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1. Introduction

The largest power of a prime in some well-known numbers has been studied in many papers,
for instance, see [1–3,5–11]. In this paper we are interested in the largest power of a prime in the
numbers of permutations with some conditions.

Let Sn denote the set of permutations of [n] = {1,2, . . . ,n}. Let p be a prime number and n a
positive integer. Let τp(n) denote the number of permutations π ∈ Sn such that π p = 1, and let
ordp(n) denote the largest integer k such that pk divides n.

In 1951, using recurrence relation with induction, Chowla, Herstein and Moore [2] proved that
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Using generating function, Grady and Newman [6] obtained, for any prime p,
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Using p-adic analysis, Ochiai [10] found the exact value of ordp(τp(n)) for prime numbers p � 23. Let
tn denote τ2(n), the number of involutions in Sn . Ochiai’s result gives

ord2(tn) =
⌊

n

2

⌋
− 2

⌊
n

4

⌋
+

⌊
n + 1

4

⌋
. (2)

In addition, Chowla et al. [2] considered the sequence {tn mod m}n�0 for a fixed integer m and
proved that m is a period of the sequence if m is odd. We will prove that in fact, it is the smallest
period. If m is even, then the sequence is not periodic because t0 = 1 but tn is even for all n � 2.
However there is an integer N such that {tn mod m}n�N is periodic.

Our main results are in Sections 2 and 3, where we prove (1) and (2) using combinatorial argu-
ments. The weighted sum of involutions is considered in Section 4. In Section 5 we find ord2 of the
signed sum of involutions, the number of odd involutions, and the number of even involutions. In
Section 6 we find the smallest N such that {tn mod m}n�N is periodic and find the smallest period
of the sequence when m is even. We also consider the odd factor of the number of involutions and
prove that the smallest period of the sequence {tn/2ord2(tn) mod 2s}n�0 is 2s+1 if s � 3.

2. A combinatorial proof

Let Sn,p denote the set of permutations π ∈ Sn with π p = 1. For instance, for p = 2 it is the
set of all involutions in Sn . Each permutation in Sn,p is a product of disjoint p-cycles and 1-cycles.
For example, for π = 38725614 ∈ S8,3, the disjoint product is (1,3,7)(2,8,4)(5)(6). A cycle usually
consists of distinct integers, but we allow cycles to have repeated entries for convenience.

We define a label map f p : {1,2, . . . ,n} → {1,2, . . . , �(n − 1)/p� + 1} by f p(i) = �(i − 1)/p� + 1,
extend it to cycles σ = (s1, . . . , s j) by f p(σ ) = ( f p(s1), . . . , f p(s j)) which is regarded as a cycle with
repeated entries, and to Sn,p by

f p(π) = {
f p(σ1), . . . , f p(σk)

}
for π = σ1σ2 · · ·σk in the disjoint cycle notation. Note that f p(π) is regarded as a multiset.

As a map defined on Sn,p , f p induces an equivalence relation ∼ on Sn,p , namely π ∼ τ if and
only if f p(π) = f p(τ ).

Fix a prime p, and let n = pt + r with 0 � r < p. A p-cycle σ = (s1, s2, . . . , sp) in some f p(π)

is said to be of type A if s1 = s2 = · · · = sp ; of type B otherwise. We are interested in the size
of each equivalence class of ∼ on Sn,p . As a matter of fact, we need the size of some collections
of equivalence classes. An equivalence class may be represented as a multiset of cycles with re-
peated entries from {1,2, . . . , t + 1}. In fact there are three kinds of cycles in the representation
of equivalence classes: p-cycles of type A, p-cycles of type B , and 1-cycles. A typical equivalence

class is of the form {A1, . . . , Ai; Bd1
1 , . . . , B

d j

j ; Ce1
1 , . . . , Cek

k }, as a multiset, where A’s denote p-cycles of
type A, B ’s denote those of type B and C ’s are 1-cycles. Since the multiplicities e1, . . . , ek play a crit-

ical role, we refine the form to {A1, . . . , Ai; Bd1
1 , . . . , B

d j

j ; Ce1
1 , . . . , Cek

k ; D p
1 , . . . , D p

� } with e1, . . . , ek < p,
where A’s, B ’s, C ’s are the same as before, while D ’s are 1-cycles. We collect all equivalence classes

{A1, . . . , Ai; Bd1
1 , . . . , B

d j

j ; Ce1
1 , . . . , Cek

k ; D p
1 , . . . , D p

� } with fixed B ’s, C ’s, and a fixed set of integers ap-
pearing in either A’s or D ’s. Let{

s1, s2, . . . , sh; Bd1
1 , . . . , B

d j

j ; Ce1
1 , . . . , Cek

k

}
denote such a collection. The collection may be represented as{

s1, s2, . . . , sh; Em1
1 , . . . , Em�

�

}
,

where E ’s denote either a p-cycle of type B of multiplicity at most p or a 1-cycle with multiplicity
less than p. Note that {s1, . . . , sh} ⊂ [t] and each i ∈ [t] \ {s1, . . . , sh} appears exactly p times in the
collection and t +1 appears exactly r times. The distinct collections produce a partition of Sn,p , which
in turn defines an equivalence relation, denoted by ∼′ . Let f̃ p denote the quotient map corresponding
to this equivalence relation.
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Fig. 1. Visualization of π and f3(π) in Example 2.1.

Example 2.1. Let π ∈ S29,3 be the following permutation in cycle notation:

π = (1,6,8)(2,4,9)(3,5,7)(10,15,17)(11)(12,16,14)(13)(18)

(19,20,21)(22)(23)(24)(25)(26)(27,28,29).

Then f3(π) = {(1,2,3)3, (4,5,6), (4), (4,6,5), (5), (6), (7,7,7), (8)3, (9)2, (9,10,10)}. The permuta-
tion π belongs to an equivalence class{

(7,7,7); (1,2,3)3, (4,5,6), (4,6,5), (9,10,10); (4), (5), (6), (9)2; (8)3}
of the form {A1, . . . , Ai; Bd1

1 , . . . , B
d j

j ; Ce1
1 , . . . , Cek

k ; D p
1 , . . . , D p

� }, which is a member of the collection

f̃3(π) = {
7,8; (1,2,3)3, (4,5,6), (4,6,5), (9,10,10), (4), (5), (6), (9)2}

.

We visualize this example in Fig. 1, where 7 and 8 are the integers in A’s or D ’s.

Lemma 2.2. Let p be a prime and n = pt + r with 0 � r < p. Let H = {s1, s2, . . . , sh; Em1
1 , . . . , Em�

� } be an
equivalence class of Sn,p/ ∼′ described above. Then the number of all permutations in the collection is

∣∣ f̃ −1
p (H)

∣∣ = (1 + (p − 1)!)h(p!)t−hr!
m1!m2! · · ·m�! . (3)

Proof. We need to enumerate the set f̃ −1
p (H). Each permutation in the set has the special disjoint

cycle decomposition prescribed by H . Recall that each si can represent either a p-cycle or a 1-cycle
of multicity p. If si represents a p-cycle, it contributes a factor (p − 1)! to the total number of permu-
tations to be counted; if it represents a 1-cycle with multicity p, it contributes a factor 1. So in total
each si contributes a factor (p − 1)! + 1, which explains the factor (1 + (p − 1)!)h in (3).



D. Kim, J.S. Kim / Journal of Combinatorial Theory, Series A 117 (2010) 1082–1094 1085
Now recall that p is prime and E ’s are a p-cycle or 1-cycle. Each j ∈ [t] \ {s1, . . . , sh} appears
exactly p times in Em1

1 , . . . , Em�

� , which will be replaced by p integers p( j −1)+1, p( j −1)+2, . . . , pj,
contributing the factor (p!)t−h in (3); and t +1 appears exactly r times, which correspond to r integers
pt + 1, pt + 2, . . . , pt + r, contributing a factor r!. This argument overcounts the set f̃ −1

p (H), since
Ei appears mi times and the argument respects ordering of the cycles, while we are interested in
unordered cycle decompositions. Moreover, since each Ei is a 1-cycle or a p-cycle of type B , there is
no other repetition arising from a cyclic rotation inside a cycle in Ei ’s. So we need exactly the factor

1
m1!m2!···m�! in (3) to count the unordered structures. �

Now we can prove (1) combinatorially.

Theorem 2.3. Let p be a prime and n a positive integer. Then

ordp
(
τp(n)

)
�

⌊
n

p

⌋
−

⌊
n

p2

⌋
.

Proof. Note that

τp(n) = |Sn,p| =
∑

H

∣∣ f̃ −1
p (H)

∣∣,
where H runs through all distinct equivalence classes of Sn,p/ ∼′ , i.e., distinct images of f̃ p . Thus it
suffices to show that for any equivalence class of Sn,p/ ∼′ , we have ordp(| f̃ −1

p (H)|) � � n
p � − � n

p2 �.

Let H = {s1, s2, . . . , sh; Em1
1 , . . . , Em�

� } be an equivalence class of Sn,p/ ∼′ . By Lemma 2.2, we have

∣∣ f̃ −1
p (H)

∣∣ = (1 + (p − 1)!)h(p!)t−hr!
m1!m2! · · ·m�! .

Since (p − 1)! ≡ −1 mod p, ordp of the numerator is at least t . Moreover, mi � p for all i, and if
mi = p then Ei is a p-cycle, which implies that there are at most � n

p2 � mi ’s with mi = p. Thus we get

ordp(| f̃ −1
p (H)|) � � n

p � − � n
p2 �. �

3. The power of 2 in the number of involutions

For p = 2, Sn,p is in fact the set of involutions in Sn , which will be denoted by In . Recall that tn

stands for the number of involutions in Sn , i.e., |In|. We will compute ord2(tn) exactly and look at βn

the odd factor of tn , i.e.,

βn = tn

2ord2(tn)
.

Let n = 2t + r with 0 � r < 2. Recall the equivalence relation ∼′ on Sn,2 in Section 2. Each equiv-
alence class of Sn,2/ ∼′ is represented by

H = {
s1, s2, . . . , sh; Em1

1 , . . . , Em�

�

}
,

where E ’s denote either a 2-cycle, consisting of two distinct integers, of multiplicity at most two or a
1-cycle with multiplicity one. The equivalence class may be represented by a graph G = (V , E ) with
vertex set

V = {v1, v2, . . . , vt}, if n = 2t; {v1, v2, . . . , vt+1}, if n = 2t + 1,

and edge set E = {{a,b}: (a,b) = E j, for some j and a 
= b}, regarded as a multiset, where the multi-
plicity of the edge corresponding to E j is m j . We can construct H from G if we know n.
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Let Gn be the set of all graphs with vertex set

{v1, v2, . . . , vt}, if n = 2t; {v1, v2, . . . , vt+1}, if n = 2t + 1,

satisfying the following conditions:

• there is no loop,
• the degree of each vertex is at most two, and that of vt+1 is at most one,
• the multiplicity of each edge is at most two.

Then there is a one-to-one correspondence between the set of equivalence classes of Sn,2/ ∼′ and
the set Gn . Thus we have the induced surjection f̃2 : In → Gn .

Each connected component of a graph in Gn is either a cycle of length at least two or a path.
The corollary below follows immediately from Lemma 2.2, since a 2-cycle is an edge with multi-

plicity 2 in this case.

Corollary 3.1. Let G ∈ Gn have s 2-cycles. Then∣∣ f̃ −1
2 (G)

∣∣ = 2� n
2 �−s.

The maximum number of 2-cycles in a graph G ∈ Gn is � n
4 �, which gives ord2(tn) � � n

2 � − � n
4 �.

Since there may be many such G ’s, we need to do more to determine ord2(tn) exactly. Let gn denote
the number of G ∈ Gn without 2-cycles. It is easy to see that

g2n+1 = g2n + ng2n−1.

For n � 3, g2n is just the number of simple (labeled) graphs with n vertices. Thus g0 = g2 = 1, g4 = 2
and g6 = 8. Using the above recurrence, we get g1 = 1, g3 = 2, g5 = 6 and g7 = 26. For more values
of gn , see Table 1.

Let (a;b)n denote the following product:

(a;b)n =
n−1∏
i=0

(a + ib).

Note that (1;2)n is always odd, in fact, it is the product of the first n odd integers.

Theorem 3.2. Let n = 4k + r with 0 � r < 4. Then

tn = 2k+�r/2�
k∑

i=0

2i
(

k

i

)
(1;2)k+�r/2�
(1;2)i+�r/2�

g4i+r .

Proof. Since f̃2 : In → Gn is a surjection, we have

tn =
∑

G∈Gn

∣∣ f̃ −1
2 (G)

∣∣.
If G ∈ Gn has i 2-cycles, then by Corollary 3.1, | f̃ −1

2 (G)| = 2�n/2�−i . Since the number of such G is(�n/2�
2i

)
(1;2)i gn−4i , we get

tn =
k∑

i=0

2�n/2�−i
(�n/2�

2i

)
(1;2)i gn−4i

=
k∑

2�n/2�−k+i
( �n/2�

2k − 2i

)
(1;2)k−i gn−4k+4i
i=0
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=
k∑

i=0

2k+�r/2�+i
(

2k + �r/2�
2i + �r/2�

)
(1;2)k−i g4i+r

= 2k+�r/2�
k∑

i=0

2i
(

k

i

)
(1;2)k+�r/2�
(1;2)i+�r/2�

g4i+r . �

Since g0 = g1 = g2 = 1, g3 = 2 and g7 = 26, we have the following theorem, where δr,3 is 1, if
r = 3; 0, otherwise.

Theorem 3.3. Let n = 4k + r with 0 � r < 4. Then the largest power of 2 and the odd factor βn of tn are the
following:

ord2(tn) = k +
⌊

r

2

⌋
+ δr,3 =

⌊
n

2

⌋
− 2

⌊
n

4

⌋
+

⌊
n + 1

4

⌋
,

βn =
k∑

i=0

2i−δr,3

(
k

i

)
(1;2)k+�r/2�
(1;2)i+�r/2�

g4i+r .

4. Weighted sum of involutions

For π ∈ In , let σi(π) denote the number of i-cycles in π . We define the weight of an involution
π to be

wt(π) = xσ1(π) yσ2(π).

Consider the weight generating function

tn(x, y) =
∑
π∈In

wt(π). (4)

We can easily verify

tn(x, y) = x · tn−1(x, y) + (n − 1)y · tn−2(x, y).

Note that tn(x,−1) is the matchings polynomial of the complete graph with n vertices, which is
equivalent to a Hermite polynomial, see [4].

We will find a formula for tn(x, y). Recall that n = 2t + r with 0 � r < 2 and the vertex set of a
graph in Gn is either [t] or [t + 1] depending on the parity of n. For G ∈ Gn , we put the weight on
each edge and vertex as follows:

• For every edge e, wt(e) = y.
• For i 
= t + 1,

wt(vi) =

⎧⎪⎨
⎪⎩

1, if deg(vi) = 2,

x, if deg(vi) = 1,
x2+y

2 , if deg(vi) = 0.

• wt(vt+1) =
{

1, if deg(vt+1) = 1,

x, if deg(vt+1) = 0.

The weight wt(G) of G is defined to be the product of weights of all vertices and edges. It is not
difficult to see that wt(G) is the average of the weights of π with f̃2(π) = G , i.e.,∑

π∈ f̃ −1
2 (G)

wt(π) = ∣∣ f̃ −1
2 (G)

∣∣wt(G).
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Fig. 2. Collapsing vn , a and b to w .

Let

gn(x, y) =
∑

G

wt(G),

where the sum is over all G ∈ Gn without 2-cycles.
Using the same argument in the proof of Theorem 3.2, we have the following theorem, since a

2-cycle has two edges of weight y.

Theorem 4.1. Let n = 4k + r with 0 � r < 4. Then

tn(x, y) = 2k+�r/2�
k∑

i=0

2i
(

k

i

)
(1;2)k+�r/2�
(1;2)i+�r/2�

y2k−2i g4i+r(x, y).

We now find a recursion for gn(x, y).

Proposition 4.2. Let gk(x, y) = 0 for negative integers k and g0(x, y) = 1. Then for each positive integer n,
the following hold:

g2n+1(x, y) = x · g2n(x, y) + ny · g2n−1(x, y), (5)

g2n(x, y) = x2 + y

2
g2n−2(x, y) + (n − 1)xy · g2n−3(x, y)

+ 2

(
n − 1

2

)
y2 · g2n−4(x, y) + 3

(
n − 1

3

)
y4 · g2n−8(x, y). (6)

Proof. The first recurrence, (5), is easy. For (6), let H2n be the set of G ∈ G2n without 2-cycles.
We divide H2n into four sets as follows:

H
(0)
2n = {

G ∈ H2n: deg(vn) = 0
}
,

H
(1)
2n = {

G ∈ H2n: deg(vn) = 1
}
,

H
(2)
2n = {G ∈ H2n: vn is contained in a 4-cycle},

H
(∗)
2n = {

G ∈ H2n: deg(vn) = 2 and vn is not contained in a 4-cycle
}
.

Then it is easy to see that the weighted sums of G in H
(0)
2n , H

(1)
2n and H

(2)
2n are, respectively, the first,

second and fourth terms in the right-hand side of (6).
Let G be a graph in H

(∗)
2n and a, b be the vertices adjacent to vn in G . Let G ′ denote the graph

obtained from G by collapsing the three vertices vn , a and b to a new vertex w as shown in Fig. 2.
Since vn is not contained in a 4-cycle, there is no 2-cycle in G ′ and we can consider G ′ as a graph
in H2n−4 by relabeling vertices. Once a,b and w are fixed, for each G ′ ∈ H2n−4, there are two graphs
G1 and G2 in H

(∗)
2n which collapse to G ′ . For instance, if w is an isolated vertex in G ′ , then a and b

are connected to each other in G1, and disconnected in G2. In this case, wt(G1) = wt(G ′) y3

(x2+y)/2
and

wt(G2) = wt(G ′) y2x2

(x2+y)/2
. If w is connected to c and d (one of them may be vacant), then a and b are

connected to c and d in G1; d and c in G2 respectively. In this case, wt(G1) = wt(G2) = y2 wt(G ′).
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Table 1
The values of gn = gn(1,1) for 0 � n � 21.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
gn 1 1 1 2 2 6 8 26 41 145 253 978 1858 7726 15 796 69 878 152 219 711 243 1 638 323 8 039 510 99 862 594 252 998 224

Table 2
The values of gn(1,−1) for 0 � n � 21.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
gn(1,−1) 1 1 0 −1 −1 1 2 −1 −6 −2 28 38 −140 −368 732 3308 −3934 −30 398 19 232 292 814 −44 946 −2 973 086

In both cases, we have wt(G1) + wt(G2) = 2y2 wt(G ′). Thus the sum of wt(G) for G ∈ H
(∗)
2n is equal to

the third term in the right-hand side of (6). �
Using Proposition 4.2, we can compute gn(1,1) and gn(1,−1); see Tables 1 and 2. We will use

these tables in the next section.

5. Odd and even involutions

Recall that σ2(π) is the number of 2-cycles of π . The sign of an involution π ∈ In is defined as
usual, i.e.,

sign(π) = (−1)σ2(π).

An involution is called even (resp. odd), if the sign is 1 (resp. −1). Let Ie
n (resp. Io

n) be the set of even
(resp. odd) involutions in In , and let te

n = |Ie
n| and to

n = |Io
n|.

By definition of tn(x, y), we have

tn(1,1) = te
n + to

n, tn(1,−1) = te
n − to

n.

Using the above equations, we will find ord2(te
n) and ord2(to

n). To do this we need the following
lemma.

Lemma 5.1. Let k and i be positive integers. Then

ord2

(
2i

(
k

i

))
� ord2(k) + i − ord2(i).

Especially, we have

ord2

(
2i

(
k

i

))
� ord2(k) + 1,

and if i � 5, then

ord2

(
2i

(
k

i

))
� ord2(k) + 3.

Proof. It follows from the identity 2i
(k

i

) = 2i · k
i

(k−1
i−1

)
. �

According to Theorem 4.1, for n = 4k + r with 0 � r < 4, we have

tn(1,−1) = 2k+�r/2�
k∑

i=0

2i
(

k

i

)
(1;2)k+�r/2�
(1;2)i+�r/2�

g4i+r(1,−1).
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Table 3
The largest power of 2 in the number of involutions, in the signed sum of involutions and in the numbers of even or odd
involutions.

n ord2(tn(1,1)) ord2(tn(1,−1)) ord2(te
n) ord2(to

n)

4k k k k + χo(k) unknown
4k + 1 k k unknown k + ord2(k) + χe(k)

4k + 2 k + 1 k + 3 + ord2(k) k k
4k + 3 k + 2 k + 1 k k

Theorem 5.2. Let n = 4k + r with 0 � r < 4. Then

ord2
(
tn(1,−1)

) =
{

k + � r
2 �, if r 
= 2,

k + 3 + ord2(k), if r = 2.

Proof. By Table 2, we have g0(1,−1) = g1(1,−1) = 1, g2(1,−1) = 0 and g3(1,−1) = −1. Thus, if
r 
= 2 then ord2(tn(1,−1)) = � n

2 � − � n
4 �.

If r = 2, then tn(1,−1) = 2k+1 ∑k
i=0 ai where ai = 2i

(k
i

) (1;2)k+1
(1;2)i+1

g4i+2(1,−1). Since g2(1,−1) = 0
and g6(1,−1) = 2, we have a0 = 0 and ord2(a1) = ord2(k)+ 2. For i � 2, using Table 2 and Lemma 5.1
we get ord2(ai) � ord2(k) + 3. Thus ord2(t4k+2(1,−1)) = k + 3 + ord2(k). �

Now we can make a table of ord2(tn(1,1)) and ord2(tn(1,−1)); see Table 3.
Since te

n = 1
2 (tn(1,1) + tn(1,−1)) and to

n = 1
2 (tn(1,1) − tn(1,−1)), we get the following corollary.

Corollary 5.3. Let k be a nonnegative integer. Then

ord2
(
te

4k+2

) = ord2
(
to

4k+2

) = ord2
(
te

4k+3

) = ord2
(
to

4k+3

) = k.

We find ord2(te
4k) and ord2(to

4k+1) in the following two theorems separately. Let χo(n) (resp. χe(n))
denote 1 if n is odd (resp. even), and 0 otherwise.

Theorem 5.4. Let k be a nonnegative integer. Then

ord2
(
te

4k

) = 2

⌊
k + 1

2

⌋
= k + χo(k).

Proof. We have te
4k = 2k ∑k

i=0 ai , where

ai = 2i−1
(

k

i

)
(1;2)k

(1;2)i

(
g4i(1,1) + g4i(1,−1)

)
.

Using Tables 1 and 2, we have

g0(1,1) + g0(1,−1) = 1 + 1 = 2,

g4(1,1) + g4(1,−1) = 2 − 1 = 1,

g8(1,1) + g8(1,−1) = 41 − 6 ≡ 3 mod 4.

Thus

a0 = (1;2)k, a1 = k(1;2)k, a2 = k(k − 1)
(1;2)k

3
· (4q + 3),

and
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3(a0 + a1 + a2) = (1;2)k
(
3 + 3k + (4q + 3)

(
k2 − k

))
≡ (1;2)k · 3

(
k2 + 1

)
mod 4.

Thus ord2(a0 + a1 + a2) = χo(k). Since ord2(ai) � 2 for i � 3, we finish the proof. �
Theorem 5.5. Let k be a nonnegative integer. Then

ord2
(
to

4k+1

) = k + ord2(k) + χe(k).

Proof. We have to
4k+1 = 2k ∑k

i=0 ai , where

ai = 2i−1
(

k

i

)
(1;2)k

(1;2)i

(
g4i+1(1,1) − g4i+1(1,−1)

)
.

Using Tables 1 and 2, we have

g1(1,1) − g1(1,−1) = 1 − 1 = 0,

g5(1,1) − g5(1,−1) = 6 − 1 = 5,

g9(1,1) − g9(1,−1) = 145 + 2 ≡ 3 mod 4,

g17(1,1) − g17(1,−1) = 711 243 + 30 398 ≡ 1 mod 2.

Thus we can write a0 = 0, a1 = (1;2)k · 5k, a2 = (1;2)k
(k

2

) 2·(4q1+3)
3 , a3 = (1;2)k

(k
3

) 22·q2
5·3 and a4 =

(1;2)k
(k

4

) 23·(2q3+1)
7·5·3 for some integers q1,q2 and q3.

Note that by Lemma 5.1 we have ord2(ai) � ord2(k) + 3 for i � 5. Thus, if k is odd, then we have
ord2(to

4k+1) = k.
Now assume that k is even. Then

ord2(a0 + a1 + a2) = ord2
(
k
(
15 + (k − 1)(4q1 + 3)

))
,

ord2(a3) � ord2(k) + ord2(k − 2) + 1 � ord2(k) + 2,

ord2(a4) = ord2(k) + ord2(k − 2).

If k = 4m, then ord2(a4) = ord2(k) + 1 and, ord2(a0 + a1 + a2) � ord2(k) + 2. If k = 4m + 2, then
ord2(a4) � ord2(k) + 2, and ord2(a0 + a1 + a2) = ord2(k) + 1. Thus, if k is even, then we always have
ord2(a0 + · · · + a4) = ord2(k) + 1.

In all cases we have ord2(to
4k+1) = k + χe(k)(ord2(k) + 1) = k + ord2(k) + χe(k). �

Now we can fill all the entries in Table 3 except ord2(te
4k+1) and ord2(to

4k). Based on Maple exper-
iments, we conjecture the following.

Conjecture 5.6. There is a 2-adic integer ρ = ∑
i�0 ρi2i , with 0 � ρi � 1, satisfying

ord2
(
te

4k+1

) = k + χo(k) · (ord2(k + ρ) + 1
)
.

For example, ρ = 1 + 2 + 23 + 28 + 210 + · · · satisfies the condition for all k � 1000.

6. The smallest period of βn mod 2s

Chowla et al. [2] proved that, if m is odd, then tn+m ≡ tn mod m. We give their proof here for self
containment.
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Theorem 6.1. (See [2].) If m is odd, then

tn+m ≡ tn mod m.

Proof. Induction on n � 0. We have

tm =
∑

2i+ j=m

m!
2i i! j! =

∑
2i+ j=m

m!
2i(i + j)!

(
i + j

j

)
≡ 1 mod m,

because m!
2i(i+ j)!

(i+ j
j

)
is divisible by m if i > 0; and 1 if i = 0. Thus tm+1 = tm + mtm−1 ≡ 1 mod m. We

get tn+m ≡ tn mod m for n = 0,1. Suppose it holds for n = 0,1, . . . ,k. Then it is true for n = k + 1
because

tk+1+m = tk+m + (k + m)tk+m−1

≡ tk + ktk−1 mod m

= tk+1. �
The above theorem means that the sequence {tn mod m}n�0 has a period m. In fact, m is the

smallest period.

Theorem 6.2. Let m be an odd integer. Then m is the smallest period of the sequence {tn mod m}n�0 .

Proof. Let d be the smallest period. Then td ≡ t0 ≡ 1 mod m, td+1 ≡ t1 ≡ 1 mod m, and td+2 ≡ t2 ≡
2 mod m. On the other hand, we have td+2 = td+1 + (d + 1)td ≡ d + 2 mod m. Thus m divides d, and
we get m = d. �

If m is even, then {tn mod m}n�0 does not have a period because t0 = 1 but tn is even for all
n � 2. However, there exists an integer N such that {tn mod m}n�N has a period.

Theorem 6.3. Let � be an odd integer and k be a positive integer. Let m = 2k� and let N be the smallest integer
such that {tn mod m}n�N has a period. Then N = 4k − 2 and � is the smallest period of {tn mod m}n�N .

Proof. By Theorem 3.3, we have ord2(t4k−3) = k − 1 and ord2(tn) � k for n � 4k − 2. Thus t4k−3+y 
≡
t4k−3 mod 2k for any positive integer y, which implies N � 4k − 2. On the other hand, we have
tn+� ≡ tn mod 2k for n � 4k − 2. Since tn+� ≡ tn mod � by Theorem 6.1, we get tn+� ≡ tn mod m for
n � 4k − 2. Thus {tn mod m}n�4k−2 has a period � and we get N = 4k − 2.

It remains to show that � is the smallest period. It is easy to see that any period of {tn mod m}n�N
is divisible by the smallest period of {tn mod �}n�0, which is �. Thus we get the theorem. �

Recall that βn is the odd factor of tn . Similarly we can find the smallest period of {βn mod 2s}n�0.
Let h(n) = ord2(tn) = � n

2 � − 2� n
4 � + �n+1

4 �. Then tn = 2h(n)βn . Thus we have

βn+1 = 2h(n)−h(n+1)βn + 2h(n−1)−h(n+1)nβn−1,

which is equivalent to the following: if n = 4k + r with 0 � r � 3 then

βn+1 = 2h(r)−h(r+1)βn + 2h(r−1)−h(r+1)nβn−1. (7)

To find the smallest period of {βn mod 2s}n�0, we need the following two lemmas.

Lemma 6.4. Let s � 3 be an integer. Then

(1;2)2s−1 ≡ 1 mod 2s.
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Proof. Induction on s. It is true for s = 3. Assume it is true for s � 3. Then (1;2)2s−1 = 2sk + 1 for
some integer k. Then it holds for s + 1 because

(1;2)2s = 1 · 3 · 5 · · · (2s+1 − 1
)

= (
1 · 3 · 5 · · · (2s − 1

)) · ((2s+1 − 1
)(

2s+1 − 3
) · · · (2s+1 − (

2s − 1
)))

≡ (1;2)2s−1 · (−1)2s−1
(1;2)2s−1 mod 2s+1

= 22sk2 + 2s+1k + 1

≡ 1 mod 2s+1. �
Lemma 6.5. If s � 3 then

βn+2s+1 ≡ βn mod 2s.

Proof. We use induction on n. First we will show that β2s+1+n ≡ 1 mod 2s for n = 0,1. By Theo-
rem 3.3,

β2s+1+n =
2s−1∑
i=0

2i
(

2s−1

i

)
(1;2)2s−1+�n/2�
(1;2)i+�n/2�

· g4i+n

2δn,3
=

2s−1∑
i=0

2i
(

2s−1

i

)
(1;2)2s−1

(1;2)i
g4i+n.

By Lemmas 5.1 and 6.4, we get β2s+1+n ≡ (1;2)2s−1 ≡ 1 mod 2s .
We have shown that the theorem is true for n = 0,1. Assume n � 1 and the theorem is true for all

nonnegative integers less than n + 1. Then it is also true for n + 1 because if n = 4k + r for 0 � r � 3
then by (7) we get

βn+1+2s+1 = 2h(r)−h(r+1)βn+2s+1 + 2h(r−1)−h(r+1)
(
n + 2s+1)βn−1+2s+1

≡ 2h(r)−h(r+1)βn + 2h(r−1)−h(r+1)nβn−1 mod 2s

= βn+1. �
Now we have the following theorem.

Theorem 6.6. If s � 3 then 2s+1 is the smallest period of the sequence {βn mod 2s}n�0 .

Proof. By Lemma 6.5, 2s+1 is a period. Since the smallest period divides every period, it has to be 2k

for some k. It is sufficient to show that 2s is not a period.
Assume that 2s is a period. By the recurrence relation (7), we have

β2s+2 = 1

2
β2s+1 + 2s + 1

2
β2s , β2s+1 = β2s + 2s · 2β2s−1.

Thus

β2s+2 = (
1 + 2s−1)β2s + 2sβ2s−1.

Since 2s is a period, β2s ≡ β0 = 1 mod 2s . Then we have β2s+2 ≡ 1 + 2s−1 mod 2s , which is a contra-
diction to β2s+2 ≡ β2 = 1 mod 2s . �
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