

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

A combinatorial approach to the power of 2 in the number of involutions

Dongsu Kim¹, Jang Soo Kim²

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

ARTICLE INFO

Article history: Received 25 February 2009 Available online 21 August 2009

Keywords: Power of a prime Divisibility Involutions

ABSTRACT

We provide a combinatorial approach to the largest power of p in the number of permutations π with $\pi^p = 1$, for a fixed prime number p. With this approach, we find the largest power of 2 in the number of involutions, in the signed sum of involutions and in the numbers of even or odd involutions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The largest power of a prime in some well-known numbers has been studied in many papers, for instance, see [1-3,5-11]. In this paper we are interested in the largest power of a prime in the numbers of permutations with some conditions.

Let \mathfrak{S}_n denote the set of permutations of $[n] = \{1, 2, ..., n\}$. Let p be a prime number and n a positive integer. Let $\tau_p(n)$ denote the number of permutations $\pi \in \mathfrak{S}_n$ such that $\pi^p = 1$, and let $\operatorname{ord}_n(n)$ denote the largest integer k such that p^k divides n.

In 1951, using recurrence relation with induction, Chowla, Herstein and Moore [2] proved that

$$\operatorname{ord}_2(\tau_2(n)) \ge \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

Using generating function, Grady and Newman [6] obtained, for any prime *p*,

$$\operatorname{ord}_p(\tau_p(n)) \ge \left\lfloor \frac{n}{p} \right\rfloor - \left\lfloor \frac{n}{p^2} \right\rfloor.$$
 (1)

E-mail addresses: dongsu.kim@kaist.ac.kr (D. Kim), jskim@kaist.ac.kr (J.S. Kim).

¹ The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0063183).

 $^{^2}$ The author was supported by the second stage of the Brain Korea 21 Project, The Development Project of Human Resources in Mathematics, KAIST in 2009.

Using *p*-adic analysis, Ochiai [10] found the exact value of $\operatorname{ord}_p(\tau_p(n))$ for prime numbers $p \leq 23$. Let t_n denote $\tau_2(n)$, the number of involutions in \mathfrak{S}_n . Ochiai's result gives

$$\operatorname{ord}_{2}(t_{n}) = \left\lfloor \frac{n}{2} \right\rfloor - 2 \left\lfloor \frac{n}{4} \right\rfloor + \left\lfloor \frac{n+1}{4} \right\rfloor.$$

$$\tag{2}$$

In addition, Chowla et al. [2] considered the sequence $\{t_n \mod m\}_{n \ge 0}$ for a fixed integer *m* and proved that *m* is a period of the sequence if *m* is odd. We will prove that in fact, it is the smallest period. If *m* is even, then the sequence is not periodic because $t_0 = 1$ but t_n is even for all $n \ge 2$. However there is an integer *N* such that $\{t_n \mod m\}_{n \ge N}$ is periodic.

Our main results are in Sections 2 and 3, where we prove (1) and (2) using combinatorial arguments. The weighted sum of involutions is considered in Section 4. In Section 5 we find ord_2 of the signed sum of involutions, the number of odd involutions, and the number of even involutions. In Section 6 we find the smallest *N* such that $\{t_n \mod m\}_{n \ge N}$ is periodic and find the smallest period of the sequence when *m* is even. We also consider the odd factor of the number of involutions and prove that the smallest period of the sequence $\{t_n/2^{\operatorname{ord}_2(t_n)} \mod 2^s\}_{n \ge 0}$ is 2^{s+1} if $s \ge 3$.

2. A combinatorial proof

Let $\mathfrak{S}_{n,p}$ denote the set of permutations $\pi \in \mathfrak{S}_n$ with $\pi^p = 1$. For instance, for p = 2 it is the set of all involutions in \mathfrak{S}_n . Each permutation in $\mathfrak{S}_{n,p}$ is a product of disjoint *p*-cycles and 1-cycles. For example, for $\pi = 38725614 \in \mathfrak{S}_{8,3}$, the disjoint product is (1, 3, 7)(2, 8, 4)(5)(6). A cycle usually consists of distinct integers, but we allow cycles to have repeated entries for convenience.

We define a *label map* $f_p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., \lfloor (n-1)/p \rfloor + 1\}$ by $f_p(i) = \lfloor (i-1)/p \rfloor + 1$, extend it to cycles $\sigma = (s_1, ..., s_j)$ by $f_p(\sigma) = (f_p(s_1), ..., f_p(s_j))$ which is regarded as a cycle with repeated entries, and to $\mathfrak{S}_{n,p}$ by

$$f_p(\pi) = \left\{ f_p(\sigma_1), \dots, f_p(\sigma_k) \right\}$$

for $\pi = \sigma_1 \sigma_2 \cdots \sigma_k$ in the disjoint cycle notation. Note that $f_p(\pi)$ is regarded as a multiset.

As a map defined on $\mathfrak{S}_{n,p}$, f_p induces an equivalence relation \sim on $\mathfrak{S}_{n,p}$, namely $\pi \sim \tau$ if and only if $f_p(\pi) = f_p(\tau)$.

Fix a prime *p*, and let n = pt + r with $0 \le r < p$. A *p*-cycle $\sigma = (s_1, s_2, ..., s_p)$ in some $f_p(\pi)$ is said to be of *type A* if $s_1 = s_2 = \cdots = s_p$; of *type B* otherwise. We are interested in the size of each equivalence class of \sim on $\mathfrak{S}_{n,p}$. As a matter of fact, we need the size of some collections of equivalence classes. An equivalence class may be represented as a multiset of cycles with repeated entries from $\{1, 2, \ldots, t + 1\}$. In fact there are three kinds of cycles in the representation of equivalence classes: *p*-cycles of type *A*, *p*-cycles of type *B*, and 1-cycles. A typical equivalence class is of the form $\{A_1, \ldots, A_i; B_1^{d_1}, \ldots, B_j^{d_j}; C_1^{e_1}, \ldots, C_k^{e_k}\}$, as a multiset, where *A*'s denote *p*-cycles of type *A*, *B*'s denote those of type *B* and *C*'s are 1-cycles. Since the multiplicities e_1, \ldots, e_k play a critical role, we refine the form to $\{A_1, \ldots, A_i; B_1^{d_1}, \ldots, B_j^{d_j}; C_1^{e_1}, \ldots, C_k^{e_k}; D_1^p, \ldots, D_\ell^p\}$ with $e_1, \ldots, e_k < p$, where *A*'s, *B*'s, *C*'s are the same as before, while *D*'s are 1-cycles. We collect all equivalence classes $\{A_1, \ldots, A_i; B_1^{d_1}, \ldots, C_k^{e_k}; D_1^p, \ldots, D_\ell^p\}$ with fixed *B*'s, *C*'s, and a fixed set of integers appearing in either *A*'s or *D*'s. Let

$$\{s_1, s_2, \ldots, s_h; B_1^{d_1}, \ldots, B_j^{d_j}; C_1^{e_1}, \ldots, C_k^{e_k}\}$$

denote such a collection. The collection may be represented as

$$\{s_1, s_2, \ldots, s_h; E_1^{m_1}, \ldots, E_{\ell}^{m_{\ell}}\},\$$

where *E*'s denote either a *p*-cycle of type *B* of multiplicity at most *p* or a 1-cycle with multiplicity less than *p*. Note that $\{s_1, \ldots, s_h\} \subset [t]$ and each $i \in [t] \setminus \{s_1, \ldots, s_h\}$ appears exactly *p* times in the collection and t + 1 appears exactly *r* times. The distinct collections produce a partition of $\mathfrak{S}_{n,p}$, which in turn defines an equivalence relation, denoted by \sim' . Let \tilde{f}_p denote the quotient map corresponding to this equivalence relation.

Fig. 1. Visualization of π and $f_3(\pi)$ in Example 2.1.

Example 2.1. Let $\pi \in \mathfrak{S}_{29,3}$ be the following permutation in cycle notation:

 $\pi = (1, 6, 8)(2, 4, 9)(3, 5, 7)(10, 15, 17)(11)(12, 16, 14)(13)(18)$

(19, 20, 21)(22)(23)(24)(25)(26)(27, 28, 29).

Then $f_3(\pi) = \{(1, 2, 3)^3, (4, 5, 6), (4), (4, 6, 5), (5), (6), (7, 7, 7), (8)^3, (9)^2, (9, 10, 10)\}$. The permutation π belongs to an equivalence class

$$\{(7, 7, 7); (1, 2, 3)^3, (4, 5, 6), (4, 6, 5), (9, 10, 10); (4), (5), (6), (9)^2; (8)^3\}$$

of the form $\{A_1, \ldots, A_i; B_1^{d_1}, \ldots, B_i^{d_j}; C_1^{e_1}, \ldots, C_k^{e_k}; D_1^p, \ldots, D_\ell^p\}$, which is a member of the collection

$$\tilde{f}_3(\pi) = \{7, 8; (1, 2, 3)^3, (4, 5, 6), (4, 6, 5), (9, 10, 10), (4), (5), (6), (9)^2\}$$

We visualize this example in Fig. 1, where 7 and 8 are the integers in A's or D's.

Lemma 2.2. Let *p* be a prime and n = pt + r with $0 \le r < p$. Let $H = \{s_1, s_2, \dots, s_h; E_1^{m_1}, \dots, E_{\ell}^{m_{\ell}}\}$ be an equivalence class of $\mathfrak{S}_{n,p} / \sim'$ described above. Then the number of all permutations in the collection is

$$\left|\tilde{f}_{p}^{-1}(H)\right| = \frac{(1+(p-1)!)^{h}(p!)^{t-h}r!}{m_{1}!m_{2}!\cdots m_{\ell}!}.$$
(3)

Proof. We need to enumerate the set $\tilde{f}_p^{-1}(H)$. Each permutation in the set has the special disjoint cycle decomposition prescribed by H. Recall that each s_i can represent either a p-cycle or a 1-cycle of multicity p. If s_i represents a p-cycle, it contributes a factor (p-1)! to the total number of permutations to be counted; if it represents a 1-cycle with multicity p, it contributes a factor 1. So in total each s_i contributes a factor (p-1)! + 1, which explains the factor $(1 + (p-1)!)^h$ in (3).

Now recall that p is prime and E's are a p-cycle or 1-cycle. Each $j \in [t] \setminus \{s_1, \ldots, s_h\}$ appears exactly p times in $E_1^{m_1}, \ldots, E_{\ell}^{m_{\ell}}$, which will be replaced by p integers $p(j-1)+1, p(j-1)+2, \ldots, pj$, contributing the factor $(p!)^{t-h}$ in (3); and t+1 appears exactly r times, which correspond to r integers $pt+1, pt+2, \ldots, pt+r$, contributing a factor r!. This argument overcounts the set $\tilde{f}_p^{-1}(H)$, since E_i appears m_i times and the argument respects ordering of the cycles, while we are interested in unordered cycle decompositions. Moreover, since each E_i is a 1-cycle or a p-cycle of type B, there is no other repetition arising from a cyclic rotation inside a cycle in E_i 's. So we need exactly the factor $\frac{1}{m_1!m_2!\cdots m_\ell!}$ in (3) to count the unordered structures. \Box

Now we can prove (1) combinatorially.

Theorem 2.3. Let p be a prime and n a positive integer. Then

$$\operatorname{ord}_p(\tau_p(n)) \ge \left\lfloor \frac{n}{p} \right\rfloor - \left\lfloor \frac{n}{p^2} \right\rfloor.$$

Proof. Note that

$$\tau_p(n) = |\mathfrak{S}_{n,p}| = \sum_{H} \left| \tilde{f}_p^{-1}(H) \right|,$$

where *H* runs through all distinct equivalence classes of $\mathfrak{S}_{n,p}/\sim'$, i.e., distinct images of \tilde{f}_p . Thus it suffices to show that for any equivalence class of $\mathfrak{S}_{n,p}/\sim'$, we have $\operatorname{ord}_p(|\tilde{f}_p^{-1}(H)|) \ge \lfloor \frac{n}{p} \rfloor - \lfloor \frac{n}{p^2} \rfloor$.

Let $H = \{s_1, s_2, \dots, s_h; E_1^{m_1}, \dots, E_\ell^{m_\ell}\}$ be an equivalence class of $\mathfrak{S}_{n,p}/\sim'$. By Lemma 2.2, we have

$$\left|\tilde{f}_p^{-1}(H)\right| = \frac{(1+(p-1)!)^h(p!)^{t-h}r!}{m_1!m_2!\cdots m_\ell!}$$

Since $(p-1)! \equiv -1 \mod p$, ord_{*p*} of the numerator is at least *t*. Moreover, $m_i \leq p$ for all *i*, and if $m_i = p$ then E_i is a *p*-cycle, which implies that there are at most $\lfloor \frac{n}{p^2} \rfloor m_i$'s with $m_i = p$. Thus we get $\operatorname{ord}_p(|\tilde{f}_p^{-1}(H)|) \geq \lfloor \frac{n}{p} \rfloor - \lfloor \frac{n}{n^2} \rfloor$. \Box

3. The power of 2 in the number of involutions

For p = 2, $\mathfrak{S}_{n,p}$ is in fact the set of involutions in \mathfrak{S}_n , which will be denoted by \mathfrak{I}_n . Recall that t_n stands for the number of involutions in \mathfrak{S}_n , i.e., $|\mathfrak{I}_n|$. We will compute $\operatorname{ord}_2(t_n)$ exactly and look at β_n the odd factor of t_n , i.e.,

$$\beta_n = \frac{t_n}{2^{\operatorname{ord}_2(t_n)}}.$$

Let n = 2t + r with $0 \le r < 2$. Recall the equivalence relation \sim' on $\mathfrak{S}_{n,2}$ in Section 2. Each equivalence class of $\mathfrak{S}_{n,2}/\sim'$ is represented by

$$H = \{s_1, s_2, \dots, s_h; E_1^{m_1}, \dots, E_{\ell}^{m_{\ell}}\},\$$

where *E*'s denote either a 2-cycle, consisting of two distinct integers, of multiplicity at most two or a 1-cycle with multiplicity one. The equivalence class may be represented by a graph $G = (\mathcal{V}, \mathcal{E})$ with vertex set

$$\mathcal{V} = \{v_1, v_2, \dots, v_t\}, \text{ if } n = 2t; \{v_1, v_2, \dots, v_{t+1}\}, \text{ if } n = 2t+1,$$

and edge set $\mathcal{E} = \{\{a, b\}: (a, b) = E_j, \text{ for some } j \text{ and } a \neq b\}$, regarded as a multiset, where the multiplicity of the edge corresponding to E_j is m_j . We can construct H from G if we know n.

Let \mathfrak{G}_n be the set of all graphs with vertex set

 $\{v_1, v_2, \dots, v_t\}, \text{ if } n = 2t; \{v_1, v_2, \dots, v_{t+1}\}, \text{ if } n = 2t+1,$

satisfying the following conditions:

- there is no loop,
- the degree of each vertex is at most two, and that of v_{t+1} is at most one,
- the multiplicity of each edge is at most two.

Then there is a one-to-one correspondence between the set of equivalence classes of $\mathfrak{S}_{n,2}/\sim'$ and the set \mathfrak{G}_n . Thus we have the induced surjection $\tilde{f}_2:\mathfrak{I}_n \to \mathfrak{G}_n$.

Each connected component of a graph in \mathfrak{G}_n is either a cycle of length at least two or a path.

The corollary below follows immediately from Lemma 2.2, since a 2-cycle is an edge with multiplicity 2 in this case.

Corollary 3.1. Let $G \in \mathfrak{G}_n$ have s 2-cycles. Then

$$\left|\tilde{f}_2^{-1}(G)\right| = 2^{\lfloor \frac{n}{2} \rfloor - s}.$$

The maximum number of 2-cycles in a graph $G \in \mathfrak{G}_n$ is $\lfloor \frac{n}{4} \rfloor$, which gives $\operatorname{ord}_2(t_n) \ge \lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{4} \rfloor$. Since there may be many such *G*'s, we need to do more to determine $\operatorname{ord}_2(t_n)$ exactly. Let g_n denote the number of $G \in \mathfrak{G}_n$ without 2-cycles. It is easy to see that

$$g_{2n+1} = g_{2n} + ng_{2n-1}$$
.

For $n \leq 3$, g_{2n} is just the number of simple (labeled) graphs with *n* vertices. Thus $g_0 = g_2 = 1$, $g_4 = 2$ and $g_6 = 8$. Using the above recurrence, we get $g_1 = 1$, $g_3 = 2$, $g_5 = 6$ and $g_7 = 26$. For more values of g_n , see Table 1.

Let $(a; b)_n$ denote the following product:

$$(a; b)_n = \prod_{i=0}^{n-1} (a+ib)$$

Note that $(1; 2)_n$ is always odd, in fact, it is the product of the first *n* odd integers.

Theorem 3.2. *Let* n = 4k + r *with* $0 \le r < 4$ *. Then*

$$t_n = 2^{k + \lfloor r/2 \rfloor} \sum_{i=0}^k 2^i \binom{k}{i} \frac{(1;2)_{k+\lfloor r/2 \rfloor}}{(1;2)_{i+\lfloor r/2 \rfloor}} g_{4i+r}.$$

Proof. Since $\tilde{f}_2 : \mathfrak{I}_n \to \mathfrak{G}_n$ is a surjection, we have

$$t_n = \sum_{G \in \mathfrak{G}_n} \left| \tilde{f}_2^{-1}(G) \right|.$$

If $G \in \mathfrak{G}_n$ has *i* 2-cycles, then by Corollary 3.1, $|\tilde{f}_2^{-1}(G)| = 2^{\lfloor n/2 \rfloor - i}$. Since the number of such *G* is $\binom{\lfloor n/2 \rfloor}{2i}(1;2)_i g_{n-4i}$, we get

$$t_n = \sum_{i=0}^{k} 2^{\lfloor n/2 \rfloor - i} {\binom{\lfloor n/2 \rfloor}{2i}} (1;2)_i g_{n-4i}$$
$$= \sum_{i=0}^{k} 2^{\lfloor n/2 \rfloor - k+i} {\binom{\lfloor n/2 \rfloor}{2k-2i}} (1;2)_{k-i} g_{n-4k+4i}$$

1086

$$=\sum_{i=0}^{k} 2^{k+\lfloor r/2 \rfloor+i} \binom{2k+\lfloor r/2 \rfloor}{2i+\lfloor r/2 \rfloor} (1;2)_{k-i} g_{4i+r}$$
$$=2^{k+\lfloor r/2 \rfloor} \sum_{i=0}^{k} 2^{i} \binom{k}{i} \frac{(1;2)_{k+\lfloor r/2 \rfloor}}{(1;2)_{i+\lfloor r/2 \rfloor}} g_{4i+r}. \quad \Box$$

Since $g_0 = g_1 = g_2 = 1$, $g_3 = 2$ and $g_7 = 26$, we have the following theorem, where $\delta_{r,3}$ is 1, if r = 3; 0, otherwise.

Theorem 3.3. Let n = 4k + r with $0 \le r < 4$. Then the largest power of 2 and the odd factor β_n of t_n are the following:

$$\operatorname{ord}_{2}(t_{n}) = k + \left\lfloor \frac{r}{2} \right\rfloor + \delta_{r,3} = \left\lfloor \frac{n}{2} \right\rfloor - 2 \left\lfloor \frac{n}{4} \right\rfloor + \left\lfloor \frac{n+1}{4} \right\rfloor,$$
$$\beta_{n} = \sum_{i=0}^{k} 2^{i-\delta_{r,3}} \binom{k}{i} \frac{(1;2)_{k+\lfloor r/2 \rfloor}}{(1;2)_{i+\lfloor r/2 \rfloor}} g_{4i+r}.$$

4. Weighted sum of involutions

For $\pi \in \mathfrak{I}_n$, let $\sigma_i(\pi)$ denote the number of *i*-cycles in π . We define the weight of an involution π to be

$$wt(\pi) = x^{\sigma_1(\pi)} v^{\sigma_2(\pi)}.$$

Consider the weight generating function

$$t_n(x, y) = \sum_{\pi \in \mathfrak{I}_n} \mathsf{wt}(\pi).$$
(4)

We can easily verify

$$t_n(x, y) = x \cdot t_{n-1}(x, y) + (n-1)y \cdot t_{n-2}(x, y).$$

Note that $t_n(x, -1)$ is the matchings polynomial of the complete graph with *n* vertices, which is equivalent to a Hermite polynomial, see [4].

We will find a formula for $t_n(x, y)$. Recall that n = 2t + r with $0 \le r < 2$ and the vertex set of a graph in \mathfrak{G}_n is either [t] or [t + 1] depending on the parity of n. For $G \in \mathfrak{G}_n$, we put the weight on each edge and vertex as follows:

- For every edge e, wt(e) = y.
- For $i \neq t + 1$,

$$wt(v_i) = \begin{cases} 1, & \text{if } \deg(v_i) = 2, \\ x, & \text{if } \deg(v_i) = 1, \\ \frac{x^2 + y}{2}, & \text{if } \deg(v_i) = 0. \end{cases}$$
$$wt(v_{t+1}) = \begin{cases} 1, & \text{if } \deg(v_{t+1}) = 1, \\ x, & \text{if } \deg(v_{t+1}) = 0. \end{cases}$$

The weight wt(*G*) of *G* is defined to be the product of weights of all vertices and edges. It is not difficult to see that wt(*G*) is the average of the weights of π with $\tilde{f}_2(\pi) = G$, i.e.,

$$\sum_{\pi \in \tilde{f}_2^{-1}(G)} \operatorname{wt}(\pi) = \left| \tilde{f}_2^{-1}(G) \right| \operatorname{wt}(G).$$

Fig. 2. Collapsing v_n , a and b to w.

Let

$$g_n(x, y) = \sum_G \operatorname{wt}(G),$$

where the sum is over all $G \in \mathfrak{G}_n$ without 2-cycles.

Using the same argument in the proof of Theorem 3.2, we have the following theorem, since a 2-cycle has two edges of weight y.

Theorem 4.1. *Let* n = 4k + r *with* $0 \le r < 4$ *. Then*

$$t_n(x, y) = 2^{k + \lfloor r/2 \rfloor} \sum_{i=0}^{k} 2^i \binom{k}{i} \frac{(1; 2)_{k+\lfloor r/2 \rfloor}}{(1; 2)_{i+\lfloor r/2 \rfloor}} y^{2k-2i} g_{4i+r}(x, y).$$

We now find a recursion for $g_n(x, y)$.

Proposition 4.2. Let $g_k(x, y) = 0$ for negative integers k and $g_0(x, y) = 1$. Then for each positive integer n, the following hold:

$$g_{2n+1}(x, y) = x \cdot g_{2n}(x, y) + ny \cdot g_{2n-1}(x, y),$$
(5)

$$g_{2n}(x, y) = \frac{x^2 + y}{2} g_{2n-2}(x, y) + (n-1)xy \cdot g_{2n-3}(x, y) + 2\binom{n-1}{2} y^2 \cdot g_{2n-4}(x, y) + 3\binom{n-1}{3} y^4 \cdot g_{2n-8}(x, y).$$
(6)

Proof. The first recurrence, (5), is easy. For (6), let \mathfrak{H}_{2n} be the set of $G \in \mathfrak{G}_{2n}$ without 2-cycles. We divide \mathfrak{H}_{2n} into four sets as follows:

$$\begin{split} \mathfrak{H}_{2n}^{(0)} &= \left\{ G \in \mathfrak{H}_{2n} \colon \deg(v_n) = 0 \right\}, \\ \mathfrak{H}_{2n}^{(1)} &= \left\{ G \in \mathfrak{H}_{2n} \colon \deg(v_n) = 1 \right\}, \\ \mathfrak{H}_{2n}^{(2)} &= \left\{ G \in \mathfrak{H}_{2n} \colon v_n \text{ is contained in a 4-cycle} \right\}, \\ \mathfrak{H}_{2n}^{(*)} &= \left\{ G \in \mathfrak{H}_{2n} \colon \deg(v_n) = 2 \text{ and } v_n \text{ is not contained in a 4-cycle} \right\}. \end{split}$$

Then it is easy to see that the weighted sums of G in $\mathfrak{H}_{2n}^{(0)}$, $\mathfrak{H}_{2n}^{(1)}$ and $\mathfrak{H}_{2n}^{(2)}$ are, respectively, the first, second and fourth terms in the right-hand side of (6).

Let *G* be a graph in $\mathfrak{H}_{2n}^{(*)}$ and *a*, *b* be the vertices adjacent to v_n in *G*. Let *G'* denote the graph obtained from *G* by collapsing the three vertices v_n , *a* and *b* to a new vertex *w* as shown in Fig. 2. Since v_n is not contained in a 4-cycle, there is no 2-cycle in *G'* and we can consider *G'* as a graph in \mathfrak{H}_{2n-4} by relabeling vertices. Once *a*, *b* and *w* are fixed, for each $G' \in \mathfrak{H}_{2n-4}$, there are two graphs G_1 and G_2 in $\mathfrak{H}_{2n}^{(*)}$ which collapse to *G'*. For instance, if *w* is an isolated vertex in *G'*, then *a* and *b* are connected to each other in G_1 , and disconnected in G_2 . In this case, wt(G_1) = wt(G') $\frac{y^2x}{(x^2+y)/2}$. If *w* is connected to *c* and *d* (one of them may be vacant), then *a* and *b* are connected to *c* and *d* in G_1 ; *d* and *c* in G_2 respectively. In this case, wt(G_1) = wt(G_2) = y^2 wt(G').

1088

Table 1

n	(0 1	2	3	45	67	8	9	10	11	12	13	14	15	16	17	18	19	20	21
g	'n	11	1	2	26	8 26	41	145	253	978	1858	7726	15796	69878	152219	711243	1 638 323	8039510	99862594	252 998 224

Table 2																						
The valu	The values of $g_n(1, -1)$ for $0 \le n \le 21$.																					
n		0	1	23	4	5	56	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$g_n(1, -1)$	1)	1	1	0 -1	l —	1 1	12	-1	-6	-2	28	38	-140	-368	732	3308	-3934	-30398	19232	292 814	-44946	-2973086

In both cases, we have $wt(G_1) + wt(G_2) = 2y^2 wt(G')$. Thus the sum of wt(G) for $G \in \mathfrak{H}_{2n}^{(*)}$ is equal to the third term in the right-hand side of (6). \Box

Using Proposition 4.2, we can compute $g_n(1, 1)$ and $g_n(1, -1)$; see Tables 1 and 2. We will use these tables in the next section.

5. Odd and even involutions

Recall that $\sigma_2(\pi)$ is the number of 2-cycles of π . The *sign* of an involution $\pi \in \mathfrak{I}_n$ is defined as usual, i.e.,

$$\operatorname{sign}(\pi) = (-1)^{\sigma_2(\pi)}.$$

An involution is called *even* (resp. *odd*), if the sign is 1 (resp. -1). Let \mathfrak{I}_n^e (resp. \mathfrak{I}_n^o) be the set of even (resp. odd) involutions in \mathfrak{I}_n , and let $t_n^e = |\mathfrak{I}_n^e|$ and $t_n^o = |\mathfrak{I}_n^o|$.

By definition of $t_n(x, y)$, we have

$$t_n(1,1) = t_n^e + t_n^o, \qquad t_n(1,-1) = t_n^e - t_n^o.$$

Using the above equations, we will find $\operatorname{ord}_2(t_n^e)$ and $\operatorname{ord}_2(t_n^o)$. To do this we need the following lemma.

Lemma 5.1. Let k and i be positive integers. Then

$$\operatorname{ord}_2\left(2^i\binom{k}{i}\right) \ge \operatorname{ord}_2(k) + i - \operatorname{ord}_2(i).$$

Especially, we have

$$\operatorname{ord}_2\left(2^i\binom{k}{i}\right) \geqslant \operatorname{ord}_2(k) + 1,$$

and if $i \ge 5$, then

$$\operatorname{ord}_2\left(2^i\binom{k}{i}\right) \ge \operatorname{ord}_2(k) + 3.$$

Proof. It follows from the identity $2^i \binom{k}{i} = 2^i \cdot \frac{k}{i} \binom{k-1}{i-1}$. \Box

According to Theorem 4.1, for n = 4k + r with $0 \le r < 4$, we have

$$t_n(1,-1) = 2^{k+\lfloor r/2 \rfloor} \sum_{i=0}^k 2^i \binom{k}{i} \frac{(1;2)_{k+\lfloor r/2 \rfloor}}{(1;2)_{i+\lfloor r/2 \rfloor}} g_{4i+r}(1,-1).$$

1090

Table 3

The largest power of 2 in the number of involutions, in the signed sum of involutions and in the numbers of even or odd involutions.

n	$ord_2(t_n(1, 1))$	$ord_2(t_n(1, -1))$	$\operatorname{ord}_2(t_n^e)$	$\operatorname{ord}_2(t_n^o)$
4k	k	k	$k + \chi_o(k)$	unknown
4k + 1	k	k	unknown	$k + \operatorname{ord}_2(k) + \chi_e(k)$
4k + 2	k + 1	$k + 3 + ord_2(k)$	k	k
4k + 3	<i>k</i> +2	k+1	k	k

Theorem 5.2. Let n = 4k + r with $0 \le r < 4$. Then

$$\operatorname{ord}_2(t_n(1,-1)) = \begin{cases} k + \lfloor \frac{r}{2} \rfloor, & \text{if } r \neq 2, \\ k + 3 + \operatorname{ord}_2(k), & \text{if } r = 2. \end{cases}$$

Proof. By Table 2, we have $g_0(1, -1) = g_1(1, -1) = 1$, $g_2(1, -1) = 0$ and $g_3(1, -1) = -1$. Thus, if

 $r \neq 2 \text{ then } \operatorname{ord}_2(t_n(1,-1)) = \lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{4} \rfloor.$ If r = 2, then $t_n(1,-1) = 2^{k+1} \sum_{i=0}^k a_i$ where $a_i = 2^i \binom{k}{i} \frac{(1;2)_{k+1}}{(1;2)_{i+1}} g_{4i+2}(1,-1)$. Since $g_2(1,-1) = 0$ and $g_6(1, -1) = 2$, we have $a_0 = 0$ and $\operatorname{ord}_2(a_1) = \operatorname{ord}_2(k) + 2$. For $i \ge 2$, using Table 2 and Lemma 5.1 we get $\operatorname{ord}_2(a_i) \ge \operatorname{ord}_2(k) + 3$. Thus $\operatorname{ord}_2(t_{4k+2}(1, -1)) = k + 3 + \operatorname{ord}_2(k)$. \Box

Now we can make a table of $\operatorname{ord}_2(t_n(1, 1))$ and $\operatorname{ord}_2(t_n(1, -1))$; see Table 3. Since $t_n^e = \frac{1}{2}(t_n(1, 1) + t_n(1, -1))$ and $t_n^o = \frac{1}{2}(t_n(1, 1) - t_n(1, -1))$, we get the following corollary.

Corollary 5.3. Let k be a nonnegative integer. Then

$$\operatorname{ord}_2(t^e_{4k+2}) = \operatorname{ord}_2(t^o_{4k+2}) = \operatorname{ord}_2(t^e_{4k+3}) = \operatorname{ord}_2(t^o_{4k+3}) = k.$$

We find $\operatorname{ord}_2(t_{4k}^e)$ and $\operatorname{ord}_2(t_{4k+1}^o)$ in the following two theorems separately. Let $\chi_0(n)$ (resp. $\chi_e(n)$) denote 1 if *n* is odd (resp. even), and 0 otherwise.

Theorem 5.4. Let k be a nonnegative integer. Then

$$\operatorname{ord}_2(t_{4k}^e) = 2\left\lfloor \frac{k+1}{2} \right\rfloor = k + \chi_o(k).$$

Proof. We have $t_{4k}^e = 2^k \sum_{i=0}^k a_i$, where

$$a_i = 2^{i-1} \binom{k}{i} \frac{(1;2)_k}{(1;2)_i} (g_{4i}(1,1) + g_{4i}(1,-1)).$$

Using Tables 1 and 2, we have

$$g_0(1, 1) + g_0(1, -1) = 1 + 1 = 2,$$

$$g_4(1, 1) + g_4(1, -1) = 2 - 1 = 1,$$

$$g_8(1, 1) + g_8(1, -1) = 41 - 6 \equiv 3 \mod 4.$$

Thus

$$a_0 = (1; 2)_k, \qquad a_1 = k(1; 2)_k, \qquad a_2 = k(k-1)\frac{(1; 2)_k}{3} \cdot (4q+3),$$

and

$$3(a_0 + a_1 + a_2) = (1; 2)_k (3 + 3k + (4q + 3)(k^2 - k))$$

$$\equiv (1; 2)_k \cdot 3(k^2 + 1) \mod 4.$$

Thus $\operatorname{ord}_2(a_0 + a_1 + a_2) = \chi_0(k)$. Since $\operatorname{ord}_2(a_i) \ge 2$ for $i \ge 3$, we finish the proof. \Box

Theorem 5.5. Let k be a nonnegative integer. Then

$$\operatorname{ord}_{2}(t_{4k+1}^{o}) = k + \operatorname{ord}_{2}(k) + \chi_{e}(k).$$

Proof. We have $t_{4k+1}^o = 2^k \sum_{i=0}^k a_i$, where

$$a_i = 2^{i-1} \binom{k}{i} \frac{(1;2)_k}{(1;2)_i} (g_{4i+1}(1,1) - g_{4i+1}(1,-1)).$$

Using Tables 1 and 2, we have

$$g_1(1, 1) - g_1(1, -1) = 1 - 1 = 0,$$

$$g_5(1, 1) - g_5(1, -1) = 6 - 1 = 5,$$

$$g_9(1, 1) - g_9(1, -1) = 145 + 2 \equiv 3 \mod 4,$$

$$g_{17}(1, 1) - g_{17}(1, -1) = 711243 + 30398 \equiv 1 \mod 2.$$

Thus we can write $a_0 = 0$, $a_1 = (1; 2)_k \cdot 5k$, $a_2 = (1; 2)_k {k \choose 2} \frac{2 \cdot (4q_1 + 3)}{3}$, $a_3 = (1; 2)_k {k \choose 3} \frac{2^2 \cdot q_2}{5 \cdot 3}$ and $a_4 = (1; 2)_k {k \choose 3} \frac{2^2 \cdot q_2}{5 \cdot 3}$ $(1; 2)_k \binom{k}{4} \frac{2^3 \cdot (2q_3+1)}{7\cdot 5\cdot 3}$ for some integers q_1, q_2 and q_3 . Note that by Lemma 5.1 we have $\operatorname{ord}_2(a_i) \ge \operatorname{ord}_2(k) + 3$ for $i \ge 5$. Thus, if k is odd, then we have

 $\operatorname{ord}_2(t_{4k+1}^0) = k.$

Now assume that k is even. Then

ord₂(
$$a_0 + a_1 + a_2$$
) = ord₂($k(15 + (k - 1)(4q_1 + 3)))$,
ord₂(a_3) \ge ord₂(k) + ord₂($k - 2$) + 1 \ge ord₂(k) + 2,
ord₂(a_4) = ord₂(k) + ord₂($k - 2$).

If k = 4m, then $\operatorname{ord}_2(a_4) = \operatorname{ord}_2(k) + 1$ and, $\operatorname{ord}_2(a_0 + a_1 + a_2) \ge \operatorname{ord}_2(k) + 2$. If k = 4m + 2, then $\operatorname{ord}_2(a_4) \ge \operatorname{ord}_2(k) + 2$, and $\operatorname{ord}_2(a_0 + a_1 + a_2) = \operatorname{ord}_2(k) + 1$. Thus, if k is even, then we always have $\operatorname{ord}_2(a_0 + \dots + a_4) = \operatorname{ord}_2(k) + 1.$

In all cases we have $\operatorname{ord}_2(t_{4k+1}^0) = k + \chi_e(k)(\operatorname{ord}_2(k) + 1) = k + \operatorname{ord}_2(k) + \chi_e(k)$. \Box

Now we can fill all the entries in Table 3 except $\operatorname{ord}_2(t_{4k+1}^e)$ and $\operatorname{ord}_2(t_{4k}^e)$. Based on Maple experiments, we conjecture the following.

Conjecture 5.6. There is a 2-adic integer $\rho = \sum_{i \ge 0} \rho_i 2^i$, with $0 \le \rho_i \le 1$, satisfying

 $\operatorname{ord}_2(t_{4k+1}^e) = k + \chi_0(k) \cdot (\operatorname{ord}_2(k+\rho) + 1).$

For example, $\rho = 1 + 2 + 2^3 + 2^8 + 2^{10} + \cdots$ satisfies the condition for all $k \leq 1000$.

6. The smallest period of $\beta_n \mod 2^s$

Chowla et al. [2] proved that, if *m* is odd, then $t_{n+m} \equiv t_n \mod m$. We give their proof here for self containment.

Theorem 6.1. (See [2].) If m is odd, then

 $t_{n+m} \equiv t_n \mod m$.

Proof. Induction on $n \ge 0$. We have

$$t_m = \sum_{2i+j=m} \frac{m!}{2^i i! j!} = \sum_{2i+j=m} \frac{m!}{2^i (i+j)!} \binom{i+j}{j} \equiv 1 \mod m,$$

because $\frac{m!}{2^{i}(i+j)!} {i+j \choose j}$ is divisible by m if i > 0; and 1 if i = 0. Thus $t_{m+1} = t_m + mt_{m-1} \equiv 1 \mod m$. We get $t_{n+m} \equiv t_n \mod m$ for n = 0, 1. Suppose it holds for $n = 0, 1, \ldots, k$. Then it is true for n = k + 1 because

$$t_{k+1+m} = t_{k+m} + (k+m)t_{k+m-1}$$
$$\equiv t_k + kt_{k-1} \mod m$$
$$= t_{k+1}. \qquad \Box$$

The above theorem means that the sequence $\{t_n \mod m\}_{n \ge 0}$ has a period *m*. In fact, *m* is the smallest period.

Theorem 6.2. Let m be an odd integer. Then m is the smallest period of the sequence $\{t_n \mod m\}_{n \ge 0}$.

Proof. Let *d* be the smallest period. Then $t_d \equiv t_0 \equiv 1 \mod m$, $t_{d+1} \equiv t_1 \equiv 1 \mod m$, and $t_{d+2} \equiv t_2 \equiv 2 \mod m$. On the other hand, we have $t_{d+2} = t_{d+1} + (d+1)t_d \equiv d+2 \mod m$. Thus *m* divides *d*, and we get m = d. \Box

If *m* is even, then $\{t_n \mod m\}_{n \ge 0}$ does not have a period because $t_0 = 1$ but t_n is even for all $n \ge 2$. However, there exists an integer *N* such that $\{t_n \mod m\}_{n \ge N}$ has a period.

Theorem 6.3. Let ℓ be an odd integer and k be a positive integer. Let $m = 2^k \ell$ and let N be the smallest integer such that $\{t_n \mod m\}_{n \ge N}$ has a period. Then N = 4k - 2 and ℓ is the smallest period of $\{t_n \mod m\}_{n \ge N}$.

Proof. By Theorem 3.3, we have $\operatorname{ord}_2(t_{4k-3}) = k - 1$ and $\operatorname{ord}_2(t_n) \ge k$ for $n \ge 4k - 2$. Thus $t_{4k-3+y} \ne t_{4k-3} \mod 2^k$ for any positive integer y, which implies $N \ge 4k - 2$. On the other hand, we have $t_{n+\ell} \equiv t_n \mod 2^k$ for $n \ge 4k - 2$. Since $t_{n+\ell} \equiv t_n \mod \ell$ by Theorem 6.1, we get $t_{n+\ell} \equiv t_n \mod m$ for $n \ge 4k - 2$. Thus $\{t_n \mod m\}_{n \ge 4k-2}$ has a period ℓ and we get N = 4k - 2.

It remains to show that ℓ is the smallest period. It is easy to see that any period of $\{t_n \mod m\}_{n \ge N}$ is divisible by the smallest period of $\{t_n \mod \ell\}_{n \ge 0}$, which is ℓ . Thus we get the theorem. \Box

Recall that β_n is the odd factor of t_n . Similarly we can find the smallest period of $\{\beta_n \mod 2^s\}_{n \ge 0}$. Let $h(n) = \operatorname{ord}_2(t_n) = \lfloor \frac{n}{2} \rfloor - 2\lfloor \frac{n}{4} \rfloor + \lfloor \frac{n+1}{4} \rfloor$. Then $t_n = 2^{h(n)}\beta_n$. Thus we have

$$\beta_{n+1} = 2^{h(n)-h(n+1)}\beta_n + 2^{h(n-1)-h(n+1)}n\beta_{n-1}$$

which is equivalent to the following: if n = 4k + r with $0 \le r \le 3$ then

$$\beta_{n+1} = 2^{h(r)-h(r+1)}\beta_n + 2^{h(r-1)-h(r+1)}n\beta_{n-1}.$$
(7)

To find the smallest period of $\{\beta_n \mod 2^s\}_{n \ge 0}$, we need the following two lemmas.

Lemma 6.4. Let $s \ge 3$ be an integer. Then

 $(1; 2)_{2^{s-1}} \equiv 1 \mod 2^s.$

1092

Proof. Induction on *s*. It is true for s = 3. Assume it is true for $s \ge 3$. Then $(1; 2)_{2^{s-1}} = 2^{s}k + 1$ for some integer *k*. Then it holds for s + 1 because

$$(1; 2)_{2^{s}} = 1 \cdot 3 \cdot 5 \cdots (2^{s+1} - 1)$$

= $(1 \cdot 3 \cdot 5 \cdots (2^{s} - 1)) \cdot ((2^{s+1} - 1)(2^{s+1} - 3) \cdots (2^{s+1} - (2^{s} - 1)))$
= $(1; 2)_{2^{s-1}} \cdot (-1)^{2^{s-1}} (1; 2)_{2^{s-1}} \mod 2^{s+1}$
= $2^{2^{s}}k^{2} + 2^{s+1}k + 1$
= $1 \mod 2^{s+1}$. \Box

Lemma 6.5. *If* $s \ge 3$ *then*

$$\beta_{n+2^{s+1}} \equiv \beta_n \mod 2^s$$
.

Proof. We use induction on *n*. First we will show that $\beta_{2^{s+1}+n} \equiv 1 \mod 2^s$ for n = 0, 1. By Theorem 3.3,

$$\beta_{2^{s+1}+n} = \sum_{i=0}^{2^{s-1}} 2^{i} \binom{2^{s-1}}{i} \frac{(1;2)_{2^{s-1}+\lfloor n/2 \rfloor}}{(1;2)_{i+\lfloor n/2 \rfloor}} \cdot \frac{g_{4i+n}}{2^{\delta_{n,3}}} = \sum_{i=0}^{2^{s-1}} 2^{i} \binom{2^{s-1}}{i} \frac{(1;2)_{2^{s-1}}}{(1;2)_{i}} g_{4i+n}$$

By Lemmas 5.1 and 6.4, we get $\beta_{2^{s+1}+n} \equiv (1; 2)_{2^{s-1}} \equiv 1 \mod 2^s$.

We have shown that the theorem is true for n = 0, 1. Assume $n \ge 1$ and the theorem is true for all nonnegative integers less than n + 1. Then it is also true for n + 1 because if n = 4k + r for $0 \le r \le 3$ then by (7) we get

$$\begin{split} \beta_{n+1+2^{s+1}} &= 2^{h(r)-h(r+1)} \beta_{n+2^{s+1}} + 2^{h(r-1)-h(r+1)} (n+2^{s+1}) \beta_{n-1+2^{s+1}} \\ &\equiv 2^{h(r)-h(r+1)} \beta_n + 2^{h(r-1)-h(r+1)} n \beta_{n-1} \bmod 2^s \\ &= \beta_{n+1}. \quad \Box \end{split}$$

Now we have the following theorem.

Theorem 6.6. If $s \ge 3$ then 2^{s+1} is the smallest period of the sequence $\{\beta_n \mod 2^s\}_{n \ge 0}$.

Proof. By Lemma 6.5, 2^{s+1} is a period. Since the smallest period divides every period, it has to be 2^k for some *k*. It is sufficient to show that 2^s is not a period.

Assume that 2^s is a period. By the recurrence relation (7), we have

$$\beta_{2^{s}+2} = \frac{1}{2}\beta_{2^{s}+1} + \frac{2^{s}+1}{2}\beta_{2^{s}}, \qquad \beta_{2^{s}+1} = \beta_{2^{s}} + 2^{s} \cdot 2\beta_{2^{s}-1}.$$

Thus

$$\beta_{2^{s}+2} = (1+2^{s-1})\beta_{2^{s}} + 2^{s}\beta_{2^{s}-1}.$$

Since 2^s is a period, $\beta_{2^s} \equiv \beta_0 = 1 \mod 2^s$. Then we have $\beta_{2^s+2} \equiv 1 + 2^{s-1} \mod 2^s$, which is a contradiction to $\beta_{2^s+2} \equiv \beta_2 = 1 \mod 2^s$. \Box

Acknowledgments

We would like to thank Professor Christian Krattenthaler for informing us of the Ochiai's paper. We also thank the anonymous referees for their careful reading and helpful comments.

References

- [1] Ronald Alter, K.K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combin. Theory Ser. A 15 (1973) 243–256.
- [2] S. Chowla, I.N. Herstein, W.K. Moore, On recursions connected with symmetric groups, I, Canad. J. Math. 3 (1951) 328-334.
- [3] Emeric Deutsch, Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (1) (2006) 191–215.
- [4] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall Math. Ser., Chapman & Hall, New York, 1993.
- [5] P. Goetgheluck, Notes: Computing binomial coefficients, Amer. Math. Monthly 94 (4) (1987) 360-365.
- [6] Michael Grady, Morris Newman, Residue periodicity in subgroup counting functions, in: Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 265–273.
- [7] Hideki Ishihara, Hiroyuki Ochiai, Yugen Takegahara, Tomoyuki Yoshida, *p*-Divisibility of the number of solutions of $x^p = 1$ in a symmetric group, Ann. Comb. 5 (2) (2001) 197–210.
- [8] Donald E. Knuth, Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989) 212–219.
- [9] Matjaž Konvalinka, Divisibility of generalized Catalan numbers, J. Combin. Theory Ser. A 114 (6) (2007) 1089–1100.
- [10] Hiroyuki Ochiai, A *p*-adic property of the Taylor series of $exp(x + x^p/p)$, Hokkaido Math. J. 28 (1) (1999) 71–85.
- [11] Alexander Postnikov, Bruce E. Sagan, What power of two divides a weighted Catalan number? J. Combin. Theory Ser. A 114 (5) (2007) 970–977.