y =
pV \{v}(ȳ). For every z ∈ L|vx, there exists z̄ ∈ L such that z̄(v) ∈ {0, x} and pV \{v}(z̄) = z.
Since 〈y, z〉 = 〈ȳ, z̄〉 − 〈ȳ(v), z̄(v)〉 = 0, we have y ∈ (L|vx)⊥.

Conversely, suppose that y /∈ L⊥|vx. Let y ⊕ x ∈ KV be such that pV \{v}(y ⊕ x) = y and
(y ⊕ x)(v) = x. By assumption, y ⊕ x /∈ L⊥. Therefore, there exists z ∈ L such that

〈y, pV \{v}(z)〉+ 〈x, z(v)〉 = 〈y ⊕ x, z〉 = 1.

If 〈x, z(v)〉 = 0, then pV \{v}(z) ∈ L|vx and 〈y, pV \{v}(z)〉 = 1, and therefore y /∈ (L|vx)⊥. So,
we may assume that 〈x, z(v)〉 = 1.

Let y⊕0 ∈ KV such that pV \{v}(y⊕0) = y and (y⊕0)(v) = 0. By assumption, y⊕0 /∈ L⊥.
Therefore, there exists w ∈ L such that 〈y, pV \{v}(w)〉 = 〈y ⊕ 0, w〉 = 1. If w(v) ∈ {0, x},
then pV \{v}(w) ∈ L|vx and y /∈ (L|vx)⊥. Hence we may assume that 〈x, w(v)〉 = 1.

Now, we obtain that 〈x, w(v)+z(v)〉 = 0, and so w(v)+z(v) ∈ {0, x}. Therefore pV \{v}(w+
z) ∈ L|vx. Furthermore 〈pV \{v}(w + z), y〉 = 1. So, y /∈ (L|vx)⊥. �
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Lemma 5.2. If L is a totally isotropic subspace of KV and X ⊆ V , then

(L|⊆X)⊥ = L⊥|X .

Proof. We use induction on |V \ X|. If |X| < |V | − 1, then we pick v /∈ X, and deduce
that (L|⊆V \{v}|⊆X)⊥ = (L|⊆V \{v})

⊥|X = L⊥|V \{v}|X = L⊥|X . Therefore we may assume that
V \X = {v}.

For x ∈ KX and y ∈ K, we let x ⊕ y denote the vector in KV such that pX(x ⊕ y) = x
and (x⊕ y)(v) = y.

(1) We claim that L⊥|X ⊆ (L|⊆X)⊥.
Suppose that a ∈ L⊥|X . Then there exists b ∈ K such that a⊕ b ∈ L⊥. For any c ∈ L|⊆X ,

〈a⊕ b, c⊕ 0〉 = 0, and therefore 〈a, c〉 = 0. Thus, a ∈ (L|⊆X)⊥.
(2) We claim that (L|⊆X)⊥ ⊆ L⊥|X .
Suppose that a ∈ (L|⊆X)⊥ and a /∈ L⊥|X . We have a ⊕ x /∈ L⊥ and therefore for every

x ∈ K, there exists ax⊕cx ∈ L such that 〈ax, a〉+〈cx, x〉 = 〈ax⊕cx, a⊕x〉 = 1. In particular,
〈a0, a〉 = 1.

If cx = 0, then ax ∈ L|⊆X and so 〈ax, a〉 = 0 and 〈cx, x〉 = 0, contrary to the fact that
〈ax, a〉+ 〈cx, x〉 = 1. Therefore cx 6= 0 for all x ∈ K.

If cx = cy for x 6= y, then ax + ay ∈ L|⊆X . Thus, 〈cx, x + y〉 = 1 + 〈cx, x〉 + 1 +
〈cy, y〉 = 〈ax + ay, a〉 = 0. Since cx 6= 0 and x + y 6= 0, we have cx = cy = x + y and
〈ax, a〉 = 1 + 〈x + y, x〉 = 1 + 〈x, y〉.

If cx = cy = cz for distinct x, y, z, then x + y = y + z = z + x. So, x = y = z, which is a
contradiction.

If cx = cy, cz = cw for distinct x, y, z, w, then cx = x+y = z+w = cz. So, x = y = z = w.
This is a contradiction.

Therefore, there is exactly one pair x, y ∈ K such that cx = cy. Let {z, w} = K \ {x, y}.
Since cz 6= cw and cz, cw ∈ K \ {0, x + y}, we have cz + cw = x + y = cx = cy. Therefore,

az + aw + ax ∈ L|⊆X and 〈az + aw + ax, a〉 = 0. Since 〈az, a〉+ 〈aw, a〉 = 〈cz, z〉+ 〈cw, w〉, we
have

〈cz, z〉+ 〈cw, w〉 = 〈az + aw + ax, a〉+ 〈ax, a〉 = 1 + 〈x, y〉.
If x = 0, then cz +cw = y, hence cz, cw ∈ {z, w}. So, 〈cz, z〉+〈cw, w〉 = 0. A contradiction.
So we may assume that x 6= 0, y 6= 0, z = 0, and then x + y = w and 〈cw, w〉 = 0. But,

this implies that cw = w = x + y = cx. A contradiction. �

Proposition 5.3. Let V be a finite set and L be a totally isotropic subspace of KV and
v ∈ V , x ∈ K \ {0}. Then,

dim(L|vx) =

{
dim(L) if δv

x ∈ L⊥ \ L,

dim(L)− 1 otherwise.

In other words, λ(L|vx) =

{
λ(L) if δv

x /∈ L⊥ \ L,

λ(L)− 1 otherwise.

Proof. Let L′ = {a ∈ L : a(v) ∈ {0, x}}. Then clearly L′ = L if a(v) ∈ {0, x} for each
a ∈ L, and dim(L′) = dim(L) − 1 otherwise. Also, dim(L|vx) = dim(L′) when δv

x /∈ L′, and
dim(L|vx) = dim(L′) − 1 otherwise. Moreover, obviously, “a(v) ∈ {0, x} for each a ∈ L” is
equivalent with “δv

x ∈ L⊥”; and “δv
x /∈ L′” is equivalent with “δv

x /∈ L”. As L ⊆ L⊥, all this
implies this proposition. �
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Corollary 5.4. Let V be a finite set and L be a totally isotropic subspace of KV and v ∈ V .
Let C ⊆ K \ {0}, |C| = 2. Then, either there is x ∈ C such that λ(L|vx) = λ(L) or for all
y ∈ K \ {0},

L|vy = L|⊆V \{v} and λ(L|vy) = λ(L)− 1.

Proof. Let C = {a, b}. Suppose there is no such x ∈ C. Then δv
a, δ

v
b are in L⊥ \L. Therefore,

z(v) = 0 for all z ∈ L. Thus, L|vy = L|⊆V \{v} and λ(L|vy) = λ(L)− 1 for all y ∈ K \ {0}. �

6. Scraps

In this section, we prove that a minor of a scrap is well-defined. From Section 4, we recall
that a scrap is a triple P = (V, L, B) of a finite set V , a totally isotropic subspace L of KV ,
and an ordered basis B of L⊥/L.

Lemma 6.1. Let P = (V, L, B) be a scrap and v ∈ V , x ∈ K \{0}. If δv
x /∈ L⊥\L, then there

is a sequence b1, b2, . . . , bm ∈ L⊥ such that bi(v) ∈ {0, x} and B = {b1+L, b2+L, . . . , bm+L}.

Proof. Let B = {a1 + L, a2 + L, . . . , am + L} with ai ∈ L⊥. If δv
x ∈ L, then ai(v) ∈ {0, x} for

all i. Hence we may assume that δv
x /∈ L and so δv

x /∈ L⊥. Therefore there is y ∈ L such that
〈y, δv

x〉 = 1. Thus, y(v) /∈ {0, x}. Let

bi =

{
ai if ai(v) ∈ {0, x},
ai + y otherwise.

Then, bi + L = ai + L and bi(v) ∈ {0, x}. �

Proposition 6.2. Let P = (V, L, B) be a scrap. If δv
x /∈ L⊥ \L, then P |vx is well-defined and

is a scrap.

Proof. Let us first show that it is well-defined. Let b1, b2, . . . , bk ∈ L⊥ be such that bi(v) ∈
{0, x} and B = {bi + L : i = 1, 2, . . . , k}. We claim that the choice of bi does not change
P |vx. Suppose bi − b′i ∈ L and bi(v), b′i(v) ∈ {0, x}. Since bi − b′i ∈ L and (bi − b′i)(v) ∈ {0, x},
we have pV \{v}(bi − b′i) ∈ L|vx. Therefore, pV \{v}(bi) + L|vx = pV \{v}(b

′
i) + L|vx.

Now, we claim that P |vx is a scrap.
First, we show that L|vx is a totally isotropic subspace of KV \{v}. For all a, b ∈ L|vx, there

are ā, b̄ ∈ L such that ā(v), b̄(v) ∈ {0, x}, pV \{v}(ā) = a, pV \{v}(b̄) = b, and ā, b̄ ∈ L. Hence
〈a, b〉 = 〈ā, b̄〉 = 0.

Next, we show that {pV \{v}(bi) + L|vx : i = 1, 2, . . . , k} is a basis of (L|vx)⊥/(L|vx). Since
bi(v) ∈ {0, x}, we have pV \{v}(bi) ∈ (L|vx)⊥ = (L⊥)|vx. Suppose that there exists C 6= ∅ such
that ∑

i∈C

(pV \{v}(bi) + L|vx) = 0 + L|vx.

Since
∑

i∈C pV \{v}(bi) ∈ L|vx, there exists z ∈ L ⊆ L⊥ such that z(v) ∈ {0, x} and pV \{v}(z) =∑
i∈C pV \{v}(bi). By assumption,

∑
i∈C bi /∈ L. Since pV \{v}(

∑
i∈C bi − z) = 0, we have∑

i∈C bi − z = δv
x ∈ L⊥ \ L, a contradiction. Therefore, {pV \{v}(bi) + L|vx : i = 1, 2, . . . , k}

is linearly independent. Moreover, dim((L|vx)⊥/(L|vx)) = 2(|V | − 1 − dim(L|vx)) = 2(|V | −
dim(L)) = dim(L⊥/L) because δv

x /∈ L⊥ \ L. �
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7. Generalization of Tutte’s linking theorem

In this section, we show a generalization of Tutte’s linking theorem [16].

Lemma 7.1. Let V be a finite set and v ∈ V . Let L be a totally isotropic subspace of KV .
Let X1, Y1 ⊆ V \ {v}. Let x, y ∈ K \ {0}, x 6= y. Then,

dim(L|⊆X1∩Y1) + dim(L|⊆X1∪Y1∪{v}) ≥ dim(L|vx|⊆X1) + dim(L|vy|⊆Y1).

In other words,

λ(L|vx|⊆X1) + λ(L|vy|⊆Y1) ≥ λ(L|⊆X1∩Y1) + λ(L|⊆X1∪Y1∪{v})− 1.

Proof. We may assume that V = X1 ∪ Y1 ∪ {v} by taking L′ = L|⊆X∪Y ∪{v}.
Let B be a minimum set of vectors in L such that pX1∩Y1(B) is a basis of L|⊆X1∩Y1 and

for every z ∈ B, z(w) = 0 for all w /∈ X1 ∩ Y1.
Let C be a minimum set of vectors in L such that pX1(B ∪ C) is a basis of L|vx|⊆X1 and

for every z ∈ C, z(w) = 0 for all w /∈ X1 ∪ {v} and z(v) ∈ {0, x}. We may assume that at
most one vector in C has x on v.

Let D be a minimum set of vectors in L such that pY1(B ∪D) is a basis of L|vy|⊆Y1 and for
every z ∈ D, z(w) = 0 for all w /∈ Y1 ∪ {v} and z(v) ∈ {0, y}. We may assume that at most
one vector in D has y on v.

We claim that B ∪C ∪D is linearly independent. Suppose there are B′ ⊆ B, C ′ ⊆ C, and
D′ ⊆ D such that ∑

b∈B′

b +
∑
c∈C′

c +
∑
d∈D′

d = 0.

No element of C ′ has x on v, because all vectors in B′ ∪ D′ have 0 or y on v and at
most one element of C ′ has x on v. Since

∑
c∈C′ c(w) = 0 for all w ∈ V \ (X1 ∩ Y1), we

have pX1∩Y1(
∑

c∈C′ c) ∈ L|⊆X1∩Y1 . Since pX1∩Y1(B) is a basis, there is B′′ ⊆ B such that
pX1∩Y1(

∑
c∈C′ c) = pX1∩Y1(

∑
b∈B′′ b). So,∑

c∈C′

c +
∑
b∈B′′

b = 0.

This means that C ′ = ∅ because C ∪ B is a basis. Similarly D′ = ∅ and so B′ = ∅. Hence
B ∪ C ∪D is linearly independent indeed. So dim(L) ≥ |B| + |C| + |D| = dim(L|vx|⊆X1) +
dim(L|vy|⊆Y1)− dim(L|⊆X1∩Y1). �

Now, we translate Tutte’s linking theorem into isotropic subspaces.

Theorem 7.2. Let V be a finite set and X be a subset of V . Let L be a totally isotropic
subspace of KV . Let k be a constant. Let b be a complete vector of KV \X .

Then λ(L|⊆Z) ≥ k for all Z ⊇ X if and only if there is a complete vector a ∈ KV \X such

that λ(L|V \Xa ) ≥ k and a(v) 6= b(v) for all v ∈ V \X.

Proof. (⇐) Let Z be a subset of V such that X ⊆ Z. Let a1 = pV \Z(a), a2 = pZ\X(a). Since

L|⊆Z ⊆ L|V \Za1 , we have λ(L|⊆Z) ≥ λ(L|V \Za1 ). So

λ(L|⊆Z) ≥ λ(L|V \Za1
) ≥ λ(L|V \Za1

|Z\Xa2
) = λ(L|V \Xa ) ≥ k.

(⇒) Induction on |V \X|. Suppose that there is no such complete vector a ∈ KV \X . We
may assume that |V \X| ≥ 1.
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Pick v ∈ V \X. Let K\{0, b(v)} = {x, y}. Since there is no complete vector a′ ∈ KV \{v}\X

such that λ(L|vx|
V \{v}\X
a′ ) ≥ k, there exists X1 such that X ⊆ X1 ⊆ V \{v} and λ(L|vx|⊆X1) <

k. Similarly, there exists Y1 such that X ⊆ Y1 ⊆ V \ {v} and λ(L|vy|⊆Y1) < k. By Lemma
7.1, either λ(L|⊆X1∩Y1) < k or λ(L|⊆X1∪Y1∪{v}) < k, a contradiction. �

Corollary 7.3. Let V be a finite set and X be a subset of V . Let L be a totally isotropic
subspace of KV . Let b be a complete vector of KV \X .

If λ(L|⊆Z) ≥ λ(L|⊆X) for all Z ⊇ X, then there is a complete vector a ∈ KV \X such that

L|V \Xa = L|⊆X and a(v) 6= b(v) for all v ∈ V \X.

Proof. By Theorem 7.2, there exists a complete vector a ∈ KV \X such that

λ(L|V \Xa ) = λ(L|⊆X) and a(v) 6= b(v) for all v ∈ V \X.

Since L|⊆X ⊆ L|V \Xa and dim(L|⊆X) = dim(L|V \Xa ), we have L|⊆X = L|V \Xa . �

Corollary 7.4. Let P = (V, L, B) be a scrap and X ⊆ V . If

λ(P ) = λ(L|⊆X) = min
X⊆Z⊆V

λ(L|⊆Z),

then there is an ordered set B′ such that Q = (X, L|⊆X , B′) is a scrap and an αβ-minor of
P .

Proof. By applying Corollary 7.3 with b(v) = γ for all v ∈ V \ X, there is a complete

vector a ∈ KV \X such that L|V \Xa = L|⊆X and a(v) ∈ {α, β} for all v ∈ V \ X. Let
V \ X = {y1, y2, . . . , ym} and ai = a(yi). Then, L|⊆X = L|y1

a1
|y2
a2
· · · |ym

am
. Let L0 = L and

Li = Li−1|yi
ai

. By Proposition 5.3, λ(L|⊆X) = λ(L) = λ(Li) implies δ
yi+1
ai+1 /∈ L⊥

i \ Li. So,
P |y1

a1
|y2
a2
· · · |ym

am
= (X, L|⊆X , B′) is well-defined and is an αβ-minor of P . �

8. Sum

A scrap P = (V, L, B) is called a sum of two disjoint scraps P1 = (V1, L1, B1) and P2 =
(V2, L2, B2) if

V = V1 ∪ V2, L1 = L|⊆V1 , and L2 = L|⊆V2 .

For given two disjoint scraps, there could be many scraps that are sums of those. In this
section, we define the connection type, which determines a sum uniquely.

Let [n] denote the set {1, 2, 3, . . . , n}.

Definition 8.1. Let P = (V, L, B) be a sum of two disjoint scraps P1 = (V1, L1, B1) and
P2 = (V2, L2, B2) where B = {b1 +L, b2 +L, . . . , bn +L}, B1 = {b1

1 +L1, b
1
2 +L1, . . . , b

1
m +L1},

and B2 = {b2
1 + L2, b

2
2 + L2, . . . , b

2
l + L2}. For x1 ∈ KV1 and x2 ∈ KV2 , let x1⊕ x2 denote the

vector in KV such that pVi
(x1 ⊕ x2) = xi for i = 1, 2. Let

C0 =

{
(X, Y ) : X ⊆ [m], Y ⊆ [l],

(∑
i∈X

b1
i

)
⊕

(∑
j∈Y

b2
j

)
∈ L

}
,

Cs =

{
(X, Y ) : X ⊆ [m], Y ⊆ [l],

(∑
i∈X

b1
i

)
⊕

(∑
j∈Y

b2
j

)
− bs ∈ L

}
s = 1, . . . , n

The sequence C(P, P1, P2) = (C0, C1, C2, . . . , Cn) is called the connection type of this sum.
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It is easy to see that if λ(P ), λ(P1), λ(P2) ≤ k, then the number of distinct connection
types is bounded by a function of k, because |B| = 2λ(P ) ≤ 2k and |Bi| = 2λ(Pi) ≤ 2k for
i = 1 and 2.

Proposition 8.2. The connection type is well-defined.

Proof. It is enough to show that the choice of bi, b1
i , and b2

i does not affect Ci. Suppose
bi +L = di +L, b1

i +L1 = d1
i +L1, and b2

i +L2 = d2
i +L2. For any (X, Y ) such that X ⊆ [m],

Y ⊆ [l], we have
∑

i∈X(b1
i − d1

i )⊕
∑

j∈Y (b2
j − d2

j) ∈ L and bs − ds ∈ L, and therefore C0 and
Cs are well-defined. �

Proposition 8.3. The connection type uniquely determines the sum of two disjoint scraps
P1 and P2.

Proof. Suppose not. Let P = (V, L, B), Q = (V, L′, B′) be two distinct sums of P1 =
(V1, L1, B1) and P2 = (V2, L2, B2) by the same connection type (C0, C1, . . . , Cn). Let B1 =
{b1

1 + L1, b
1
2 + L1, . . . , b

1
m + L1}, and B2 = {b2

1 + L2, b
2
2 + L2, . . . , b

2
k + L2}.

We claim that L = L′. To show this, it is enough to show that L ⊆ L′. For any a ∈ L,
pV1(a) ∈ (L|⊆V1)

⊥ and pV2(a) ∈ (L|⊆V2)
⊥. Therefore there is (X, Y ) such that

x1 =
∑
i∈X

b1
i − pV1(a) ∈ L1 and x2 =

∑
i∈Y

b2
i − pV2(a) ∈ L2.

Since x1 ⊕ 0, 0 ⊕ x2 ∈ L, we have x1 ⊕ x2 ∈ L. We deduce that
∑

i∈X b1
i ⊕

∑
i∈Y b2

i =
a + (x1 ⊕ x2) ∈ L. Therefore, (X, Y ) ∈ C0 and a + (x1 ⊕ x2) ∈ L′. Since x1 ⊕ 0, 0⊕ x2 ∈ L′,
we have x1 ⊕ x2 ∈ L′, and so a ∈ L′.

Now, we show that B = B′. Let bj + L be the j-th element of B with bj ∈ L⊥. Let b′j + L

be the j-th element of B′ with b′j ∈ L⊥. Since pVi
(bj) ∈ (L|⊆Vi

)⊥, there is (X, Y ) such that

x1 =
∑
i∈X

b1
i − pV1(bj) ∈ L1 and x2 =

∑
i∈Y

b2
i − pV2(bj) ∈ L2.

Since x1 ⊕ 0, 0 ⊕ x2 ∈ L, we have x1 ⊕ x2 ∈ L, and therefore
∑

i∈X b1
i ⊕

∑
i∈Y b2

i − bj ∈ L.
Thus, (X, Y ) ∈ Cs, and so ∑

i∈X

b1
i ⊕

∑
i∈Y

b2
i − b′j ∈ L′ = L.

Thus, bj + L = b′j + L = b′j + L′. �

Proposition 8.4. Let P1 = (V1, L1, B1), P2 = (V2, L2, B2) be two disjoint scraps. Let P be
the sum of P1 and P2 by connection type C(P, P1, P2). If v ∈ V1 and δv

x /∈ L⊥
1 \ L1, then

δv
x /∈ L⊥ \ L and P |vx is the sum of P1|vx and P2 by connection type C(P, P1, P2).

Proof. If δv
x ∈ L⊥ \ L, then δv

x ∈ (L⊥)|V1 = (L|⊆V1)
⊥ = L⊥

1 and δv
x /∈ L|⊆V1 . This contradicts

δv
x /∈ L⊥

1 \ L1. So, δv
x /∈ L⊥ \ L.

First, we claim that P |vx is a sum of P1|vx and P2. This is equivalent with

L|vx|⊆V1\{v} = L|⊆V1|vx and L|vx|⊆V2 = L|⊆V2 .

So, as clearly L|vx|⊆V1\{v} = L|⊆V1|vx and L|⊆V2 ⊆ L|vx|⊆V2 , it suffices to show that

L|vx|⊆V2 ⊆ L|⊆V2 .
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Suppose z ∈ L|vx|⊆V2 . Let z̄ ∈ KV such that pV2(z̄) = z, z̄(v) ∈ {0, x}, and pV1\{v}(z̄) = 0. If
z̄(v) = 0, then z ∈ L|⊆V2 . If z̄(v) = x, then pV1(z) = δv

x ∈ L⊥|V1 = L⊥
1 , and therefore δv

x ∈ L1.
So, δv

x ∈ L and z + δv
x ∈ L. Since (z + δv

x)(v) = 0, we have z ∈ L|⊆V2 . This proves that P |vx
is a sum of P1|vx and P2.

Now, let us show that C(P, P1, P2) = C(P |vx, P1|vx, P2). Let B1 = {b1
1 +L1, b

1
2 +L1, . . . , b

1
m +

L1}, and B2 = {b2
1 + L2, b

2
2 + L2, . . . , b

2
k + L2}. For s ∈ KV1 and t ∈ KV2 , let s ⊕ t denote

the vector in KV such that pV1(s ⊕ t) = s and pV2(s ⊕ t) = t. We may assume that
b1
i (v) ∈ {0, x} for all i by Lemma 6.1. Let b ∈ L⊥ be such that b(v) ∈ {0, x}. Let a(X, Y ) =(∑

i∈X b1
i

)
⊕
(∑

j∈Y b2
j

)
− b. Suppose we have (X, Y ) such that X ⊆ [m], Y ⊆ [k], and

a(X, Y ) ∈ L. Since
(∑

i∈X b1
i (v)

)
− b(v) ∈ {0, x}, we have

pV \{v}(a(X, Y )) =

(∑
i∈X

pV1\{v}(b
1
i )

)
⊕

(∑
j∈Y

b2
j

)
− pV \{v}(b) ∈ L|vx.

Conversely, let us suppose that there is (X, Y ) such that X ⊆ [m], Y ⊆ [k], and
(∑

i∈X pV \{v}(b
1
i )
)
⊕(∑

j∈Y b2
j

)
− pV \{v}(b) ∈ L|vx. Then, either a(X, Y ) ∈ L or a(X, Y ) + δv

x ∈ L. If δv
x ∈ L,

then a(X, Y ) ∈ L. If δv
x /∈ L⊥, then a(X, Y ) + δv

x /∈ L⊥ because a(X, Y ) ∈ L⊥, and therefore
a(X, Y ) ∈ L. This proves that C(P, P1, P2) = C(P |vx, P1|vx, P2). �

Lemma 8.5. Let P1, P2, Q1, Q2 be scraps. Let P be a sum of P1 and P2 and Q be a sum
of Q1 and Q2. If Pi is a minor of Qi for each i = 1, 2 and the connection type of P1 and P2

is equal to the connection type of Q1 and Q2, then P is a minor of Q.
Moreover, if Pi is an αβ-minor of Qi for each i ∈ {1, 2} and the connection type of P1

and P2 is equal to the connection type of Q1 and Q2, then P is an αβ-minor of Q.

Proof. Induction on |V (Q1) \ V (P1)|+ |V (Q2) \ V (P2)|. We may assume |V (Q1) \ V (P1)|+
|V (Q2) \ V (P2)| > 0 and V (Q1) 6= V (P1) by symmetry. There are v ∈ V (Q1) \ V (P1),
x ∈ K \{0}, X = V (Q1)\V (P1)\{v}, and a complete vector a ∈ KX such that P1 = Q1|vx|Xa .
If P1 is an αβ-minor of Q1, then we may assume x ∈ {α, β} and a(w) ∈ {α, β} for all w ∈ X.

By Proposition 8.4, Q|vx is the sum of Q1|vx and Q2 with the connection type C(Q|vx, Q1|vx, Q2) =
C(Q, Q1, Q2) = C(P, P1, P2). So, P is a minor of Q|vx by induction and therefore P is a minor
of Q.

Similarly if P1 is an αβ-minor of Q1 and P2 is an αβ-minor of Q2, then by induction P is
an αβ-minor of Q. �

9. Well-quasi-ordering

Proposition 9.1. Let k be a constant. If {S1, S2, S3, . . .} is an infinite sequence of isotropic
systems of branch-width at most k, then there exist i < j such that Si is simply isomorphic
to an αβ-minor of Sj.

Proof. By Corollary 4.4, there is a linked branch-decomposition (Ti,Li) of Si = (Vi, Li) of
width at most k for each i. In Ti, we pick an edge and attach a root and direct every edge
so that each leaf has a directed path from the root. Let F be the forest such that the i-th
component is Ti.
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For each edge e of Ti, let Xe be the set of leaves of Ti having a directed path from e. Let
Ae = L−1

i (Xe). We associate e with a scrap Pe = (Ae, Li|⊆Ae , Be) and λ(e) = λ(Li|⊆Ae) ≤ k
where Be is chosen to satisfy the following:

If f is λ-linked to e, then Pe is an αβ-minor of Pf .

We claim that we can choose Be satisfying the above property. We prove it by induction on
the length of the directed path from a root edge to e. If no other edge is λ-linked to e, let
Be be a basis of (Li|⊆Ae)

⊥/(Li|⊆Ae) in an arbitrary order. If f , other than e, is λ-linked to e,
choose f such that the distance between e and f is minimal. By induction, there exists Bf

so that whenever g is λ-linked to f , Pf is an αβ-minor of Pg. By Corollary 7.4, there is an
ordered basis Be such that Pe is an αβ-minor of Pf . Suppose that g is λ-linked to e. Then
f is on the path from g to e and therefore g is λ-linked to f . Thus, Pf is an αβ-minor of Pg

and therefore Pe is an αβ-minor of Pg. We conclude that there is Be satisfying the property.
For e, f ∈ E(F ), let e ≤ f denote that a scrap Pe is isomorphic to an αβ-minor of a scrap

Pf . Clearly, ≤ has no infinite strictly descending sequences, because there are finitely many
scraps of bounded number of elements up to isomorphisms. By construction if f is λ-linked
to e, then e ≤ f .

The leaf edges of F are well-quasi-ordered, because there are only finitely many distinct
scraps of one element up to isomorphisms.

Suppose the root edges are not well-quasi-ordered. By Lemma 4.5, F contains an infinite
sequence (e0, e1, . . .) of non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,
(ii) l(e0) ≤ l(e1) ≤ · · · ,
(iii) r(e0) ≤ r(e1) ≤ · · · .

Since λ(ei) ≤ k for all i, we may assume that λ(ei) is a constant for all i, by taking a
subsequence.

Since the number of distinct connection types C(Pei
, Pl(ei), Pr(ei)) is finite, we may assume

that the connection types are same for all i, also by taking a subsequence.
Then, by Lemma 8.5, Pe0 is isomorphic to an αβ-minor of Pe1 , that is e0 ≤ e1. This

contradicts that {e0, e1, . . . , } is an antichain with respect to ≤.
Therefore, root edges are well-quasi-ordered, and there exist i < j such that a scrap

(Vi, Li, ∅) is isomorphic to an αβ-minor of a scrap (Vj, Lj, ∅). Thus, Si is simply isomorphic
to an αβ-minor of Sj. �

10. Pivot-minor and αβ-minor

In this section, we shall show a relation between pivot-minors of graphs and αβ-minors of
isotropic systems.

Proposition 10.1. For i ∈ {1, 2}, let Si be an isotropic system with a graphic presentation
(Gi, ai, bi) such that ai(v), bi(v) ∈ {α, β} for all v ∈ V (Gi).

If S1 = S2, then G1 can be obtained from G2 by applying a sequence of pivots.

Proof. Let V = V (G1) = V (G2) and let S = S1 = S2 = (V, L) be an isotropic system. We
show Proposition 10.1 by induction on N(a1, a2) = |{v ∈ V : a1(v) 6= a2(v)}|.

If N(a1, a2) = 0, then b1 = b2, so G1 = G2. Hence we may assume that N(a1, a2) ≥ 1.
Let u ∈ V with a1(u) 6= a2(u). This implies that a1(u) = b2(u) because ai(u), bi(u) ∈ {α, β}.
By Proposition 3.5, there exists a vector b̂u ∈ L such that b̂u(u) = b2(u) = a1(u) and
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b̂u(w) ∈ {0, a2(w)} for all w 6= u. As a1 is Eulerian and as b̂u ∈ L, there exists v ∈ V such

that b̂u(v) /∈ {0, a1(v)}. Hence b̂u(v) = a2(v) and a1(v) 6= a2(v).

Since b̂u(u) 6= a2(u), this means that v 6= u. Moreover, since b̂u(v) 6= 0, the vertices
u and v are adjacent in G2. Pivoting (G2, a2, b2) on uv yields (G2 ∧ uv, a2[V \ {u, v}] +
b2[{u, v}], b2[V \ {u, v}] + a2[{u, v}]). As N(a1, a2[V \ {u, v}] + b2[{u, v}]) = N(a1, a2)− 2, it
follows by induction that G2 ∧ uv can be obtained from G1 by a sequence of pivots, hence
so can G2. �

Lemma 10.2. For i ∈ {1, 2}, let Si be the isotropic system with a graphic presentation
(Gi, ai, bi) such that ai(v), bi(v) ∈ {α, β} for all v ∈ V (Gi). If S1 is an αβ-minor of S2, then
G1 is a pivot-minor of G2.

Proof. This lemma is a straightforward consequence of Proposition 10.1 and Proposition 3.7.
�

11. Binary Matroids

We would like to show that Theorem 4.1 implies the well-quasi-ordering theorem of Geelen,
Gerards, and Whittle [8] for binary matroids. The proof uses the following lemma.

Lemma 11.1 (Higman’s lemma). Let ≤ be a well-quasi-order on X. For finite subsets
A, B ⊆ X, we write A ≤ B if there is an injective mapping f : A → B such that a ≤ f(a)
for all a ∈ A. Then ≤ is a well-quasi-ordering on the set of all finite subsets of X. (For
proof, see Diestel’s book [7, Lemma 12.1.3].)

For a binary matroid M with a fixed base B, the fundamental graph of M with respect
to B is a bipartite graph Bip(M, B) such that V (Bip(M, B)) = E(M) and v ∈ E(M) \ B
is adjacent to w ∈ B if and only if w is in the fundamental circuit of v with respect to B.
For a bipartite graph G = (V, E) with a bipartition V = A ∪ B, Bin(G, A, B) is a binary
matroid on V , represented by a A× V matrix

(
IA AG[A, B]

)
, where IA is a A×A identity

matrix.

Lemma 11.2. Let M1, M2 be binary matroids and let Bi be a fixed base of Mi. If M1 is
connected and Bip(M1, B1) is a pivot-minor of Bip(M2, B2), then M1 is a minor of either
M2 or M∗

2 .

Proof. Let H = Bip(M1, B1) and G = Bip(M2, B2). If H is a pivot-minor of a bipartite graph
G, then there is a bipartition (A′, B′) of H such that a binary matroid M3 = Bin(H, A′, B′)
is a minor of M2 = Bin(G, B2, V (G) \ B2). Since M1 is connected, H is connected and
therefore H has a unique bipartition. So, M1 = M3 if A = A′ or M1 = M∗

3 if A = B′. �

Corollary 11.3. Let k be a constant. If {M1, M2, M3, · · · } is an infinite sequence of binary
matroids of branch-width at most k, then there exist i < j such that Mi is isomorphic to a
minor of Mj.

Proof. First, we claim that if Mi is connected for all i, then the statement is true. Let Bi be
a fixed base of Mi and Gi = Bip(Mi, Bi) for all i. The rank-width of Gi is at most k−1, since
rank-width of Gi is equal to (branch-width of Mi)−1, shown in [11]. By Theorem 4.1, there
is an infinite subsequence Ga1 , Ga2 , Ga3 , . . . such that Gai

is isomorphic to a pivot-minor of
Gai+1

for all i. By Lemma 11.2, Ma1 is isomorphic to a minor of either Ma2 or M∗
a2

, and Ma2
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is isomorphic to a minor of either Ma3 or M∗
a3

. It follows that Ma1 is isomorphic to a minor
of Ma2 , or Ma2 is isomorphic to a minor of Ma3 , or Ma1 is isomorphic to a minor of Ma3 .
This proves the above claim.

Now, we prove the main statement. We may consider each Mi as a set of disjoint connected
matroids and then Mi is isomorphic to a minor of Mj if and only if there is an injective
function f from components of Mi to components of Mj such that a is isomorphic to a
minor of f(a) for every component a of Mi. By Higman’s lemma, there exist i < j such that
Mi is isomorphic to a minor of Mj. �
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