ARTIN L-FUNCTIONS AND MODULAR FORMS ASSOCIATED TO QUASI-CYCLOTOMIC FIELDS

SUNGHAN BAE ${ }^{(1)}$, YONG HU ${ }^{(2)}$, LINSHENG YIN ${ }^{(2)}$

Abstract

We determine all irreducible representations of primary quasi cyclotomic fields, compute the Artin conductors of the representations and the Artin L-functions for a class of quasicyclotomic fields. By Deligne-Serre's theorem, these L-functions give a series of normalized newforms of weight one. We describe these modular forms explicitly.

1. Introduction

A quadratic extension of a cyclotomic field, which is non-abelian Galois over the rational number field \mathbb{Q}, is called a quasi-cyclotomic field. All quasi-cyclotomic fields are described explicitly in [9] following the works in [1] and [3]. Actually for any cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ we construct a canonical $\mathbb{Z} / 2 \mathbb{Z}$-basis of the quotient space of $\left\{\alpha \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2} \mid \mathbb{Q}\left(\zeta_{n}, \sqrt{\alpha}\right) / \mathbb{Q}\right.$ is Galois $\}$ modulo the subspace $\{\alpha \in$ $\mathbb{Q}^{*} / \mathbb{Q}^{* 2} \mid \mathbb{Q}\left(\zeta_{n}, \sqrt{\alpha}\right) / \mathbb{Q}$ is Abelin $\}$. The minimal quasi-cyclotomic field containing the square root of a special element of the basis is called a primary quasi-cyclotomic field. L.Yin and C.Zhang [8] have studied the arithmetic of any quasi-cyclotomic field. In this paper we determine all irreducible representations of primary quasi-cyclotomic fields. The methods apply to determine the irreducible representations of an arbitrary quasi-cyclotomic field. We also compute the Artin conductors of the representations and the Artin L-functions for a class of quasicyclotomic fields. They correspond to a series of normalized newforms of weight one by Deligne-Serre's theorem [Th.2, 7]. We describe these modular forms explicitly.

First we recall the construction of primary quasi-cyclotomic fields. Let S be the set consisting of -1 and all prime numbers. For $p \in S$, we put $\bar{p}=4,8, p$ and set $p^{*}=-1,2,(-1)^{\frac{p-1}{2}} p$ if $p=-1,2$ and an odd prime number, respectively. For prime numbers $p<q$, we define

$$
v_{p q}=\prod_{i=0}^{\frac{p-1}{2}} \prod_{j=0}^{\frac{q-1}{2}} \frac{\sin \frac{i q+j}{p q} \pi}{\sin \frac{j p+i}{p q} \pi} \quad((i, j) \neq(0,0), p>2)
$$

[^0]and
$$
v_{2 q}=\frac{\sin \frac{\pi}{4}}{\sin \frac{q}{4 q}} \prod_{j=1}^{\frac{q-1}{2}} \frac{\sin \frac{j \pi}{2 q} \cdot \sin \frac{2 j-1}{4 q} \pi}{2 \sin \frac{4 j+1}{4 q} \pi \cdot \sin \frac{j}{q} \pi \cdot \sin \frac{2 j-1}{2 q} \pi} .
$$

For $p<q \in S$, we put

$$
u_{p q}= \begin{cases}\sqrt{q^{*}} & \text { if } p=-1 \\ v_{p q} & \text { if } p=2 \text { or } p \equiv q \equiv 1 \bmod 4 \\ \sqrt{p} \cdot v_{p q} & \text { if } p \equiv 1, q \equiv 3 \bmod 4 \\ \sqrt{q} \cdot v_{p q} & \text { if } p \equiv 3, q \equiv 1 \bmod 4 \\ \sqrt{p q} \cdot v_{p q} & \text { if } p \equiv q \equiv 3 \bmod 4\end{cases}
$$

The canonical $\mathbb{Z} / 2 \mathbb{Z}$-basis of the quotient space mentioned above consists of a subset of $\left\{u_{p q} \mid p<q \in S\right\}$. For $p<q \in S$ let $K=\mathbb{Q}\left(\zeta_{\bar{p} q}\right)$ be the cyclotomic field of conductor $\bar{p} q$ and let $\tilde{K}=K\left(\sqrt{u_{p q}}\right)$. Then \tilde{K} is the smallest quasi-cyclotomic fields containing $\sqrt{u_{p q}}$. We call these fields \tilde{K} primary quasi-cyclotomic fields. Let $G=\operatorname{Gal}(K / \mathbb{Q})$ and $\tilde{G}=\operatorname{Gal}(\tilde{K} / \mathbb{Q})$. We always denote by ϵ the unique non-trivial element of $\operatorname{Gal}(\tilde{K} / K)$. If $(p, q)=(-1,2)$, then the group G is generated by two elements σ_{-1} and σ_{2}, where $\sigma_{-1}\left(\zeta_{8}\right)=\zeta_{8}^{-1}$ and $\sigma_{2}\left(\zeta_{8}\right)=\zeta_{8}^{5}$. If $p=-1$ and $q \neq 2$, or if $p>2$, then G is generated by two elements σ_{p} and σ_{q}, where $\sigma_{p}\left(\zeta_{p}\right)=\zeta_{p}^{a}, \sigma_{p}\left(\zeta_{q}\right)=\zeta_{q}$ and $\sigma_{q}\left(\zeta_{p}\right)=\zeta_{p}, \sigma_{q}\left(\zeta_{q}\right)=\zeta_{q}^{b}$, with a, b being generators of $(\mathbb{Z} / \bar{p} \mathbb{Z})^{*}$ and $(\mathbb{Z} / q \mathbb{Z})^{*}$ respectively. If $p=2$, then G is generated by three elements σ_{-1}, σ_{2} and σ_{q}, where σ_{-1}, σ_{2} act on ζ_{8} as above and on ζ_{q} trivially, and σ_{q} acts on ζ_{q} as above and on ζ_{8} trivially.

Next we describe the group \tilde{G} by generators and relations. An element $\sigma \in G$ has two lifts in \tilde{G}. By [Sect.3, 7] the action of the two lifts on $\sqrt{u_{p q}}$ has the form $\pm \alpha \sqrt{u_{p q}}$ or $\pm \alpha \sqrt{u_{p q}} / \sqrt{-1}$ with $\alpha>0$. We fix the lift $\tilde{\sigma}$ of σ to be the one with the positive sign. Then the other lift of σ is $\tilde{\sigma} \epsilon$. The group \tilde{G} is generated by $\epsilon, \tilde{\sigma}_{p}$ and $\tilde{\sigma}_{q}$ (and $\tilde{\sigma}_{-1}$ if $p=2$). Clearly ϵ commutes with the other generators. In addition, we have $\tilde{\sigma}_{p} \tilde{\sigma}_{q}=\tilde{\sigma}_{q} \tilde{\sigma}_{p} \epsilon$ (and $\tilde{\sigma}_{-1}$ commutes with $\tilde{\sigma}_{2}$ and $\tilde{\sigma}_{q}$ if $p=2$). For an element g of a group, we denote by $|g|$ the order of g in the group. Let $\log _{-1}:\{ \pm 1\} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ be the unique isomorphism. For an odd prime number p and an integer a with $p \nmid a$, let $\left(\frac{a}{p}\right)$ be the quadratic residue symbol. We also define $\left(\frac{a}{2}\right)=\left(\frac{a}{-1}\right)=1$ for any a. Then we have, see [Th.3, 7],

$$
\left|\tilde{\sigma}_{p}\right|=\left(1+\log _{-1}\left(\frac{q^{*}}{p}\right)\right)\left|\sigma_{p}\right| \quad \text { and } \quad\left|\tilde{\sigma}_{q}\right|=\left(1+\log _{-1}\left(\frac{p^{*}}{q}\right)\right)\left|\sigma_{q}\right|
$$

with the exception that $\left|\tilde{\sigma}_{2}\right|=2\left|\sigma_{2}\right|$ when $(p, q)=(-1,2)$. If $p=2$, we have furthermore $\left|\tilde{\sigma}_{-1}\right|=\left|\sigma_{-1}\right|$. Thus we have determined the group \tilde{G} completely by generators and relations.

2. Abelian subgroup of index 2

In this section we construct a special abelian subgroup of \tilde{G} of index 2 and determine its structure. We consider the following three cases separately:

Case A: $\left|\widetilde{\sigma}_{p}\right|=\left|\sigma_{p}\right|$ and $\left|\widetilde{\sigma}_{q}\right|=\left|\sigma_{q}\right|$;
Case B: $\left|\widetilde{\sigma}_{\sigma_{p}}\right|=2\left|\sigma_{p}\right|,\left|\widetilde{\sigma}_{q}\right|=\left|\sigma_{q}\right|$ or $\left|\widetilde{\sigma}_{p}\right|=\left|\sigma_{p}\right|,\left|\widetilde{\sigma}_{q}\right|=2\left|\sigma_{q}\right|$;
Case C: $\left|\widetilde{\sigma}_{p}\right|=2\left|\sigma_{p}\right|$ and $\left|\widetilde{\sigma}_{q}\right|=2\left|\sigma_{q}\right|$.
All the three cases may happen: Case (A) if and only if $\left(\frac{p^{*}}{q}\right)=\left(\frac{q^{*}}{p}\right)=1$; Case (B) if and only if $\left(\frac{p^{*}}{q}\right) \neq\left(\frac{q^{*}}{p}\right)$ or $(p, q)=(-1,2)$; Case (C) if and only if $\left(\frac{p^{*}}{q}\right)=\left(\frac{q^{*}}{p}\right)=-1$.

In Case A, we define the subgroup N of \widetilde{G} to be

$$
N= \begin{cases}<\widetilde{\sigma}_{-1}, \widetilde{\sigma}_{2}, \widetilde{\sigma}_{q}^{2}, \varepsilon> & \text { if } p=2 \tag{A2.1}\\ <\widetilde{\sigma}_{p}, \widetilde{\sigma}_{q}^{2}, \varepsilon> & \text { if } p \neq 2\end{cases}
$$

It is easy to see that the subgroup N is abelian of index 2 in \tilde{G} and is a direct sum of the cyclic groups generated by the elements. Thus we have

$$
N \cong \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} /((q-1) / 2) \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } p=-1 \tag{A2.2}\\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} /((q-1) / 2) \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } p=2 \\ \mathbb{Z} /(p-1) \mathbb{Z} \oplus \mathbb{Z} /((q-1) / 2) \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } p>2\end{cases}
$$

In Case B, we define the subgroup N of \widetilde{G} to be

$$
N= \begin{cases}<\widetilde{\sigma}_{-1}, \widetilde{\sigma}_{2}, \widetilde{\sigma}_{q}^{2}> & \text { if } p=2 \tag{B2.1}\\ <\widetilde{\sigma}_{p} \widetilde{\sigma}_{q}^{2}> & \text { if } p \neq 2 \text { and }\left|\widetilde{\sigma}_{q}\right|=2\left|\sigma_{q}\right| \\ <\widetilde{\sigma}_{p}^{2}, \widetilde{\sigma}_{q}> & \text { if }\left|\widetilde{\sigma}_{p}\right|=2\left|\sigma_{p}\right| .\end{cases}
$$

Again N is abelian and has index 2 in \widetilde{G}. In addition, we have

$$
N \cong \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if }(p, q)=(-1,2) \tag{B2.2}\\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} /(q-1) \mathbb{Z} & \text { if } p=-1, q>2 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} /(q-1) \mathbb{Z} & \text { if } p=2 \\ \mathbb{Z} /(p-1) \mathbb{Z} \oplus \mathbb{Z} /(q-1) \mathbb{Z} & \text { if } p>2\end{cases}
$$

In Case C, p, q both are odd prime numbers. Let $v_{2}(p-1)$ denote the power of 2 in $p-1$. We define the subgroup N of \widetilde{G} to be

$$
N= \begin{cases}<\widetilde{\sigma}_{p}^{2}, \widetilde{\sigma}_{q}> & \text { if } v_{2}(p-1) \leq v_{2}(q-1) \tag{C2.1}\\ <\widetilde{\sigma}_{p}, \widetilde{\sigma}_{q}^{2}> & \text { if } v_{2}(p-1)>v_{2}(q-1)\end{cases}
$$

Then N is an abelian subgroup of \widetilde{G}. When $v_{2}(p-1) \leq v_{2}(q-1)$, we have

$$
|N|=\frac{\left|\widetilde{\sigma}_{p}^{2}\right| \cdot\left|\widetilde{\sigma}_{q}\right|}{\left|<\widetilde{\sigma}_{p}^{2}>\cap<\widetilde{\sigma}_{q}>\right|}=\frac{(p-1) \cdot 2(q-1)}{2},
$$

thus $[\widetilde{G}: N]=2$ and N is a normal subgroup of \widetilde{G}. We have the same result when $v_{2}(p-1)>v_{2}(q-1)$. Although the subgroup $<\widetilde{\sigma}_{p}^{2}, \widetilde{\sigma}_{q}>$ is always an abelian subgroup of \widetilde{G} of index 2 , when $v_{2}(p-1)>v_{2}(q-1)$ we are not able to get all irreducible representations of \tilde{G} from this subgroup. So we define N in two cases.

Next we determine the structure of the subgroup N in the case C. We consider the case $v_{2}(p-1) \leq v_{2}(q-1)$ in detail. Let $d=\operatorname{gcd}\left(\frac{p-1}{2}, q-1\right)$, $s=(p-1) / 2 d$ and $t=(q-1) / d$. Choose $u, v \in \mathbb{Z}$ such that $u s+v t=1$. We have the relations

$$
\left(\widetilde{\sigma}_{p}^{2}\right)^{p-1}=1,\left(\widetilde{\sigma}_{p}^{2}\right)^{\frac{p-1}{2}}=\varepsilon=\widetilde{\sigma}_{q}^{q-1} .
$$

Let M be the free abelian group generated by two words α, β. Let

$$
\alpha_{1}=(p-1) \alpha ; \quad \beta_{1}=\frac{p-1}{2} \alpha-(q-1) \beta ;
$$

and let M_{1} be the subgroup of M generated by α_{1}, β_{1}. Then M_{1} is the kernel of the homomorphism

$$
M \longrightarrow N ; \alpha \mapsto \widetilde{\sigma}_{p}^{2}, \beta \mapsto \widetilde{\sigma}_{q}
$$

So we have $N \cong M / M_{1}$. Define the matrix

$$
A=\left(\begin{array}{cc}
p-1 & \frac{p-1}{2} \\
0 & 1-q
\end{array}\right) .
$$

Then $\left(\alpha_{1}, \beta_{1}\right)=(\alpha, \beta) \cdot A$. We determine the structure of M_{1} by considering the standard form of A. Define

$$
P=\left(\begin{array}{cc}
u & v \\
-t & s
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) ; \quad Q=\left(\begin{array}{cc}
1 & 2 t v-1 \\
-1 & -2 t v+2
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Then

$$
B=P A Q=\left(\begin{array}{cc}
d & 0 \\
0 & -2 s(q-1)
\end{array}\right)
$$

is the standard form of A. Let

$$
(\tau, \mu)=(\alpha, \beta) P^{-1} \quad \text { and } \quad\left(\tau_{1}, \mu_{1}\right)=\left(\alpha_{1}, \beta_{1}\right) Q
$$

Then $\left(\tau_{1}, \mu_{1}\right)=(\tau, \mu) B, M=\mathbb{Z} \tau \oplus \mathbb{Z} \mu$ and $M_{1}=\mathbb{Z} d \tau \oplus \mathbb{Z} 2 s(q-1) \mu$. We thus have

$$
N \cong M / M_{1} \cong \mathbb{Z} / d \mathbb{Z} \oplus \mathbb{Z} / 2 s(q-1) \mathbb{Z}
$$

By abuse of notation, we also write

$$
(\tau, \mu)=\left(\widetilde{\sigma}_{p}^{2}, \widetilde{\sigma}_{q}\right) P^{-1}=\left(\widetilde{\sigma}_{p}^{2 s} \widetilde{\sigma}_{q}^{t}, \widetilde{\sigma}_{p}^{-2 v} \widetilde{\sigma}_{q}^{u}\right) .
$$

Then τ, μ are of order $d, 2 s(q-1)$ respectively, and N is a direct sum of $<\tau>$ and $<\mu>$. We have $\widetilde{\sigma}_{p}^{2}=\tau^{u} \mu^{-t}$ and $\widetilde{\sigma}_{q}=\tau^{v} \mu^{s}$. When $v_{2}(p-1)>v_{2}(q-1)$, we get the structure of N in the same way. So in the case (C) we have

$$
N \cong \begin{cases}\mathbb{Z} / d \mathbb{Z} \oplus \mathbb{Z} / 2 s(q-1) \mathbb{Z} & \text { if } v_{2}(p-1) \leq v_{2}(q-1) \tag{C2.2}\\ \mathbb{Z} / d^{\prime} \mathbb{Z} \oplus \mathbb{Z} / 2 s^{\prime}(p-1) \mathbb{Z} & \text { if } v_{2}(p-1)>v_{2}(q-1)\end{cases}
$$

where $d=\operatorname{gcd}\left(\frac{p-1}{2}, q-1\right), s=(p-1) / 2 d$ and $d^{\prime}=\operatorname{gcd}\left(p-1, \frac{q-1}{2}\right), s^{\prime}=$ $(q-1) / 2 d^{\prime}$.

Now we summarize our results in the following
Proposition 2.1. The abelian subgroup N of the group \widetilde{G} of index 2 defined in (A2.1), (B2.1) and (C2.1) has the structure described in (A2.2), (B2.2) and (C2.2) in the cases (A), (B) and (C), respectively. In particular, every irreducible representation of \widetilde{G} has dimension 1 or 2.

3. 2-DIMENSIONAL REPRESENTATIONS

We determine all irreducible representations of \widetilde{G} in this section. We will use some basic facts from representation theory freely. For the details, see [6].

It is well-known that the 1-dimensional representations of \widetilde{G} correspond bijectively to those of the maximal abelian quotient G of \widetilde{G}, which are Dirichlet characters. So we mainly construct the 2 dimensional irreducible representations of \widetilde{G}. From the dimension formula of all irreducible representations, we see that \widetilde{G} has $|G| / 4$ irreducible representations of dimension 2 , up to isomorphism. Let N be the subgroup of \widetilde{G} defined in last section. Let $\widetilde{G}=N \cup \sigma N$ be the decomposition in cosets. If $\rho: N \rightarrow \mathbb{C}^{*}$ is a representation of N, the induced representation $\widetilde{\rho}$ of ρ is a representation of \widetilde{G} of dimension 2 . The space of the representation $\widetilde{\rho}$ is $V=\operatorname{Ind}_{N}^{\widetilde{G}}(\mathbb{C})=\mathbb{C}[\widetilde{G}] \otimes_{\mathbb{C}[N]} \mathbb{C}$ with basis $e_{1}=1 \otimes 1$ and $e_{2}=\sigma \otimes 1$. The group homomorphism

$$
\widetilde{\rho}: \widetilde{G} \longrightarrow \mathrm{GL}(V) \simeq \mathrm{GL}_{2}(\mathbb{C})
$$

is given by

$$
\widetilde{\rho}(\widetilde{\sigma})=\left(\begin{array}{cc}
\rho(\widetilde{\sigma}) & \rho(\widetilde{\sigma} \sigma) \tag{3.1}\\
\rho\left(\sigma^{-1} \widetilde{\sigma}\right) & \rho\left(\sigma^{-1} \widetilde{\sigma} \sigma\right)
\end{array}\right), \quad \forall \widetilde{\sigma} \in \widetilde{G}
$$

where $\rho(\widetilde{\sigma})=0$ if $\widetilde{\sigma} \notin N$. The representation $\widetilde{\rho}$ is irreducible if and only if $\rho \not \not \approx \rho^{\tau}$ for every $\tau \in \widetilde{G} \backslash N$, where ρ^{τ} is the conjugate representation of ρ defined by

$$
\rho^{\tau}(x)=\rho\left(\tau^{-1} x \tau\right), \quad \forall x \in N
$$

Since N is abelian, we only need to check $\rho \not \not ⿻ \rho^{\sigma}$.

Now we begin to construct all 2-dimensional irreducible representations of \widetilde{G}. As in last section, we consider the three cases separately. In addition, we consider the case when p and q are odd prime numbers in details, and only state the results in the cases when $p=-1$ or 2 .
3.1. Case A. Assume $p>2$. We have in this case $N=\left\langle\widetilde{\sigma}_{p}, \widetilde{\sigma}_{q}^{2}, \varepsilon\right\rangle$ and

$$
N \cong \mathbb{Z} /(p-1) \mathbb{Z} \oplus \mathbb{Z} /((q-1) / 2) \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Every irreducible representation of N can be written as $\rho_{i j k}: N \longrightarrow \mathbb{C}^{*}$ with

$$
\rho_{i j k}\left(\widetilde{\sigma}_{p}\right)=\zeta_{p-1}^{i} ; \rho_{i j k}\left(\widetilde{\sigma}_{q}^{2}\right)=\zeta_{q-1}^{2 j} ; \rho_{i j k}(\varepsilon)=(-1)^{k} .
$$

where $0 \leq i<p-1,0 \leq j<\frac{q-1}{2}$ and $k=0,1$. Since $\widetilde{G}=N \cup \widetilde{\sigma}_{q} N$ and $\rho_{i j k}^{\widetilde{\sigma}_{q}}\left(\widetilde{\sigma}_{p}\right)=\rho_{i j k}(\varepsilon) \rho_{i j k}\left(\widetilde{\sigma}_{p}\right)=(-1)^{k} \rho_{i j k}\left(\widetilde{\sigma}_{p}\right)$, we have

$$
\rho_{i j k}^{\tilde{\sigma}_{q}} \not \neq \rho_{i j k} \Longleftrightarrow k=1 .
$$

Write $\rho_{i j}=\rho_{i j 1}$. The induced representation $\widetilde{\rho}_{i j}: \widetilde{G} \longrightarrow \mathrm{GL}_{2}(\mathbb{C})$ of $\rho_{i j}$ is given by

$$
\widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{p}\right)=\left(\begin{array}{cc}
\zeta_{p-1}^{i} & 0 \tag{A3.1}\\
0 & -\zeta_{p-1}^{i}
\end{array}\right), \widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{2 j} \\
1 & 0
\end{array}\right), \widetilde{\rho}_{i j}(\varepsilon)=-I,
$$

where I is the identity matrix of degree 2 . Since

$$
\widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{p}^{2}\right)=\left(\begin{array}{cc}
\zeta_{p-1}^{2 i} & 0 \\
0 & \zeta_{p-1}^{2 i}
\end{array}\right) \quad \text { and } \quad \widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{q}^{2}\right)=\left(\begin{array}{cc}
\zeta_{q-1}^{2 j} & 0 \\
0 & \zeta_{q-1}^{2 j}
\end{array}\right),
$$

we see that the representations $\widetilde{\rho}_{i j}$ with $0 \leq i<\frac{p-1}{2}, 0 \leq j<\frac{q-1}{2}$ are irreducible and are not isomorphic to each other, by considering the values of the characters of these representations at $\widetilde{\sigma}_{p}^{2}$ and $\widetilde{\sigma}_{q}^{2}$. The number of these representations is $\frac{p-1}{2} \cdot \frac{q-1}{2}=\frac{|G|}{4}$. So they are all the irreducible representations of \widetilde{G} of dimension 2 .

Similarly, when $p=-1$, all irreducible representations of \widetilde{G} of dimension 2 are $\widetilde{\rho}_{j}$ with $0 \leq j<\frac{q-1}{2}$, where

$$
\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}\right)=\left(\begin{array}{cc}
1 & 0 \tag{A3.2}\\
0 & -1
\end{array}\right), \quad \widetilde{\rho}_{j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{2 j} \\
1 & 0
\end{array}\right), \quad \widetilde{\rho}(\varepsilon)=-I
$$

and when $p=2$, all irreducible representations of \widetilde{G} of dimension 2 are $\bar{\rho}_{i j}$ with $0 \leq i \leq 1$ and $0 \leq j<\frac{q-1}{2}$, where $\bar{\rho}_{i j}(\varepsilon)=-I$ and

$$
\bar{\rho}_{i j}\left(\widetilde{\sigma}_{-1}\right)=(-1)^{i} I, \bar{\rho}_{i j}\left(\widetilde{\sigma}_{2}\right)=\left(\begin{array}{cc}
1 & 0 \tag{A3.3}\\
0 & -1
\end{array}\right), \bar{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{2 j} \\
1 & 0
\end{array}\right) .
$$

3.2 Case B. Assume $p>2$ and $\left|\widetilde{\sigma}_{q}\right|=2\left|\sigma_{q}\right|$. Then $N=\left\langle\widetilde{\sigma}_{p}, \widetilde{\sigma}_{q}^{2}\right\rangle$, and

$$
N \cong \mathbb{Z} /(p-1) \mathbb{Z} \oplus \mathbb{Z} /(q-1) \mathbb{Z}
$$

Any irreducible representation of N has the form $\rho_{i j}: N \longrightarrow \mathbb{C}^{*}$, where

$$
\rho_{i j}\left(\widetilde{\sigma}_{p}\right)=\zeta_{p-1}^{i}, \rho_{i j}\left(\widetilde{\sigma}_{q}^{2}\right)=\zeta_{q-1}^{j}, \rho_{i j}(\varepsilon)=\rho_{i j}\left(\widetilde{\sigma}_{q}^{2}\right)^{\frac{q-1}{2}}=(-1)^{j}
$$

and $0 \leq i<p-1,0 \leq j<q-1$. It is easy to check that

$$
\rho_{i j}^{\tilde{\sigma}_{q}} \neq \rho_{i j} \Longleftrightarrow j \equiv 1 \quad(\bmod 2)
$$

The induced representation $\widetilde{\rho}_{i j}: \widetilde{G} \longrightarrow \mathrm{GL}_{2}(\mathbb{C})$ of $\rho_{i j}$ with odd j is given by

$$
\widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{p}\right)=\left(\begin{array}{cc}
\zeta_{p-1}^{i} & 0 \tag{B3.1}\\
0 & -\zeta_{p-1}^{i}
\end{array}\right), \widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{j} \\
1 & 0
\end{array}\right)
$$

Since

$$
\widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{p}^{2}\right)=\left(\begin{array}{cc}
\zeta_{p-1}^{2 i} & 0 \\
0 & \zeta_{p-1}^{2 i}
\end{array}\right) \quad \text { and } \quad \widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{q}^{2}\right)=\left(\begin{array}{cc}
\zeta_{q-1}^{j} & 0 \\
0 & \zeta_{q-1}^{j}
\end{array}\right)
$$

we see that the representations $\widetilde{\rho}_{i j}$ with $0 \leq i<\frac{p-1}{2}$ and $0 \leq j<$ $q-1,2 \nmid j$ are irreducible and are not isomorphic to each other. The number of these representations is $\frac{|G|}{4}$. So they are all the irreducible representations of \widetilde{G} of dimension 2 .

Similarly, when $(p, q)=(-1,2)$, there is only one irreducible representation $\widetilde{\rho}_{0}$ of dimension 2 defined by

$$
\widetilde{\rho}_{0}\left(\widetilde{\sigma}_{-1}\right)=\left(\begin{array}{cc}
1 & 0 \tag{B3.2}\\
0 & -1
\end{array}\right), \quad \text { and } \quad \widetilde{\rho}_{0}\left(\widetilde{\sigma}_{2}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

When $p=-1$ and $q>2$, all irreducible representations of dimension 2 are $\widetilde{\rho}_{j}$ with $0 \leq j<q-1,2 \nmid j$, where $\widetilde{\rho}_{j}$ is defined by

$$
\tilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}\right)=\left(\begin{array}{cc}
1 & 0 \tag{B3.3}\\
0 & -1
\end{array}\right) \quad \text { and } \quad \widetilde{\rho}_{j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{j} \\
1 & 0
\end{array}\right)
$$

When $p=2$, all irreducible representations of dimension 2 are $\bar{\rho}_{i j}$ with $0 \leq i \leq 1$ and $0 \leq j<q-1,2 \nmid j$, where $\bar{\rho}_{i j}$ is defined by

$$
\bar{\rho}_{i j}\left(\widetilde{\sigma}_{-1}\right)=(-1)^{i} I, \bar{\rho}_{i j}\left(\widetilde{\sigma}_{2}\right)=\left(\begin{array}{cc}
1 & 0 \tag{B3.4}\\
0 & -1
\end{array}\right), \bar{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{j} \\
1 & 0
\end{array}\right)
$$

When $\left|\widetilde{\sigma}_{p}\right|=2\left|\sigma_{p}\right|$, all irreducible representations of dimension 2 are $\hat{\rho}_{i j}$ with $0 \leq i<p-1,2 \nmid i$ and $0 \leq j<\frac{q-1}{2}$, where $\hat{\rho}_{i j}$ is defined by

$$
\hat{\rho}_{i j}\left(\widetilde{\sigma}_{p}\right)=\left(\begin{array}{cc}
0 & \zeta_{p-1}^{i} \tag{B3.5}\\
1 & 0
\end{array}\right), \hat{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
\zeta_{q-1}^{j} & 0 \\
0 & -\zeta_{q-1}^{j}
\end{array}\right)
$$

3.3. Case C. Assume $v_{2}(p-1) \leq v_{2}(q-1)$. Let

$$
d=\operatorname{gcd}\left(\frac{p-1}{2}, q-1\right), s=\frac{p-1}{2 d}, t=\frac{q-1}{d} ; u s+v t=1
$$

as before. We must have that t is even and u is odd. Let $\tau=\widetilde{\sigma}_{p}^{2 s} \cdot \widetilde{\sigma}_{q}^{t}$ and $\mu=\widetilde{\sigma}_{p}^{-2 v} \cdot \widetilde{\sigma}_{q}^{u}$. Then $N=\left\langle\widetilde{\sigma}_{p}^{2}, \widetilde{\sigma}_{q}\right\rangle=\langle\tau, \mu\rangle$ and

$$
N \cong \mathbb{Z} / d \mathbb{Z} \oplus \mathbb{Z} / 2 s(q-1) \mathbb{Z}
$$

Any irreducible representation $\rho_{i j}: N \longrightarrow \mathbb{C}^{*}$ is of the form

$$
\rho_{i j}(\tau)=\zeta_{d}^{i}=\zeta_{(p-1)(q-1)}^{2 s(q-1) i} \quad \text { and } \quad \rho_{i j}(\mu)=\zeta_{2 s(q-1)}^{j}=\zeta_{(p-1)(q-1)}^{d j} .
$$

From $\widetilde{\sigma}_{p}^{2}=\tau^{u} \mu^{-t}$ and $\widetilde{\sigma}_{q}=\tau^{v} \mu^{s}$, we have

$$
\rho_{i j}\left(\widetilde{\sigma}_{p}^{2}\right)=\zeta_{p-1}^{2 s u i-j} ; \rho_{i j}\left(\widetilde{\sigma}_{q}\right)=\zeta_{2(q-1)}^{2 t v i+j} ; \rho_{i j}(\varepsilon)=\rho_{i j}\left(\widetilde{\sigma}_{p}^{2}\right)^{\frac{p-1}{2}}=(-1)^{j} .
$$

It is easy to show

$$
\rho_{i j}^{\widetilde{\sigma}_{p}} \not \not \rho_{i j} \Longleftrightarrow j \equiv 1 \quad(\bmod 2) .
$$

The induced representation $\widetilde{\rho}_{i j}: \widetilde{G} \longrightarrow \mathrm{GL}_{2}(\mathbb{C})$ of $\rho_{i j}$ with odd j is given by

$$
\widetilde{\rho}_{i j}(\tau)=\left(\begin{array}{cc}
\zeta_{d}^{i} & 0 \\
0 & \zeta_{d}^{i}
\end{array}\right) ; \quad \widetilde{\rho}_{i j}(\mu)=\left(\begin{array}{cc}
\zeta_{2 s(q-1)}^{j} & 0 \\
0 & -\zeta_{2 s(q-1)}^{j}
\end{array}\right) .
$$

Here in the first equality we used the fact that t is even, and in the second equality we used the fact that u is odd. Furthermore we have

$$
\widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{p}\right)=\left(\begin{array}{cc}
0 & \zeta_{p-1}^{2 s u i-j} \tag{C3.1}\\
1 & 0
\end{array}\right) ; \widetilde{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
\zeta_{2(q-1)}^{2 t v i+j} & 0 \\
0 & -\zeta_{2(q-1)}^{2 t v i+j}
\end{array}\right) .
$$

By considering the values of the character of $\widetilde{\rho}_{i j}$ at τ and μ^{2}, we see that all the representations $\widetilde{\rho}_{i j}$ with $0 \leq i<d$ and $0 \leq j<s(q-1), 2 \nmid j$ are irreducible and are not isomorphic to each other. The number of these representations is $d \cdot \frac{s(q-1)}{2}=\frac{|G|}{4}$. So they are all the irreducible representations of \widetilde{G} of dimension 2 .

Similarly, if $v_{2}(p-1)>v_{2}(q-1)$, we let

$$
d^{\prime}=\operatorname{gcd}\left(p-1, \frac{q-1}{2}\right), s^{\prime}=\frac{p-1}{d}, t^{\prime}=\frac{q-1}{2 d} ; u^{\prime} s^{\prime}+v^{\prime} t^{\prime}=1 .
$$

Then all the irreducible representations of \widetilde{G} of dimension 2 are $\hat{\rho}_{i j}$ with $0 \leq i<d^{\prime}$ and $0 \leq j<t^{\prime}(p-1), 2 \nmid j$, where $\hat{\rho}_{i j}$ is defined by

$$
\hat{\rho}_{i j}\left(\widetilde{\sigma}_{p}\right)=\left(\begin{array}{cc}
\zeta_{2(p-1)}^{2 s^{\prime} u^{\prime} i+j} & 0 \tag{C3.2}\\
0 & -\zeta_{2(p-1)}^{2 s^{\prime} u^{\prime} i+j}
\end{array}\right) ; \hat{\rho}_{i j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{2 t^{\prime} v^{\prime} i-j} \\
1 & 0
\end{array}\right) .
$$

Let $\mathrm{R}^{2}(\widetilde{G})$ be the set of all irreducible representations, up to isomorphism, of \widetilde{G} of dimension 2. As a summary, we have proved the following

Theorem 3.1. All 2-dimensional irreducible representations of \widetilde{G} are induced from the representations of N. In detail, we have

In the case (A)

$$
\mathrm{R}^{2}(\widetilde{G})= \begin{cases}\left\{\widetilde{\rho}_{j} \left\lvert\, 0 \leq j<\frac{q-1}{2}\right.\right\} & \text { if } p=-1 \\ \left\{\bar{\rho}_{i j} \mid i=0,1,0 \leq j<\frac{q-1}{2}\right\} & \text { if } p=2 \\ \left\{\widetilde{\rho}_{i j} \left\lvert\, 0 \leq i<\frac{p-1}{2}\right., 0 \leq j<\frac{q-1}{2}\right\} & \text { if } p>2\end{cases}
$$

where $\widetilde{\rho}_{j}, \bar{\rho}_{i j}$ and $\widetilde{\rho}_{i j}$ are defined in (A3.2), (A3.3) and (A3.1) respectively.

In the case (B)
$\mathrm{R}^{2}(\widetilde{G})= \begin{cases}\left\{\widetilde{\rho}_{0}\right\} & \text { if }(p, q)=(-1,2) \\ \left\{\widetilde{\rho}_{j} \mid 0 \leq j<q-1,2 \nmid j\right\} & \text { if } p=-1, q>2 \\ \left\{\bar{\rho}_{i j} \mid i=0,1,0 \leq j<q-1,2 \nmid j\right\} & \text { if } p=2 \\ \left\{\hat{\rho}_{i j} \mid 0 \leq i<p-1,2 \nmid i, 0 \leq j<\frac{q-1}{2}\right\} & \text { if }\left|\widetilde{\sigma}_{p}\right|=2\left|\sigma_{p}\right| \\ \left\{\widetilde{\rho}_{i j} \left\lvert\, 0 \leq i<\frac{p-1}{2}\right., 0 \leq j<q-1,2 \nmid j\right\} & \text { otherwise, }\end{cases}$
where $\widetilde{\rho}_{0}, \widetilde{\rho}_{j}, \bar{\rho}_{i j}, \hat{\rho}_{i j}$ and $\widetilde{\rho}_{i j}$ are defined in (B3.2), (B3.3), (B3.4), (B3.5) and (B3.1) respectively.
In the case (C)
$\mathrm{R}^{2}(\widetilde{G})= \begin{cases}\left\{\widetilde{\rho}_{i j} \mid 0 \leq i<d, 0 \leq j<s(q-1), 2 \nmid j\right\} & \text { if } v_{2}(p-1) \leq v_{2}(q-1), \\ \left\{\hat{\rho}_{i j} \mid 0 \leq i<d^{\prime}, 0 \leq j<t^{\prime}(p-1), 2 \nmid j\right\} & \text { otherwise, }\end{cases}$
where $\widetilde{\rho}_{i j}$ and $\hat{\rho}_{i j}$ are defined in (C3.1) and (C3.2) respectively.

4. The Frobenius maps

This section is a preparation for the next two sections to compute the Artin conductors of the representations and the Artin L-functions of some quasi-cyclotomic fields \widetilde{K}. For a prime number ℓ, we say that ℓ is ramified (resp. inert, splitting) in the relative quadratic extension \tilde{K} / K if the prime ideals of K over ℓ are ramified (resp. inert, splitting) in \tilde{K}. For a prime number ℓ which is unramified in \widetilde{K} / K, let I_{ℓ} (resp. \widetilde{I}_{ℓ}) be the inert group of ℓ in the extension $K / \mathbb{Q}($ resp. $\widetilde{K} / \mathbb{Q})$. Let Fr_{ℓ} be the Frobenius automorphism of ℓ in G / I_{ℓ} and $\widetilde{\mathrm{Fr}}_{\ell}$ the Frobenius automorphism of ℓ in $\widetilde{G} / \widetilde{I}_{\ell}$ associated to some prime ideal over ℓ.

To compute the Artin conductors of the representations, we need to construct an uniformizer in the completion of \tilde{K} at a prime ideal, especially at a prime ideal over 2 . Generally we are not able to get such an uniformizer, but we can do it in the case $p=-1$. In addition, to calculate the Artin L-functions of the representations, we need to know the $\widetilde{\mathrm{Fr}}_{\ell}$, especially for $\ell=2$, and so we need to know the decomposition of 2 in \tilde{K}. For odd $p<q \in S$, we calculated some examples by a
computer which show that 2 is always unramified in \tilde{K}. But we are not able to show it. Furthermore, we do not know when 2 splits in \tilde{K} / K and when 2 is inert in \tilde{K} / K. But when $p=-1$, we can solve these questions well (see below). So in this paper we only compute the Artin conductors and Artin L-functions of the representations in the case $p=-1$.

From now on, we always assume that $p=-1$, namely, $K=\mathbb{Q}\left(\zeta_{4 q}\right)$ and $\widetilde{K}=K\left(\sqrt[4]{q^{*}}\right)$. In this section we determine $\widetilde{F r}_{\ell}$ by Fr_{ℓ} for $\ell=2$. In [Sect.5, 7] we have determined the decomposition of some odd prime numbers in \widetilde{K} / K. Now we determine the decomposition of 2 in \widetilde{K} / K. The result below is a more explicit reformulation of Theorem 2 in [8].

Proposition 4.1. If $q=2$, then 2 is ramified in \widetilde{K} / K. If q is odd, then 2 is unramified in \widetilde{K} / K if and only if $\left(\frac{2}{q}\right)=1$, and in this case 2 splits in \widetilde{K} / K if $q^{*} \equiv 1 \bmod 16$ and is inert in \widetilde{K} / K if $q^{*} \not \equiv 1 \bmod 16$.

Proof. We first consider the case $q=2$. The unique prime ideal of K over 2 is the principal ideal generated by $\pi_{2}=1-\zeta_{8}$. Since the ramification degree of 2 in K / \mathbb{Q} is 4 and $\sqrt{2}=\pi_{2}\left(\pi_{2}+2 \zeta_{8}\right) \zeta_{8}$, we have that 2 is ramified in \widetilde{K} / K if and only if $x^{2} \equiv \sqrt{2} \bmod \pi_{2}^{8}$ is not solvable in the ring O_{K} of the integers of K by [Th.2(1), 8], which is equivalent to that $\left(1+\frac{2}{\pi_{2}} \zeta_{8}\right) \zeta_{8}$ is not a square modulo π_{2}^{6}. Since $2=u \pi_{2}^{4}$ for some unit u, we have

$$
\left(1+\frac{2}{\pi_{2}} \zeta_{8}\right) \zeta_{8} \equiv \zeta_{8} \equiv\left(1-\pi_{2}\right) \bmod \pi_{2}^{3}
$$

namely $\left(1+\frac{2}{\pi_{2}} \zeta_{8}\right) \zeta_{8}$ is not a square modulo π_{2}^{3}. So 2 is ramified in \widetilde{K} / K.

Now we assume that q is odd. Let $\pi_{2}=1-\zeta_{4}$. Since the ramification degree of 2 in K is 2 , we have 2 is unramified in \widetilde{K} / K if and only if $x^{2} \equiv \sqrt{q^{*}} \bmod \pi_{2}^{4}$ is solvable in O_{K}, see $[$ Th.2(1), 8]. Furthermore, 2 splits in \widetilde{K} / K if and only if $x^{2} \equiv \sqrt{q^{*}} \bmod \pi_{2}^{5}$ is solvable in O_{K}. The explicit computation of Gauss sum gives

$$
\sqrt{q^{*}}=\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) \zeta_{q}^{a}=1+2 \sum_{\left(\frac{a}{q}\right)=1} \zeta_{q}^{a} .
$$

Let $\alpha=\sum_{\left(\frac{a}{q}\right)=1} \zeta_{q}^{a}, \beta=\sum_{\left(\frac{a}{q}\right)=1} \zeta_{2 q}^{a}$, and $\gamma=\sum_{\left(\frac{a}{q}\right)=1} \sum_{\left(\frac{b}{q}\right)=1, a<b} \zeta_{2 q}^{a+b}$, where in the summations a, b run over $1,2, \cdots, q-1$. Then $\alpha=\beta^{2}-2 \gamma$,
that with the equality $2=\pi_{2}^{2}-\pi_{2}^{3}$ gives

$$
\begin{aligned}
\sqrt{q^{*}} & =1+2 \beta^{2}-4 \gamma=1+\pi_{2}^{2} \beta^{2}-\pi_{2}^{3} \beta^{2}-4 \gamma \\
& \equiv\left(1+\pi_{2} \beta\right)^{2}-\pi_{2}^{3}\left(\beta+\beta^{2}\right)+\pi_{2}^{4}(\beta-\gamma) \\
& \equiv\left(1+\pi_{2} \beta\right)^{2}-\pi_{2}^{3}(\alpha+\beta)+\pi_{2}^{4}(\beta+\gamma) \bmod \pi_{2}^{5} .
\end{aligned}
$$

Since $\zeta_{2 q}=-\zeta_{q}^{-\frac{q-1}{2}}=-\zeta_{q}^{t}$, where t is the inverse of 2 in $(\mathbb{Z} / q \mathbb{Z})^{*}$, we see $\beta=\sum_{\left(\frac{a}{q}\right)=1}(-1)^{a} \zeta_{q}^{t a} \equiv \sum_{\left(\frac{a}{q}\right)=1} \zeta_{q}^{t a} \bmod 2$. So if $\left(\frac{2}{q}\right)=1$ we have $\alpha \equiv \beta \bmod 2$ and thus 2 is unramified in \widetilde{K} / K, and if $\left(\frac{2}{q}\right)=-1$ we have $\alpha+\beta \equiv \sum_{a=1}^{q-1} \zeta_{q}^{a}=-1 \bmod 2$ and thus 2 is ramified in \widetilde{K} / K.
Now we assume $\left(\frac{2}{q}\right)=1$. Then $\sqrt{q^{*}} \bmod \pi_{2}^{5}$ is a square if and only if $\pi_{2} \mid \beta+\gamma$. We consider $2(\beta+\gamma)$. Since $\alpha \equiv \beta \bmod 2$, we have

$$
2(\beta+\gamma)=2 \beta+\beta^{2}-\alpha \equiv \alpha(\alpha+1) \bmod 4
$$

From $\sqrt{q^{*}}=1+2 \alpha$, we see $\alpha(\alpha+1)=\frac{q^{*}-1}{4}$. Since $8 \mid q^{*}-1$ under the assumption $\left(\frac{2}{q}\right)=1$, we have $\beta+\gamma \equiv \frac{q^{*}-1}{8} \bmod 2$. So $\pi_{2} \mid \beta+\gamma$ if and only if $\pi_{2} \left\lvert\, \frac{q^{*}-1}{8}\right.$, namely $2 \left\lvert\, \frac{q^{*}-1}{8}\right.$. The proof is complete.

Although the following result determining the ring $O_{\tilde{K}}$ of the integers of \widetilde{K} will not be used in the paper, we write it down since it is a more explicit reformulation of $[\mathrm{Th} .2(3), 8]$ in the case $p=-1$.
Corollary 4.2. For odd prime q, let $t_{q}=(q-1) / 4$ if $q \equiv 1 \bmod 4$, and $t_{q}=(q-3) / 4$ if $q \equiv 3 \bmod 4$. Then

$$
O_{\tilde{K}}= \begin{cases}\mathbb{Z}\left[\zeta_{8}, \frac{\sqrt[4]{2}}{1-\zeta_{8}}\right] & \text { if } q=2 \\ \mathbb{Z}\left[\zeta_{4 q}, \frac{\sqrt[4]{q^{*}+1+\pi_{2} \beta}}{\pi_{2}\left(2 \sin \frac{\pi}{q} t^{t q}\right.}\right] & \text { if }\left(\frac{2}{q}\right)=-1 \\ \mathbb{Z}\left[\zeta_{4 q}, \frac{\sqrt[4]{q^{q^{*}}+1+\pi_{2} \beta}}{2\left(2 \sin \frac{\pi}{q}\right)^{2 q}}\right] & \text { if }\left(\frac{2}{q}\right)=1\end{cases}
$$

Proof. See [Th.2(3), 8].
Now we assume that 2 is unramified in \widetilde{K} / K. Let $\operatorname{Fr}_{2} \in G$ such that $\operatorname{Fr}_{2}\left(\zeta_{4}\right)=1$ and $\operatorname{Fr}_{2}\left(\zeta_{q}\right)=\zeta_{q}^{2}$. It is a Frobenius element of 2 in G modulo I_{2}. We have $\mathrm{Fr}_{2}=\sigma_{2}^{b_{2}}$ for some $b_{2} \in \mathbb{Z}$ with $2 \mid b_{2}$ as $\left(\frac{2}{q}\right)=1$. Thus $\widetilde{\mathrm{Fr}}_{2}=\widetilde{\sigma}_{2}^{b_{2}}$ or $\widetilde{\mathrm{Fr}}_{2}=\widetilde{\sigma}_{2}^{b_{2}} \varepsilon$. We need to determine $\widetilde{\mathrm{Fr}}_{2}$ completely. Since $\left(\frac{2}{q}\right)=1$, we have

$$
\sqrt{q^{*}} \equiv\left(1+\pi_{2} \alpha\right)^{2}+\pi_{2}^{4}(\beta+\gamma) \bmod \pi_{2}^{5}
$$

Write $u=1+\pi_{2} \alpha$ for simplicity. Since $\sqrt{q^{*}} \equiv u^{2} \bmod \pi_{2}^{4}$, we see $\frac{\sqrt[4]{q^{*}}-u}{2} \in O_{\tilde{K}}$. Let \wp be the prime ideal of \widetilde{K} over 2 associated to $\widetilde{F r}_{2}$. By the definition, we have

$$
\widetilde{\operatorname{Fr}}_{2}\left(\frac{\sqrt[4]{q^{*}}-u}{2}\right) \equiv\left(\frac{\sqrt[4]{q^{*}}-u}{2}\right)^{2} \equiv(\beta+\gamma)+\frac{\sqrt[4]{q^{*}}-u}{2} \bmod \wp
$$

On the other hand, since $\widetilde{\sigma}_{q}^{b_{2}}\left(\sqrt[4]{q^{*}}\right)=(-1)^{\frac{b_{2}}{2}} \sqrt[4]{q^{*}}$ and $\widetilde{\sigma}_{q}^{b_{2}}(u)=u$ as $2 \mid b_{2}$, we have

$$
\widetilde{\sigma}_{q}^{b_{2}}\left(\frac{\sqrt[4]{q^{*}}-u}{2}\right)=\frac{(-1)^{\frac{b_{2}}{2}} \sqrt[4]{q^{*}}-u}{2}
$$

and

$$
\widetilde{\sigma}_{q}^{b_{2}} \varepsilon\left(\frac{\sqrt[4]{q^{*}}-u}{2}\right)=\frac{(-1)^{\frac{b_{2}}{2}+1} \sqrt[4]{q^{*}}-u}{2} .
$$

So if $2 \left\lvert\, \frac{b_{2}}{2}\right.$ we have $\widetilde{\mathrm{Fr}}_{2}=\widetilde{\sigma}_{2}^{b_{2}}$ if and only if $\pi_{2} \mid \beta+\gamma$ (namely 2 splits in $\widetilde{K} / K)$, and if $2 \nmid \frac{b_{2}}{2}$ we have $\widetilde{\operatorname{Fr}}_{2}=\widetilde{\sigma}_{2}^{b_{2}}$ if and only if $\pi_{2} \nmid \beta+\gamma$ (namely 2 is inertia in \widetilde{K} / K). In the case $q \equiv 3 \bmod 4$, we can always assume that $2 \nmid \frac{b_{2}}{2}$, since if $4 \mid b_{2}$, we may replace b_{2} by $b_{2}+(q-1)$. In the case $q \equiv 1 \bmod 4$, we have $2 \left\lvert\, \frac{b_{2}}{2}\right.$ iff $2^{\frac{q-1}{4}} \equiv 1 \bmod q$ iff q has the form $A^{2}+64 B^{2}$ for $A, B \in \mathbb{Z}$, by the Exercise 28 in Chap. 5 in [5]. So we get the following result

Proposition 4.3. Assume that 2 is unramified in \widetilde{K} / K. Let $\mathrm{Fr}_{2}=\sigma_{2}^{b_{2}}$. We have $2 \mid b_{2}$. If $q \equiv 3 \bmod 4$, we always assume $b_{2} \equiv 2 \bmod 4$. Let P_{0} be the set of the prime numbers of the form $A^{2}+64 B^{2}$ with $A, B \in \mathbb{Z}$. Then we have

$$
\widetilde{\mathrm{Fr}}_{2}= \begin{cases}\widetilde{\sigma}_{2}^{b_{2}} & \text { if } q \notin P_{0}, 16 \nmid q^{*}-1, \text { or } q \in P_{0}, 16 \mid q^{*}-1 \\ \widetilde{\sigma}_{2}^{b_{2}} \varepsilon & \text { if } q \in P_{0}, 16 \nmid q^{*}-1, \text { or } q \notin P_{0}, 16 \mid q^{*}-1 .\end{cases}
$$

The following lemma is useful in the computation of Artin L-functions.
Lemma 4.4. We have $\varepsilon \in \widetilde{I}_{\ell}$ if and only if ℓ is ramified in \widetilde{K} / K.
Proof. The canonical projection $\widetilde{G} \longrightarrow G \simeq \widetilde{G} /\langle\varepsilon\rangle$ induces a surjective homomorphism $\widetilde{I}_{\ell} \longrightarrow I_{\ell}$ which implies the isomorphism $\widetilde{I}_{\ell} /<\varepsilon>$ $\cap \widetilde{I}_{\ell} \cong I_{\ell}$. Thus ℓ is ramified in \widetilde{K} / K iff $\left|\widetilde{I}_{\ell}\right|=2\left|I_{\ell}\right|$ iff $\left|\widetilde{I}_{\ell} \cap<\varepsilon>\right|=2$ iff $\varepsilon \in \widetilde{I}_{\ell}$.

5. The conductors of the representations

In this section we compute the Artin conductors of all 2-dimensional irreducible representations of \tilde{G} in the case $p=-1$. First we recall the definition of the Artin conductor. For details, see [Chap.6, 2].
The notations are as before. Let ℓ be a prime number in \mathbb{Q}, and choose a prime ideal \mathfrak{p} in \tilde{K} over ℓ. Let $\tilde{G}_{\ell}=\tilde{G}\left(\tilde{K}_{\mathfrak{p}} / \mathbb{Q}_{\ell}\right)$ be the corresponding decomposition subgroup. Let v be the normalized valuation in $\tilde{K}_{\mathfrak{p}}$. For $i \geq 0$, define the ramification groups

$$
\tilde{G}_{\ell, i}=\left\{\sigma \in \tilde{G}_{\ell} \mid v(\sigma(x)-x)>i \text { for all } x \in O_{\tilde{K}_{\mathfrak{p}}}\right\}
$$

The group $\tilde{G}_{\ell, 0}$ is the inertia subgroup of \tilde{G}_{ℓ}. Let π be a uniformizer in $\tilde{K}_{\mathfrak{p}}$. Then for $i>0$

$$
\tilde{G}_{\ell, i}=\left\{\sigma \in \tilde{G}_{\ell} \mid v(\sigma(\pi)-\pi)>i\right\}
$$

For a representation ρ of \tilde{G} with the character χ and the representation space V, let

$$
f(\chi, \ell)=f(\rho, \ell)=\sum_{i=0}^{\infty} \frac{\left|\tilde{G}_{\ell, i}\right|}{\left|\tilde{G}_{\ell, 0}\right|}\left(\chi(1)-\chi\left(\tilde{G}_{\ell, i}\right)\right),
$$

where $\chi\left(\tilde{G}_{\ell, i}\right)=\left|\tilde{G}_{\ell, i}\right|^{-1} \sum_{s \in \tilde{G}_{\ell, i}} \chi(s)$. We have $f(\chi, \ell)=0$ if ρ is unramified over ℓ, i.e. $V=V^{\tilde{G} \ell, 0}$. The Artin conductor of the representation ρ is defined as

$$
\mathfrak{f}(\chi)=\mathfrak{f}(\rho)=\prod_{\ell} \ell^{f(\chi, \ell)}
$$

From the result in last section, we know that ℓ is unramified in \tilde{K} / \mathbb{Q} if $\ell \neq 2, q$. Thus to compute the conductor $\mathfrak{f}(\chi)$, we only need to calculate $f(\chi, 2)$ and $f(\chi, q)$. We consider the cases $q=2$ and q odd separately.
5.1. Case $q=2$. In the case $(p, q)=(-1,2)$, there is only one 2 dimensional irreducible representation $\tilde{\rho}_{0}$ of \tilde{G}. Let $\tilde{\chi}_{0}$ be the character of $\tilde{\rho}_{0}$. Since only 2 is ramified in \tilde{K}, we only need calculate $f\left(\tilde{\chi}_{0}, 2\right)$.

As in last section, let $\pi_{2}=1-\zeta_{8}$. Let \wp be a prime ideal in \tilde{K} over 2 and let v be the normalized valuation in \tilde{K}_{\wp}. From the proof of Prop.4.1, we see $\frac{\sqrt{2}}{\pi_{2}^{2}} \equiv 1-\pi_{2} \bmod \pi_{2}^{3}$. Thus

$$
v\left(\frac{\sqrt{2}}{\pi_{2}^{2}}-1\right)=v\left(\frac{\sqrt[4]{2}}{\pi_{2}}-1\right)+v\left(\frac{\sqrt[4]{2}}{\pi_{2}}+1\right)=v\left(\pi_{2}\right)=2
$$

We have $v\left(\frac{\sqrt[4]{2}}{\pi_{2}}-1\right)=v\left(\frac{\sqrt[4]{2}}{\pi_{2}}+1\right)=1$. So $\pi=\frac{\sqrt[4]{2}}{\pi_{2}}-1$ is a uniformizer of \tilde{K}_{\wp}. The group \tilde{G} is generated by $\tilde{\sigma}_{-1}$ and $\tilde{\sigma}_{2}$, and $\tilde{\sigma}_{-1}(\sqrt[4]{2})=\sqrt[4]{2}$ and $\tilde{\sigma}_{2}(\sqrt[4]{2})=\sqrt[4]{2} / \sqrt{-1}$. Clearly we have $G_{2,0}=\tilde{G}$. Furthermore, we have

$$
\begin{aligned}
& v\left(\tilde{\sigma}_{-1}(\pi)-\pi\right)=v\left(\frac{\sqrt[4]{2}}{1-\zeta_{8}^{-1}}-\frac{\sqrt[4]{2}}{1-\zeta_{8}}\right)=v\left(-\frac{1+\zeta_{8}}{1-\zeta_{8}} \sqrt[4]{2}\right)=2 \\
& v\left(\tilde{\sigma}_{2}(\pi)-\pi\right)=v\left(\frac{\sqrt[4]{2} / \sqrt{-1}}{1+\zeta_{8}}-\frac{\sqrt[4]{2}}{1-\zeta_{8}}\right)=v\left(-\frac{1-\zeta_{8}^{3}}{1-\zeta_{8}} \sqrt[4]{2}\right)=2
\end{aligned}
$$

and

$$
v(\epsilon(\pi)-\pi)=v(-2(\pi+1))=8
$$

Thus $G_{2,1}=G_{2,0}=\tilde{G}$ and $G_{2,2}=\cdots=G_{2,7}=<\epsilon>$. By easy computation we get that $\tilde{\chi}_{0}\left(G_{2,0}\right)=\tilde{\chi}_{0}\left(G_{2,1}\right)=\cdots=\tilde{\chi}_{0}\left(G_{2,7}\right)=0$, and $\tilde{\chi}_{0}\left(G_{2, n}\right)=2$ for $n \geq 8$. So we obtain

$$
\begin{equation*}
f\left(\tilde{\chi}_{0}, 2\right)=2+2+\frac{1}{4} \times 2 \times 6=7 . \tag{5.1}
\end{equation*}
$$

5.2. Case odd q. To compute $f(\chi, q)$, we consider the cases $\left(\frac{-1}{q}\right)=1$ and $\left(\frac{-1}{q}\right)=-1$ separately. Let \wp be a prime ideal in \tilde{K} over q. Let v be the normalized valuation in \tilde{K}_{\wp}.
5.2.1. Assume $\left(\frac{-1}{q}\right)=1$. Then q is unramified in \tilde{K} / K but ramified in K / \mathbb{Q}. We see $\pi=1-\zeta_{q}$ is a uniformizer of \tilde{K}_{\wp}. Now all 2-dimensional irreducible representations of \tilde{G} are as in Case A. Let $\tilde{\chi}_{j}$ be the character of $\tilde{\rho}_{j}$. It is easy to see that $\tilde{G}_{q, 0}=<\tilde{\sigma}_{q}>$. Notice that $\epsilon \notin \tilde{G}_{q, 0}$.

Let $1 \neq \tilde{\sigma} \in \tilde{G}_{q, 0}$ and $\tilde{\sigma}\left(\zeta_{q}\right)=\zeta_{q}^{a}, 1<a \leq q-1$. We have

$$
v(\tilde{\sigma} \pi-\pi)=v\left(\zeta_{q}-\zeta_{q}^{a}\right)=v\left(1-\zeta_{q}^{a-1}\right)=1
$$

Thus $\tilde{G}_{q, n}=\{1\}$ for $n \geq 1$. By easy computation we get that $\tilde{\chi}_{j}\left(\tilde{G}_{q, 0}\right)=$ 0 and $\tilde{\chi}_{j}\left(\tilde{G}_{q, n}\right)=2$, for $n \geq 1$. We obtain

$$
\begin{equation*}
f\left(\tilde{\chi}_{j}, q\right)=2 . \tag{5.2}
\end{equation*}
$$

5.2.2. Assume $\left(\frac{-1}{q}\right)=-1$. Then q is ramified both in \tilde{K} / K and in K / \mathbb{Q}, and all 2-dimensional irreducible representations are as in Case B. Let $\tilde{\chi}_{j}$ be the character of $\tilde{\rho}_{j}$. Since $v\left(1-\zeta_{q}\right)=2$ and $v(\sqrt[4]{-q})=$ $\frac{1}{4}(2(q-1))=\frac{q-1}{2}$, we see that $\pi=\sqrt[4]{-q} /\left(1-\zeta_{q}\right)^{\frac{q-3}{4}}$ is a uniformizer of q in \tilde{K}. It is obvious that $\tilde{G}_{q, 0}=<\tilde{\sigma}_{q}>$. Notice that in this case $\epsilon \in \tilde{G}_{q, 0}$.

Let $1 \neq \tilde{\sigma} \in \tilde{G}_{q, 0}$ and $\tilde{\sigma}\left(\zeta_{q}\right)=\zeta_{q}^{a}, 1<a \leq q-1$. We have

$$
\begin{aligned}
v(\tilde{\sigma} \pi-\pi)+v(\tilde{\sigma} \epsilon \pi-\pi) & =v(\tilde{\sigma} \pi-\pi)+v(-\tilde{\sigma} \pi-\pi)=v\left(\tilde{\sigma} \pi^{2}-\pi^{2}\right) \\
& =v\left(\frac{\left(\frac{a}{q}\right) \sqrt{-q}}{\left(1-\zeta_{q}^{a}\right)^{\frac{q-3}{2}}}-\frac{\sqrt{-q}}{\left(1-\zeta_{q}\right)^{\frac{q-3}{2}}}\right) \\
& =v\left(\pi^{2}\right)+v\left(\frac{1-\left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_{q}^{i}\right)^{\frac{q-3}{2}}}{\left(\sum_{i=0}^{a-1} \zeta_{q}^{i}\right)^{\frac{q-3}{2}}}\right) \\
& =2+v\left(1-\left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_{q}^{i}\right)^{\frac{q-3}{2}}\right)
\end{aligned}
$$

Let $t=v\left(1-\left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_{q}^{i}\right)^{\frac{q-3}{2}}\right)$. We claim that $t=0$. Otherwise $t>0$. Since

$$
\left(\sum_{i=0}^{a-1} \zeta_{q}^{i}\right)^{\frac{q-3}{2}} \equiv a^{\frac{q-3}{2}} \equiv \begin{cases}1 \bmod \left(1-\zeta_{q}\right) & \text { if }\left(\frac{a}{q}\right)=1 \\ -1 \bmod \left(1-\zeta_{q}\right) & \text { if }\left(\frac{a}{q}\right)=-1\end{cases}
$$

we always have $a \equiv 1 \bmod q$ and thus $a=1$, which contradicts to the assumption that $a>1$. This shows the claim. Thus $v(\tilde{\sigma} \pi-\pi)=$ $v(\tilde{\sigma} \epsilon \pi-\pi)=1$, as $v(\tilde{\sigma} \pi-\pi+\tilde{\sigma} \epsilon \pi-\pi)=v(2 \pi)=1$. So we get $\tilde{G}_{q, n}=\{1\}$ for $n \geq 1$. By easy computation we get that $\tilde{\chi}_{j}\left(\tilde{G}_{q, 0}\right)=0$ and $\tilde{\chi}_{j}\left(\tilde{G}_{q, n}\right)=2$ for $n \geq 1$. We obtain

$$
\begin{equation*}
f\left(\tilde{\chi}_{j}, q\right)=2 \tag{5.3}
\end{equation*}
$$

Next we compute $f\left(\tilde{\chi}_{j}, 2\right)$. we consider the cases $\left(\frac{2}{q}\right)=1$ and $\left(\frac{2}{q}\right)=$ -1 separately. Let \wp be a prime ideal in \tilde{K} over 2 . Let v be the normalized valuation in \tilde{K}_{\wp}.
5.2.3. Assume $\left(\frac{2}{q}\right)=1$. Then 2 is unramified in \tilde{K} / K but ramified in K / \mathbb{Q}, and $\pi=1-\zeta_{4}$ is a uniformizer in \tilde{K}_{\wp}. It is easy to see that $\tilde{G}_{2,0}=<\tilde{\sigma}_{-1}>$. Notice that in this case $\epsilon \notin \tilde{G}_{2,0}$. We have

$$
v\left(\tilde{\sigma}_{-1} \pi-\pi\right)=v\left(\zeta_{4}-\zeta_{4}^{-1}\right)=v(2)=2 .
$$

Thus we have $\tilde{G}_{2,0}=\tilde{G}_{2,1}=<\tilde{\sigma}_{-1}>$ and $\tilde{G}_{2, n}=\{1\}$ for $n>1$. By easy computation we have $\tilde{\chi}_{j}\left(\tilde{G}_{2,0}\right)=\tilde{\chi}_{j}\left(\tilde{G}_{2,1}\right)=1$ and $\tilde{\chi}_{j}\left(\tilde{G}_{2, n}\right)=2$ for $n>1$. We obtain

$$
\begin{equation*}
f\left(\tilde{\chi}_{j}, 2\right)=1+1=2 \tag{5.4}
\end{equation*}
$$

5.2.4. Assume $\left(\frac{2}{q}\right)=-1$. Now 2 is ramified both in \tilde{K} / K and in K / \mathbb{Q}. As in last section, let $\pi_{2}=1-\zeta_{4}, \alpha=\sum_{\left(\frac{a}{q}\right)=1} \zeta_{q}^{a}$ and $\beta=\sum_{\left(\frac{a}{q}\right)=1} \zeta_{2 q}^{a}$, where the summations are over $1 \leq a \leq q-1$. From last section we have

$$
\begin{equation*}
\sqrt{q^{*}} \equiv\left(1+\pi_{2} \beta\right)^{2}+\pi_{2}^{3} \bmod \pi_{2}^{4} \tag{5.5}
\end{equation*}
$$

Let $\mu=1+\pi_{2} \beta$. We claim that $\pi=\frac{\sqrt[4]{q^{*}}+\mu}{\pi_{2}}$ is a uniformizer in \tilde{K}_{\wp}. In fact, since

$$
v\left(\sqrt[4]{q^{*}}+\mu\right)+v\left(\sqrt[4]{q^{*}}-\mu\right)=v\left(\sqrt{q^{*}}-\mu^{2}\right)=v\left(\pi_{2}^{3}\right)=6
$$

and $v\left(\left(\sqrt[4]{q^{*}}+\mu\right)+\left(\sqrt[4]{q^{*}}-\mu\right)\right)=v\left(2 \sqrt[4]{q^{*}}\right)=4$, we must have

$$
v\left(\sqrt[4]{q^{*}}+\mu\right)=v\left(\sqrt[4]{q^{*}}-\mu\right)=3
$$

and thus $v\left(\frac{\sqrt[4]{q^{*}}+\mu}{\pi_{2}}\right)=1$.

It is obvious that $\tilde{G}_{2,0}=\left\{1, \epsilon, \tilde{\sigma}_{-1}, \tilde{\sigma}_{-1} \epsilon\right\}$. Since $\tilde{\sigma}_{-1}\left(\sqrt[4]{q^{*}}\right)=\sqrt[4]{q^{*}}$ and $\tilde{\sigma}_{-1} \epsilon\left(\sqrt[4]{q^{*}}\right)=-\sqrt[4]{q^{*}}$, we have

$$
\begin{aligned}
v\left(\tilde{\sigma}_{-1} \pi-\pi\right) & =v\left(\tilde{\sigma}_{-1} \frac{\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}-\frac{\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}\right) \\
& =v\left(\tilde{\sigma}_{-1} \frac{\sqrt[4]{q^{*}}+1}{\pi_{2}}-\frac{\sqrt[4]{q^{*}}+1}{\pi_{2}}\right)\left(\text { since } \tilde{\sigma}_{-1} \beta=\beta\right) \\
& =v\left(\frac{\sqrt[4]{q^{*}}+1}{1-\zeta_{4}^{-1}}-\frac{\sqrt[4]{q^{*}}+1}{1-\zeta_{4}}\right)=v\left(\sqrt[4]{q^{*}}+1\right) .
\end{aligned}
$$

To compute it, we first claim that $\pi_{2} \nmid \beta$. Otherwise, $2 \mid \beta$ as $\beta \in \mathbb{Q}\left(\zeta_{q}\right)$. From last section, we have $\sqrt{q^{*}}=1+2 \alpha$ and $\alpha+\beta \equiv 1 \bmod 2$, thus $\sqrt{q^{*}} \equiv-1+2 \beta \equiv-1 \bmod 4$ and so $q^{*} \equiv 1 \bmod 8$. This contradicts to the assumption $\left(\frac{2}{q}\right)=-1$. We showed the claim. Thus $v(\beta)=0$. Since $v\left(\sqrt[4]{q^{*}}+1+\pi_{2} \beta\right)=3$, we have $v\left(\sqrt[4]{q^{*}}+1\right)=2$, namely $v\left(\tilde{\sigma}_{-1} \pi-\pi\right)=2$.

We now compute $v\left(\tilde{\sigma}_{-1} \epsilon \pi-\pi\right)$. We have

$$
\begin{aligned}
v\left(\tilde{\sigma}_{-1} \epsilon \pi-\pi\right) & =v\left(\tilde{\sigma}_{-1} \epsilon \frac{\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}-\frac{\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}\right) \\
& =v\left(\frac{-\sqrt[4]{q^{*}}+1}{1-\zeta_{4}^{-1}}-\frac{\sqrt[4]{q^{*}}+1}{1-\zeta_{4}}\right)=v\left(\sqrt[4]{q^{*}}+\zeta_{4}\right) .
\end{aligned}
$$

Observe that $v\left(\sqrt[4]{q^{*}}+\zeta_{4}\right)+v\left(\sqrt[4]{q^{*}}-\zeta_{4}\right)=v\left(\sqrt{q^{*}}+1\right)=v\left(2 \frac{\sqrt{q^{*}}+1}{2}\right)=4$, since $\pi_{2} \nmid \frac{\sqrt{q^{*}}+1}{2}$. Furthermore, since

$$
v\left(\left(\sqrt[4]{q^{*}}+\zeta_{4}\right)+\left(\sqrt[4]{q^{*}}-\zeta_{4}\right)\right)=v\left(2 \sqrt[4]{q^{*}}\right)=4
$$

we must have $v\left(\sqrt[4]{q^{*}}+\zeta_{4}\right)=v\left(\sqrt[4]{q^{*}}-\zeta_{4}\right)=2$, namely $v\left(\tilde{\sigma}_{-1} \epsilon \pi-\pi\right)=2$. In addition, we have

$$
v(\epsilon \pi-\pi)=v\left(\frac{-\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}-\frac{\sqrt[4]{q^{*}}+1+\pi_{2} \beta}{\pi_{2}}\right)=2
$$

By the discussion above we have $\tilde{G}_{2,0}=\tilde{G}_{2,1}$ and $\tilde{G}_{2, n}=\{1\}$ for $n>1$. By easy computation we have $\tilde{\chi}_{j}\left(\tilde{G}_{2,0}\right)=\tilde{\chi}_{j}\left(\tilde{G}_{2,1}\right)=0$ and $\tilde{\chi}_{j}\left(\tilde{G}_{2, n}\right)=2$ for $n>2$. We obtain

$$
\begin{equation*}
f\left(\tilde{\chi}_{j}, 2\right)=2+2=4 \tag{5.6}
\end{equation*}
$$

5.3. Global Conductors. By the equalities (5.1)-(5.6) above, we get the following

Theorem 5.1. In the case $q=2$, the conductor of the unique 2dimensional irreducible representation $\tilde{\rho}_{0}$ of \tilde{G} is equal to $\mathfrak{f}\left(\tilde{\rho}_{0}\right)=2^{7}$. In the case that q is odd, all the 2-dimensional irreducible representations $\tilde{\rho}_{j}$ of \tilde{G} have the conductor $\mathfrak{f}\left(\tilde{\rho}_{j}\right)=2^{2\left(1+\log _{-1}\left(\frac{2}{q}\right)\right)} q^{2}$.

6. The Artin L-Functions

In this section we compute the Artin L-functions of the quasi-cyclotomic fields $\widetilde{K}=\mathbb{Q}\left(\zeta_{4 q}, \sqrt[4]{q^{*}}\right)$.

The L-functions associated to the 1-dimensional representations of \widetilde{G} are the well-known Dirichlet L-functions. So we mainly compute the L functions associated to the 2-dimensional irreducible representations of \widetilde{G}. Let $\varphi: \widetilde{G} \rightarrow \mathrm{GL}(V)$ be a 2-dimensional irreducible representation. The Artin L-function $L(\varphi, s)$ associated to φ is defined as the product of the local factors

$$
L(\varphi, s)=\prod_{\ell: \text { prime }} L_{\ell}(\varphi, s)
$$

where the local factors are defined as $L_{\ell}(\varphi, s)=\operatorname{det}\left(1-\varphi\left(\widetilde{\operatorname{Fr}}_{\ell}\right) \ell^{-s} \mid V^{\tilde{I}_{\ell}}\right)^{-1}$. Now we begin to compute them. First we notice that if ℓ is ramified in \widetilde{K} / K, then $V^{\widetilde{I}_{\ell}}=0$ and $L_{\ell}(\varphi, s)=1$, which is due to the facts that $\varepsilon \in \widetilde{I}_{\ell}$ by Lemma 4.4 and $\varphi(\varepsilon)=-I$ for any irreducible representation φ of \widetilde{G} by Theorem 3.1.
6.1. Case $q=2$. By section 3 , there is only one 2 -dimensional representation $\widetilde{\rho}_{0}$ in this case, which is defined as

$$
\widetilde{\rho}_{0}\left(\widetilde{\sigma}_{-1}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \text { and } \quad \widetilde{\rho}_{0}\left(\widetilde{\sigma}_{2}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Since 2 is ramified in \widetilde{K} / K, we have $L_{2}\left(\widetilde{\rho}_{0}, s\right)=1$. Assume that ℓ is an odd prime number.

If $\ell \equiv 7 \bmod 8$, then $\operatorname{Fr}_{\ell}=\sigma_{-1}$ and thus $\widetilde{\operatorname{Fr}}_{\ell}=\widetilde{\sigma}_{-1}$ or $\widetilde{\sigma}_{-1} \varepsilon$. In any case we have

$$
L_{\ell}\left(\widetilde{\rho}_{0}, s\right)=\operatorname{det}\left(I \pm\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \ell^{-s}\right)^{-1}=\left(1-\ell^{-2 s}\right)^{-1}
$$

If $\ell \equiv 5 \bmod 8$, then $\operatorname{Fr}_{\ell}=\sigma_{2}$ and thus $\widetilde{\operatorname{Fr}}_{\ell}=\widetilde{\sigma}_{2}$ or $\widetilde{\sigma}_{2} \varepsilon$. We have

$$
L_{\ell}\left(\widetilde{\rho}_{0}, s\right)=\operatorname{det}\left(I \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \ell^{-s}\right)^{-1}=\left(1+\ell^{-2 s}\right)^{-1}
$$

If $\ell \equiv 3 \bmod 8$, then $\operatorname{Fr}_{\ell}=\sigma_{-1} \sigma_{2}$ and thus $\widetilde{\operatorname{Fr}}_{\ell}=\widetilde{\sigma}_{-1} \widetilde{\sigma}_{2}$ or $\widetilde{\sigma}_{-1} \widetilde{\sigma}_{2} \varepsilon$. We have

$$
L_{\ell}\left(\widetilde{\rho}_{0}, s\right)=\operatorname{det}\left(I \pm\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \ell^{-s}\right)^{-1}=\left(1-\ell^{-2 s}\right)^{-1}
$$

If $\ell \equiv 1 \bmod 8$, then $\operatorname{Fr}_{\ell}=1$ and thus $\widetilde{\mathrm{Fr}}_{\ell}=1$ or ε. In this case we must determine $\widetilde{\operatorname{Fr}}_{\ell}$ completely. Since $\widetilde{\operatorname{Fr}}_{\ell}(\sqrt[4]{2}) \equiv(\sqrt[4]{2})^{\ell} \bmod \wp$ for the prime ideal \wp of \widetilde{K} over ℓ associated to $\widetilde{\operatorname{Fr}}_{\ell}$, we have $\widetilde{\operatorname{Fr}}_{\ell}=1$ if $2^{\frac{\ell-1}{4}} \equiv 1 \bmod \ell$, and $\widetilde{\operatorname{Fr}}_{\ell}=\varepsilon$ if $2^{\frac{\ell-1}{4}} \equiv-1 \bmod \ell$. As in last section, we
have that for $\ell \equiv 1 \bmod 8,2^{\frac{\ell-1}{4}} \equiv 1 \bmod \ell$ if and only if $\ell \in P_{0}$. So we have

$$
L_{\ell}\left(\widetilde{\rho}_{0}, s\right)= \begin{cases}\left(1-\ell^{-s}\right)^{-2} & \text { if } \ell \in P_{0} \\ \left(1+\ell^{-s}\right)^{-2} & \text { otherwise }\end{cases}
$$

We get the Artin L-function in the case $(p, q)=(-1,2)$ as follows:

$$
\begin{align*}
L\left(\widetilde{\rho}_{0}, s\right)= & \prod_{\ell \equiv 3 \text { or } 7(8)}\left(1-\ell^{-2 s}\right)^{-1} \cdot \prod_{\ell \equiv 5(8)}\left(1+\ell^{-2 s}\right)^{-1} \tag{6.1}\\
& \times \prod_{\ell \in P_{0}}\left(1-\ell^{-s}\right)^{-2} \cdot \prod_{\ell \equiv 1(8), \ell \notin P_{0}}\left(1+\ell^{-s}\right)^{-2} .
\end{align*}
$$

6.2. Case odd q. In this case, all 2-dimensional irreducible representations of \widetilde{G} are $\widetilde{\rho}_{j}$ with $0 \leq j<q-1,2 \mid j$ if $q \equiv 1 \bmod 4$, and $0 \leq j<q-1,2 \nmid j$ if $q \equiv 3 \bmod 4$, where $\widetilde{\rho}_{j}$ is defined by

$$
\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \widetilde{\rho}_{j}\left(\widetilde{\sigma}_{q}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{j} \\
1 & 0
\end{array}\right) \quad \text { and } \quad \widetilde{\rho}_{j}(\varepsilon)=-I .
$$

We first determine the local factors $L_{\ell}\left(\widetilde{\rho}_{j}, s\right)$ for $\ell \neq 2, q$. For such ℓ we have $V^{\tilde{I}_{\ell}}=V$. Let $\mathrm{Fr}_{\ell}=\sigma_{-1}^{a_{\ell}} \sigma_{q}^{b_{\ell}}$, which is equivalent to $\ell \equiv$ $(-1)^{a_{\ell}} \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$, where g is the primitive root $\bmod q$ associated to σ_{q}. It is easy to compute that

$$
\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{q}^{b_{\ell}}\right)=\left(\begin{array}{cc}
0 & \zeta_{q-1}^{j} \\
1 & 0
\end{array}\right)^{b_{\ell}}=\left\{\begin{array}{cc}
\zeta_{2(q-1)}^{j b_{\ell}} I & \text { if } 2 \mid b_{\ell} \\
\left(\begin{array}{cc}
0 & \zeta_{2(q-1)}^{j\left(b_{\ell}+1\right)} \\
\zeta_{2(q-1)}^{j\left(b_{\ell}-1\right)} & 0
\end{array}\right) & \text { if } 2 \nmid b_{\ell}
\end{array}\right.
$$

Furthermore, we have

$$
\operatorname{det}\left(I-\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}^{a_{\ell}} \widetilde{\sigma}_{q}^{b_{\ell}}\right) \ell^{-s}\right)= \begin{cases}\left(1-\zeta_{2(q-1)}^{j \ell_{\ell}} \ell^{-s}\right)^{2} & \text { if } a_{\ell}=0,2 \mid b_{\ell} \\ 1-\zeta_{q-1}^{j b_{\ell} \ell^{-2 s}} & \text { if } a_{\ell}=0,2 \nmid b_{\ell} \\ & \text { or } a_{\ell}=1,2 \mid b_{\ell} \\ 1+\zeta_{q-1}^{j b_{\ell} \ell^{-2 s}} & \text { if } a_{\ell}=1,2 \nmid b_{\ell}\end{cases}
$$

and

$$
\operatorname{det}\left(I+\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}^{a_{\ell}} \widetilde{\sigma}_{q}^{b_{\ell}}\right) \ell^{-s}\right)= \begin{cases}\left(1+\zeta_{2(q-1)}^{j b_{\ell}} \ell^{-s}\right)^{2} & \text { if } a_{\ell}=0,2 \mid b_{\ell} \\ 1-\zeta_{q-1}^{j b_{\ell}} \ell^{-2 s} & \text { if } a_{\ell}=0,2 \nmid b_{\ell} \\ & \text { or } a_{\ell}=1,2 \mid b_{\ell} \\ 1+\zeta_{q-1}^{j b_{\ell}} \ell^{-2 s} & \text { if } a_{\ell}=1,2 \nmid b_{\ell}\end{cases}
$$

So we get

$$
L_{\ell}\left(\widetilde{\rho}_{j}, s\right)=\left(1-\zeta_{q-1}^{j b_{\ell}} \ell^{-2 s}\right)^{-1}
$$

if $\ell \equiv 1 \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$ with $2 \nmid b_{\ell}$, or if $\ell \equiv 3 \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$ with $2 \mid b_{\ell}$, and

$$
L_{\ell}\left(\widetilde{\rho}_{j}, s\right)=\left(1+\zeta_{q-1}^{j b_{\ell}} \ell^{-2 s}\right)^{-1}
$$

if $\ell \equiv 3 \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$ with $2 \nmid b_{\ell}$.
To compute the local factors when $\ell \equiv 1 \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$ with $2 \mid b_{\ell}$ we must determine $\widetilde{F r}_{\ell}$ completely. Since $\left(\frac{\ell}{q}\right)=1$, we have $\left(\frac{q}{\ell}\right)=1$ and $\left(\frac{q^{*}}{\ell}\right)=1$. Let $\alpha_{\ell} \in \mathbb{Z}$ such that $\alpha_{\ell}^{2} \equiv q^{*} \bmod \ell$. From $\widetilde{\sigma}_{q}^{b_{\ell}}\left(\sqrt[4]{q^{*}}\right)=(-1)^{\frac{b_{\ell}}{2}} \sqrt[4]{q^{*}}$, we see $\widetilde{\operatorname{Fr}}_{\ell}=\widetilde{\sigma}_{q}^{b_{\ell}}$ if $\left(\frac{\alpha_{\ell}}{\ell}\right)=(-1)^{\frac{b_{\ell}}{2}}$, and $\widetilde{\mathrm{Fr}}_{\ell}=\widetilde{\sigma}_{q}^{b_{\ell}} \varepsilon$ if $\left(\frac{\alpha_{\ell}}{\ell}\right)=(-1)^{\frac{b_{\ell}}{2}+1}$. So when $\ell \equiv 1 \bmod 4$ and $\ell \equiv g^{b_{\ell}} \bmod q$ with $2 \mid b_{\ell}$, we have

$$
L_{\ell}\left(\widetilde{\rho}_{j}, s\right)= \begin{cases}\left(1-\zeta_{2(q-1)}^{j b_{\ell}} \ell^{-s}\right)^{-2} & \text { if }\left(\frac{\alpha_{\ell}}{\ell}\right)=(-1)^{\frac{b_{\ell}}{2}} \\ \left(1+\zeta_{2(q-1)}^{j b_{\ell} l^{-s}}\right)^{-2} & \text { if }\left(\frac{\alpha_{\ell}}{\ell}\right)=(-1)^{\frac{b_{\ell}}{2}+1}\end{cases}
$$

Next we compute the local factors $L_{2}\left(\widetilde{\rho}_{j}, s\right)$ and $L_{q}\left(\widetilde{\rho}_{j}, s\right)$. When $\left(\frac{2}{q}\right)=-1$, we know from last section that 2 is ramified in \widetilde{K} / K. So $L_{2}\left(\widetilde{\rho}_{j}, s\right)=1$ in this case. Now we assume $\left(\frac{2}{q}\right)=1$. Since $I_{2}=\left\langle\sigma_{-1}\right\rangle$ and 2 is unramifed in \widetilde{K} / K, we have $\widetilde{I}_{2}=<\widetilde{\sigma}_{-1}>$ or $\widetilde{I}_{2}=<\widetilde{\sigma}_{-1} \varepsilon>$. The matrices $I+\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1}\right)$ and $I+\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{-1} \varepsilon\right)$ have rank 1, thus $V^{\widetilde{I}_{2}}$ has dimension 1. Write $\mathrm{Fr}_{2}=\sigma_{2}^{b_{2}}$ with $2 \mid b_{2}$. As in last section, we always assume $b_{2} \equiv 2 \bmod 4$ if $q \equiv 3 \bmod 4$. Recall that P_{0} be the set of the prime numbers of the form $A^{2}+64 B^{2}$ with $A, B \in \mathbb{Z}$. Since $\widetilde{\rho}_{j}\left(\widetilde{\sigma}_{2}^{b_{2}}\right)=\zeta_{2(q-1)}^{j b_{2}} I$, by Prop. 4.3 we have

$$
L_{2}\left(\widetilde{\rho}_{j}, s\right)= \begin{cases}1-\zeta_{2(q-1)}^{j b_{2}} 2^{-s} & \text { if } q \notin P_{0}, 16 \nmid q^{*}-1, \text { or } q \in P_{0}, 16 \mid q^{*}-1 \\ \left.1+\zeta_{2(q-1)}^{j b_{2}}\right)^{-s} & \text { if } q \in P_{0}, 16 \nmid q^{*}-1, \text { or } q \notin P_{0}, 16 \mid q^{*}-1 .\end{cases}
$$

When $q \equiv 3 \bmod 4$, we know that q is ramified in \widetilde{K} / K. So $L_{q}\left(\widetilde{\rho}_{j}, s\right)=$ 1 for odd j in this case. Assume $q \equiv 1 \bmod 4$. Since $I_{q}=<\sigma_{q}>$ and q is unramifed in \widetilde{K} / K, we have $\widetilde{I}_{q}=<\widetilde{\sigma}_{q}>$ or $\widetilde{I}_{2}=<\widetilde{\sigma}_{q} \varepsilon>$. Thus $V^{\widetilde{I}_{q}}=0$ if $j \neq 0$, and $V^{\widetilde{I}_{q}}$ has dimension 1 if $j=0$.

The Frobenius map Fr_{q} of q in G modulo I_{q} is the identity map. So $\widetilde{\mathrm{Fr}}_{q}=1$ or ε. In [Sect.5, 8] we have showed that q splits in \widetilde{K} / K if $q \equiv 1 \bmod 8$ and is inert if $q \equiv 5 \bmod 8$. So $\widetilde{\operatorname{Fr}}_{2}=1$ if $q \equiv 1 \bmod 8$ and $\widetilde{\mathrm{Fr}}_{2}=\varepsilon$ if $q \equiv 5 \bmod 8$. Thus we get

$$
L_{q}\left(\widetilde{\rho}_{j}, s\right)= \begin{cases}1 & \text { if } j \neq 0 \\ 1-q^{-s} & \text { if } j=0, q \equiv 1 \bmod 8 \\ 1+q^{-s} & \text { if } j=0, q \equiv 5 \bmod 8\end{cases}
$$

We have computed all the local factors, obtaining that

$$
\begin{align*}
L\left(\widetilde{\rho}_{j}, s\right)= & \left(1-u_{q} \zeta_{2(q-1)^{j} b_{2}}^{2^{-s}}\right)^{-1}\left(1-(-1)^{\frac{q-1}{4}} q^{-s}\right)^{-\delta_{0 j}} \\
& \times \prod_{\ell \equiv 1,2 \nmid b_{\ell} \text { or } \ell \equiv 3,2 \mid b_{\ell}}\left(1-\zeta_{q-1}^{\left.j b_{\ell} \ell^{-2 s}\right)^{-1}}\right. \tag{6.2}\\
& \times \prod_{\ell \equiv 3,2 \nmid b_{\ell}}\left(1+\zeta_{q-1}^{j b_{\ell}} \ell^{-2 s}\right)^{-1} \prod_{\ell \equiv 1,2 \mid b_{\ell}}\left(1-u_{\ell} \zeta_{2(q-1)}^{j b_{\ell}} \ell^{-s}\right)^{-2},
\end{align*}
$$

where $u_{q}=1$ if $q \notin P_{0}, 16 \nmid q^{*}-1$, or $q \in P_{0}, 16 \mid q^{*}-1$ and $u_{q}=-1$ otherwise; $\delta_{0 j}=0$ if $j \neq 0$ and $\delta_{00}=1$; and $u_{\ell}=\left(\frac{\alpha_{\ell}}{\ell}\right)(-1)^{\frac{b_{\ell}}{2}}$. Here in the products, " $\equiv "$ denotes the congruence modulo 4.

Theorem 6.1. Except for the Dirichlet L-functions, all Artin L-functions of the Galois extension $\widetilde{K} / \mathbb{Q}$ are explicitly given by (5.1) in the case $q=2$ and by (5.2) in the case q is odd, where in (5.2) $0 \leq j<q-1,2 \mid$ j if $q \equiv 1 \bmod 4$ and $0 \leq j<q-1,2 \nmid j$ if $q \equiv 3 \bmod 4$.
6.3. A formula. Let $\zeta_{\tilde{K}}(s)$ and $\zeta_{K}(s)$ be the Dedekind zeta functions of \widetilde{K} and K respectively. By Artin's formula of the decomposition of Dedekind zeta functions, we have

$$
\frac{\zeta_{\widetilde{K}}(s)}{\zeta_{K}(s)}=\prod_{\widetilde{\rho}_{j}} \prod_{\ell: \text { prime }} L_{\ell}\left(\widetilde{\rho}_{j}, s\right)^{2},
$$

where $\widetilde{\rho}_{j}$ runs over all 2-dimensional irreducible representations of \widetilde{G}. When $q=2$, there is only one 2-dimensional irreducible representation of \widetilde{G}. So the square of (5.1) gives the formula. When q is odd, by computing $\prod_{\widetilde{\rho}_{j}} L_{\ell}\left(\widetilde{\rho}_{j}, s\right)$, we get the following
Corollary 6.2. For a prime number $\ell \neq q$, let $f_{\ell}=\frac{q-1}{\operatorname{gcd}\left(b_{\ell}, q-1\right)}$ be the order of $\ell \bmod q$ and let $g_{\ell}=\operatorname{gcd}\left(b_{\ell}, q-1\right)=\frac{q-1}{f_{\ell}}$. If $q \equiv 1 \bmod 4$, we have

$$
\begin{aligned}
\frac{\zeta_{\tilde{K}}(s)}{\zeta_{K}(s)}= & \left(1-u_{q}^{f_{2}} 2^{-f_{2} s}\right)^{-g_{2}}\left(1-(-1)^{\frac{q-1}{4}} q^{-s}\right)^{-2} \prod_{\ell \equiv 1,2 \nmid b_{\ell} \text { or } \ell \equiv 3}\left(1-\ell^{-f_{\ell} s}\right)^{-2 g_{\ell}} \\
& \times \prod_{\ell \equiv 1,2 \mid b_{\ell}}\left(1-u_{\ell}^{f_{\ell}} \ell^{-f_{\ell} s}\right)^{-2 g_{\ell}},
\end{aligned}
$$

and if $q \equiv 3 \bmod 4$, we have

$$
\begin{aligned}
\frac{\zeta_{\tilde{K}}(s)}{\zeta_{K}(s)}= & \left(1+u_{q}^{f_{2}} 2^{-f_{2} s}\right)^{-g_{2}} \prod_{\ell \equiv 1,2 \nmid b_{\ell}}\left(1+\ell^{-f_{\ell} s}\right)^{-2 g_{\ell}} \prod_{\ell \equiv 3}\left(1-\ell^{-2 f_{\ell} s}\right)^{-g_{\ell}} \\
& \times \prod_{\ell \equiv 1,2 \mid b_{\ell}}\left(1+u_{\ell}^{f_{\ell}} \ell^{-f_{\ell} s}\right)^{-2 g_{\ell}},
\end{aligned}
$$

where u_{q} and u_{ℓ} are as above.
6.4. The corresponding modular forms. All the 2-dimensional irreducible representations of \tilde{G} in the case $p=-1$ are monomial. It is easy to see that they are odd. By Deligne-Serre's theorem [Th.2, 7], these Artin L-functions above are equal to the L-functions of some normalized newforms of weight one, which allows one to determine a newforms of weight one by a 2-dimensional irreducible odd representations of \tilde{G}. More precisely, the irreducible representation $\tilde{\rho}_{j}$ of conductor N corresponds to a normalized newform $f_{j}(z)$ of weight one on $\Gamma_{0}(N)$ with nebentype $\phi_{j}=\operatorname{det}\left(\tilde{\rho}_{j}\right)$, which has a Fourier expansion at infinity

$$
f_{j}(z)=\sum_{n=1}^{\infty} a_{n}^{(j)} q^{n}, \quad q=e^{2 \pi i z}
$$

where $a_{1}^{(j)}=1$ and the other coefficients a_{n} are equal to those of the L-function $L\left(\phi_{j}, s\right)=\sum_{n=1}^{\infty} a_{n} n^{-s}$. In this subsection we describe these modular forms explicitly. Since these newforms are eigenfunctions of Hecke operators, to determine all $a_{n}^{(j)}$ it is enough to determine $a_{\ell}^{(j)}$ for all primes ℓ.

When $q=2$, we get one normalized newform $f_{0}(z)$ of weight 1 on $\Gamma_{0}\left(2^{7}\right)$ with nebentype $\phi_{0}:(\mathbb{Z} / 8 \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$, where $\phi_{0}\left(\sigma_{-1}\right)=-1$ and $\phi_{0}\left(\sigma_{2}\right)=1$. By the formula (6.1), we directly have that for primes ℓ the coefficients $a_{\ell}^{(0)}$ of the newform are given by

$$
a_{\ell}^{(0)}= \begin{cases}0 & \text { if } \ell=2 \text { or } \ell \equiv 3,5,7 \bmod 8 \\ 2 & \text { if } \ell \in P_{0} \\ -2 & \text { if } \ell \equiv 1 \bmod 8 \text { but } \ell \notin P_{0}\end{cases}
$$

When q is odd, we get $\frac{q-1}{2}$ normalized newforms $f_{j}(z)$ of weight 1 on $\Gamma_{0}\left(4^{1+\log _{-1}\left(\frac{2}{q}\right)} q^{2}\right)$ with neputye $\phi_{j}:(\mathbb{Z} / 4 q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$, where $\phi_{j}\left(\sigma_{-1}\right)=$ -1 and $\phi_{j}\left(\sigma_{q}\right)=-\zeta_{q-1}^{j}$. By the formula (6.2) we directly have that for primes $\ell \neq q$ the coefficients of the newforms are given by

$$
a_{\ell}^{(j)}= \begin{cases}u_{q} \zeta_{2(q-1)}^{j b_{2}} & \text { if } \ell=2 \\ 2 u_{\ell} \zeta_{2(q-1)}^{b_{\ell}} & \text { if } \ell \equiv 1 \bmod 4 \text { and } 2 \mid b_{\ell} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
a_{q}^{(j)}= \begin{cases}0 & \text { if } j \neq 0 \\ (-1)^{\frac{q-1}{4}} & \text { if } j=0\end{cases}
$$

where $0 \leq j<q-1,2 \mid j$ if $q \equiv 1 \bmod 4$ and $0 \leq j<q-1,2 \nmid j$ if $q \equiv 3 \bmod 4 ; b_{\ell}$ is defined by $\ell \equiv g^{b_{\ell}} \bmod q$ for a primitive root g modulo $q ; u_{\ell}=\left(\frac{\alpha_{\ell}}{\ell}\right)(-1)^{\frac{b_{\ell}}{2}}$ for an integral number α_{ℓ} such that $\alpha_{\ell}^{2} \equiv q^{*} \bmod \ell$;
and

$$
u_{q}= \begin{cases}1 & \text { if } q \notin P_{0}, 16 \nmid q^{*}-1 \text { or } q \in P_{0}, 16 \mid q^{*}-1 \\ -1 & \text { if } q \notin P_{0}, 16 \mid q^{*}-1 \text { or } q \in P_{0}, 16 \nmid q^{*}-1 .\end{cases}
$$

Here P_{0} is the set of all prime numbers of the form $A^{2}+64 B^{2}$ with $A, B \in \mathbb{Z}$.

Acknowledgements The authors thank the referee for the careful reading of the manuscript and for the revision of some missprints.

References

[1] G. W. Anderson, Kronecker-Weber plus epsilon, Duke Math. J. 114, 439-475 (2002).
[2] J. W. S. Cassels, A. Frohlich, Algebraic Number Theory, Academic Press, 1967.
[3] P. Das, Algebraic Gamma monomials and double coverings of cyclotomic fields, Trans. Amer. Math. Soc. 352, 3557-3594 (2000).
[4] M. Daberkow, M. Pohst, On integral bases in relative quadratic extensions, Math. of Computation 65, 319-329(1996).
[5] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, GTM 84, Springer-Verlag, 1982.
[6] J-P. Serre, Linear Representations of finite groups, GTM 42, Springer-Verlag, New York Inc. 1977.
[7] J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic number fields: L-functions and Galois properties (A. Frölich, ed.), Academic Press, London, 1977, 193-268.
[8] L. Yin and C. Zhang, Arithmetic of quasi-cyclotomic fields, J. Number Theory, 128, 1717-1730(2008).
[9] L. Yin and Q. Zhang, All double coverings of cyclotomic fields, Math. Zeit. 253, 479-488(2006).
(1) Department of Mathematics, KAISt, Daejeon, Korea
(2) Department of Mathematical Sciences, Tsinghua University, BeiJing 100084, China

[^0]: S. Bae is supported by NRF of Korea (ASARC R11-2007-035-01001-0).
 L. Yin is supported by NSFC (No.10871107) and is the corresponding author.

