ARTIN *L*-FUNCTIONS AND MODULAR FORMS ASSOCIATED TO QUASI-CYCLOTOMIC FIELDS

SUNGHAN BAE⁽¹⁾, YONG HU⁽²⁾, LINSHENG YIN⁽²⁾

ABSTRACT. We determine all irreducible representations of primary quasi cyclotomic fields, compute the Artin conductors of the representations and the Artin *L*-functions for a class of quasicyclotomic fields. By Deligne-Serre's theorem, these *L*-functions give a series of normalized newforms of weight one. We describe these modular forms explicitly.

1. INTRODUCTION

A quadratic extension of a cyclotomic field, which is non-abelian Galois over the rational number field \mathbb{Q} , is called a quasi-cyclotomic field. All quasi-cyclotomic fields are described explicitly in [9] following the works in [1] and [3]. Actually for any cyclotomic field $\mathbb{Q}(\zeta_n)$ we construct a canonical $\mathbb{Z}/2\mathbb{Z}$ -basis of the quotient space of $\{\alpha \in \mathbb{Q}^*/\mathbb{Q}^{*2} \mid \mathbb{Q}(\zeta_n, \sqrt{\alpha})/\mathbb{Q} \text{ is Galois}\} \text{ modulo the subspace } \{\alpha \in \mathbb{Q}^*/\mathbb{Q}^*\}$ $\mathbb{Q}^*/\mathbb{Q}^{*2} \mid \mathbb{Q}(\zeta_n, \sqrt{\alpha})/\mathbb{Q}$ is Abelin}. The minimal quasi-cyclotomic field containing the square root of a special element of the basis is called a primary quasi-cyclotomic field. L.Yin and C.Zhang [8] have studied the arithmetic of any quasi-cyclotomic field. In this paper we determine all irreducible representations of primary quasi-cyclotomic fields. The methods apply to determine the irreducible representations of an arbitrary quasi-cyclotomic field. We also compute the Artin conductors of the representations and the Artin L-functions for a class of quasicyclotomic fields. They correspond to a series of normalized newforms of weight one by Deligne-Serre's theorem [Th.2, 7]. We describe these modular forms explicitly.

First we recall the construction of primary quasi-cyclotomic fields. Let S be the set consisting of -1 and all prime numbers. For $p \in S$, we put $\bar{p} = 4, 8, p$ and set $p^* = -1, 2, (-1)^{\frac{p-1}{2}}p$ if p = -1, 2 and an odd prime number, respectively. For prime numbers p < q, we define

$$v_{pq} = \prod_{i=0}^{\frac{p-1}{2}} \prod_{j=0}^{\frac{q-1}{2}} \frac{\sin \frac{iq+j}{pq} \pi}{\sin \frac{jp+i}{pq} \pi} \qquad ((i,j) \neq (0,0), \ p > 2)$$

S. Bae is supported by NRF of Korea (ASARC R11-2007-035-01001-0).

L. Yin is supported by NSFC (No.10871107) and is the corresponding author.

and

$$v_{2q} = \frac{\sin\frac{\pi}{4}}{\sin\frac{\pi}{4q}} \prod_{j=1}^{\frac{q-1}{2}} \frac{\sin\frac{j\pi}{2q} \cdot \sin\frac{2j-1}{4q}\pi}{2\sin\frac{4j+1}{4q}\pi \cdot \sin\frac{j}{q}\pi \cdot \sin\frac{2j-1}{2q}\pi}.$$

For $p < q \in S$, we put

$$u_{pq} = \begin{cases} \sqrt{q^*} & \text{if } p = -1 \\ v_{pq} & \text{if } p = 2 \text{ or } p \equiv q \equiv 1 \mod 4 \\ \sqrt{p} \cdot v_{pq} & \text{if } p \equiv 1, \ q \equiv 3 \mod 4 \\ \sqrt{q} \cdot v_{pq} & \text{if } p \equiv 3, \ q \equiv 1 \mod 4 \\ \sqrt{pq} \cdot v_{pq} & \text{if } p \equiv q \equiv 3 \mod 4. \end{cases}$$

The canonical $\mathbb{Z}/2\mathbb{Z}$ -basis of the quotient space mentioned above consists of a subset of $\{u_{pq} \mid p < q \in S\}$. For $p < q \in S$ let $K = \mathbb{Q}(\zeta_{\bar{p}q})$ be the cyclotomic field of conductor $\bar{p}q$ and let $\tilde{K} = K(\sqrt{u_{pq}})$. Then \tilde{K} is the smallest quasi-cyclotomic fields containing $\sqrt{u_{pq}}$. We call these fields \tilde{K} primary quasi-cyclotomic fields. Let $G = \operatorname{Gal}(K/\mathbb{Q})$ and $\tilde{G} = \operatorname{Gal}(\tilde{K}/\mathbb{Q})$. We always denote by ϵ the unique non-trivial element of $\operatorname{Gal}(\tilde{K}/K)$. If (p,q) = (-1,2), then the group G is generated by two elements σ_{-1} and σ_2 , where $\sigma_{-1}(\zeta_8) = \zeta_8^{-1}$ and $\sigma_2(\zeta_8) = \zeta_8^5$. If p = -1and $q \neq 2$, or if p > 2, then G is generated by two elements σ_p and σ_q , where $\sigma_p(\zeta_p) = \zeta_p^a, \sigma_p(\zeta_q) = \zeta_q$ and $\sigma_q(\zeta_p) = \zeta_p, \sigma_q(\zeta_q) = \zeta_q^b$, with a, bbeing generators of $(\mathbb{Z}/\bar{p}\mathbb{Z})^*$ and $(\mathbb{Z}/q\mathbb{Z})^*$ respectively. If p = 2, then G is generated by three elements σ_{-1}, σ_2 and σ_q , where σ_{-1}, σ_2 act on ζ_8 as above and on ζ_q trivially, and σ_q acts on ζ_q as above and on ζ_8 trivially.

Next we describe the group G by generators and relations. An element $\sigma \in G$ has two lifts in \tilde{G} . By [Sect.3, 7] the action of the two lifts on $\sqrt{u_{pq}}$ has the form $\pm \alpha \sqrt{u_{pq}}$ or $\pm \alpha \sqrt{u_{pq}}/\sqrt{-1}$ with $\alpha > 0$. We fix the lift $\tilde{\sigma}$ of σ to be the one with the positive sign. Then the other lift of σ is $\tilde{\sigma}\epsilon$. The group \tilde{G} is generated by $\epsilon, \tilde{\sigma}_p$ and $\tilde{\sigma}_q$ (and $\tilde{\sigma}_{-1}$ if p = 2). Clearly ϵ commutes with the other generators. In addition, we have $\tilde{\sigma}_p \tilde{\sigma}_q = \tilde{\sigma}_q \tilde{\sigma}_p \epsilon$ (and $\tilde{\sigma}_{-1}$ commutes with $\tilde{\sigma}_2$ and $\tilde{\sigma}_q$ if p = 2). For an element g of a group, we denote by |g| the order of g in the group. Let $\log_{-1} : \{\pm 1\} \to \mathbb{Z}/2\mathbb{Z}$ be the unique isomorphism. For an odd prime number p and an integer a with $p \nmid a$, let $(\frac{a}{p})$ be the quadratic residue symbol. We also define $(\frac{a}{2}) = (\frac{a}{-1}) = 1$ for any a. Then we have, see [Th.3, 7],

$$|\tilde{\sigma}_p| = \left(1 + \log_{-1}\left(\frac{q^*}{p}\right)\right) |\sigma_p| \quad \text{and} \quad |\tilde{\sigma}_q| = \left(1 + \log_{-1}\left(\frac{p^*}{q}\right)\right) |\sigma_q|,$$

with the exception that $|\tilde{\sigma}_2| = 2|\sigma_2|$ when (p,q) = (-1,2). If p = 2, we have furthermore $|\tilde{\sigma}_{-1}| = |\sigma_{-1}|$. Thus we have determined the group \tilde{G} completely by generators and relations.

2. Abelian subgroup of index 2

In this section we construct a special abelian subgroup of G of index 2 and determine its structure. We consider the following three cases separately:

Case A: $|\widetilde{\sigma}_p| = |\sigma_p|$ and $|\widetilde{\sigma}_q| = |\sigma_q|$; Case B: $|\widetilde{\sigma}_p| = 2|\sigma_p|$, $|\widetilde{\sigma}_q| = |\sigma_q|$ or $|\widetilde{\sigma}_p| = |\sigma_p|$, $|\widetilde{\sigma}_q| = 2|\sigma_q|$; Case C: $|\widetilde{\sigma}_p| = 2|\sigma_p|$ and $|\widetilde{\sigma}_q| = 2|\sigma_q|$.

All the three cases may happen: Case (A) if and only if $\left(\frac{p^*}{q}\right) = \left(\frac{q^*}{p}\right) = 1$; Case (B) if and only if $\left(\frac{p^*}{q}\right) \neq \left(\frac{q^*}{p}\right)$ or (p,q) = (-1,2); Case (C) if and only if $\left(\frac{p^*}{q}\right) = \left(\frac{q^*}{p}\right) = -1$.

In Case A, we define the subgroup N of \widetilde{G} to be

$$N = \begin{cases} < \widetilde{\sigma}_{-1}, \widetilde{\sigma}_2, \widetilde{\sigma}_q^2, \varepsilon > & \text{if } p = 2 \\ < \widetilde{\sigma}_p, \widetilde{\sigma}_q^2, \varepsilon > & \text{if } p \neq 2 \end{cases}$$
(A2.1)

It is easy to see that the subgroup N is abelian of index 2 in \tilde{G} and is a direct sum of the cyclic groups generated by the elements. Thus we have

$$N \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/((q-1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p = -1\\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/((q-1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p = 2\\ \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/((q-1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p > 2. \end{cases}$$

$$(A2.2)$$

In Case B, we define the subgroup N of \widetilde{G} to be

$$N = \begin{cases} < \widetilde{\sigma}_{-1}, \widetilde{\sigma}_2, \widetilde{\sigma}_q^2 > & \text{if } p = 2 \\ < \widetilde{\sigma}_p, \widetilde{\sigma}_q^2 > & \text{if } p \neq 2 \text{ and } |\widetilde{\sigma}_q| = 2|\sigma_q| \\ < \widetilde{\sigma}_p^2, \widetilde{\sigma}_q > & \text{if } |\widetilde{\sigma}_p| = 2|\sigma_p|. \end{cases}$$
(B2.1)

Again N is abelian and has index 2 in \widetilde{G} . In addition, we have

$$N \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } (p,q) = (-1,2) \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} & \text{if } p = -1, q > 2 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} & \text{if } p = 2 \\ \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} & \text{if } p > 2. \end{cases}$$
(B2.2)

In Case C, p, q both are odd prime numbers. Let $v_2(p-1)$ denote the power of 2 in p-1. We define the subgroup N of \widetilde{G} to be

$$N = \begin{cases} < \widetilde{\sigma}_p^2, \widetilde{\sigma}_q > & \text{if } v_2(p-1) \le v_2(q-1) \\ < \widetilde{\sigma}_p, \widetilde{\sigma}_q^2 > & \text{if } v_2(p-1) > v_2(q-1). \end{cases}$$
(C2.1)

Then N is an abelian subgroup of \widetilde{G} . When $v_2(p-1) \leq v_2(q-1)$, we have

$$|N| = \frac{|\widetilde{\sigma}_p^2| \cdot |\widetilde{\sigma}_q|}{| < \widetilde{\sigma}_p^2 > \cap < \widetilde{\sigma}_q > |} = \frac{(p-1) \cdot 2(q-1)}{2},$$

thus $[\tilde{G}:N] = 2$ and N is a normal subgroup of \tilde{G} . We have the same result when $v_2(p-1) > v_2(q-1)$. Although the subgroup $< \tilde{\sigma}_p^2, \tilde{\sigma}_q >$ is always an abelian subgroup of \tilde{G} of index 2, when $v_2(p-1) > v_2(q-1)$ we are not able to get all irreducible representations of \tilde{G} from this subgroup. So we define N in two cases.

Next we determine the structure of the subgroup N in the case C. We consider the case $v_2(p-1) \leq v_2(q-1)$ in detail. Let $d = \gcd(\frac{p-1}{2}, q-1)$, s = (p-1)/2d and t = (q-1)/d. Choose $u, v \in \mathbb{Z}$ such that us + vt = 1. We have the relations

$$(\widetilde{\sigma}_p^2)^{p-1} = 1, \ (\widetilde{\sigma}_p^2)^{\frac{p-1}{2}} = \varepsilon = \widetilde{\sigma}_q^{q-1}.$$

Let M be the free abelian group generated by two words α , β . Let

$$\alpha_1 = (p-1)\alpha$$
; $\beta_1 = \frac{p-1}{2}\alpha - (q-1)\beta$;

and let M_1 be the subgroup of M generated by α_1, β_1 . Then M_1 is the kernel of the homomorphism

$$M \longrightarrow N; \ \alpha \mapsto \widetilde{\sigma}_p^2, \ \beta \mapsto \widetilde{\sigma}_q$$
.

So we have $N \cong M/M_1$. Define the matrix

$$A = \begin{pmatrix} p-1 & \frac{p-1}{2} \\ 0 & 1-q \end{pmatrix} \ .$$

Then $(\alpha_1, \beta_1) = (\alpha, \beta) \cdot A$. We determine the structure of M_1 by considering the standard form of A. Define

$$P = \begin{pmatrix} u & v \\ -t & s \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) ; \quad Q = \begin{pmatrix} 1 & 2tv - 1 \\ -1 & -2tv + 2 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$$

Then

$$B = PAQ = \begin{pmatrix} d & 0\\ 0 & -2s(q-1) \end{pmatrix}$$

is the standard form of A. Let

$$(\tau, \mu) = (\alpha, \beta)P^{-1}$$
 and $(\tau_1, \mu_1) = (\alpha_1, \beta_1)Q$

Then $(\tau_1, \mu_1) = (\tau, \mu)B$, $M = \mathbb{Z}\tau \oplus \mathbb{Z}\mu$ and $M_1 = \mathbb{Z}d\tau \oplus \mathbb{Z}2s(q-1)\mu$. We thus have

 $N \cong M/M_1 \cong \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z}$.

By abuse of notation, we also write

$$(\tau,\mu) = (\widetilde{\sigma}_p^2,\widetilde{\sigma}_q)P^{-1} = (\widetilde{\sigma}_p^{2s}\widetilde{\sigma}_q^t, \widetilde{\sigma}_p^{-2v}\widetilde{\sigma}_q^u) .$$

Then τ , μ are of order d, 2s(q-1) respectively, and N is a direct sum of $\langle \tau \rangle$ and $\langle \mu \rangle$. We have $\tilde{\sigma}_p^2 = \tau^u \mu^{-t}$ and $\tilde{\sigma}_q = \tau^v \mu^s$. When $v_2(p-1) > v_2(q-1)$, we get the structure of N in the same way. So in the case (C) we have

$$N \cong \begin{cases} \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z} & \text{if } v_2(p-1) \le v_2(q-1) \\ \mathbb{Z}/d'\mathbb{Z} \oplus \mathbb{Z}/2s'(p-1)\mathbb{Z} & \text{if } v_2(p-1) > v_2(q-1), \end{cases} (C2.2)$$

where $d = \gcd(\frac{p-1}{2}, q-1), s = (p-1)/2d$ and $d' = \gcd(p-1, \frac{q-1}{2}), s' = (q-1)/2d'$.

Now we summarize our results in the following

Proposition 2.1. The abelian subgroup N of the group \tilde{G} of index 2 defined in (A2.1), (B2.1) and (C2.1) has the structure described in (A2.2), (B2.2) and (C2.2) in the cases (A), (B) and (C), respectively. In particular, every irreducible representation of \tilde{G} has dimension 1 or 2.

3. 2-dimensional representations

We determine all irreducible representations of \tilde{G} in this section. We will use some basic facts from representation theory freely. For the details, see [6].

It is well-known that the 1-dimensional representations of \tilde{G} correspond bijectively to those of the maximal abelian quotient G of \tilde{G} , which are Dirichlet characters. So we mainly construct the 2-dimensional irreducible representations of \tilde{G} . From the dimension formula of all irreducible representations, we see that \tilde{G} has |G|/4 irreducible representations of dimension 2, up to isomorphism. Let N be the subgroup of \tilde{G} defined in last section. Let $\tilde{G} = N \cup \sigma N$ be the decomposition in cosets. If $\rho : N \to \mathbb{C}^*$ is a representation of N, the induced representation $\tilde{\rho}$ of ρ is a representation of \tilde{G} of dimension 2. The space of the representation $\tilde{\rho}$ is $V = \operatorname{Ind}_{N}^{\tilde{G}}(\mathbb{C}) = \mathbb{C}[\tilde{G}] \otimes_{\mathbb{C}[N]} \mathbb{C}$ with basis $e_1 = 1 \otimes 1$ and $e_2 = \sigma \otimes 1$. The group homomorphism

$$\widetilde{\rho}: \widetilde{G} \longrightarrow \mathrm{GL}(V) \simeq \mathrm{GL}_2(\mathbb{C})$$

is given by

(3.1)
$$\widetilde{\rho}(\widetilde{\sigma}) = \begin{pmatrix} \rho(\widetilde{\sigma}) & \rho(\widetilde{\sigma}\sigma) \\ \rho(\sigma^{-1}\widetilde{\sigma}) & \rho(\sigma^{-1}\widetilde{\sigma}\sigma) \end{pmatrix}, \quad \forall \ \widetilde{\sigma} \in \widetilde{G},$$

where $\rho(\tilde{\sigma}) = 0$ if $\tilde{\sigma} \notin N$. The representation $\tilde{\rho}$ is irreducible if and only if $\rho \ncong \rho^{\tau}$ for every $\tau \in \tilde{G} \setminus N$, where ρ^{τ} is the conjugate representation of ρ defined by

 $\rho^{\tau}(x) = \rho(\tau^{-1}x\tau) , \quad \forall \ x \in N .$

Since N is abelian, we only need to check $\rho \ncong \rho^{\sigma}$.

Now we begin to construct all 2-dimensional irreducible representations of \tilde{G} . As in last section, we consider the three cases separately. In addition, we consider the case when p and q are odd prime numbers in details, and only state the results in the cases when p = -1 or 2. **3.1. Case A.** Assume p > 2. We have in this case $N = \langle \tilde{\sigma}_p, \tilde{\sigma}_q^2, \varepsilon \rangle$ and

$$N \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/((q-1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

Every irreducible representation of N can be written as $\rho_{ijk}:N\longrightarrow \mathbb{C}^*$ with

$$\rho_{ijk}(\widetilde{\sigma}_p) = \zeta_{p-1}^i \; ; \; \rho_{ijk}(\widetilde{\sigma}_q^2) = \zeta_{q-1}^{2j} \; ; \; \rho_{ijk}(\varepsilon) = (-1)^k \; .$$

where $0 \leq i < p-1$, $0 \leq j < \frac{q-1}{2}$ and k = 0, 1. Since $\widetilde{G} = N \cup \widetilde{\sigma}_q N$ and $\rho_{ijk}^{\widetilde{\sigma}_q}(\widetilde{\sigma}_p) = \rho_{ijk}(\varepsilon)\rho_{ijk}(\widetilde{\sigma}_p) = (-1)^k \rho_{ijk}(\widetilde{\sigma}_p)$, we have

$$\rho_{ijk}^{\overline{\sigma}_q} \not\cong \rho_{ijk} \Longleftrightarrow k = 1.$$

Write $\rho_{ij} = \rho_{ij1}$. The induced representation $\tilde{\rho}_{ij} : \tilde{G} \longrightarrow \mathrm{GL}_2(\mathbb{C})$ of ρ_{ij} is given by

$$\widetilde{\rho}_{ij}(\widetilde{\sigma}_p) = \begin{pmatrix} \zeta_{p-1}^i & 0\\ 0 & -\zeta_{p-1}^i \end{pmatrix}, \ \widetilde{\rho}_{ij}(\widetilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j}\\ 1 & 0 \end{pmatrix}, \ \widetilde{\rho}_{ij}(\varepsilon) = -I, \ (A3.1)$$

where I is the identity matrix of degree 2. Since

$$\widetilde{\rho}_{ij}(\widetilde{\sigma}_p^2) = \begin{pmatrix} \zeta_{p-1}^{2i} & 0\\ 0 & \zeta_{p-1}^{2i} \end{pmatrix} \text{ and } \widetilde{\rho}_{ij}(\widetilde{\sigma}_q^2) = \begin{pmatrix} \zeta_{q-1}^{2j} & 0\\ 0 & \zeta_{q-1}^{2j} \end{pmatrix},$$

we see that the representations $\tilde{\rho}_{ij}$ with $0 \leq i < \frac{p-1}{2}$, $0 \leq j < \frac{q-1}{2}$ are irreducible and are not isomorphic to each other, by considering the values of the characters of these representations at $\tilde{\sigma}_p^2$ and $\tilde{\sigma}_q^2$. The number of these representations is $\frac{p-1}{2} \cdot \frac{q-1}{2} = \frac{|G|}{4}$. So they are all the irreducible representations of \tilde{G} of dimension 2.

Similarly, when p = -1, all irreducible representations of \widetilde{G} of dimension 2 are $\widetilde{\rho}_j$ with $0 \leq j < \frac{q-1}{2}$, where

$$\widetilde{\rho}_{j}(\widetilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \widetilde{\rho}_{j}(\widetilde{\sigma}_{q}) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j} \\ 1 & 0 \end{pmatrix}, \quad \widetilde{\rho}(\varepsilon) = -I \quad (A3.2)$$

and when p = 2, all irreducible representations of \tilde{G} of dimension 2 are $\bar{\rho}_{ij}$ with $0 \leq i \leq 1$ and $0 \leq j < \frac{q-1}{2}$, where $\bar{\rho}_{ij}(\varepsilon) = -I$ and

$$\bar{\rho}_{ij}(\tilde{\sigma}_{-1}) = (-1)^{i}I, \ \bar{\rho}_{ij}(\tilde{\sigma}_{2}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \bar{\rho}_{ij}(\tilde{\sigma}_{q}) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j} \\ 1 & 0 \end{pmatrix}.$$
(A3.3)

2 Case B. Assume $p > 2$ and $|\tilde{\sigma}_{q}| = 2|\sigma_{q}|$. Then $N = \langle \tilde{\sigma}_{p}, \tilde{\sigma}_{q}^{2} \rangle$, and
$$N \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z}.$$

3.

Any irreducible representation of N has the form $\rho_{ij}: N \longrightarrow \mathbb{C}^*$, where

$$\rho_{ij}(\widetilde{\sigma}_p) = \zeta_{p-1}^i , \ \rho_{ij}(\widetilde{\sigma}_q^2) = \zeta_{q-1}^j , \ \rho_{ij}(\varepsilon) = \rho_{ij}(\widetilde{\sigma}_q^2)^{\frac{q-1}{2}} = (-1)^j ,$$

and $0 \le i , <math>0 \le j < q - 1$. It is easy to check that

$$\rho_{ij}^{\sigma_q} \not\cong \rho_{ij} \Longleftrightarrow j \equiv 1 \pmod{2}$$
.

The induced representation $\widetilde{\rho}_{ij} : \widetilde{G} \longrightarrow \operatorname{GL}_2(\mathbb{C})$ of ρ_{ij} with odd j is given by

$$\widetilde{\rho}_{ij}(\widetilde{\sigma}_p) = \begin{pmatrix} \zeta_{p-1}^i & 0\\ 0 & -\zeta_{p-1}^i \end{pmatrix}, \ \widetilde{\rho}_{ij}(\widetilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^j\\ 1 & 0 \end{pmatrix}. \tag{B3.1}$$

Since

$$\widetilde{\rho}_{ij}(\widetilde{\sigma}_p^2) = \begin{pmatrix} \zeta_{p-1}^{2i} & 0\\ 0 & \zeta_{p-1}^{2i} \end{pmatrix} \quad \text{and} \quad \widetilde{\rho}_{ij}(\widetilde{\sigma}_q^2) = \begin{pmatrix} \zeta_{q-1}^j & 0\\ 0 & \zeta_{q-1}^j \end{pmatrix},$$

we see that the representations $\tilde{\rho}_{ij}$ with $0 \leq i < \frac{p-1}{2}$ and $0 \leq j < q-1$, $2 \nmid j$ are irreducible and are not isomorphic to each other. The number of these representations is $\frac{|G|}{4}$. So they are all the irreducible representations of \tilde{G} of dimension 2.

Similarly, when (p,q) = (-1,2), there is only one irreducible representation $\tilde{\rho}_0$ of dimension 2 defined by

$$\widetilde{\rho}_0(\widetilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \quad \text{and} \quad \widetilde{\rho}_0(\widetilde{\sigma}_2) = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}.$$
(B3.2)

When p = -1 and q > 2, all irreducible representations of dimension 2 are $\tilde{\rho}_j$ with $0 \le j < q - 1$, $2 \nmid j$, where $\tilde{\rho}_j$ is defined by

$$\widetilde{\rho}_j(\widetilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \widetilde{\rho}_j(\widetilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^j\\ 1 & 0 \end{pmatrix}.$$
(B3.3)

When p = 2, all irreducible representations of dimension 2 are $\bar{\rho}_{ij}$ with $0 \le i \le 1$ and $0 \le j < q - 1$, $2 \nmid j$, where $\bar{\rho}_{ij}$ is defined by

$$\bar{\rho}_{ij}(\tilde{\sigma}_{-1}) = (-1)^i I, \ \bar{\rho}_{ij}(\tilde{\sigma}_2) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \ \bar{\rho}_{ij}(\tilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^j\\ 1 & 0 \end{pmatrix}.$$
(B3.4)

When $|\tilde{\sigma}_p| = 2|\sigma_p|$, all irreducible representations of dimension 2 are $\hat{\rho}_{ij}$ with $0 \leq i < p-1$, $2 \nmid i$ and $0 \leq j < \frac{q-1}{2}$, where $\hat{\rho}_{ij}$ is defined by

$$\hat{\rho}_{ij}(\widetilde{\sigma}_p) = \begin{pmatrix} 0 & \zeta_{p-1}^i \\ 1 & 0 \end{pmatrix}, \ \hat{\rho}_{ij}(\widetilde{\sigma}_q) = \begin{pmatrix} \zeta_{q-1}^j & 0 \\ 0 & -\zeta_{q-1}^j \end{pmatrix}.$$
(B3.5)

3.3. Case C. Assume $v_2(p-1) \le v_2(q-1)$. Let

$$d = \gcd(\frac{p-1}{2}, q-1), \ s = \frac{p-1}{2d}, t = \frac{q-1}{d}; \ us + vt = 1$$

as before. We must have that t is even and u is odd. Let $\tau = \widetilde{\sigma}_p^{2s} \cdot \widetilde{\sigma}_q^t$ and $\mu = \widetilde{\sigma}_p^{-2v} \cdot \widetilde{\sigma}_q^u$. Then $N = \langle \widetilde{\sigma}_p^2, \, \widetilde{\sigma}_q \rangle = \langle \tau \,, \mu \rangle$ and

$$N \cong \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z}$$

Any irreducible representation $\rho_{ij}: N \longrightarrow \mathbb{C}^*$ is of the form

$$\rho_{ij}(\tau) = \zeta_d^i = \zeta_{(p-1)(q-1)}^{2s(q-1)i} \quad \text{and} \quad \rho_{ij}(\mu) = \zeta_{2s(q-1)}^j = \zeta_{(p-1)(q-1)}^{dj}$$

From $\tilde{\sigma}_p^2 = \tau^u \mu^{-t}$ and $\tilde{\sigma}_q = \tau^v \mu^s$, we have

$$\rho_{ij}(\widetilde{\sigma}_p^2) = \zeta_{p-1}^{2sui-j} \; ; \; \rho_{ij}(\widetilde{\sigma}_q) = \zeta_{2(q-1)}^{2tvi+j} \; ; \; \rho_{ij}(\varepsilon) = \rho_{ij}(\widetilde{\sigma}_p^2)^{\frac{p-1}{2}} = (-1)^j \; .$$

It is easy to show

$$\rho_{ij}^{\tilde{\sigma}_p} \not\cong \rho_{ij} \iff j \equiv 1 \pmod{2}$$
.

The induced representation $\widetilde{\rho}_{ij}: \widetilde{G} \longrightarrow \mathrm{GL}_2(\mathbb{C})$ of ρ_{ij} with odd j is given by

$$\widetilde{\rho}_{ij}(\tau) = \begin{pmatrix} \zeta_d^i & 0\\ 0 & \zeta_d^i \end{pmatrix} ; \quad \widetilde{\rho}_{ij}(\mu) = \begin{pmatrix} \zeta_{2s(q-1)}^j & 0\\ 0 & -\zeta_{2s(q-1)}^j \end{pmatrix}.$$

Here in the first equality we used the fact that t is even, and in the second equality we used the fact that u is odd. Furthermore we have

$$\widetilde{\rho}_{ij}(\widetilde{\sigma}_p) = \begin{pmatrix} 0 & \zeta_{p-1}^{2sui-j} \\ 1 & 0 \end{pmatrix} ; \ \widetilde{\rho}_{ij}(\widetilde{\sigma}_q) = \begin{pmatrix} \zeta_{2(q-1)}^{2tvi+j} & 0 \\ 0 & -\zeta_{2(q-1)}^{2tvi+j} \end{pmatrix}.$$
(C3.1)

By considering the values of the character of $\tilde{\rho}_{ij}$ at τ and μ^2 , we see that all the representations $\tilde{\rho}_{ij}$ with $0 \leq i < d$ and $0 \leq j < s(q-1), 2 \nmid j$ are irreducible and are not isomorphic to each other. The number of these representations is $d \cdot \frac{s(q-1)}{2} = \frac{|G|}{4}$. So they are all the irreducible representations of \tilde{G} of dimension 2.

Similarly, if $v_2(p-1) > v_2(q-1)$, we let

$$d' = \gcd(p-1, \frac{q-1}{2}), \ s' = \frac{p-1}{d}, t' = \frac{q-1}{2d}; \ u's' + v't' = 1.$$

Then all the irreducible representations of \widetilde{G} of dimension 2 are $\hat{\rho}_{ij}$ with $0 \leq i < d'$ and $0 \leq j < t'(p-1), 2 \nmid j$, where $\hat{\rho}_{ij}$ is defined by

$$\hat{\rho}_{ij}(\tilde{\sigma}_p) = \begin{pmatrix} \zeta_{2(p-1)}^{2s'u'i+j} & 0\\ 0 & -\zeta_{2(p-1)}^{2s'u'i+j} \end{pmatrix}; \ \hat{\rho}_{ij}(\tilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^{2t'v'i-j}\\ 1 & 0 \end{pmatrix} . \quad (C3.2)$$

Let $\mathbb{R}^2(\widetilde{G})$ be the set of all irreducible representations, up to isomorphism, of \widetilde{G} of dimension 2. As a summary, we have proved the following

Theorem 3.1. All 2-dimensional irreducible representations of \hat{G} are induced from the representations of N. In detail, we have

In the case (A)

$$\mathbf{R}^{2}(\widetilde{G}) = \begin{cases} \{\widetilde{\rho}_{j} \mid 0 \leq j < \frac{q-1}{2}\} & \text{if } p = -1\\ \{\overline{\rho}_{ij} \mid i = 0, 1, \ 0 \leq j < \frac{q-1}{2}\} & \text{if } p = 2\\ \{\widetilde{\rho}_{ij} \mid 0 \leq i < \frac{p-1}{2}, \ 0 \leq j < \frac{q-1}{2}\} & \text{if } p > 2, \end{cases}$$

where $\tilde{\rho}_j$, $\bar{\rho}_{ij}$ and $\tilde{\rho}_{ij}$ are defined in (A3.2), (A3.3) and (A3.1) respectively.

In the case (B)

$$\mathbf{R}^{2}(\widetilde{G}) = \begin{cases} \{\widetilde{\rho}_{0}\} & \text{if } (p,q) = (-1,2) \\ \{\widetilde{\rho}_{j} \mid 0 \leq j < q-1, \ 2 \nmid j\} & \text{if } p = -1, \ q > 2 \\ \{\overline{\rho}_{ij} \mid i = 0, 1, \ 0 \leq j < q-1, \ 2 \nmid j\} & \text{if } p = 2 \\ \{\widehat{\rho}_{ij} \mid 0 \leq i < p-1, \ 2 \nmid i, \ 0 \leq j < \frac{q-1}{2}\} & \text{if } |\widetilde{\sigma}_{p}| = 2|\sigma_{p}| \\ \{\widetilde{\rho}_{ij} \mid 0 \leq i < \frac{p-1}{2}, \ 0 \leq j < q-1, \ 2 \nmid j\} & \text{otherwise,} \end{cases}$$

where $\tilde{\rho}_0$, $\tilde{\rho}_j$, $\bar{\rho}_{ij}$, $\hat{\rho}_{ij}$ and $\tilde{\rho}_{ij}$ are defined in (B3.2), (B3.3), (B3.4), (B3.5) and (B3.1) respectively.

In the case (C)

$$\mathbf{R}^{2}(\widetilde{G}) = \begin{cases} \{\widetilde{\rho}_{ij} \mid 0 \le i < d, \ 0 \le j < s(q-1), \ 2 \nmid j\} & \text{if } v_{2}(p-1) \le v_{2}(q-1), \\ \{\widehat{\rho}_{ij} \mid 0 \le i < d', \ 0 \le j < t'(p-1), \ 2 \nmid j\} & \text{otherwise}, \end{cases}$$

where $\tilde{\rho}_{ij}$ and $\hat{\rho}_{ij}$ are defined in (C3.1) and (C3.2) respectively.

4. The Frobenius maps

This section is a preparation for the next two sections to compute the Artin conductors of the representations and the Artin *L*-functions of some quasi-cyclotomic fields \tilde{K} . For a prime number ℓ , we say that ℓ is ramified (resp. inert, splitting) in the relative quadratic extension \tilde{K}/K if the prime ideals of K over ℓ are ramified (resp. inert, splitting) in \tilde{K} . For a prime number ℓ which is unramified in \tilde{K}/K , let I_{ℓ} (resp. \tilde{I}_{ℓ}) be the inert group of ℓ in the extension K/\mathbb{Q} (resp. \tilde{K}/\mathbb{Q}). Let Fr_{ℓ} be the Frobenius automorphism of ℓ in G/I_{ℓ} and Fr_{ℓ} the Frobenius automorphism of ℓ in $\tilde{G}/\tilde{I}_{\ell}$ associated to some prime ideal over ℓ .

To compute the Artin conductors of the representations, we need to construct an uniformizer in the completion of \tilde{K} at a prime ideal, especially at a prime ideal over 2. Generally we are not able to get such an uniformizer, but we can do it in the case p = -1. In addition, to calculate the Artin *L*-functions of the representations, we need to know the \tilde{Fr}_{ℓ} , especially for $\ell = 2$, and so we need to know the decomposition of 2 in \tilde{K} . For odd $p < q \in S$, we calculated some examples by a computer which show that 2 is always unramified in \tilde{K} . But we are not able to show it. Furthermore, we do not know when 2 splits in \tilde{K}/K and when 2 is inert in \tilde{K}/K . But when p = -1, we can solve these questions well (see below). So in this paper we only compute the Artin conductors and Artin *L*-functions of the representations in the case p = -1.

From now on, we always assume that p = -1, namely, $K = \mathbb{Q}(\zeta_{4q})$ and $\widetilde{K} = K(\sqrt[4]{q^*})$. In this section we determine \widetilde{Fr}_{ℓ} by Fr_{ℓ} for $\ell = 2$. In [Sect.5, 7] we have determined the decomposition of some odd prime numbers in \widetilde{K}/K . Now we determine the decomposition of 2 in \widetilde{K}/K . The result below is a more explicit reformulation of Theorem 2 in [8].

Proposition 4.1. If q = 2, then 2 is ramified in \widetilde{K}/K . If q is odd, then 2 is unramified in \widetilde{K}/K if and only if $(\frac{2}{q}) = 1$, and in this case 2 splits in \widetilde{K}/K if $q^* \equiv 1 \mod 16$ and is inert in \widetilde{K}/K if $q^* \not\equiv 1 \mod 16$.

Proof. We first consider the case q = 2. The unique prime ideal of K over 2 is the principal ideal generated by $\pi_2 = 1 - \zeta_8$. Since the ramification degree of 2 in K/\mathbb{Q} is 4 and $\sqrt{2} = \pi_2(\pi_2 + 2\zeta_8)\zeta_8$, we have that 2 is ramified in \widetilde{K}/K if and only if $x^2 \equiv \sqrt{2} \mod \pi_2^8$ is not solvable in the ring O_K of the integers of K by [Th.2(1), 8], which is equivalent to that $(1 + \frac{2}{\pi_2}\zeta_8)\zeta_8$ is not a square modulo π_2^6 . Since $2 = u\pi_2^4$ for some unit u, we have

$$\left(1+\frac{2}{\pi_2}\zeta_8\right)\zeta_8\equiv\zeta_8\equiv(1-\pi_2)\mathrm{mod}\pi_2^3,$$

namely $(1 + \frac{2}{\pi_2}\zeta_8)\zeta_8$ is not a square modulo π_2^3 . So 2 is ramified in \widetilde{K}/K .

Now we assume that q is odd. Let $\pi_2 = 1 - \zeta_4$. Since the ramification degree of 2 in K is 2, we have 2 is unramified in \widetilde{K}/K if and only if $x^2 \equiv \sqrt{q^*} \mod \pi_2^4$ is solvable in O_K , see [Th.2(1), 8]. Furthermore, 2 splits in \widetilde{K}/K if and only if $x^2 \equiv \sqrt{q^*} \mod \pi_2^5$ is solvable in O_K . The explicit computation of Gauss sum gives

$$\sqrt{q^*} = \sum_{a=1}^{q-1} (\frac{a}{q}) \zeta_q^a = 1 + 2 \sum_{(\frac{a}{q})=1} \zeta_q^a.$$

Let $\alpha = \sum_{(\frac{a}{q})=1} \zeta_q^a$, $\beta = \sum_{(\frac{a}{q})=1} \zeta_{2q}^a$, and $\gamma = \sum_{(\frac{a}{q})=1} \sum_{(\frac{b}{q})=1, a < b} \zeta_{2q}^{a+b}$, where in the summations a, b run over $1, 2, \cdots, q-1$. Then $\alpha = \beta^2 - 2\gamma$, that with the equality $2 = \pi_2^2 - \pi_2^3$ gives

$$\sqrt{q^*} = 1 + 2\beta^2 - 4\gamma = 1 + \pi_2^2 \beta^2 - \pi_2^3 \beta^2 - 4\gamma$$

$$\equiv (1 + \pi_2 \beta)^2 - \pi_2^3 (\beta + \beta^2) + \pi_2^4 (\beta - \gamma)$$

$$\equiv (1 + \pi_2 \beta)^2 - \pi_2^3 (\alpha + \beta) + \pi_2^4 (\beta + \gamma) \text{mod} \pi_2^5.$$

Since $\zeta_{2q} = -\zeta_q^{-\frac{q-1}{2}} = -\zeta_q^t$, where t is the inverse of 2 in $(\mathbb{Z}/q\mathbb{Z})^*$, we see $\beta = \sum_{(\frac{a}{q})=1} (-1)^a \zeta_q^{ta} \equiv \sum_{(\frac{a}{q})=1} \zeta_q^{ta} \mod 2$. So if $(\frac{2}{q}) = 1$ we have $\alpha \equiv \beta \mod 2$ and thus 2 is unramified in \widetilde{K}/K , and if $(\frac{2}{q}) = -1$ we have $\alpha + \beta \equiv \sum_{a=1}^{q-1} \zeta_q^a = -1 \mod 2$ and thus 2 is ramified in \widetilde{K}/K . Now we assume $(\frac{2}{q}) = 1$. Then $\sqrt{q^*} \mod \pi_2^5$ is a square if and only if

 $\pi_2 \mid \beta + \gamma$. We consider $2(\beta + \gamma)$. Since $\alpha \equiv \beta \mod 2$, we have

 $2(\beta + \gamma) = 2\beta + \beta^2 - \alpha \equiv \alpha(\alpha + 1) \mod 4.$

From $\sqrt{q^*} = 1 + 2\alpha$, we see $\alpha(\alpha + 1) = \frac{q^* - 1}{4}$. Since $8 \mid q^* - 1$ under the assumption $(\frac{2}{q}) = 1$, we have $\beta + \gamma \equiv \frac{q^* - 1}{8} \mod 2$. So $\pi_2 \mid \beta + \gamma$ if and only if $\pi_2 \mid \frac{q^* - 1}{8}$, namely $2 \mid \frac{q^* - 1}{8}$. The proof is complete.

Although the following result determining the ring $O_{\tilde{K}}$ of the integers of K will not be used in the paper, we write it down since it is a more explicit reformulation of [Th.2(3), 8] in the case p = -1.

Corollary 4.2. For odd prime q, let $t_q = (q-1)/4$ if $q \equiv 1 \mod 4$, and $t_q = (q-3)/4$ if $q \equiv 3 \mod 4$. Then

$$O_{\tilde{K}} = \begin{cases} \mathbb{Z} \left[\zeta_{8}, \frac{\sqrt[4]{2}}{1-\zeta_{8}} \right] & \text{if } q = 2 \\ \mathbb{Z} \left[\zeta_{4q}, \frac{\sqrt[4]{q^{*}+1+\pi_{2}\beta}}{\pi_{2}(2\sin\frac{\pi}{q})^{tq}} \right] & \text{if } (\frac{2}{q}) = -1 \\ \mathbb{Z} \left[\zeta_{4q}, \frac{\sqrt[4]{q^{*}+1+\pi_{2}\beta}}{2(2\sin\frac{\pi}{q})^{tq}} \right] & \text{if } (\frac{2}{q}) = 1. \end{cases}$$

Proof. See [Th.2(3), 8].

Now we assume that 2 is unramified in \widetilde{K}/K . Let $\operatorname{Fr}_2 \in G$ such that $\operatorname{Fr}_2(\zeta_4) = 1$ and $\operatorname{Fr}_2(\zeta_q) = \zeta_q^2$. It is a Frobenius element of 2 in Gmodulo I_2 . We have $\operatorname{Fr}_2 = \sigma_2^{b_2}$ for some $b_2 \in \mathbb{Z}$ with $2 \mid b_2$ as $\left(\frac{2}{a}\right) = 1$. Thus $\widetilde{\mathrm{Fr}}_2 = \widetilde{\sigma}_2^{b_2}$ or $\widetilde{\mathrm{Fr}}_2 = \widetilde{\sigma}_2^{b_2} \varepsilon$. We need to determine $\widetilde{\mathrm{Fr}}_2$ completely. Since $\left(\frac{2}{a}\right) = 1$, we have

$$\sqrt{q^*} \equiv (1 + \pi_2 \alpha)^2 + \pi_2^4 (\beta + \gamma) \operatorname{mod} \pi_2^5.$$

Write $u = 1 + \pi_2 \alpha$ for simplicity. Since $\sqrt{q^*} \equiv u^2 \mod \pi_2^4$, we see $\frac{\sqrt[4]{q^*-u}}{2} \in O_{\widetilde{K}}$. Let \wp be the prime ideal of \widetilde{K} over 2 associated to $\widetilde{\mathrm{Fr}}_2$. By the definition, we have

$$\widetilde{\operatorname{Fr}}_2\left(\frac{\sqrt[4]{q^*}-u}{2}\right) \equiv \left(\frac{\sqrt[4]{q^*}-u}{2}\right)^2 \equiv (\beta+\gamma) + \frac{\sqrt[4]{q^*}-u}{2} \operatorname{mod}\wp.$$

On the other hand, since $\tilde{\sigma}_q^{b_2}(\sqrt[4]{q^*}) = (-1)^{\frac{b_2}{2}}\sqrt[4]{q^*}$ and $\tilde{\sigma}_q^{b_2}(u) = u$ as $2 \mid b_2$, we have

$$\widetilde{\sigma}_{q}^{b_{2}}\left(\frac{\sqrt[4]{q^{*}}-u}{2}\right) = \frac{(-1)^{\frac{b_{2}}{2}}\sqrt[4]{q^{*}}-u}{2}$$

and

$$\widetilde{\sigma}_q^{b_2} \varepsilon \left(\frac{\sqrt[4]{q^*} - u}{2}\right) = \frac{(-1)^{\frac{b_2}{2} + 1} \sqrt[4]{q^*} - u}{2}$$

So if $2 \mid \frac{b_2}{2}$ we have $\widetilde{\operatorname{Fr}}_2 = \widetilde{\sigma}_2^{b_2}$ if and only if $\pi_2 \mid \beta + \gamma$ (namely 2 splits in \widetilde{K}/K), and if $2 \nmid \frac{b_2}{2}$ we have $\widetilde{\operatorname{Fr}}_2 = \widetilde{\sigma}_2^{b_2}$ if and only if $\pi_2 \nmid \beta + \gamma$ (namely 2 is inertia in \widetilde{K}/K). In the case $q \equiv 3 \mod 4$, we can always assume that $2 \nmid \frac{b_2}{2}$, since if $4 \mid b_2$, we may replace b_2 by $b_2 + (q-1)$. In the case $q \equiv 1 \mod 4$, we have $2 \mid \frac{b_2}{2}$ iff $2^{\frac{q-1}{4}} \equiv 1 \mod q$ iff q has the form $A^2 + 64B^2$ for $A, B \in \mathbb{Z}$, by the Exercise 28 in Chap.5 in [5]. So we get the following result

Proposition 4.3. Assume that 2 is unramified in \widetilde{K}/K . Let $\operatorname{Fr}_2 = \sigma_2^{b_2}$. We have $2 \mid b_2$. If $q \equiv 3 \mod 4$, we always assume $b_2 \equiv 2 \mod 4$. Let P_0 be the set of the prime numbers of the form $A^2 + 64B^2$ with $A, B \in \mathbb{Z}$. Then we have

$$\widetilde{\mathrm{Fr}}_{2} = \begin{cases} \widetilde{\sigma}_{2}^{b_{2}} & \text{if } q \notin P_{0}, 16 \nmid q^{*} - 1, \text{ or } q \in P_{0}, 16 \mid q^{*} - 1 \\ \widetilde{\sigma}_{2}^{b_{2}} \varepsilon & \text{if } q \in P_{0}, 16 \nmid q^{*} - 1, \text{ or } q \notin P_{0}, 16 \mid q^{*} - 1. \end{cases}$$

The following lemma is useful in the computation of Artin L-functions.

Lemma 4.4. We have $\varepsilon \in \widetilde{I}_{\ell}$ if and only if ℓ is ramified in \widetilde{K}/K .

Proof. The canonical projection $\widetilde{G} \longrightarrow G \simeq \widetilde{G}/\langle \varepsilon \rangle$ induces a surjective homomorphism $\widetilde{I}_{\ell} \longrightarrow I_{\ell}$ which implies the isomorphism $\widetilde{I}_{\ell}/\langle \varepsilon \rangle \cap \widetilde{I}_{\ell} \cong I_{\ell}$. Thus ℓ is ramified in \widetilde{K}/K iff $|\widetilde{I}_{\ell}| = 2|I_{\ell}|$ iff $|\widetilde{I}_{\ell} \cap \langle \varepsilon \rangle| = 2$ iff $\varepsilon \in \widetilde{I}_{\ell}$.

5. The conductors of the representations

In this section we compute the Artin conductors of all 2-dimensional irreducible representations of \tilde{G} in the case p = -1. First we recall the definition of the Artin conductor. For details, see [Chap.6, 2].

The notations are as before. Let ℓ be a prime number in \mathbb{Q} , and choose a prime ideal \mathfrak{p} in \tilde{K} over ℓ . Let $\tilde{G}_{\ell} = \tilde{G}(\tilde{K}_{\mathfrak{p}}/\mathbb{Q}_{\ell})$ be the corresponding decomposition subgroup. Let v be the normalized valuation in $\tilde{K}_{\mathfrak{p}}$. For $i \geq 0$, define the ramification groups

$$\tilde{G}_{\ell,i} = \{ \sigma \in \tilde{G}_{\ell} \mid v(\sigma(x) - x) > i \text{ for all } x \in O_{\tilde{K}_{\mathfrak{p}}} \}.$$

The group $G_{\ell,0}$ is the inertia subgroup of G_{ℓ} . Let π be a uniformizer in $\tilde{K}_{\mathfrak{p}}$. Then for i > 0

$$\tilde{G}_{\ell,i} = \{ \sigma \in \tilde{G}_{\ell} \mid v(\sigma(\pi) - \pi) > i \}.$$

For a representation ρ of \tilde{G} with the character χ and the representation space V, let

$$f(\chi, \ell) = f(\rho, \ell) = \sum_{i=0}^{\infty} \frac{|\tilde{G}_{\ell,i}|}{|\tilde{G}_{\ell,0}|} (\chi(1) - \chi(\tilde{G}_{\ell,i})),$$

where $\chi(\tilde{G}_{\ell,i}) = |\tilde{G}_{\ell,i}|^{-1} \sum_{s \in \tilde{G}_{\ell,i}} \chi(s)$. We have $f(\chi, \ell) = 0$ if ρ is unramified over ℓ , i.e. $V = V^{\tilde{G}_{\ell,0}}$. The Artin conductor of the representation ρ is defined as

$$\mathfrak{f}(\chi) = \mathfrak{f}(\rho) = \prod_{\ell} \ell^{f(\chi,\ell)}.$$

From the result in last section, we know that ℓ is unramified in K/\mathbb{Q} if $\ell \neq 2, q$. Thus to compute the conductor $\mathfrak{f}(\chi)$, we only need to calculate $f(\chi, 2)$ and $f(\chi, q)$. We consider the cases q = 2 and q odd separately.

5.1. Case q = 2. In the case (p,q) = (-1,2), there is only one 2dimensional irreducible representation $\tilde{\rho}_0$ of \tilde{G} . Let $\tilde{\chi}_0$ be the character of $\tilde{\rho}_0$. Since only 2 is ramified in \tilde{K} , we only need calculate $f(\tilde{\chi}_0, 2)$.

As in last section, let $\pi_2 = 1 - \zeta_8$. Let \wp be a prime ideal in K over 2 and let v be the normalized valuation in \tilde{K}_{\wp} . From the proof of Prop.4.1, we see $\frac{\sqrt{2}}{\pi_2^2} \equiv 1 - \pi_2 \mod \pi_2^3$. Thus

$$v\left(\frac{\sqrt{2}}{\pi_2^2} - 1\right) = v\left(\frac{\sqrt[4]{2}}{\pi_2} - 1\right) + v\left(\frac{\sqrt[4]{2}}{\pi_2} + 1\right) = v(\pi_2) = 2.$$

We have $v(\frac{\sqrt[4]{2}}{\pi_2}-1) = v(\frac{\sqrt[4]{2}}{\pi_2}+1) = 1$. So $\pi = \frac{\sqrt[4]{2}}{\pi_2}-1$ is a uniformizer of \tilde{K}_{\wp} . The group \tilde{G} is generated by $\tilde{\sigma}_{-1}$ and $\tilde{\sigma}_2$, and $\tilde{\sigma}_{-1}(\sqrt[4]{2}) = \sqrt[4]{2}$ and $\tilde{\sigma}_2(\sqrt[4]{2}) = \sqrt[4]{2}/\sqrt{-1}$. Clearly we have $G_{2,0} = \tilde{G}$. Furthermore, we have

$$v(\tilde{\sigma}_{-1}(\pi) - \pi) = v\left(\frac{\sqrt[4]{2}}{1 - \zeta_8^{-1}} - \frac{\sqrt[4]{2}}{1 - \zeta_8}\right) = v\left(-\frac{1 + \zeta_8}{1 - \zeta_8}\sqrt[4]{2}\right) = 2,$$
$$v(\tilde{\sigma}_2(\pi) - \pi) = v\left(\frac{\sqrt[4]{2}/\sqrt{-1}}{1 + \zeta_8} - \frac{\sqrt[4]{2}}{1 - \zeta_8}\right) = v\left(-\frac{1 - \zeta_8^3}{1 - \zeta_8}\sqrt[4]{2}\right) = 2,$$

and

$$v(\epsilon(\pi) - \pi) = v(-2(\pi + 1)) = 8$$

Thus $G_{2,1} = G_{2,0} = \tilde{G}$ and $G_{2,2} = \cdots = G_{2,7} = \langle \epsilon \rangle$. By easy computation we get that $\tilde{\chi}_0(G_{2,0}) = \tilde{\chi}_0(G_{2,1}) = \cdots = \tilde{\chi}_0(G_{2,7}) = 0$, and $\tilde{\chi}_0(G_{2,n}) = 2$ for $n \geq 8$. So we obtain

(5.1)
$$f(\tilde{\chi}_0, 2) = 2 + 2 + \frac{1}{4} \times 2 \times 6 = 7.$$

5.2. Case odd q. To compute $f(\chi, q)$, we consider the cases $\left(\frac{-1}{q}\right) = 1$ and $\left(\frac{-1}{q}\right) = -1$ separately. Let \wp be a prime ideal in \tilde{K} over q. Let v be the normalized valuation in \tilde{K}_{\wp} .

5.2.1. Assume $\left(\frac{-1}{q}\right) = 1$. Then q is unramified in \tilde{K}/K but ramified in K/\mathbb{Q} . We see $\pi = 1 - \zeta_q$ is a uniformizer of \tilde{K}_{\wp} . Now all 2-dimensional irreducible representations of \tilde{G} are as in Case A. Let $\tilde{\chi}_j$ be the character of $\tilde{\rho}_j$. It is easy to see that $\tilde{G}_{q,0} = \langle \tilde{\sigma}_q \rangle$. Notice that $\epsilon \notin \tilde{G}_{q,0}$.

Let $1 \neq \tilde{\sigma} \in \tilde{G}_{q,0}$ and $\tilde{\sigma}(\zeta_q) = \zeta_q^a$, $1 < a \le q - 1$. We have

$$v(\tilde{\sigma}\pi - \pi) = v(\zeta_q - \zeta_q^a) = v(1 - \zeta_q^{a-1}) = 1.$$

Thus $\tilde{G}_{q,n} = \{1\}$ for $n \ge 1$. By easy computation we get that $\tilde{\chi}_j(\tilde{G}_{q,0}) = 0$ and $\tilde{\chi}_j(\tilde{G}_{q,n}) = 2$, for $n \ge 1$. We obtain

(5.2)
$$f(\tilde{\chi}_j, q) = 2$$

5.2.2. Assume $\left(\frac{-1}{q}\right) = -1$. Then q is ramified both in \tilde{K}/K and in K/\mathbb{Q} , and all 2-dimensional irreducible representations are as in Case B. Let $\tilde{\chi}_j$ be the character of $\tilde{\rho}_j$. Since $v(1 - \zeta_q) = 2$ and $v(\sqrt[4]{-q}) = \frac{1}{4}(2(q-1)) = \frac{q-1}{2}$, we see that $\pi = \sqrt[4]{-q}/(1 - \zeta_q)^{\frac{q-3}{4}}$ is a uniformizer of q in \tilde{K} . It is obvious that $\tilde{G}_{q,0} = < \tilde{\sigma}_q >$. Notice that in this case $\epsilon \in \tilde{G}_{q,0}$.

Let $1 \neq \tilde{\sigma} \in \tilde{G}_{q,0}$ and $\tilde{\sigma}(\zeta_q) = \zeta_q^a$, $1 < a \leq q - 1$. We have

$$\begin{split} v(\tilde{\sigma}\pi - \pi) + v(\tilde{\sigma}\epsilon\pi - \pi) &= v(\tilde{\sigma}\pi - \pi) + v(-\tilde{\sigma}\pi - \pi) = v(\tilde{\sigma}\pi^2 - \pi^2) \\ &= v\left(\frac{(\frac{a}{q})\sqrt{-q}}{(1 - \zeta_q^a)^{\frac{q-3}{2}}} - \frac{\sqrt{-q}}{(1 - \zeta_q)^{\frac{q-3}{2}}}\right) \\ &= v(\pi^2) + v\left(\frac{1 - (\frac{a}{q})(\sum_{i=0}^{a-1}\zeta_q^i)^{\frac{q-3}{2}}}{(\sum_{i=0}^{a-1}\zeta_q^i)^{\frac{q-3}{2}}}\right) \\ &= 2 + v\left(1 - (\frac{a}{q})\left(\sum_{i=0}^{a-1}\zeta_q^i\right)^{\frac{q-3}{2}}\right). \end{split}$$

Let $t = v(1 - (\frac{a}{q})(\sum_{i=0}^{a-1} \zeta_q^i)^{\frac{q-3}{2}})$. We claim that t = 0. Otherwise t > 0. Since

$$\left(\sum_{i=0}^{a-1} \zeta_q^i\right)^{\frac{q-3}{2}} \equiv a^{\frac{q-3}{2}} \equiv \begin{cases} 1 \mod (1-\zeta_q) & \text{if } (\frac{a}{q}) = 1\\ -1 \mod (1-\zeta_q) & \text{if } (\frac{a}{q}) = -1, \end{cases}$$

we always have $a \equiv 1 \mod q$ and thus a = 1, which contradicts to the assumption that a > 1. This shows the claim. Thus $v(\tilde{\sigma}\pi - \pi) = v(\tilde{\sigma}\epsilon\pi - \pi) = 1$, as $v(\tilde{\sigma}\pi - \pi + \tilde{\sigma}\epsilon\pi - \pi) = v(2\pi) = 1$. So we get $\tilde{G}_{q,n} = \{1\}$ for $n \geq 1$. By easy computation we get that $\tilde{\chi}_j(\tilde{G}_{q,0}) = 0$ and $\tilde{\chi}_j(\tilde{G}_{q,n}) = 2$ for $n \geq 1$. We obtain

(5.3)
$$f(\tilde{\chi}_j, q) = 2$$

Next we compute $f(\tilde{\chi}_j, 2)$. we consider the cases $(\frac{2}{q}) = 1$ and $(\frac{2}{q}) = -1$ separately. Let \wp be a prime ideal in \tilde{K} over 2. Let v be the normalized valuation in \tilde{K}_{\wp} .

5.2.3. Assume $(\frac{2}{q}) = 1$. Then 2 is unramified in \tilde{K}/K but ramified in K/\mathbb{Q} , and $\pi = 1 - \zeta_4$ is a uniformizer in \tilde{K}_{\wp} . It is easy to see that $\tilde{G}_{2,0} = \langle \tilde{\sigma}_{-1} \rangle$. Notice that in this case $\epsilon \notin \tilde{G}_{2,0}$. We have

$$v(\tilde{\sigma}_{-1}\pi - \pi) = v(\zeta_4 - \zeta_4^{-1}) = v(2) = 2.$$

Thus we have $\tilde{G}_{2,0} = \tilde{G}_{2,1} = \langle \tilde{\sigma}_{-1} \rangle$ and $\tilde{G}_{2,n} = \{1\}$ for n > 1. By easy computation we have $\tilde{\chi}_j(\tilde{G}_{2,0}) = \tilde{\chi}_j(\tilde{G}_{2,1}) = 1$ and $\tilde{\chi}_j(\tilde{G}_{2,n}) = 2$ for n > 1. We obtain

(5.4)
$$f(\tilde{\chi}_j, 2) = 1 + 1 = 2$$

5.2.4. Assume $(\frac{2}{q}) = -1$. Now 2 is ramified both in \tilde{K}/K and in K/\mathbb{Q} . As in last section, let $\pi_2 = 1 - \zeta_4$, $\alpha = \sum_{(\frac{a}{q})=1} \zeta_q^a$ and $\beta = \sum_{(\frac{a}{q})=1} \zeta_{2q}^a$, where the summations are over $1 \le a \le q - 1$. From last section we have

(5.5)
$$\sqrt{q^*} \equiv (1 + \pi_2 \beta)^2 + \pi_2^3 \mod \pi_2^4$$

Let $\mu = 1 + \pi_2 \beta$. We claim that $\pi = \frac{\sqrt[4]{q^* + \mu}}{\pi_2}$ is a uniformizer in \tilde{K}_{\wp} . In fact, since

$$v(\sqrt[4]{q^*} + \mu) + v(\sqrt[4]{q^*} - \mu) = v(\sqrt{q^*} - \mu^2) = v(\pi_2^3) = 6$$

and $v((\sqrt[4]{q^*} + \mu) + (\sqrt[4]{q^*} - \mu)) = v(2\sqrt[4]{q^*}) = 4$, we must have

$$v(\sqrt[4]{q^*} + \mu) = v(\sqrt[4]{q^*} - \mu) = 3,$$

and thus $v(\frac{\sqrt[4]{q^*}+\mu}{\pi_2}) = 1.$

It is obvious that $\tilde{G}_{2,0} = \{1, \epsilon, \tilde{\sigma}_{-1}, \tilde{\sigma}_{-1}\epsilon\}$. Since $\tilde{\sigma}_{-1}(\sqrt[4]{q^*}) = \sqrt[4]{q^*}$ and $\tilde{\sigma}_{-1}\epsilon(\sqrt[4]{q^*}) = -\sqrt[4]{q^*}$, we have

$$v(\tilde{\sigma}_{-1}\pi - \pi) = v\left(\tilde{\sigma}_{-1}\frac{\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2} - \frac{\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2}\right)$$

= $v\left(\tilde{\sigma}_{-1}\frac{\sqrt[4]{q^*} + 1}{\pi_2} - \frac{\sqrt[4]{q^*} + 1}{\pi_2}\right)$ (since $\tilde{\sigma}_{-1}\beta = \beta$)
= $v\left(\frac{\sqrt[4]{q^*} + 1}{1 - \zeta_4^{-1}} - \frac{\sqrt[4]{q^*} + 1}{1 - \zeta_4}\right) = v(\sqrt[4]{q^*} + 1).$

To compute it, we first claim that $\pi_2 \nmid \beta$. Otherwise, $2 \mid \beta$ as $\beta \in \mathbb{Q}(\zeta_q)$. From last section, we have $\sqrt{q^*} = 1 + 2\alpha$ and $\alpha + \beta \equiv 1 \mod 2$, thus $\sqrt{q^*} \equiv -1 + 2\beta \equiv -1 \mod 4$ and so $q^* \equiv 1 \mod 8$. This contradicts to the assumption $(\frac{2}{q}) = -1$. We showed the claim. Thus $v(\beta) = 0$. Since $v(\sqrt[4]{q^*}+1+\pi_2\beta) = 3$, we have $v(\sqrt[4]{q^*}+1) = 2$, namely $v(\tilde{\sigma}_{-1}\pi-\pi) = 2$. We now compute $v(\tilde{\sigma}_{-1}\epsilon\pi-\pi)$. We have

$$\begin{aligned} v(\tilde{\sigma}_{-1}\epsilon\pi - \pi) &= v\left(\tilde{\sigma}_{-1}\epsilon\frac{\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2} - \frac{\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2}\right) \\ &= v\left(\frac{-\sqrt[4]{q^*} + 1}{1 - \zeta_4^{-1}} - \frac{\sqrt[4]{q^*} + 1}{1 - \zeta_4}\right) = v(\sqrt[4]{q^*} + \zeta_4). \end{aligned}$$

Observe that $v(\sqrt[4]{q^*} + \zeta_4) + v(\sqrt[4]{q^*} - \zeta_4) = v(\sqrt{q^*} + 1) = v(2\frac{\sqrt{q^*} + 1}{2}) = 4$, since $\pi_2 \nmid \frac{\sqrt{q^*} + 1}{2}$. Furthermore, since

$$v((\sqrt[4]{q^*} + \zeta_4) + (\sqrt[4]{q^*} - \zeta_4)) = v(2\sqrt[4]{q^*}) = 4,$$

we must have $v(\sqrt[4]{q^*} + \zeta_4) = v(\sqrt[4]{q^*} - \zeta_4) = 2$, namely $v(\tilde{\sigma}_{-1}\epsilon\pi - \pi) = 2$. In addition, we have

$$v(\epsilon \pi - \pi) = v\left(\frac{-\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2} - \frac{\sqrt[4]{q^*} + 1 + \pi_2\beta}{\pi_2}\right) = 2$$

By the discussion above we have $\tilde{G}_{2,0} = \tilde{G}_{2,1}$ and $\tilde{G}_{2,n} = \{1\}$ for n > 1. By easy computation we have $\tilde{\chi}_j(\tilde{G}_{2,0}) = \tilde{\chi}_j(\tilde{G}_{2,1}) = 0$ and $\tilde{\chi}_j(\tilde{G}_{2,n}) = 2$ for n > 2. We obtain

(5.6)
$$f(\tilde{\chi}_j, 2) = 2 + 2 = 4.$$

5.3. Global Conductors. By the equalities (5.1)-(5.6) above, we get the following

Theorem 5.1. In the case q = 2, the conductor of the unique 2dimensional irreducible representation $\tilde{\rho}_0$ of \tilde{G} is equal to $\mathfrak{f}(\tilde{\rho}_0) = 2^7$. In the case that q is odd, all the 2-dimensional irreducible representations $\tilde{\rho}_j$ of \tilde{G} have the conductor $\mathfrak{f}(\tilde{\rho}_j) = 2^{2(1+\log_{-1}(\frac{2}{q}))}q^2$.

6. The Artin *L*-functions

In this section we compute the Artin *L*-functions of the quasi-cyclotomic fields $\widetilde{K} = \mathbb{Q}(\zeta_{4q}, \sqrt[4]{q^*}).$

The *L*-functions associated to the 1-dimensional representations of \widetilde{G} are the well-known Dirichlet *L*-functions. So we mainly compute the *L*-functions associated to the 2-dimensional irreducible representations of \widetilde{G} . Let $\varphi : \widetilde{G} \to \operatorname{GL}(V)$ be a 2-dimensional irreducible representation. The Artin *L*-function $L(\varphi, s)$ associated to φ is defined as the product of the local factors

$$L(\varphi, s) = \prod_{\ell: \text{prime}} L_{\ell}(\varphi, s),$$

where the local factors are defined as $L_{\ell}(\varphi, s) = \det(1-\varphi(\widetilde{\mathrm{Fr}}_{\ell})\ell^{-s}|V^{\widetilde{I}_{\ell}})^{-1}$. Now we begin to compute them. First we notice that if ℓ is ramified in \widetilde{K}/K , then $V^{\widetilde{I}_{\ell}} = 0$ and $L_{\ell}(\varphi, s) = 1$, which is due to the facts that $\varepsilon \in \widetilde{I}_{\ell}$ by Lemma 4.4 and $\varphi(\varepsilon) = -I$ for any irreducible representation φ of \widetilde{G} by Theorem 3.1.

6.1. Case q = 2. By section 3, there is only one 2-dimensional representation $\tilde{\rho}_0$ in this case, which is defined as

$$\widetilde{\rho}_0(\widetilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, and $\widetilde{\rho}_0(\widetilde{\sigma}_2) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Since 2 is ramified in \widetilde{K}/K , we have $L_2(\widetilde{\rho}_0, s) = 1$. Assume that ℓ is an odd prime number.

If $\ell \equiv 7 \mod 8$, then $\operatorname{Fr}_{\ell} = \sigma_{-1}$ and thus $\widetilde{\operatorname{Fr}}_{\ell} = \widetilde{\sigma}_{-1}$ or $\widetilde{\sigma}_{-1}\varepsilon$. In any case we have

$$L_{\ell}(\widetilde{\rho}_{0},s) = \det \left(I \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 - \ell^{-2s})^{-1}.$$

If $\ell \equiv 5 \mod 8$, then $\operatorname{Fr}_{\ell} = \sigma_2$ and thus $\widetilde{\operatorname{Fr}}_{\ell} = \widetilde{\sigma}_2$ or $\widetilde{\sigma}_2 \varepsilon$. We have

$$L_{\ell}(\tilde{\rho}_{0},s) = \det \left(I \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 + \ell^{-2s})^{-1}$$

If $\ell \equiv 3 \mod 8$, then $\operatorname{Fr}_{\ell} = \sigma_{-1} \sigma_2$ and thus $\operatorname{Fr}_{\ell} = \widetilde{\sigma}_{-1} \widetilde{\sigma}_2$ or $\widetilde{\sigma}_{-1} \widetilde{\sigma}_2 \varepsilon$. We have

$$L_{\ell}(\widetilde{\rho}_{0},s) = \det \left(I \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 - \ell^{-2s})^{-1}.$$

If $\ell \equiv 1 \mod 8$, then $\operatorname{Fr}_{\ell} = 1$ and thus $\operatorname{Fr}_{\ell} = 1$ or ε . In this case we must determine Fr_{ℓ} completely. Since $\operatorname{Fr}_{\ell}(\sqrt[4]{2}) \equiv (\sqrt[4]{2})^{\ell} \mod \wp$ for the prime ideal \wp of \widetilde{K} over ℓ associated to Fr_{ℓ} , we have $\operatorname{Fr}_{\ell} = 1$ if $2^{\frac{\ell-1}{4}} \equiv 1 \mod \ell$, and $\operatorname{Fr}_{\ell} = \varepsilon$ if $2^{\frac{\ell-1}{4}} \equiv -1 \mod \ell$. As in last section, we have that for $\ell \equiv 1 \mod 8$, $2^{\frac{\ell-1}{4}} \equiv 1 \mod \ell$ if and only if $\ell \in P_0$. So we have

$$L_{\ell}(\widetilde{\rho}_0, s) = \begin{cases} (1 - \ell^{-s})^{-2} & \text{if } \ell \in P_0\\ (1 + \ell^{-s})^{-2} & \text{otherwise.} \end{cases}$$

We get the Artin *L*-function in the case (p,q) = (-1,2) as follows:

(6.1)
$$L(\widetilde{\rho}_{0}, s) = \prod_{\ell \equiv 3 \text{ or } 7(8)} (1 - \ell^{-2s})^{-1} \cdot \prod_{\ell \equiv 5(8)} (1 + \ell^{-2s})^{-1} \times \prod_{\ell \in P_{0}} (1 - \ell^{-s})^{-2} \cdot \prod_{\ell \equiv 1(8), \ \ell \notin P_{0}} (1 + \ell^{-s})^{-2}.$$

6.2. Case odd q. In this case, all 2-dimensional irreducible representations of \widetilde{G} are $\widetilde{\rho}_j$ with $0 \leq j < q - 1, 2 \mid j$ if $q \equiv 1 \mod 4$, and $0 \leq j < q - 1, 2 \nmid j$ if $q \equiv 3 \mod 4$, where $\widetilde{\rho}_j$ is defined by

$$\widetilde{\rho}_j(\widetilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \widetilde{\rho}_j(\widetilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1}^j \\ 1 & 0 \end{pmatrix} \text{ and } \widetilde{\rho}_j(\varepsilon) = -I.$$

We first determine the local factors $L_{\ell}(\tilde{\rho}_{j}, s)$ for $\ell \neq 2, q$. For such ℓ we have $V^{\tilde{I}_{\ell}} = V$. Let $\operatorname{Fr}_{\ell} = \sigma_{-1}^{a_{\ell}} \sigma_{q}^{b_{\ell}}$, which is equivalent to $\ell \equiv (-1)^{a_{\ell}} \mod 4$ and $\ell \equiv g^{b_{\ell}} \mod q$, where g is the primitive root $\mod q$ associated to σ_{q} . It is easy to compute that

$$\widetilde{\rho}_{j}(\widetilde{\sigma}_{q}^{b_{\ell}}) = \begin{pmatrix} 0 & \zeta_{q-1}^{j} \\ 1 & 0 \end{pmatrix}^{b_{\ell}} = \begin{cases} \zeta_{2(q-1)}^{jb_{\ell}} I & \text{if } 2 \mid b_{\ell} \\ \begin{pmatrix} 0 & \zeta_{2(q-1)}^{j(b_{\ell}+1)} \\ \zeta_{2(q-1)}^{j(b_{\ell}-1)} & 0 \end{pmatrix} & \text{if } 2 \nmid b_{\ell}. \end{cases}$$

Furthermore, we have

$$\det(I - \widetilde{\rho}_{j}(\widetilde{\sigma}_{-1}^{a_{\ell}}\widetilde{\sigma}_{q}^{b_{\ell}})\ell^{-s}) = \begin{cases} (1 - \zeta_{2(q-1)}^{jb_{\ell}}\ell^{-s})^{2} & \text{if } a_{\ell} = 0, \ 2 \mid b_{\ell} \\ 1 - \zeta_{q-1}^{jb_{\ell}}\ell^{-2s} & \text{if } a_{\ell} = 0, \ 2 \nmid b_{\ell} \\ & \text{or } a_{\ell} = 1, \ 2 \mid b_{\ell} \\ 1 + \zeta_{q-1}^{jb_{\ell}}\ell^{-2s} & \text{if } a_{\ell} = 1, \ 2 \nmid b_{\ell} \end{cases}$$

and

$$\det(I + \widetilde{\rho}_{j}(\widetilde{\sigma}_{-1}^{a_{\ell}}\widetilde{\sigma}_{q}^{b_{\ell}})\ell^{-s}) = \begin{cases} (1 + \zeta_{2(q-1)}^{jb_{\ell}}\ell^{-s})^{2} & \text{if } a_{\ell} = 0, \ 2 \mid b_{\ell} \\ 1 - \zeta_{q-1}^{jb_{\ell}}\ell^{-2s} & \text{if } a_{\ell} = 0, \ 2 \nmid b_{\ell} \\ & \text{or } a_{\ell} = 1, \ 2 \mid b_{\ell} \\ 1 + \zeta_{q-1}^{jb_{\ell}}\ell^{-2s} & \text{if } a_{\ell} = 1, \ 2 \nmid b_{\ell}. \end{cases}$$

So we get

$$L_{\ell}(\widetilde{\rho}_{j},s) = (1 - \zeta_{q-1}^{jb_{\ell}}\ell^{-2s})^{-1}$$

if $\ell \equiv 1 \mod 4$ and $\ell \equiv g^{b_{\ell}} \mod q$ with $2 \nmid b_{\ell}$, or if $\ell \equiv 3 \mod 4$ and $\ell \equiv g^{b_{\ell}} \mod q$ with $2 \mid b_{\ell}$, and

$$L_{\ell}(\widetilde{\rho}_{j}, s) = (1 + \zeta_{q-1}^{jb_{\ell}} \ell^{-2s})^{-1}$$

if $\ell \equiv 3 \mod 4$ and $\ell \equiv g^{b_\ell} \mod q$ with $2 \nmid b_\ell$.

To compute the local factors when $\ell \equiv 1 \mod 4$ and $\ell \equiv g^{b_\ell} \mod q$ with $2 \mid b_\ell$ we must determine $\widetilde{\mathrm{Fr}}_\ell$ completely. Since $(\frac{\ell}{q}) = 1$, we have $(\frac{q}{\ell}) = 1$ and $(\frac{q^*}{\ell}) = 1$. Let $\alpha_\ell \in \mathbb{Z}$ such that $\alpha_\ell^2 \equiv q^* \mod \ell$. From $\widetilde{\sigma}_q^{b_\ell}(\sqrt[4]{q^*}) = (-1)^{\frac{b_\ell}{2}}\sqrt[4]{q^*}$, we see $\widetilde{\mathrm{Fr}}_\ell = \widetilde{\sigma}_q^{b_\ell}$ if $(\frac{\alpha_\ell}{\ell}) = (-1)^{\frac{b_\ell}{2}}$, and $\widetilde{\mathrm{Fr}}_\ell = \widetilde{\sigma}_q^{b_\ell} \varepsilon$ if $(\frac{\alpha_\ell}{\ell}) = (-1)^{\frac{b_\ell}{2}+1}$. So when $\ell \equiv 1 \mod 4$ and $\ell \equiv g^{b_\ell} \mod q$ with $2 \mid b_\ell$, we have

$$L_{\ell}(\widetilde{\rho}_{j},s) = \begin{cases} (1-\zeta_{2(q-1)}^{jb_{\ell}}\ell^{-s})^{-2} & \text{if } (\frac{\alpha_{\ell}}{\ell}) = (-1)^{\frac{b_{\ell}}{2}} \\ (1+\zeta_{2(q-1)}^{jb_{\ell}}\ell^{-s})^{-2} & \text{if } (\frac{\alpha_{\ell}}{\ell}) = (-1)^{\frac{b_{\ell}}{2}+1}. \end{cases}$$

Next we compute the local factors $L_2(\tilde{\rho}_j, s)$ and $L_q(\tilde{\rho}_j, s)$. When $(\frac{2}{q}) = -1$, we know from last section that 2 is ramified in \tilde{K}/K . So $L_2(\tilde{\rho}_j, s) = 1$ in this case. Now we assume $(\frac{2}{q}) = 1$. Since $I_2 = \langle \sigma_{-1} \rangle$ and 2 is unramifed in \tilde{K}/K , we have $\tilde{I}_2 = \langle \tilde{\sigma}_{-1} \rangle$ or $\tilde{I}_2 = \langle \tilde{\sigma}_{-1} \varepsilon \rangle$. The matrices $I + \tilde{\rho}_j(\tilde{\sigma}_{-1})$ and $I + \tilde{\rho}_j(\tilde{\sigma}_{-1}\varepsilon)$ have rank 1, thus $V^{\tilde{I}_2}$ has dimension 1. Write $\operatorname{Fr}_2 = \sigma_2^{b_2}$ with 2 | b_2 . As in last section, we always assume $b_2 \equiv 2 \mod 4$ if $q \equiv 3 \mod 4$. Recall that P_0 be the set of the prime numbers of the form $A^2 + 64B^2$ with $A, B \in \mathbb{Z}$. Since $\tilde{\rho}_j(\tilde{\sigma}_2) = \zeta_{2(q-1)}^{jb_2}I$, by Prop.4.3 we have

$$L_2(\widetilde{\rho}_j, s) = \begin{cases} 1 - \zeta_{2(q-1)}^{jb_2} 2^{-s} & \text{if } q \notin P_0, 16 \nmid q^* - 1, \text{ or } q \in P_0, 16 \mid q^* - 1\\ 1 + \zeta_{2(q-1)}^{jb_2} 2^{-s} & \text{if } q \in P_0, 16 \nmid q^* - 1, \text{ or } q \notin P_0, 16 \mid q^* - 1 \end{cases}$$

When $q \equiv 3 \mod 4$, we know that q is ramified in \widetilde{K}/K . So $L_q(\widetilde{\rho}_j, s) = 1$ for odd j in this case. Assume $q \equiv 1 \mod 4$. Since $I_q = \langle \sigma_q \rangle$ and q is unramifed in \widetilde{K}/K , we have $\widetilde{I}_q = \langle \widetilde{\sigma}_q \rangle$ or $\widetilde{I}_2 = \langle \widetilde{\sigma}_q \varepsilon \rangle$. Thus $V^{\widetilde{I}_q} = 0$ if $j \neq 0$, and $V^{\widetilde{I}_q}$ has dimension 1 if j = 0.

The Frobenius map Fr_q of q in G modulo I_q is the identity map. So $\widetilde{\operatorname{Fr}}_q = 1$ or ε . In [Sect.5, 8] we have showed that q splits in \widetilde{K}/K if $q \equiv 1 \mod 8$ and is inert if $q \equiv 5 \mod 8$. So $\widetilde{\operatorname{Fr}}_2 = 1$ if $q \equiv 1 \mod 8$ and $\widetilde{\operatorname{Fr}}_2 = \varepsilon$ if $q \equiv 5 \mod 8$. Thus we get

$$L_q(\tilde{\rho}_j, s) = \begin{cases} 1 & \text{if } j \neq 0\\ 1 - q^{-s} & \text{if } j = 0, \ q \equiv 1 \mod 8\\ 1 + q^{-s} & \text{if } j = 0, \ q \equiv 5 \mod 8. \end{cases}$$

We have computed all the local factors, obtaining that

(6.2)

$$L(\widetilde{\rho}_{j}, s) = (1 - u_{q}\zeta_{2(q-1)}^{jb_{2}}2^{-s})^{-1}(1 - (-1)^{\frac{q-1}{4}}q^{-s})^{-\delta_{0j}} \times \prod_{\ell \equiv 1, \ 2 \not\mid b_{\ell} \text{ or } \ell \equiv 3, \ 2 \not\mid b_{\ell}} (1 - \zeta_{q-1}^{jb_{\ell}}\ell^{-2s})^{-1} \times \prod_{\ell \equiv 3, \ 2 \not\mid b_{\ell}} (1 + \zeta_{q-1}^{jb_{\ell}}\ell^{-2s})^{-1} \prod_{\ell \equiv 1, \ 2 \not\mid b_{\ell}} (1 - u_{\ell}\zeta_{2(q-1)}^{jb_{\ell}}\ell^{-s})^{-2}$$

where $u_q = 1$ if $q \notin P_0, 16 \nmid q^* - 1$, or $q \in P_0, 16 \mid q^* - 1$ and $u_q = -1$ otherwise; $\delta_{0j} = 0$ if $j \neq 0$ and $\delta_{00} = 1$; and $u_\ell = \left(\frac{\alpha_\ell}{\ell}\right) (-1)^{\frac{b_\ell}{2}}$. Here in the products, " \equiv " denotes the congruence modulo 4.

Theorem 6.1. Except for the Dirichlet L-functions, all Artin L-functions of the Galois extension \widetilde{K}/\mathbb{Q} are explicitly given by (5.1) in the case q = 2 and by (5.2) in the case q is odd, where in (5.2) $0 \le j < q-1, 2 \mid j$ if $q \equiv 1 \mod 4$ and $0 \le j < q-1, 2 \nmid j$ if $q \equiv 3 \mod 4$.

6.3. A formula. Let $\zeta_{\widetilde{K}}(s)$ and $\zeta_K(s)$ be the Dedekind zeta functions of \widetilde{K} and K respectively. By Artin's formula of the decomposition of Dedekind zeta functions, we have

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta_K(s)} = \prod_{\widetilde{\rho}_j} \prod_{\ell: \text{ prime}} L_\ell(\widetilde{\rho}_j, s)^2,$$

where $\tilde{\rho}_j$ runs over all 2-dimensional irreducible representations of \tilde{G} . When q = 2, there is only one 2-dimensional irreducible representation of \tilde{G} . So the square of (5.1) gives the formula. When q is odd, by computing $\prod_{\tilde{\rho}_i} L_\ell(\tilde{\rho}_j, s)$, we get the following

Corollary 6.2. For a prime number $\ell \neq q$, let $f_{\ell} = \frac{q-1}{\gcd(b_{\ell}, q-1)}$ be the order of $\ell \mod q$ and let $g_{\ell} = \gcd(b_{\ell}, q-1) = \frac{q-1}{f_{\ell}}$. If $q \equiv 1 \mod 4$, we have

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta_{K}(s)} = (1 - u_{q}^{f_{2}} 2^{-f_{2}s})^{-g_{2}} (1 - (-1)^{\frac{q-1}{4}} q^{-s})^{-2} \prod_{\ell \equiv 1, \ 2 \nmid b_{\ell} \ or \ \ell \equiv 3} (1 - \ell^{-f_{\ell}s})^{-2g_{\ell}}$$
$$\times \prod_{\ell \equiv 1, \ 2 \mid b_{\ell}} (1 - u_{\ell}^{f_{\ell}} \ell^{-f_{\ell}s})^{-2g_{\ell}},$$

and if $q \equiv 3 \mod 4$, we have

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta_{K}(s)} = (1 + u_{q}^{f_{2}} 2^{-f_{2}s})^{-g_{2}} \prod_{\ell \equiv 1, \ 2 \nmid b_{\ell}} (1 + \ell^{-f_{\ell}s})^{-2g_{\ell}} \prod_{\ell \equiv 3} (1 - \ell^{-2f_{\ell}s})^{-g_{\ell}} \times \prod_{\ell \equiv 1, \ 2 \mid b_{\ell}} (1 + u_{\ell}^{f_{\ell}} \ell^{-f_{\ell}s})^{-2g_{\ell}},$$

where u_q and u_ℓ are as above.

6.4. The corresponding modular forms. All the 2-dimensional irreducible representations of \tilde{G} in the case p = -1 are monomial. It is easy to see that they are odd. By Deligne-Serre's theorem [Th.2, 7], these Artin *L*-functions above are equal to the *L*-functions of some normalized newforms of weight one, which allows one to determine a newforms of weight one by a 2-dimensional irreducible odd representations of \tilde{G} . More precisely, the irreducible representation $\tilde{\rho}_j$ of conductor *N* corresponds to a normalized newform $f_j(z)$ of weight one on $\Gamma_0(N)$ with nebentype $\phi_j = \det(\tilde{\rho}_j)$, which has a Fourier expansion at infinity

$$f_j(z) = \sum_{n=1}^{\infty} a_n^{(j)} q^n, \qquad q = e^{2\pi i z},$$

where $a_1^{(j)} = 1$ and the other coefficients a_n are equal to those of the *L*-function $L(\phi_j, s) = \sum_{n=1}^{\infty} a_n n^{-s}$. In this subsection we describe these modular forms explicitly. Since these newforms are eigenfunctions of Hecke operators, to determine all $a_n^{(j)}$ it is enough to determine $a_{\ell}^{(j)}$ for all primes ℓ .

When q = 2, we get one normalized newform $f_0(z)$ of weight 1 on $\Gamma_0(2^7)$ with nebentype $\phi_0 : (\mathbb{Z}/8\mathbb{Z})^* \to \mathbb{C}^*$, where $\phi_0(\sigma_{-1}) = -1$ and $\phi_0(\sigma_2) = 1$. By the formula (6.1), we directly have that for primes ℓ the coefficients $a_{\ell}^{(0)}$ of the newform are given by

$$a_{\ell}^{(0)} = \begin{cases} 0 & \text{if } \ell = 2 \text{ or } \ell \equiv 3, 5, 7 \mod 8\\ 2 & \text{if } \ell \in P_0\\ -2 & \text{if } \ell \equiv 1 \mod 8 \text{ but } \ell \notin P_0 \end{cases}$$

When q is odd, we get $\frac{q-1}{2}$ normalized newforms $f_j(z)$ of weight 1 on $\Gamma_0(4^{1+\log_{-1}(\frac{2}{q})}q^2)$ with neputye $\phi_j: (\mathbb{Z}/4q\mathbb{Z})^* \to \mathbb{C}^*$, where $\phi_j(\sigma_{-1}) = -1$ and $\phi_j(\sigma_q) = -\zeta_{q-1}^j$. By the formula (6.2) we directly have that for primes $\ell \neq q$ the coefficients of the newforms are given by

$$a_{\ell}^{(j)} = \begin{cases} u_q \zeta_{2(q-1)}^{jb_2} & \text{if } \ell = 2\\ 2u_\ell \zeta_{2(q-1)}^{jb_\ell} & \text{if } \ell \equiv 1 \mod 4 \text{ and } 2 \mid b_\ell\\ 0 & \text{otherwise,} \end{cases}$$

and

$$a_q^{(j)} = \begin{cases} 0 & \text{if } j \neq 0\\ (-1)^{\frac{q-1}{4}} & \text{if } j = 0, \end{cases}$$

where $0 \leq j < q-1$, $2 \mid j$ if $q \equiv 1 \mod 4$ and $0 \leq j < q-1$, $2 \nmid j$ if $q \equiv 3 \mod 4$; b_{ℓ} is defined by $\ell \equiv g^{b_{\ell}} \mod q$ for a primitive root $g \mod q$; $q; u_{\ell} = \left(\frac{\alpha_{\ell}}{\ell}\right) (-1)^{\frac{b_{\ell}}{2}}$ for an integral number α_{ℓ} such that $\alpha_{\ell}^2 \equiv q^* \mod \ell$;

and

1

$$u_q = \begin{cases} 1 & \text{if } q \notin P_0, 16 \nmid q^* - 1 \text{ or } q \in P_0, 16 \mid q^* - 1 \\ -1 & \text{if } q \notin P_0, 16 \mid q^* - 1 \text{ or } q \in P_0, 16 \nmid q^* - 1. \end{cases}$$

Here P_0 is the set of all prime numbers of the form $A^2 + 64B^2$ with $A, B \in \mathbb{Z}$.

Acknowledgements The authors thank the referee for the careful reading of the manuscript and for the revision of some missprints.

References

- G. W. Anderson, Kronecker-Weber plus epsilon, Duke Math. J. 114, 439-475 (2002).
- [2] J. W. S. Cassels, A. Frohlich, Algebraic Number Theory, Academic Press, 1967.
- P. Das, Algebraic Gamma monomials and double coverings of cyclotomic fields, Trans. Amer. Math. Soc. 352, 3557–3594 (2000).
- [4] M. Daberkow, M. Pohst, On integral bases in relative quadratic extensions, Math. of Computation 65, 319-329(1996).
- [5] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, GTM 84, Springer-Verlag, 1982.
- [6] J-P. Serre, *Linear Representations of finite groups*, GTM 42, Springer-Verlag, New York Inc. 1977.
- [7] J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic number fields: L-functions and Galois properties (A. Frölich, ed.), Academic Press, London, 1977, 193-268.
- [8] L. Yin and C. Zhang, Arithmetic of quasi-cyclotomic fields, J. Number Theory, 128, 1717-1730(2008).
- [9] L. Yin and Q. Zhang, All double coverings of cyclotomic fields, Math. Zeit. 253, 479-488(2006).
 - (1) DEPARTMENT OF MATHEMATICS, KAIST, DAEJEON, KOREA

(2) DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEI-JING 100084, CHINA