A combinatorial approach to the power of 2 in the number of involutions

Dongsu Kim ${ }^{1}$, Jang Soo Kim ${ }^{2}$
Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

A R T I C LE I N F O

Article history:

Received 25 February 2009
Available online 21 August 2009

Keywords:

Power of a prime
Divisibility
Involutions

Abstract

We provide a combinatorial approach to the largest power of p in the number of permutations π with $\pi^{p}=1$, for a fixed prime number p. With this approach, we find the largest power of 2 in the number of involutions, in the signed sum of involutions and in the numbers of even or odd involutions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The largest power of a prime in some well-known numbers has been studied in many papers, for instance, see $[1-3,5-11]$. In this paper we are interested in the largest power of a prime in the numbers of permutations with some conditions.

Let \mathfrak{S}_{n} denote the set of permutations of $[n]=\{1,2, \ldots, n\}$. Let p be a prime number and n a positive integer. Let $\tau_{p}(n)$ denote the number of permutations $\pi \in \mathfrak{S}_{n}$ such that $\pi^{p}=1$, and let $\operatorname{ord}_{p}(n)$ denote the largest integer k such that p^{k} divides n.

In 1951, using recurrence relation with induction, Chowla, Herstein and Moore [2] proved that

$$
\operatorname{ord}_{2}\left(\tau_{2}(n)\right) \geqslant\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor .
$$

Using generating function, Grady and Newman [6] obtained, for any prime p,

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\tau_{p}(n)\right) \geqslant\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor . \tag{1}
\end{equation*}
$$

[^0]Using p-adic analysis, Ochiai [10] found the exact value of $\operatorname{ord}_{p}\left(\tau_{p}(n)\right)$ for prime numbers $p \leqslant 23$. Let t_{n} denote $\tau_{2}(n)$, the number of involutions in \mathfrak{S}_{n}. Ochiai's result gives

$$
\begin{equation*}
\operatorname{ord}_{2}\left(t_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor-2\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor \tag{2}
\end{equation*}
$$

In addition, Chowla et al. [2] considered the sequence $\left\{t_{n} \bmod m\right\}_{n \geqslant 0}$ for a fixed integer m and proved that m is a period of the sequence if m is odd. We will prove that in fact, it is the smallest period. If m is even, then the sequence is not periodic because $t_{0}=1$ but t_{n} is even for all $n \geqslant 2$. However there is an integer N such that $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$ is periodic.

Our main results are in Sections 2 and 3, where we prove (1) and (2) using combinatorial arguments. The weighted sum of involutions is considered in Section 4. In Section 5 we find ord ${ }_{2}$ of the signed sum of involutions, the number of odd involutions, and the number of even involutions. In Section 6 we find the smallest N such that $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$ is periodic and find the smallest period of the sequence when m is even. We also consider the odd factor of the number of involutions and prove that the smallest period of the sequence $\left\{t_{n} / 2^{\operatorname{ord}_{2}\left(t_{n}\right)} \bmod 2^{s}\right\}_{n \geqslant 0}$ is 2^{s+1} if $s \geqslant 3$.

2. A combinatorial proof

Let $\mathfrak{S}_{n, p}$ denote the set of permutations $\pi \in \mathfrak{S}_{n}$ with $\pi^{p}=1$. For instance, for $p=2$ it is the set of all involutions in \mathfrak{S}_{n}. Each permutation in $\mathfrak{S}_{n, p}$ is a product of disjoint p-cycles and 1-cycles. For example, for $\pi=38725614 \in \mathfrak{S}_{8,3}$, the disjoint product is $(1,3,7)(2,8,4)(5)(6)$. A cycle usually consists of distinct integers, but we allow cycles to have repeated entries for convenience.

We define a label map $f_{p}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots,\lfloor(n-1) / p\rfloor+1\}$ by $f_{p}(i)=\lfloor(i-1) / p\rfloor+1$, extend it to cycles $\sigma=\left(s_{1}, \ldots, s_{j}\right)$ by $f_{p}(\sigma)=\left(f_{p}\left(s_{1}\right), \ldots, f_{p}\left(s_{j}\right)\right)$ which is regarded as a cycle with repeated entries, and to $\mathfrak{S}_{n, p}$ by

$$
f_{p}(\pi)=\left\{f_{p}\left(\sigma_{1}\right), \ldots, f_{p}\left(\sigma_{k}\right)\right\}
$$

for $\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ in the disjoint cycle notation. Note that $f_{p}(\pi)$ is regarded as a multiset.
As a map defined on $\mathfrak{S}_{n, p}, f_{p}$ induces an equivalence relation \sim on $\mathfrak{S}_{n, p}$, namely $\pi \sim \tau$ if and only if $f_{p}(\pi)=f_{p}(\tau)$.

Fix a prime p, and let $n=p t+r$ with $0 \leqslant r<p$. A p-cycle $\sigma=\left(s_{1}, s_{2}, \ldots, s_{p}\right)$ in some $f_{p}(\pi)$ is said to be of type A if $s_{1}=s_{2}=\cdots=s_{p}$; of type B otherwise. We are interested in the size of each equivalence class of \sim on $\mathfrak{S}_{n, p}$. As a matter of fact, we need the size of some collections of equivalence classes. An equivalence class may be represented as a multiset of cycles with repeated entries from $\{1,2, \ldots, t+1\}$. In fact there are three kinds of cycles in the representation of equivalence classes: p-cycles of type A, p-cycles of type B, and 1-cycles. A typical equivalence class is of the form $\left\{A_{1}, \ldots, A_{i} ; B_{1}^{d_{1}}, \ldots, B_{j}^{d_{j}} ; C_{1}^{e_{1}}, \ldots, C_{k}^{e_{k}}\right\}$, as a multiset, where A 's denote p-cycles of type A, B 's denote those of type B and C 's are 1 -cycles. Since the multiplicities e_{1}, \ldots, e_{k} play a critical role, we refine the form to $\left\{A_{1}, \ldots, A_{i} ; B_{1}^{d_{1}}, \ldots, B_{j}^{d_{j}} ; C_{1}^{e_{1}}, \ldots, C_{k}^{e_{k}} ; D_{1}^{p}, \ldots, D_{\ell}^{p}\right\}$ with $e_{1}, \ldots, e_{k}<p$, where A 's, B 's, C 's are the same as before, while D 's are 1-cycles. We collect all equivalence classes $\left\{A_{1}, \ldots, A_{i} ; B_{1}^{d_{1}}, \ldots, B_{j}^{d_{j}} ; C_{1}^{e_{1}}, \ldots, C_{k}^{e_{k}} ; D_{1}^{p}, \ldots, D_{\ell}^{p}\right\}$ with fixed B 's, C 's, and a fixed set of integers appearing in either A 's or D 's. Let

$$
\left\{s_{1}, s_{2}, \ldots, s_{h} ; B_{1}^{d_{1}}, \ldots, B_{j}^{d_{j}} ; C_{1}^{e_{1}}, \ldots, C_{k}^{e_{k}}\right\}
$$

denote such a collection. The collection may be represented as

$$
\left\{s_{1}, s_{2}, \ldots, s_{h} ; E_{1}^{m_{1}}, \ldots, E_{\ell}^{m_{\ell}}\right\}
$$

where E's denote either a p-cycle of type B of multiplicity at most p or a 1 -cycle with multiplicity less than p. Note that $\left\{s_{1}, \ldots, s_{h}\right\} \subset[t]$ and each $i \in[t] \backslash\left\{s_{1}, \ldots, s_{h}\right\}$ appears exactly p times in the collection and $t+1$ appears exactly r times. The distinct collections produce a partition of $\mathfrak{S}_{n, p}$, which in turn defines an equivalence relation, denoted by \sim^{\prime}. Let \tilde{f}_{p} denote the quotient map corresponding to this equivalence relation.

Fig. 1. Visualization of π and $f_{3}(\pi)$ in Example 2.1.

Example 2.1. Let $\pi \in \mathfrak{S}_{29,3}$ be the following permutation in cycle notation:

$$
\begin{aligned}
\pi= & (1,6,8)(2,4,9)(3,5,7)(10,15,17)(11)(12,16,14)(13)(18) \\
& (19,20,21)(22)(23)(24)(25)(26)(27,28,29) .
\end{aligned}
$$

Then $f_{3}(\pi)=\left\{(1,2,3)^{3},(4,5,6),(4),(4,6,5),(5),(6),(7,7,7),(8)^{3},(9)^{2},(9,10,10)\right\}$. The permutation π belongs to an equivalence class

$$
\left\{(7,7,7) ;(1,2,3)^{3},(4,5,6),(4,6,5),(9,10,10) ;(4),(5),(6),(9)^{2} ;(8)^{3}\right\}
$$

of the form $\left\{A_{1}, \ldots, A_{i} ; B_{1}^{d_{1}}, \ldots, B_{j}^{d_{j}} ; C_{1}^{e_{1}}, \ldots, C_{k}^{e_{k}} ; D_{1}^{p}, \ldots, D_{\ell}^{p}\right\}$, which is a member of the collection

$$
\tilde{f}_{3}(\pi)=\left\{7,8 ;(1,2,3)^{3},(4,5,6),(4,6,5),(9,10,10),(4),(5),(6),(9)^{2}\right\}
$$

We visualize this example in Fig. 1, where 7 and 8 are the integers in A 's or D 's.
Lemma 2.2. Let p be a prime and $n=p t+r$ with $0 \leqslant r<p$. Let $H=\left\{s_{1}, s_{2}, \ldots, s_{h} ; E_{1}^{m_{1}}, \ldots, E_{\ell}^{m_{\ell}}\right\}$ be an equivalence class of $\mathfrak{S}_{n, p} / \sim^{\prime}$ described above. Then the number of all permutations in the collection is

$$
\begin{equation*}
\left|\tilde{f}_{p}^{-1}(H)\right|=\frac{(1+(p-1)!)^{h}(p!)^{t-h} r!}{m_{1}!m_{2}!\cdots m_{\ell}!} \tag{3}
\end{equation*}
$$

Proof. We need to enumerate the set $\tilde{f}_{p}^{-1}(H)$. Each permutation in the set has the special disjoint cycle decomposition prescribed by H. Recall that each s_{i} can represent either a p-cycle or a 1-cycle of multicity p. If s_{i} represents a p-cycle, it contributes a factor $(p-1)$! to the total number of permutations to be counted; if it represents a 1 -cycle with multicity p, it contributes a factor 1 . So in total each s_{i} contributes a factor $(p-1)!+1$, which explains the factor $(1+(p-1)!)^{h}$ in (3).

Now recall that p is prime and E 's are a p-cycle or 1 -cycle. Each $j \in[t] \backslash\left\{s_{1}, \ldots, s_{h}\right\}$ appears exactly p times in $E_{1}^{m_{1}}, \ldots, E_{\ell}^{m_{\ell}}$, which will be replaced by p integers $p(j-1)+1, p(j-1)+2, \ldots, p j$, contributing the factor $(p!)^{t-h}$ in (3); and $t+1$ appears exactly r times, which correspond to r integers $p t+1, p t+2, \ldots, p t+r$, contributing a factor $r!$. This argument overcounts the set $\tilde{f}_{p}^{-1}(H)$, since E_{i} appears m_{i} times and the argument respects ordering of the cycles, while we are interested in unordered cycle decompositions. Moreover, since each E_{i} is a 1 -cycle or a p-cycle of type B, there is no other repetition arising from a cyclic rotation inside a cycle in E_{i} 's. So we need exactly the factor $\frac{1}{m_{1}!m_{2}!\cdots m_{\ell}!}$ in (3) to count the unordered structures.

Now we can prove (1) combinatorially.

Theorem 2.3. Let p be a prime and n a positive integer. Then

$$
\operatorname{ord}_{p}\left(\tau_{p}(n)\right) \geqslant\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor .
$$

Proof. Note that

$$
\tau_{p}(n)=\left|\mathfrak{S}_{n, p}\right|=\sum_{H}\left|\tilde{f}_{p}^{-1}(H)\right|
$$

where H runs through all distinct equivalence classes of $\Im_{n, p} / \sim^{\prime}$, i.e., distinct images of \tilde{f}_{p}. Thus it suffices to show that for any equivalence class of $\mathfrak{S}_{n, p} / \sim^{\prime}$, we have $\operatorname{ord}_{p}\left(\left|\tilde{f}_{p}^{-1}(H)\right|\right) \geqslant\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor$.

Let $H=\left\{s_{1}, s_{2}, \ldots, s_{h} ; E_{1}^{m_{1}}, \ldots, E_{\ell}^{m_{\ell}}\right\}$ be an equivalence class of $\mathfrak{S}_{n, p} / \sim^{\prime}$. By Lemma 2.2, we have

$$
\left|\tilde{f}_{p}^{-1}(H)\right|=\frac{(1+(p-1)!)^{h}(p!)^{t-h} r!}{m_{1}!m_{2}!\cdots m_{\ell}!}
$$

Since $(p-1)!\equiv-1 \bmod p$, ord_{p} of the numerator is at least t. Moreover, $m_{i} \leqslant p$ for all i, and if $m_{i}=p$ then E_{i} is a p-cycle, which implies that there are at most $\left\lfloor\frac{n}{p^{2}}\right\rfloor m_{i}$'s with $m_{i}=p$. Thus we get $\operatorname{ord}_{p}\left(\left|\tilde{f}_{p}^{-1}(H)\right|\right) \geqslant\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor$.

3. The power of $\mathbf{2}$ in the number of involutions

For $p=2, \mathfrak{S}_{n, p}$ is in fact the set of involutions in \mathfrak{S}_{n}, which will be denoted by \mathfrak{I}_{n}. Recall that t_{n} stands for the number of involutions in \mathfrak{S}_{n}, i.e., $\left|\mathfrak{I}_{n}\right|$. We will compute $\operatorname{ord}_{2}\left(t_{n}\right)$ exactly and look at β_{n} the odd factor of t_{n}, i.e.,

$$
\beta_{n}=\frac{t_{n}}{2^{\operatorname{ord}_{2}\left(t_{n}\right)}}
$$

Let $n=2 t+r$ with $0 \leqslant r<2$. Recall the equivalence relation \sim^{\prime} on $\mathfrak{S}_{n, 2}$ in Section 2. Each equivalence class of $\mathfrak{S}_{n, 2} / \sim^{\prime}$ is represented by

$$
H=\left\{s_{1}, s_{2}, \ldots, s_{h} ; E_{1}^{m_{1}}, \ldots, E_{\ell}^{m_{\ell}}\right\}
$$

where E 's denote either a 2-cycle, consisting of two distinct integers, of multiplicity at most two or a 1 -cycle with multiplicity one. The equivalence class may be represented by a graph $G=(\mathcal{V}, \mathcal{E})$ with vertex set

$$
\mathcal{V}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}, \quad \text { if } n=2 t ; \quad\left\{v_{1}, v_{2}, \ldots, v_{t+1}\right\}, \quad \text { if } n=2 t+1
$$

and edge set $\mathcal{E}=\left\{\{a, b\}:(a, b)=E_{j}\right.$, for some j and $\left.a \neq b\right\}$, regarded as a multiset, where the multiplicity of the edge corresponding to E_{j} is m_{j}. We can construct H from G if we know n.

Let \mathfrak{G}_{n} be the set of all graphs with vertex set

$$
\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}, \quad \text { if } n=2 t ; \quad\left\{v_{1}, v_{2}, \ldots, v_{t+1}\right\}, \quad \text { if } n=2 t+1
$$

satisfying the following conditions:

- there is no loop,
- the degree of each vertex is at most two, and that of v_{t+1} is at most one,
- the multiplicity of each edge is at most two.

Then there is a one-to-one correspondence between the set of equivalence classes of $\mathfrak{S}_{n, 2} / \sim^{\prime}$ and the set \mathfrak{G}_{n}. Thus we have the induced surjection $\tilde{f}_{2}: \mathfrak{I}_{n} \rightarrow \mathfrak{G}_{n}$.

Each connected component of a graph in \mathfrak{G}_{n} is either a cycle of length at least two or a path.
The corollary below follows immediately from Lemma 2.2 , since a 2 -cycle is an edge with multiplicity 2 in this case.

Corollary 3.1. Let $G \in \mathfrak{G}_{n}$ have s 2 -cycles. Then

$$
\left|\tilde{f}_{2}^{-1}(G)\right|=2^{\left\lfloor\frac{n}{2}\right\rfloor-s} .
$$

The maximum number of 2-cycles in a graph $G \in \mathfrak{G}_{n}$ is $\left\lfloor\frac{n}{4}\right\rfloor$, which gives $\operatorname{ord}_{2}\left(t_{n}\right) \geqslant\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor$. Since there may be many such G 's, we need to do more to determine $\operatorname{ord}_{2}\left(t_{n}\right)$ exactly. Let g_{n} denote the number of $G \in \mathfrak{G}_{n}$ without 2 -cycles. It is easy to see that

$$
g_{2 n+1}=g_{2 n}+n g_{2 n-1}
$$

For $n \leqslant 3, g_{2 n}$ is just the number of simple (labeled) graphs with n vertices. Thus $g_{0}=g_{2}=1, g_{4}=2$ and $g_{6}=8$. Using the above recurrence, we get $g_{1}=1, g_{3}=2, g_{5}=6$ and $g_{7}=26$. For more values of g_{n}, see Table 1 .

Let $(a ; b)_{n}$ denote the following product:

$$
(a ; b)_{n}=\prod_{i=0}^{n-1}(a+i b)
$$

Note that $(1 ; 2)_{n}$ is always odd, in fact, it is the product of the first n odd integers.
Theorem 3.2. Let $n=4 k+r$ with $0 \leqslant r<4$. Then

$$
t_{n}=2^{k+\lfloor r / 2\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{(1 ; 2)_{k+\lfloor r / 2\rfloor}}{(1 ; 2)_{i+\lfloor r / 2\rfloor}} g_{4 i+r} .
$$

Proof. Since $\tilde{f}_{2}: \mathfrak{I}_{n} \rightarrow \mathfrak{G}_{n}$ is a surjection, we have

$$
t_{n}=\sum_{G \in \mathfrak{G}_{n}}\left|\tilde{f}_{2}^{-1}(G)\right| .
$$

If $G \in \mathfrak{G}_{n}$ has $i 2$-cycles, then by Corollary 3.1, $\left|\tilde{f}_{2}^{-1}(G)\right|=2^{\lfloor n / 2\rfloor-i}$. Since the number of such G is $\binom{\lfloor n / 2\rfloor}{ 2 i}(1 ; 2) i_{n-4 i}$, we get

$$
\begin{aligned}
t_{n} & =\sum_{i=0}^{k} 2^{\lfloor n / 2\rfloor-i}\binom{\lfloor n / 2\rfloor}{ 2 i}(1 ; 2)_{i} g_{n-4 i} \\
& =\sum_{i=0}^{k} 2^{\lfloor n / 2\rfloor-k+i}\binom{\lfloor n / 2\rfloor}{ 2 k-2 i}(1 ; 2)_{k-i} g_{n-4 k+4 i}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{k} 2^{k+\lfloor r / 2\rfloor+i}\binom{2 k+\lfloor r / 2\rfloor}{ 2 i+\lfloor r / 2\rfloor}(1 ; 2)_{k-i} g_{4 i+r} \\
& =2^{k+\lfloor r / 2\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{(1 ; 2)_{k+\lfloor r / 2\rfloor}}{(1 ; 2)_{i+\lfloor r / 2\rfloor}} g_{4 i+r} .
\end{aligned}
$$

Since $g_{0}=g_{1}=g_{2}=1, g_{3}=2$ and $g_{7}=26$, we have the following theorem, where $\delta_{r, 3}$ is 1 , if $r=3$; 0 , otherwise.

Theorem 3.3. Let $n=4 k+r$ with $0 \leqslant r<4$. Then the largest power of 2 and the odd factor β_{n} of t_{n} are the following:

$$
\begin{aligned}
& \operatorname{ord}_{2}\left(t_{n}\right)=k+\left\lfloor\frac{r}{2}\right\rfloor+\delta_{r, 3}=\left\lfloor\frac{n}{2}\right\rfloor-2\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor, \\
& \beta_{n}=\sum_{i=0}^{k} 2^{i-\delta_{r, 3}}\binom{k}{i} \frac{(1 ; 2)_{k+\lfloor r / 2\rfloor}}{(1 ; 2)_{i+\lfloor r / 2\rfloor}} g_{4 i+r} .
\end{aligned}
$$

4. Weighted sum of involutions

For $\pi \in \mathfrak{I}_{n}$, let $\sigma_{i}(\pi)$ denote the number of i-cycles in π. We define the weight of an involution π to be

$$
\mathrm{wt}(\pi)=x^{\sigma_{1}(\pi)} y^{\sigma_{2}(\pi)}
$$

Consider the weight generating function

$$
\begin{equation*}
t_{n}(x, y)=\sum_{\pi \in \mathfrak{I}_{n}} \mathrm{wt}(\pi) \tag{4}
\end{equation*}
$$

We can easily verify

$$
t_{n}(x, y)=x \cdot t_{n-1}(x, y)+(n-1) y \cdot t_{n-2}(x, y) .
$$

Note that $t_{n}(x,-1)$ is the matchings polynomial of the complete graph with n vertices, which is equivalent to a Hermite polynomial, see [4].

We will find a formula for $t_{n}(x, y)$. Recall that $n=2 t+r$ with $0 \leqslant r<2$ and the vertex set of a graph in \mathfrak{G}_{n} is either $[t]$ or $[t+1]$ depending on the parity of n. For $G \in \mathfrak{G}_{n}$, we put the weight on each edge and vertex as follows:

- For every edge $e, \operatorname{wt}(e)=y$.
- For $i \neq t+1$,

$$
\operatorname{wt}\left(v_{i}\right)= \begin{cases}1, & \text { if } \operatorname{deg}\left(v_{i}\right)=2 \\ x, & \text { if } \operatorname{deg}\left(v_{i}\right)=1 \\ \frac{x^{2}+y}{2}, & \text { if } \operatorname{deg}\left(v_{i}\right)=0\end{cases}
$$

- $\quad \operatorname{wt}\left(v_{t+1}\right)=\left\{\begin{array}{cl}1, & \text { if } \operatorname{deg}\left(v_{t+1}\right)=1, \\ x, & \text { if } \operatorname{deg}\left(v_{t+1}\right)=0 .\end{array}\right.$

The weight $\operatorname{wt}(G)$ of G is defined to be the product of weights of all vertices and edges. It is not difficult to see that $\operatorname{wt}(G)$ is the average of the weights of π with $\tilde{f}_{2}(\pi)=G$, i.e.,

$$
\sum_{\pi \in \tilde{f}_{2}^{-1}(G)} \mathrm{wt}(\pi)=\left|\tilde{f}_{2}^{-1}(G)\right| \mathrm{wt}(G)
$$

Fig. 2. Collapsing v_{n}, a and b to w.

Let

$$
g_{n}(x, y)=\sum_{G} w t(G)
$$

where the sum is over all $G \in \mathfrak{G}_{n}$ without 2-cycles.
Using the same argument in the proof of Theorem 3.2, we have the following theorem, since a 2-cycle has two edges of weight y.

Theorem 4.1. Let $n=4 k+r$ with $0 \leqslant r<4$. Then

$$
t_{n}(x, y)=2^{k+\lfloor r / 2\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{(1 ; 2)_{k+\lfloor r / 2\rfloor}}{(1 ; 2)_{i+\lfloor r / 2\rfloor}} y^{2 k-2 i} g_{4 i+r}(x, y)
$$

We now find a recursion for $g_{n}(x, y)$.
Proposition 4.2. Let $g_{k}(x, y)=0$ for negative integers k and $g_{0}(x, y)=1$. Then for each positive integer n, the following hold:

$$
\begin{align*}
g_{2 n+1}(x, y)= & x \cdot g_{2 n}(x, y)+n y \cdot g_{2 n-1}(x, y) \tag{5}\\
g_{2 n}(x, y)= & \frac{x^{2}+y}{2} g_{2 n-2}(x, y)+(n-1) x y \cdot g_{2 n-3}(x, y) \\
& +2\binom{n-1}{2} y^{2} \cdot g_{2 n-4}(x, y)+3\binom{n-1}{3} y^{4} \cdot g_{2 n-8}(x, y) . \tag{6}
\end{align*}
$$

Proof. The first recurrence, (5), is easy. For (6), let $\mathfrak{H}_{2 n}$ be the set of $G \in \mathfrak{G}_{2 n}$ without 2-cycles.
We divide $\mathfrak{H}_{2 n}$ into four sets as follows:
$\mathfrak{H}_{2 n}^{(0)}=\left\{G \in \mathfrak{H}_{2 n}: \operatorname{deg}\left(v_{n}\right)=0\right\}$,
$\mathfrak{H}_{2 n}^{(1)}=\left\{G \in \mathfrak{H}_{2 n}: \operatorname{deg}\left(v_{n}\right)=1\right\}$,
$\mathfrak{H}_{2 n}^{(2)}=\left\{G \in \mathfrak{H}_{2 n}: v_{n}\right.$ is contained in a 4-cycle $\}$,
$\mathfrak{H}_{2 n}^{(*)}=\left\{G \in \mathfrak{H}_{2 n}: \operatorname{deg}\left(v_{n}\right)=2\right.$ and v_{n} is not contained in a 4-cycle $\}$.
Then it is easy to see that the weighted sums of G in $\mathfrak{H}_{2 n}^{(0)}, \mathfrak{H}_{2 n}^{(1)}$ and $\mathfrak{H}_{2 n}^{(2)}$ are, respectively, the first, second and fourth terms in the right-hand side of (6).

Let G be a graph in $\mathfrak{H}_{2 n}^{(*)}$ and a, b be the vertices adjacent to v_{n} in G. Let G^{\prime} denote the graph obtained from G by collapsing the three vertices v_{n}, a and b to a new vertex w as shown in Fig. 2 . Since v_{n} is not contained in a 4-cycle, there is no 2 -cycle in G^{\prime} and we can consider G^{\prime} as a graph in $\mathfrak{H}_{2 n-4}$ by relabeling vertices. Once a, b and w are fixed, for each $G^{\prime} \in \mathfrak{H}_{2 n-4}$, there are two graphs G_{1} and G_{2} in $\mathfrak{H}_{2 n}^{(*)}$ which collapse to G^{\prime}. For instance, if w is an isolated vertex in G^{\prime}, then a and b are connected to each other in G_{1}, and disconnected in G_{2}. In this case, $\operatorname{wt}\left(G_{1}\right)=\operatorname{wt}\left(G^{\prime}\right) \frac{y^{3}}{\left(x^{2}+y\right) / 2}$ and $\operatorname{wt}\left(G_{2}\right)=\operatorname{wt}\left(G^{\prime}\right) \frac{y^{2} x^{2}}{\left(x^{2}+y\right) / 2}$. If w is connected to c and d (one of them may be vacant), then a and b are connected to c and d in $G_{1} ; d$ and c in G_{2} respectively. In this case, $\operatorname{wt}\left(G_{1}\right)=\operatorname{wt}\left(G_{2}\right)=y^{2} \mathrm{wt}\left(G^{\prime}\right)$.

Table 1
The values of $g_{n}=g_{n}(1,1)$ for $0 \leqslant n \leqslant 21$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
g_{n}	1	1	1	2	2	6	8	26	41	145	253	978	1858	7726	15	796	69878	152	219	711

Table 2
The values of $g_{n}(1,-1)$ for $0 \leqslant n \leqslant 21$.

In both cases, we have $\operatorname{wt}\left(G_{1}\right)+\operatorname{wt}\left(G_{2}\right)=2 y^{2} \operatorname{wt}\left(G^{\prime}\right)$. Thus the sum of $\operatorname{wt}(G)$ for $G \in \mathfrak{H}_{2 n}^{(*)}$ is equal to the third term in the right-hand side of (6).

Using Proposition 4.2, we can compute $g_{n}(1,1)$ and $g_{n}(1,-1)$; see Tables 1 and 2 . We will use these tables in the next section.

5. Odd and even involutions

Recall that $\sigma_{2}(\pi)$ is the number of 2 -cycles of π. The sign of an involution $\pi \in \mathfrak{I}_{n}$ is defined as usual, i.e.,

$$
\operatorname{sign}(\pi)=(-1)^{\sigma_{2}(\pi)}
$$

An involution is called even (resp. odd), if the sign is 1 (resp. -1). Let \mathfrak{I}_{n}^{e} (resp. \mathfrak{I}_{n}^{o}) be the set of even (resp. odd) involutions in \Im_{n}, and let $t_{n}^{e}=\left|\mathfrak{I}_{n}^{e}\right|$ and $t_{n}^{0}=\left|\Im_{n}^{0}\right|$.

By definition of $t_{n}(x, y)$, we have

$$
t_{n}(1,1)=t_{n}^{e}+t_{n}^{o}, \quad t_{n}(1,-1)=t_{n}^{e}-t_{n}^{o} .
$$

Using the above equations, we will find $\operatorname{ord}_{2}\left(t_{n}^{e}\right)$ and $\operatorname{ord}_{2}\left(t_{n}^{0}\right)$. To do this we need the following lemma.

Lemma 5.1. Let k and i be positive integers. Then

$$
\operatorname{ord}_{2}\left(2^{i}\binom{k}{i}\right) \geqslant \operatorname{ord}_{2}(k)+i-\operatorname{ord}_{2}(i) .
$$

Especially, we have

$$
\operatorname{ord}_{2}\left(2^{i}\binom{k}{i}\right) \geqslant \operatorname{ord}_{2}(k)+1
$$

and if $i \geqslant 5$, then

$$
\operatorname{ord}_{2}\left(2^{i}\binom{k}{i}\right) \geqslant \operatorname{ord}_{2}(k)+3
$$

Proof. It follows from the identity $2^{i}\binom{k}{i}=2^{i} \cdot \frac{k}{i}\binom{k-1}{i-1}$.
According to Theorem 4.1, for $n=4 k+r$ with $0 \leqslant r<4$, we have

$$
t_{n}(1,-1)=2^{k+\lfloor r / 2\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{(1 ; 2)_{k+\lfloor r / 2\rfloor}}{(1 ; 2)_{i+\lfloor r / 2\rfloor}} g_{4 i+r}(1,-1) .
$$

Table 3

The largest power of 2 in the number of involutions, in the signed sum of involutions and in the numbers of even or odd involutions.

n	$\operatorname{ord}_{2}\left(t_{n}(1,1)\right)$	$\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)$	$\operatorname{ord}_{2}\left(t_{n}^{e}\right)$	$\operatorname{ord}_{2}\left(t_{n}^{o}\right)$
$4 k$	k	k	$k+\chi_{o}(k)$	unknown
$4 k+1$	k	k	unknown	$k+\operatorname{ord}_{2}(k)+\chi_{e}(k)$
$4 k+2$	$k+1$	$k+3+\operatorname{ord}_{2}(k)$	k	k
$4 k+3$	$k+2$	$k+1$	k	k

Theorem 5.2. Let $n=4 k+r$ with $0 \leqslant r<4$. Then

$$
\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)= \begin{cases}k+\left\lfloor\frac{r}{2}\right\rfloor, & \text { if } r \neq 2 \\ k+3+\operatorname{ord}_{2}(k), & \text { if } r=2\end{cases}
$$

Proof. By Table 2, we have $g_{0}(1,-1)=g_{1}(1,-1)=1, g_{2}(1,-1)=0$ and $g_{3}(1,-1)=-1$. Thus, if $r \neq 2$ then $\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor$.

If $r=2$, then $t_{n}(1,-1)=2^{k+1} \sum_{i=0}^{k} a_{i}$ where $a_{i}=2^{i}\binom{k}{i} \frac{(1 ; 2)_{k+1}}{(1 ; 2)_{i+1}} g_{4 i+2}(1,-1)$. Since $g_{2}(1,-1)=0$ and $g_{6}(1,-1)=2$, we have $a_{0}=0$ and $\operatorname{ord}_{2}\left(a_{1}\right)=\operatorname{ord}_{2}(k)+2$. For $i \geqslant 2$, using Table 2 and Lemma 5.1 we get $\operatorname{ord}_{2}\left(a_{i}\right) \geqslant \operatorname{ord}_{2}(k)+3$. Thus $\operatorname{ord}_{2}\left(t_{4 k+2}(1,-1)\right)=k+3+\operatorname{ord}_{2}(k)$.

Now we can make a table of $\operatorname{ord}_{2}\left(t_{n}(1,1)\right)$ and $\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)$; see Table 3.
Since $t_{n}^{e}=\frac{1}{2}\left(t_{n}(1,1)+t_{n}(1,-1)\right)$ and $t_{n}^{o}=\frac{1}{2}\left(t_{n}(1,1)-t_{n}(1,-1)\right)$, we get the following corollary.
Corollary 5.3. Let k be a nonnegative integer. Then

$$
\operatorname{ord}_{2}\left(t_{4 k+2}^{e}\right)=\operatorname{ord}_{2}\left(t_{4 k+2}^{o}\right)=\operatorname{ord}_{2}\left(t_{4 k+3}^{e}\right)=\operatorname{ord}_{2}\left(t_{4 k+3}^{o}\right)=k
$$

We find $\operatorname{ord}_{2}\left(t_{4 k}^{e}\right)$ and $\operatorname{ord}_{2}\left(t_{4 k+1}^{0}\right)$ in the following two theorems separately. Let $\chi_{0}(n)$ (resp. $\chi_{e}(n)$) denote 1 if n is odd (resp. even), and 0 otherwise.

Theorem 5.4. Let k be a nonnegative integer. Then

$$
\operatorname{ord}_{2}\left(t_{4 k}^{e}\right)=2\left\lfloor\frac{k+1}{2}\right\rfloor=k+\chi_{0}(k) .
$$

Proof. We have $t_{4 k}^{e}=2^{k} \sum_{i=0}^{k} a_{i}$, where

$$
a_{i}=2^{i-1}\binom{k}{i} \frac{(1 ; 2)_{k}}{(1 ; 2)_{i}}\left(g_{4 i}(1,1)+g_{4 i}(1,-1)\right)
$$

Using Tables 1 and 2, we have

$$
\begin{aligned}
& g_{0}(1,1)+g_{0}(1,-1)=1+1=2 \\
& g_{4}(1,1)+g_{4}(1,-1)=2-1=1 \\
& g_{8}(1,1)+g_{8}(1,-1)=41-6 \equiv 3 \quad \bmod 4
\end{aligned}
$$

Thus

$$
a_{0}=(1 ; 2)_{k}, \quad a_{1}=k(1 ; 2)_{k}, \quad a_{2}=k(k-1) \frac{(1 ; 2)_{k}}{3} \cdot(4 q+3)
$$

and

$$
\begin{aligned}
3\left(a_{0}+a_{1}+a_{2}\right) & =(1 ; 2)_{k}\left(3+3 k+(4 q+3)\left(k^{2}-k\right)\right) \\
& \equiv(1 ; 2)_{k} \cdot 3\left(k^{2}+1\right) \bmod 4
\end{aligned}
$$

Thus $\operatorname{ord}_{2}\left(a_{0}+a_{1}+a_{2}\right)=\chi_{o}(k)$. Since $\operatorname{ord}_{2}\left(a_{i}\right) \geqslant 2$ for $i \geqslant 3$, we finish the proof.

Theorem 5.5. Let k be a nonnegative integer. Then

$$
\operatorname{ord}_{2}\left(t_{4 k+1}^{o}\right)=k+\operatorname{ord}_{2}(k)+\chi_{e}(k)
$$

Proof. We have $t_{4 k+1}^{o}=2^{k} \sum_{i=0}^{k} a_{i}$, where

$$
a_{i}=2^{i-1}\binom{k}{i} \frac{(1 ; 2)_{k}}{(1 ; 2)_{i}}\left(g_{4 i+1}(1,1)-g_{4 i+1}(1,-1)\right)
$$

Using Tables 1 and 2, we have

$$
\begin{aligned}
& g_{1}(1,1)-g_{1}(1,-1)=1-1=0 \\
& g_{5}(1,1)-g_{5}(1,-1)=6-1=5 \\
& g_{9}(1,1)-g_{9}(1,-1)=145+2 \equiv 3 \bmod 4 \\
& g_{17}(1,1)-g_{17}(1,-1)=711243+30398 \equiv 1 \bmod 2
\end{aligned}
$$

Thus we can write $a_{0}=0, a_{1}=(1 ; 2)_{k} \cdot 5 k, a_{2}=(1 ; 2)_{k}\binom{k}{2} \frac{2 \cdot\left(4 q_{1}+3\right)}{3}, a_{3}=(1 ; 2)_{k}\binom{k}{3} \frac{2^{2} \cdot q_{2}}{5 \cdot 3}$ and $a_{4}=$ $(1 ; 2)_{k}\binom{k}{4} \frac{2^{3} \cdot\left(2 q_{3}+1\right)}{7 \cdot 5 \cdot 3}$ for some integers q_{1}, q_{2} and q_{3}.

Note that by Lemma 5.1 we have $\operatorname{ord}_{2}\left(a_{i}\right) \geqslant \operatorname{ord}_{2}(k)+3$ for $i \geqslant 5$. Thus, if k is odd, then we have $\operatorname{ord}_{2}\left(t_{4 k+1}^{0}\right)=k$.

Now assume that k is even. Then

$$
\begin{aligned}
& \operatorname{ord}_{2}\left(a_{0}+a_{1}+a_{2}\right)=\operatorname{ord}_{2}\left(k\left(15+(k-1)\left(4 q_{1}+3\right)\right)\right) \\
& \operatorname{ord}_{2}\left(a_{3}\right) \geqslant \operatorname{ord}_{2}(k)+\operatorname{ord}_{2}(k-2)+1 \geqslant \operatorname{ord}_{2}(k)+2 \\
& \operatorname{ord}_{2}\left(a_{4}\right)=\operatorname{ord}_{2}(k)+\operatorname{ord}_{2}(k-2)
\end{aligned}
$$

If $k=4 m$, then $\operatorname{ord}_{2}\left(a_{4}\right)=\operatorname{ord}_{2}(k)+1$ and, $\operatorname{ord}_{2}\left(a_{0}+a_{1}+a_{2}\right) \geqslant \operatorname{ord}_{2}(k)+2$. If $k=4 m+2$, then $\operatorname{ord}_{2}\left(a_{4}\right) \geqslant \operatorname{ord}_{2}(k)+2$, and $\operatorname{ord}_{2}\left(a_{0}+a_{1}+a_{2}\right)=\operatorname{ord}_{2}(k)+1$. Thus, if k is even, then we always have $\operatorname{ord}_{2}\left(a_{0}+\cdots+a_{4}\right)=\operatorname{ord}_{2}(k)+1$.

In all cases we have $\operatorname{ord}_{2}\left(t_{4 k+1}^{0}\right)=k+\chi_{e}(k)\left(\operatorname{ord}_{2}(k)+1\right)=k+\operatorname{ord}_{2}(k)+\chi_{e}(k)$.
Now we can fill all the entries in Table 3 except $\operatorname{ord}_{2}\left(t_{4 k+1}^{e}\right)$ and $\operatorname{ord}_{2}\left(t_{4 k}^{0}\right)$. Based on Maple experiments, we conjecture the following.

Conjecture 5.6. There is a 2-adic integer $\rho=\sum_{i \geqslant 0} \rho_{i} 2^{i}$, with $0 \leqslant \rho_{i} \leqslant 1$, satisfying

$$
\operatorname{ord}_{2}\left(t_{4 k+1}^{e}\right)=k+\chi_{o}(k) \cdot\left(\operatorname{ord}_{2}(k+\rho)+1\right)
$$

For example, $\rho=1+2+2^{3}+2^{8}+2^{10}+\cdots$ satisfies the condition for all $k \leqslant 1000$.

6. The smallest period of $\boldsymbol{\beta}_{\boldsymbol{n}} \bmod 2^{s}$

Chowla et al. [2] proved that, if m is odd, then $t_{n+m} \equiv t_{n} \bmod m$. We give their proof here for self containment.

Theorem 6.1. (See [2].) If m is odd, then

$$
t_{n+m} \equiv t_{n} \quad \bmod m
$$

Proof. Induction on $n \geqslant 0$. We have

$$
t_{m}=\sum_{2 i+j=m} \frac{m!}{2^{i} i!j!}=\sum_{2 i+j=m} \frac{m!}{2^{i}(i+j)!}\binom{i+j}{j} \equiv 1 \quad \bmod m,
$$

because $\frac{m!}{2^{i}(i+j)!}\binom{i+j}{j}$ is divisible by m if $i>0$; and 1 if $i=0$. Thus $t_{m+1}=t_{m}+m t_{m-1} \equiv 1 \bmod m$. We get $t_{n+m} \equiv t_{n} \bmod m$ for $n=0,1$. Suppose it holds for $n=0,1, \ldots, k$. Then it is true for $n=k+1$ because

$$
\begin{aligned}
t_{k+1+m} & =t_{k+m}+(k+m) t_{k+m-1} \\
& \equiv t_{k}+k t_{k-1} \bmod m \\
& =t_{k+1} .
\end{aligned}
$$

The above theorem means that the sequence $\left\{t_{n} \bmod m\right\}_{n \geqslant 0}$ has a period m. In fact, m is the smallest period.

Theorem 6.2. Let m be an odd integer. Then m is the smallest period of the sequence $\left\{t_{n} \bmod m\right\}_{n \geqslant 0}$.
Proof. Let d be the smallest period. Then $t_{d} \equiv t_{0} \equiv 1 \bmod m, t_{d+1} \equiv t_{1} \equiv 1 \bmod m$, and $t_{d+2} \equiv t_{2} \equiv$ $2 \mathrm{mod} m$. On the other hand, we have $t_{d+2}=t_{d+1}+(d+1) t_{d} \equiv d+2 \bmod m$. Thus m divides d, and we get $m=d$.

If m is even, then $\left\{t_{n} \bmod m\right\}_{n \geqslant 0}$ does not have a period because $t_{0}=1$ but t_{n} is even for all $n \geqslant 2$. However, there exists an integer N such that $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$ has a period.

Theorem 6.3. Let ℓ be an odd integer and k be a positive integer. Let $m=2^{k} \ell$ and let N be the smallest integer such that $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$ has a period. Then $N=4 k-2$ and ℓ is the smallest period of $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$.

Proof. By Theorem 3.3, we have $\operatorname{ord}_{2}\left(t_{4 k-3}\right)=k-1$ and $\operatorname{ord}_{2}\left(t_{n}\right) \geqslant k$ for $n \geqslant 4 k-2$. Thus $t_{4 k-3+y} \not \equiv$ $t_{4 k-3} \bmod 2^{k}$ for any positive integer y, which implies $N \geqslant 4 k-2$. On the other hand, we have $t_{n+\ell} \equiv t_{n} \bmod 2^{k}$ for $n \geqslant 4 k-2$. Since $t_{n+\ell} \equiv t_{n} \bmod \ell$ by Theorem 6.1, we get $t_{n+\ell} \equiv t_{n} \bmod m$ for $n \geqslant 4 k-2$. Thus $\left\{t_{n} \bmod m\right\}_{n \geqslant 4 k-2}$ has a period ℓ and we get $N=4 k-2$.

It remains to show that ℓ is the smallest period. It is easy to see that any period of $\left\{t_{n} \bmod m\right\}_{n \geqslant N}$ is divisible by the smallest period of $\left\{t_{n} \bmod \ell\right\}_{n \geqslant 0}$, which is ℓ. Thus we get the theorem.

Recall that β_{n} is the odd factor of t_{n}. Similarly we can find the smallest period of $\left\{\beta_{n} \bmod 2^{s}\right\}_{n \geqslant 0}$. Let $h(n)=\operatorname{ord}_{2}\left(t_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor-2\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor$. Then $t_{n}=2^{h(n)} \beta_{n}$. Thus we have

$$
\beta_{n+1}=2^{h(n)-h(n+1)} \beta_{n}+2^{h(n-1)-h(n+1)} n \beta_{n-1},
$$

which is equivalent to the following: if $n=4 k+r$ with $0 \leqslant r \leqslant 3$ then

$$
\begin{equation*}
\beta_{n+1}=2^{h(r)-h(r+1)} \beta_{n}+2^{h(r-1)-h(r+1)} n \beta_{n-1} . \tag{7}
\end{equation*}
$$

To find the smallest period of $\left\{\beta_{n} \bmod 2^{s}\right\}_{n \geqslant 0}$, we need the following two lemmas.
Lemma 6.4. Let $s \geqslant 3$ be an integer. Then
$(1 ; 2)_{2^{s-1}} \equiv 1 \quad \bmod 2^{s}$.

Proof. Induction on s. It is true for $s=3$. Assume it is true for $s \geqslant 3$. Then $(1 ; 2)_{2^{s-1}}=2^{s} k+1$ for some integer k. Then it holds for $s+1$ because

$$
\begin{aligned}
(1 ; 2)_{2^{s}} & =1 \cdot 3 \cdot 5 \cdots\left(2^{s+1}-1\right) \\
& =\left(1 \cdot 3 \cdot 5 \cdots\left(2^{s}-1\right)\right) \cdot\left(\left(2^{s+1}-1\right)\left(2^{s+1}-3\right) \cdots\left(2^{s+1}-\left(2^{s}-1\right)\right)\right) \\
& \equiv(1 ; 2)_{2^{s-1}} \cdot(-1)^{2^{s-1}}(1 ; 2)_{2^{s-1}} \bmod 2^{s+1} \\
& =2^{2 s} k^{2}+2^{s+1} k+1 \\
& \equiv 1 \bmod ^{s+1} .
\end{aligned}
$$

Lemma 6.5. If $s \geqslant 3$ then

$$
\beta_{n+2^{s+1}} \equiv \beta_{n} \quad \bmod 2^{s} .
$$

Proof. We use induction on n. First we will show that $\beta_{2^{s+1}+n} \equiv 1 \bmod 2^{s}$ for $n=0,1$. By Theorem 3.3,

$$
\beta_{2^{s+1}+n}=\sum_{i=0}^{2^{s-1}} 2^{i}\binom{2^{s-1}}{i} \frac{(1 ; 2)_{2^{s-1}+\lfloor n / 2\rfloor}}{(1 ; 2)_{i+\lfloor n / 2\rfloor}} \cdot \frac{g_{4 i+n}}{2^{\delta_{n, 3}}}=\sum_{i=0}^{2^{s-1}} 2^{i}\binom{2^{s-1}}{i} \frac{(1 ; 2)_{2^{s-1}}}{(1 ; 2)_{i}} g_{4 i+n} .
$$

By Lemmas 5.1 and 6.4 , we get $\beta_{2^{s+1}+n} \equiv(1 ; 2)_{2^{s-1}} \equiv 1 \mathrm{mod} 2^{s}$.
We have shown that the theorem is true for $n=0,1$. Assume $n \geqslant 1$ and the theorem is true for all nonnegative integers less than $n+1$. Then it is also true for $n+1$ because if $n=4 k+r$ for $0 \leqslant r \leqslant 3$ then by (7) we get

$$
\begin{aligned}
\beta_{n+1+2^{s+1}} & =2^{h(r)-h(r+1)} \beta_{n+2^{s+1}+2^{h(r-1)-h(r+1)}\left(n+2^{s+1}\right) \beta_{n-1+2^{s+1}}} \\
& \equiv 2^{h(r)-h(r+1)} \beta_{n}+2^{h(r-1)-h(r+1)} n \beta_{n-1} \bmod 2^{s} \\
& =\beta_{n+1} .
\end{aligned}
$$

Now we have the following theorem.
Theorem 6.6. If $s \geqslant 3$ then 2^{s+1} is the smallest period of the sequence $\left\{\beta_{n} \bmod 2^{s}\right\}_{n \geqslant 0}$.
Proof. By Lemma $6.5,2^{s+1}$ is a period. Since the smallest period divides every period, it has to be 2^{k} for some k. It is sufficient to show that 2^{s} is not a period.

Assume that 2^{s} is a period. By the recurrence relation (7), we have

$$
\beta_{2^{s}+2}=\frac{1}{2} \beta_{2^{s}+1}+\frac{2^{s}+1}{2} \beta_{2^{s}}, \quad \beta_{2^{s}+1}=\beta_{2^{s}}+2^{s} \cdot 2 \beta_{2^{s}-1} .
$$

Thus

$$
\beta_{2^{s}+2}=\left(1+2^{s-1}\right) \beta_{2^{s}}+2^{s} \beta_{2^{s}-1} .
$$

Since 2^{s} is a period, $\beta_{2^{s}} \equiv \beta_{0}=1 \bmod 2^{s}$. Then we have $\beta_{2^{s}+2} \equiv 1+2^{s-1} \bmod 2^{s}$, which is a contradiction to $\beta_{2^{s}+2} \equiv \beta_{2}=1 \mathrm{mod} 2^{s}$.

Acknowledgments

We would like to thank Professor Christian Krattenthaler for informing us of the Ochiai's paper. We also thank the anonymous referees for their careful reading and helpful comments.

References

[1] Ronald Alter, K.K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combin. Theory Ser. A 15 (1973) 243-256.
[2] S. Chowla, I.N. Herstein, W.K. Moore, On recursions connected with symmetric groups, I, Canad. J. Math. 3 (1951) 328-334.
[3] Emeric Deutsch, Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (1) (2006) 191-215.
[4] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall Math. Ser., Chapman \& Hall, New York, 1993.
[5] P. Goetgheluck, Notes: Computing binomial coefficients, Amer. Math. Monthly 94 (4) (1987) 360-365.
[6] Michael Grady, Morris Newman, Residue periodicity in subgroup counting functions, in: Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 265-273.
[7] Hideki Ishihara, Hiroyuki Ochiai, Yugen Takegahara, Tomoyuki Yoshida, p-Divisibility of the number of solutions of $x^{p}=1$ in a symmetric group, Ann. Comb. 5 (2) (2001) 197-210.
[8] Donald E. Knuth, Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989) 212-219.
[9] Matjaž Konvalinka, Divisibility of generalized Catalan numbers, J. Combin. Theory Ser. A 114 (6) (2007) 1089-1100.
[10] Hiroyuki Ochiai, A p-adic property of the Taylor series of $\exp \left(x+x^{p} / p\right)$, Hokkaido Math. J. 28 (1) (1999) 71-85.
[11] Alexander Postnikov, Bruce E. Sagan, What power of two divides a weighted Catalan number? J. Combin. Theory Ser. A 114 (5) (2007) 970-977.

[^0]: E-mail addresses: dongsu.kim@kaist.ac.kr (D. Kim), jskim@kaist.ac.kr (J.S. Kim).
 ${ }^{1}$ The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0063183).
 ${ }^{2}$ The author was supported by the second stage of the Brain Korea 21 Project, The Development Project of Human Resources in Mathematics, KAIST in 2009.

