ARTIN L-FUNCTIONS AND MODULAR FORMS
ASSOCIATED TO QUASI-CYCLOTOMIC FIELDS
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ABSTRACT. We determine all irreducible representations of pri-
mary quasi cyclotomic fields, compute the Artin conductors of
the representations and the Artin L-functions for a class of quasi-
cyclotomic fields. By Deligne-Serre’s theorem, these L-functions
give a series of normalized newforms of weight one. We describe
these modular forms explicitly.

1. INTRODUCTION

A quadratic extension of a cyclotomic field, which is non-abelian
Galois over the rational number field Q, is called a quasi-cyclotomic
field. All quasi-cyclotomic fields are described explicitly in [9] fol-
lowing the works in [1] and [3]. Actually for any cyclotomic field
Q(¢,) we construct a canonical Z/2Z-basis of the quotient space of
{a € Q*/Q*? | Q((n, Va)/Q is Galois} modulo the subspace {a €
Q*/Q** | Q(¢n, /@)/Q is Abelin}. The minimal quasi-cyclotomic field
containing the square root of a special element of the basis is called a
primary quasi-cyclotomic field. L.Yin and C.Zhang [8] have studied the
arithmetic of any quasi-cyclotomic field. In this paper we determine
all irreducible representations of primary quasi-cyclotomic fields. The
methods apply to determine the irreducible representations of an ar-
bitrary quasi-cyclotomic field. We also compute the Artin conductors
of the representations and the Artin L-functions for a class of quasi-
cyclotomic fields. They correspond to a series of normalized newforms
of weight one by Deligne-Serre’s theorem [Th.2, 7]. We describe these
modular forms explicitly.

First we recall the construction of primary quasi-cyclotomic fields.
Let S be the set consisting of —1 and all prime numbers. For p € S,
we put p = 4,8, p and set p* = —1, 2, (—1)1)7_110 if p=—1,2 and an odd
prime number, respectively. For prime numbers p < ¢, we define
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For p < q € S, we put

NG ifp=-—1

Upg ifp=2orp=qg=1mod4
Upg = § /P Uy ifp=1 ¢g=3mod4

Va4V ifp=3, ¢=1mod4

VPG - Vpg if p=q=3mod4.

The canonical Z/2Z-basis of the quotient space mentioned above
consists of a subset of {u,, | p < g€ S}. Forp <qe Slet K =Q(¢4)
be the cyclotomic field of conductor pg and let K = K(,/u,,). Then

K is the smallest quasi-cyclotomic fields containing VUpg- We call

these fields K primary quasi-cyclotomic fields. Let G = Gal(K/Q) and
G = Gal(K/Q). We always denote by € the unique non-trivial element
of Gal(K /K). If (p,q) = (—1,2), then the group G is generated by two
elements o_; and oy, where o_;(() = (5" and 09((s) = (3. If p = —1
and ¢ # 2, or if p > 2, then G is generated by two elements o, and o,
where 0;,(Gy) = G, 0p(Gg) = G and 04((p) = G, 04(Gg) = ¢, with a,b
being generators of (Z/pZ)* and (Z/qZ)* respectively. If p = 2, then
G is generated by three elements o_1, 0, and o,, where o_;, 0 act on
(s as above and on (, trivially, and o, acts on (, as above and on (g
trivially. )

Next we describe the group G by generators and relations. An el-
ement o € G has two lifts in G. By [Sect.3, 7] the action of the two
lifts on /Ty, has the form fa, /Uy, or £a,/tpe/v/—1 with o > 0. We
fix the lift ¢ of o to be the one with the positive sign. Then the other
lift of o is Ge. The group G is generated by €,0, and 7, (and 6_; if
p = 2). Clearly e commutes with the other generators. In addition, we
have 6,6, = ,0,¢ (and 6_; commutes with 7, and &, if p = 2). For an
element g of a group, we denote by |g| the order of g in the group. Let
log_, : {£1} — Z/27Z be the unique isomorphism. For an odd prime
number p and an integer a with p { a, let (1‘—;) be the quadratic residue
symbol. We also define (5) = (%) = 1 for any a. Then we have, see
[Th.3, 7],

~ q* ~ p*
|6, = (1 + log_, (E)) lop| and |5,| = (1 + log_, (E)) logl,

with the exception that |7s| = 2|os| when (p,q) = (—1,2). If p =2, we
have furthermore |6_1| = |o_1|. Thus we have determined the group
G completely by generators and relations.
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2. ABELIAN SUBGROUP OF INDEX 2

In this section we construct a special abelian subgroup of G of index
2 and determine its structure. We consider the following three cases
separately:

Case A: |oy| = [0y and [gy] = |o];

Case B: |oy| = 2|y, [04] = |og| or |op| =loy|, |og| = 2|0y];

Case C: |o,| = 2|o,| and |o,| = 2|0
All the three cases may happen: Case (A) if and only if (p*) (L ) =1;
Case (B)*lf and f)nly if (%) # (%) or (p,q) = (—1,2); Case (C) if and
only if (£-) = (£) = —1. N

In Case A, we define the subgroup N of G to be

N <o_ 1,02,0 € > %fp:2 (42.1)
< O, q,5> if p#£2

It is easy to see that the subgroup N is abelian of index 2 in G and is
a direct sum of the cyclic groups generated by the elements. Thus we
have

2228 7)((q—1)/2)Z ®7/2Z if p=-1
N2!l722672/22062)(q—1)/2)Z®L/2Z i p=2
Z/(p—1Z®Z/)((q—1)/2)Z ®Z)2Z if p>2.
(A2.2)

In Case B, we define the subgroup N of G to be

<o_ 1,52,52> lfp:2
N=4< ap,a > if p+#2and |o,] = 2|0, (B2.1)
< 02,0 > if |5, = 2|0,

Again N is abelian and has index 2 in G. In addition, we have

)27 @® 727 it (p,q) =(—1,2)
zrrez/q-1)z if p=—1, ¢>2
N=\zz020202/0- 12 it p=2 (B22)
Z/(p-1)Z&®Z)(q—1)Z if p>2.

In Case C, p,q both are odd prime numbers. Let vy(p — 1) denote
the power of 2 in p — 1. We define the subgroup N of G to be

N <00 ?f va(p—1) S wa(g —1) (C2.1)
<Up,0 > if w(p—1) > (g —1)
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Then N is an abelian subgroup of G. When vy(p — 1) < va(q — 1), we
have e
[N| = 551 - 14 _(p=1)-2(¢-1)
|<oZ>N<a,>| 2 ’

thus [é : N] =2 and N is a normal subgroup of G. We have the same
result when vy(p—1) > v9(g—1). Although the subgroup < 5]% ,0q > 18

always an abelian subgroup of G of index 2, when ve(p—1) > va(g—1)

we are not able to get all irreducible representations of G from this
subgroup. So we define N in two cases.

Next we determine the structure of the subgroup NV in the case C. We
consider the case vo(p—1) < v9(g—1) in detail. Let d = ged(Z5+, ¢—1),
s=(p—1)/2dand t = (¢—1)/d. Choose u,v € Z such that us+uvt = 1.
We have the relations

(@)t =1, (327 =e=50"".
Let M be the free abelian group generated by two words «, 5. Let
p—1

ar=(p—1a ; 512704_((1—1)5;

and let M; be the subgroup of M generated by «y ,3;. Then M is the
kernel of the homomorphism

M — N; ou—>5}2,, B4 .
So we have N = M /M. Define the matrix
_(p—1 Bf
4= ( L)
Then (aq,01) = (a,5) - A, We determine the structure of M; by
considering the standard form of A. Define

U v 1 2tv — 1
P= (_t S) €8SLy(Z); Q= (_1 _2w+2> € SLy(Z).
Then
d 0
B=PAQ = <0 —2s(q — 1))
is the standard form of A. Let

(T’/‘L) = (aaﬁ)P_l and (7—1 7”1) = (al 751)@'

Then (11, 1) = (7, 0)B, M = Z7 ® Zp and My = Zdt & Z2s(q — 1) .
We thus have

N=M/M, 27/dZ & Z/2s(q — 1)Z .
By abuse of notation, we also write

(r.0) = (32.5,)P7" = (525, 5,5Y) .
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Then 7, p are of order d,2s(q — 1) respectively, and N is a direct sum
of <7 >and < p > We have 7. = 7*p~" and 7, = 7°4°. When
va(p — 1) > va(q — 1), we get the structure of N in the same way. So
in the case (C) we have

~ Z/dZ@Z/Qs(q—l)Z if U2<p—1) SUQ(q—l)
NZ= {Z/d/ZEBZ/QS’( 1)z i va(p— 1) > va(g — 1), (C2.2)

\(Vhere)cj d/gcd( ,q—1),s=(p—1)/2d and d' = ged(p —1, q;—l), s =
qg—1)/2d.

Now we summarize our results in the following

Proposition 2.1. The abelian subgroup N of the group G of index
2 defined in (A2.1), (B2.1) and (C2.1) has the structure described in
(A2.2), (B2.2) and (C2.2) in the cases (A), (B) and (C), respectively.
In particular, every irreducible representation ofé has dimension 1 or
2.

3. 2-DIMENSIONAL REPRESENTATIONS

We determine all irreducible representations of G in this section.
We will use some basic facts from representation theory freely. For the
details, see [6].

It is well-known that the 1-dimensional representations of G cor-
respond bijectively to those of the maximal abelian quotient G of
é, which are Dirichlet characters. So we mainly construct the 2-
dimensional irreducible representations of G. From the dimension for-
mula of all irreducible representations, we see that G has |G|/4 irre-
ducible representations of dimension 2, up to isomorphism. Let N be
the subgroup of G defined in last section. Let G = N UoN be the
decomposition in cosets. If p : N — C* is a representation of N, the
induced representation p of p is a representation of G of dimension 2.
The space of the representation pis V = Ind¢ v(C) = (C[G] ®cqn) C with
basis e, =1® 1 and e = 0 ® 1. The group homomorphism

p: G — GL(V) ~ GLy(C)
is given by
~~_ ( p(0) p(oo) ~ A
(3.1) plo) = (,0(015) ,0(0150)> , VYoeQaG,

where p(d) = 0if ¢ ¢ N. The representation p is irreducible if and only
if p 2 p” for every T € G \ IV, where p7 is the conjugate representation
of p defined by

p(z) =p(r—laT), Y2 EN.

Since N is abelian, we only need to check p 2 p°.
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Now we begin to construct all 2-dimensional irreducible representa-
tions of G. As in last section, we consider the three cases separately.
In addition, we consider the case when p and ¢ are odd prime numbers
in details, and only state the results in the cases when p = —1 or 2.
3.1. Case A. Assume p > 2. We have in this case N = (7,,, 7, ,¢)
and

N=Z/(p—-1V)Z&Z/((qg—1)/2)ZBZ/27Z .
Every irreducible representation of N can be written as p;;, : N — C*
with
~ i ~ 2j
Pijk(0p) = Gpor 3 Pijk(“g) = (215 pik(e) = (—1*.
where 0 <7 < p—1, 0§j<qg—1andk:(),1. Sinceé:NUEqN

and p7 () = piji(€)pijn(0p) = (—1)"pij(0,), we have
P & pijk =k = 1.

Write p;; = p;j1. The induced representation p;; : G —s GL3(C) of p;;

is given by

. . 0 o 0 ¢\ -

po@) = (50 0 ) mu@d= (%) e = -1, (4s)

p—1

where [ is the identity matrix of degree 2. Since

=% @) e me= (% )
2\ __ p—1 2\ qg—1

i\ O, = i and i\ O = ; s
@)= (% o, i) = (0

we see that the representations p;; with 0 < i < p;l, 0<5< a1

2 2
are irreducible and are not isomorphic to each other, by considering

the values of the characters of these representations at EZQ, and 53. The

number of these representations is &+ - =1 = 19 50 they are all the

- 2 2 1
irreducible representations of GG of dimension 2. N
Similarly, when p = —1, all irreducible representations of G of di-

mension 2 are p; with 0 < j < %, where
. 1 0 ~ o~ 0 ¢’ _
pe0=(p %) m@=(] %), mo--1 s
and when p = 2, all irreducible representations of G of dimension 2 are
pi; with0 <i<land0<j< %, where p;;(¢) = —1 and
- P 1 0 o 0 ¢¥
oG = (0L e = (5 ) st = () 51)

(A3.3)
3.2 Case B. Assume p > 2 and |5 | = 2|o,|. Then N = (7,,, 7.), and

N=Z/(p—-1)Z®Z/(q—1)Z.
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Any irreducible representation of N has the form p;; : N — C*, where

2 9-1

pii(Gp) = Gy s pis(G2) = Gy pijle) = pis(3))7 = (=1),
and 0 <i1<p—1, 0< )5 <qg—1. It is easy to check that
Py Epye=j=1 (mod?2).

The induced representation p;; : G — GL3(C) of p;; with odd j is
given by

= (% 8 ) me= () %) s

p—1

. 200 o 7,0
@ = (@) wa mE- (% ),

p—1 q—1

Since

we see that the representations p;; with 0 < i < p%l and 0 < j <
q — 1, 21 j are irreducible and are not isomorphic to each other. The

number of these representations is |4ﬂ. So they are all the irreducible

representations of G of dimension 2.
Similarly, when (p,q) = (—1,2), there is only one irreducible repre-
sentation py of dimension 2 defined by

i~ 1 0 ~ o~ 0 -1
:00(0-—1) = <0 _1) ) and p0(02) = (1 0 > : (B32)
When p = —1 and ¢ > 2, all irreducible representations of dimension
2 are p; with 0 < j < ¢ —1, 21, where p; is defined by
1 J

= (y &) wa mE - () %) sy

When p = 2, all irreducible representations of dimension 2 are p;;
with 0 <i<1land 0<j<qg—1, 2tj, where p;; is defined by

oG- = 01l = (o ) = (1 %)
(B3.4)

When |5,| = 2|o,|, all irreducible representations of dimension 2 are
pij with0<i<p-—1,21iand 0 <j < ‘I;QI, where p;; is defined by

piilop) = P , Piilog) =171 ; . B3.5
= (1 %) m= (95 (55)
3.3. Case C. Assume va(p — 1) < wy(q—1). Let

p—1
2

p—1 qg—1

5d ,t ;s us+out=1

d I

d = ged( q—1), s=
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as before. We must have that ¢ is even and v is odd. Let 7 = 512)8 . 5;

and = 0,% - oy. Then N = (57, 7,) = (7, ) and
N=Z/dZ & 7Z/2s5(q — 1)Z.
Any irreducible representation p;; : N — C* is of the form

2s( 1) j dj
pii(T) = (o= C q )(q—1) and pij(lu):Cgs(q—l)zc(;—l)(q—l)'

From ¢> = 7%p~" and 6, = 7°4°, we have

~ 2sui—j ~ 2tvi+j p 1 ;
pii () = G2V 5 pig(Ge) = gy 5 pis(e) = pig(03) = (=1
It is easy to show

p Epy=j=1 (mod?2).

The induced representation p;; : G — GLy(C) of p;; with odd j is
given by

~ Czli 0) ~ gs( —-1) 0
pij(T) = ( i) pi(p) = K : :
! 0 G ’ 0 N %S(qfl)

Here in the first equality we used the fact that ¢ is even, and in the
second equality we used the fact that u is odd. Furthermore we have

o 0 25m —j s Qtvi-i-j 0
pij(ap) = (1 C 0 > ; sz(O'q) - ( 2((6 1) . 2tvitj . (031)

2(g—1)

By considering the values of the character of p;; at 7 and u?, we see that
all the representations p;; with 0 <i <dand 0 <j <s(g—1), 2¢j
are irreducible and are not isomorphic to each other. The number of
these representations is d - sla=l) 5 D ‘G‘ So they are all the irreducible
representations of G of dimension 2.

Similarly, if va(p — 1) > va(qg — 1), we let
q_l),S,_p_l / q_l

d =gedlp—1,—— =—— t'=""—; Ui+t =1
ged(p 5 T 57 cou's +w

Then all the irreducible representations of G of dimension 2 are Pij
with 0 <i<d and 0 <j <t (p—1), 21, where p;; is defined by

o CQS u'i+j 0 o 0 2t'v'i—j
pij(0p) = ( 2(p01 aswing |5 Pi(00) = (4 Cq_é - (C3.2)
2(p-1)

Let RQ(CNJ) be the set of all irreducible representations, up to iso-

morphism, of G of dimension 2. As a summary, we have proved the
following
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Theorem 3.1. All 2-dimensional irreducible representations ofé are
induced from the representations of N. In detail, we have

In the case (A)

{ml0<j <57} if p=—1
R*(G) = @ww—ﬂﬂ,0<j< 1 if p=2
{pij |0 <@ <B- 0<J<QW if p>2,

where p;, pij and p;; are defined in (A3.2), (A3.3) and (A3.1) respec-
tively.
In the case (B)

~ {p;10<j<q—1, 245} if p=-1, ¢>2
R*(G) = ¢ {p;; |i=0,1, 0<j<q—1, 2¢j} if p=2

{@ﬂ0<i<p—12fi0<j<q?} if |5, = 2|0,|
{pij |0<i<BZ 0<j<q—1, 21j} otherwise,
where po, pj, Pij, Pij and pi; are defined in (B3.2), (B3.3), (B3.4),

(B3.5) and (B3.1) respectively.
In the case (C)

Re(G = (171050 <d 0 <slg-1), 200) i wa(p=1) < wlg — 1)
{pi; |10<i<d, 0<j<t(p—1), 215} otherwise,

where p;; and p;; are defined in (C3.1) and (C3.2) respectively.

4. THE FROBENIUS MAPS

This section is a preparation for the next two sections to compute
the Artin conductors of the representations and the Artin L-functions
of some quasi-cyclotomic fields K. For a prime number ¢, we say that
¢ is ramified (resp. inert, splitting) in the relative quadratic extension
K /K if the prime ideals of K over £ are ramified (vesp. inert, splitting)
in K. For a prime number ¢ which is unramified in K /K, let I, (resp.
I,) be the inert group of ¢ in the extension K/Q (vesp. K/Q). Let
Fr, be the Frobenius automorphism of ¢ in G/I, and Frg the Frobenius
automorphism of ¢ in G / I, associated to some prime ideal over /.

To compute the Artin conductors of the representations, we need
to construct an uniformizer in the completion of K at a prime ideal,
especially at a prime ideal over 2. Generally we are not able to get such
an uniformizer, but we can do it in the case p = —1. In addition, to
calculate the Artin L-functions of the representations, we need to know
the Fry, especially for ¢ = 2, and so we need to know the decomposition
of 2in K. For odd p < ¢ € S, we calculated some examples by a
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computer which show that 2 is always unramified in K. But we are
not able to show it. Furthermore, we do not know when 2 splits in
f(/K and when 2 is inert in K /K. But when p = —1, we can solve
these questions well (see below). So in this paper we only compute the
Artin conductors and Artin L-functions of the representations in the
case p = —1.

From now on, we always assume that p = —1, namely, K = Q((4)
and K = K (/). In this section we determine Fr, by Fr, for £ = 2. In
[Sect.5, 7] we have determined the decomposition of some odd prime
numbers in K /K. Now we determine the decomposition of 2 in K /K.
The result below is a more explicit reformulation of Theorem 2 in [§].

Proposition 4.1. If ¢ = 2, then 2 is ramified in I~(/K If q is odd,
then 2 is unramified in K /K if and only if (%) =1, and in this case 2

splits in [?/K if ¢¢ = 1mod16 and is inert in [?/K if ¢* # 1mod16.

Proof. We first consider the case ¢ = 2. The unique prime ideal of
K over 2 is the principal ideal generated by my = 1 — (3. Since the
ramification degree of 2 in K/Q is 4 and V2 = my(my + 2(3) (s, we have
that 2 is ramified in K /K if and only if x? = \/§mod7r§ is not solvable
in the ring OK of the integers of K by [Th. 2(1) 8], which is equivalent
to that (1+ Cg)Cg is not a square modulo 7§. Since 2 = ury for some
unit u, we have

(1 + 3Cs) (s = (s = (1 — m2)modrs,
T2

namely (1 + %Cg)gg is not a square modulo 5. So 2 is ramified in

K/K.
Now we assume that ¢ is odd. Let 12 = 1—(y. Since the ramification

degree of 2 in K is 2, we have 2 is unramified in K /K if and only if
r? = \/¢*modr] is solvable in Ok, see [Th.2(1), 8]. Furthermore, 2

splits in K /K if and only if 2* = /¢ modr} is solvable in Of. The
explicit computation of Gauss sum gives

a a a+b
Let v = Z(%):1 G, B= Z(%):l Coqr and y = Z(%):l Z(%):L a<b 2q+ 5

where in the summations a, b run over 1,2,--- ,g—1. Then o = 3*>—27,
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that with the equality 2 = 73 — 73 gives
V@ =142 —dy =1+ mf° — mp° -
= (1+mf)* —m (B + %) +m3 (8 — v)
= (1+mB3)* — ms(a+ B) + m(8 + v)modms.

—1

Since (o = —Cq_qT = —(}, where t is the inverse of 2 in (Z/qZ)*, we
see J = Z(%):l(—l)“(’;a = Z(%):l (*mod2. So if (%) = 1 we have
a = fmod2 and thus 2 is unramified in K /K, and if (%) = —1 we have
a+pB=30"1 (¢ = —1mod2 and thus 2 is ramified in K/K.

Now we assume (%) = 1. Then /¢ modr3} is a square if and only if
7o | B+ 7. We consider 2( + ). Since a = fmod2, we have

2(8+7) :26+ﬁ2—a5a(o¢+1)m0d4
From /¢* = 14 2a, we see a(a +1) = £, Since 8 | ¢* — 1 under the
assumption (5) = 1, we have ﬁ +v = mod2 So my | B+ v if and
only if my | 4 *— , namely 2 | ©=—. The proof is complete. O

Although the following result determining the ring O of the integers

of K will not be used in the paper, we write it down since it is a more
explicit reformulation of [Th.2(3), 8] in the case p = —1.

Corollary 4.2. For odd prime q, let t, = (¢ —1)/4 if ¢ = lmod4, and
ty = (¢ —3)/4 if ¢ = 3mod4. Then
Al %] it g=2
4/ T .
O = L |Gun LEEERE] i (2) = —1
7 [Qmw} if (2)

2(2sin g)tfl

Proof. See [Th.2(3), §]. O

Now we assume that 2 is unramified in K /K. Let Fry € G such
that Fry(¢s) = 1 and Fry(¢;) = ¢2. It is a Frobenius element of 2 in G

modulo I,. We have Fry = 05* for some by € Z with 2 | by as (%) = 1.

Thus ﬁ'g = 532 or ﬁrg = 5325. We need to determine 151“2 completely.
Since (3) = 1, we have

V@ = (14 m0a)” + 745 + v)modﬂé’

Write u = 1 + ma for simplicity. Since VT u?modry, we see
4/ %
@ € O. Let p be the prime ideal of K over 2 assomated to Fr.

By the deﬁmtlon we have

— 4/ % 4/ % 2 4/ %
f, (WT) _ (QT) = (57 + YL modp.
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; ~bo *) %2 * ~bo _
On the other hand, since 7.2(v/¢*) = (—=1)2 y/¢* and 72(u) = u as

2 | be, we have
o, (VT —u _(—1)17724q*—u
o =
4 2 2

- (4q*—u> (~)FYT —
g, ¢ 9 = 9 .

and

q

So if 2 | %2 we have Fry = 522 if and only if 7 | 8+~ (namely 2 splits
in K/K), and if 2 { 2 we have Fr, = &4 if and only if m § 5 + v
(namely 2 is inertia in K/K). In the case ¢ = 3mod4, we can always
assume that 21 2, since if 4 | by, we may replace by by by + (¢ — 1). In
the case ¢ = 1mod4, we have 2 | %2 iff 27 = 1modg iff ¢ has the form
A%+ 64B? for A, B € Z, by the Exercise 28 in Chap.5 in [5]. So we get
the following result

Proposition 4.3. Assume that 2 is unramified in K/K Let Fry = o,
We have 2 | by. If ¢ = 3mod4, we always assume by = 2mod4. Let Py,
be the set of the prime numbers of the form A%+ 64B% with A, B € 7.
Then we have

Ao o if g€ Py, 161q =1, or g€ Py, 16| ¢* — 1
2T ore if q€ Py, 161 ¢* — 1, or ¢ & Py, 16 | ¢* — 1.

The following lemma is useful in the computation of Artin L-functions.
Lemma 4.4. We have € € I, if and only if € is ramified in [?/K

Proof. The canonical projection G — G ~ G/(¢) induces a  surjective
homomorphlsm [g —— [, which implies the 1somorphlsm Ig/ < e >
NI, = I,. Thus ¢ is ramified in K /K iff |I| = 2|L,| iff [N <& > | =2
iff € € fg O

5. THE CONDUCTORS OF THE REPRESENTATIONS

In this section we compute the Artin conductors of all 2-dimensional
irreducible representations of G in the case p = —1. First we recall the
definition of the Artin conductor. For details, see [Chap.6, 2].

The notations are as before. Let ¢ be a prime number in Q, and
choose a prime ideal p in K over £. Let Gy, = G(K,/Q;) be the corre-
sponding decomposition subgroup. Let v be the normalized valuation
in f(p. For ¢ > 0, define the ramification groups

Gri={o€Gy|vlo(x)—z)>iforallzc Og, }-
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The group éz,o is the inertia subgroup of Gy. Let 7 be a uniformizer
in K,. Then for 7 > 0

Gpi={o € G| vlo(r) — ) >i}.

For a representation p of G with the character y and the representation
space V', let

fox0) = f(p, ) = — x(Gea)),

=0

where \(Gpi) = |Gg7i|*1zseégix(s). We have f(x,¢) = 0 if p is
unramified over £, ie. V = VGeo, The Artin conductor of the repre-
sentation p is defined as
p) = Hgf(x,f)'
¢

From the result in last section, we know that ¢ is unramified in K /Q
if ¢ # 2,q. Thus to compute the conductor f(x), we only need to
calculate f(x,2) and f(x,q). We consider the cases ¢ = 2 and ¢ odd
separately.

5.1. Case ¢ = 2. In the case (p,q) = (—1,2), there is only one 2-
dimensional irreducible representation jo of G. Let %o be the character
of fpo. Since only 2 is ramified in K, we only need calculate f(%o,2).
As in last section, let my = 1 — (3. Let g be a prime ideal in K
over 2 and let v be the normalized valuation in K, - From the proof of

Prop.4.1, we see ‘7{—3

2

v(?—l) <\Z—§—1>—|—v<\:—§+1>:v(w2):2.

V\fehavev(é/i 1)—0(*[—1—1)—1 Som = ;C—llsaunlformlzerof

K The group G is generated by &_; and & G2, and & 1(V2) = v/2 and
02(\/_ ) = v/2/v/—1. Clearly we have Gy = G. Furthermore, we have

. _ V2 _ V2 . 1+C oy _
”("‘1(”)_”)_”<1—<81 1—cs>‘ (1—<8*f) >

=1— mmodri. Thus

v(@2(r) —m) = v <1+¢8 =G =G

and

V2T f) v( cgf):

v(e(m) —m) =v(=2(r+1)) =8.



14 S. BAE, Y.HU, L.YIN

Thus Gg}l = G270 = é and GQ,Q = - = G2’7 =< € >. By easy
computation we get that xo(G20) = Xo(G21) = -+ = Xo(G27) = 0,
and xo(Ga2,,) = 2 for n > 8. So we obtain

1
(5.1) f(Ro.2)=2+2+ 7 x2x6=T.

5.2. Case odd ¢. To compute f(x,q), we consider the cases (_71) =1
and (’71) = —1 separately. Let o be a prime ideal in K over ¢. Let v

be the normalized valuation in K. o
5.2.1. Assume (_71) = 1. Then ¢ is unramified in K /K but ram-

ified in K/Q. We see m = 1 — (, is a uniformizer of f(p. Now all
2-dimensional irreducible representations of G are as in Case A. Let X;
be the character of p;. It is easy to see that éq,o =< g4 >. Notice that
e ¢ Gy )

Let 1# 0 € Ggpo and 6((,) = (7, 1 <a < g— 1. We have

w(om —m) = (¢~ ) = vl - ) = 1

Thus éq,n = {1} for n > 1. By easy computation we get that f(j(éq,o) =
0 and x;(G,n) = 2, for n > 1. We obtain

(5.2) fXG, @) = 2.

5.2.2. Assume (_71) — —1. Then g is ramified both in K /K and in

K/Q, and all 2-dimensional irreducible representations are as in Case
B. Let x; be the character of p;. Since v(1 — (,) = 2 and v({/—q) =

1(2(qg - ~1)) = 1 we see that 7 = V—q/(1— Cq)% is a uniformizer
of ¢ in K. It is obvious that G,y =< o, >. Notice that in this case
€€ Gq70.

Let 1 # 6 € Gyp and 5(¢;) = (% 1 < a < g— 1. We have

v(eT —7) +v(Ger — ) = v(67 —7) +v(—67 —7) = v(6w? — 7°)

_ U( (5)v=a e

1-¢% (1-¢)7T

, L= (9 (X )
= v(m)+wv — 3
(0 ¢

q—3
2

(&9

= 240 |1—(

|2
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Let t = v(1 — (%)(Zf;ol C;)?) We claim that ¢ = 0. Otherwise ¢ > 0.
Since
q—3
“Zigi s [1mod(1-¢,) if (
=qz = .

" —lmod (1 —¢,) if (
we always have a = 1mod ¢ and thus a = 1, which contradicts to the
assumption that a > 1. This shows the claim. Thus v(67 — 7) =
v(oer — ) = 1, as v(om — 7 + der — ) = v(27) = 1. So we get
Gyn = {1} for n > 1. By easy computation we get that x,;(Gg0) = 0
and X,;(Gy,) = 2 for n > 1. We obtain

(5.3) F(a) = 2

Next we compute f(X;,2). we consider the cases (%) =1 and (%) =

Qe Qe

—1 separately. Let o be a prime ideal in K over 2. Let v be the
normalized valuation in K.
5.2.3. Assume (3) = 1. Then 2 is unramified in K /K but ramified

in K/Q, and m = 1 — (4 is a uniformizer in f(p. It is easy to see that
Go0 =< d_1 >. Notice that in this case ¢ ¢ Gyo. We have

(G am—7) =v(G - ) =v(2) =2.

Thus we have ég,o = C~¥271 =< 0_; > and Ggm = {1} for n > 1. By
easy computation we have X;(G20) = X;(Ga1) = 1 and x;(G2,) = 2
for n > 1. We obtain

(5.4) f(,2)=14+1=2

5.2.4. Assume (%) = —1. Now 2 is ramified both in K/K and

in K/Q. As in last section, let my = 1 — (4, a = Z(%):l ¢¢ and

b= Z(g)zl ggq, where the summations are over 1 < a < ¢ — 1. From
q

last section we have

(5.5) Vi = (14 m6)? + 73 mod 73

Let p =1+ m3. We claim that 7 = @ is a uniformizer in f(p. In
fact, since

vV + 1) oV — i) = o(VgT = p*) = v(m3) =6
and v((Vq* + p) + (Vg* — 1)) = v(2/¢*) = 4, we must have
V(g + 1) = o(Vg" —p) =3,

and thus v(@;“) =1.



16 S. BAE, Y.HU, L.YIN

It is obvious that Gao = {1, €, 6_1, G_1€}. Since 6_1(V/F*) = VG

and 6_1¢(\/q*) = —/q*, we have
4/ ~* 1 4/ ~* 1
(G — ) = U( 71\/q_+ +mfB Vet +7r26>

T2 T2

Qe

4/ % 1 4/ * 1
= v (&1 v+ — VTt ) (since 6_18 = [3)
o Uy

(ST T
- (Y g ) -

To compute it, we first claim that 7, { 5. Otherwise, 2 | §as § € Q((,).
From last section, we have \/¢* = 1 4+ 2a and a + = 1 mod 2, thus
Vq* = -1+ 20 =—1mod4 and so ¢* = 1 mod 8. This contradicts to
the assumption <§) = —1. We showed the claim. Thus v(3) = 0. Since

V(g +1+mf) = 3, we have v(/g*+1) = 2, namely v(6_17m—7) = 2.
We now compute v(d_jemr — 7). We have

4/ ~k 1 4/ ~k 1
o(yem—m) = U<6_16¢q_+ +mfB N+ +mﬁ)

2 2

@+ e+l
U( ¢t 1_C4>—v(\/q_+é4)-

Observe that v(y/g" + Ca) + 0(V/F — Ga) = v(v/@ +1) = v(2¥LH) = 4,
since 7y 1 YL Furthermore, since

v(Va + )+ (Vg — Q) =v(@2Vq) =4,

we must have v(/q*+ () = v(V/q* — (4) = 2, namely v(_jemr —7) = 2.
In addition, we have

v(e7r—7r):v<

—W+1+mﬁ_<*/?+1+mﬁ)_2

Uy 2

By the discussion above we have C~¥270 = (N?QJ and égm = {1} for
n > 1. By easy computation we have X,(Gs2o) = X;(G2,1) = 0 and
X;j(G2n) = 2 for n > 2. We obtain

(5.6) f(%,2) =242 =14.

5.3. Global Conductors. By the equalities (5.1)-(5.6) above, we get
the following

Theorem 5.1. In the case q = 2, the conductor of the unique 2-
dimensional irreducible representation py of G is equal to §(py) = 27. In

the case that q is odd, all the 2-dimensional irreducible representations

) = 92(1+log_1(3)) 2

pg; of G have the conductor §(p; o g,
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6. THE ARTIN L-FUNCTIONS

In this section we compute the Artin L-functions of the quasi-cyclotomic

ﬁelds K = Q(C4q7 \4/?) _

The L-functions associated to the 1-dimensional representations of G
are the well-known Dirichlet L-functions. So we mainly compute the L-
functions associated to the 2-dimensional irreducible representations of
G. Let ¢ : G — GL(V) be a 2-dimensional irreducible representation.
The Artin L-function L(y, s) associated to ¢ is defined as the product
of the local factors

H Lf(@?'S)

{:prime

where the local factors are defined as Ly(p, s) = det(l—gp(ﬁg)f’sﬂ/ff)’l
Now we begin to compute them. First we notice that if ¢ is ramified

in K/K, then Ve =0 and Li(p,s) =1, which is due to the facts that
e € I; by Lemma 4.4 and ¢(¢) = —1I for any irreducible representation
¢ of G by Theorem 3.1.

6.1. Case ¢ = 2. By section 3, there is only one 2-dimensional repre-
sentation py in this case, which is defined as

o 1 0 ~ o~ 0 -1

,00(0',1> = (0 _1) s and po(O'Q) = (1 0 ) .
Since 2 is ramified in K /K, we have Ly(po,s) = 1. Assume that ¢ is
an odd prime number.

If / = Tmod8, then Fr, = o_; and thus ﬁg = 0_y or o_ie. In any
case we have

Li(Po, s) = det ([ + ((1) _01> gs) o (1 — g2y

If ¢ = 5mod8, then Fr, = o5 and thus Fr, = &, or o5¢. We have
-1
Lz(ﬁo,s) = det ([ + (? _01) g—S) _ (1 + 5_25)_1

If / = 3mod8, then Fr, = 0_;09 and thus F}g = 0_109 Or 0_102¢. We
have

Li(po, ) = det <I 4 <(1) _01) ((1) —01) gs)_l (1= )

If / = 1mod8, then Fr, = 1 and thus ﬁg = 1 or . In this case
we must determine FI‘g completely. Since Frg(\/§) = (v/2)* modgp for
the prime ideal p of K over / assomated to Frg, we have Fr, = 1 if
25 = 1mod/, and Frg — £ if 25 = —1mod/. As in last section, we
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have that for / = 1mods8, 2% = 1mod/ if and only if £ € Fy. So we

have
N (1—¢2)2 iflep
L —
e(ﬂoa S) {(1 + g—s)—2 otherwise.

We get the Artin L-function in the case (p,q) = (—1,2) as follows:

Lpo,s)= [ a—e>) ' [l a+e2)!

(6 1) ¢=3 or 7(8) £=5(8)
. v H(]_ . 6—5)—2 . H (1 + é—s)—Q
LePy (=1(8), £¢Py

6.2. Case odd ¢. In this case, all 2-dimensional irreducible represen-
tations of G are p; with 0 < j < ¢—1,2 | j if ¢ = 1mod4, and
0<j<qg—1,21jif ¢ =3mod4, where p; is defined by

. 1 0 . 0 ¢, -
Pj(0_1) = 0 —1)/° pj(Uq) = 1 0 and pj(g) =—1.
We first determine the local factors Lg(,b}, s) for ¢ # 2,q. For such

¢ we have VIt = V. Let Fr, = o 10 , which is equivalent to ¢ =

(—1)*mod 4 and ¢ = g**mod ¢, where g is the primitive root mod ¢
associated to o,. It is easy to compute that

jbe .
. b g 1) lf 2 | bg
ﬁ](~bz) — (0 Cgl) ! — A 0 gj(be'f'l)
1 0 o 2a=1) if 24 by.
Cg( 0

Furthermore, we have

( — ¢ 0?2 ifa, =0, 2| b

2(q—1)

JW@ZS ifa, =0, 215
det(] — (350 0y = { 1 7 Ca R
(L = pj(ayoy)) ora; =1, 2| b
1+ e ifa, =1, 24b

and
(L+ Gyt ifag=0, 2]b

B 1_ ]be 25 f e 2

det([—i-pj( ag b/)ﬁ ): C € 1I ay O, *bé
ora;=1, 2| b
N if ag =1, 2¢by.

So we get
Le(pj,s) = (1= G0 ™)™
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if / = 1mod4 and ¢ = ¢modq with 2 { b, or if / = 3mod4 and
¢ = g**modq with 2 | b, and

Le(pj,8) = (1 + ¢ 0727}

if / = 3mod4 and ¢ = ¢g*modq with 2 { b,.

To compute the local factors when ¢ = Imod4 and ¢ = g*modgq
with 2 | b, we must determine Fr, completely. Since (5) =1, we
have () = 1 and (% ) = 1. Let ay € Z such that o = ¢*mod/.
From 3% ({/gF) = (=1)% YT, we see Fr, = &% if (%) = (=1)¥, and
Fry = ove if (%) = (-1)7 F+1. 8o when ¢ = lmod4 and £ = ¢*modg
with 2 | bg, we have

Le@,s):{“_g“ MO

%
(LGl )2 i (3%) = (—1)¥ .

Next we compute the local factors Ls(pj,s) and Ly(p;,s). When

(%) = —1, we know from last section that 2 is ramified in K/K. So

Ly(pj,s) =1 in this case. Now we assume (q) = 1. Since I, =< o0_; >

and 2 is unramifed in K/K, we have Iy =< G4 > or I, =< 5_;e >.
The matrices I + p;(o_1) and I + p;(o_1€) have rank 1, thus V2 has
dimension 1. Write Fry = o2 with 2 | b,. As in last section, we
always assume by = 2mod4 if ¢ = 3mod4. Recall that P, be the set
of the prime numbers of the form A% + 64B? with A, B € Z. Since

ﬁy(~b2) = g?;_l)], by Prop.4.3 we have

14—4‘”1)2 s ifge Py,161q"—1, orq & Py, 16 | ¢* — 1.

2q1

1—¢» 975 if g Py, 1641¢* —1, org € Py,16 | ¢* — 1
L(@7):{ @@1 q ¢ Py, 161 ¢ q€ Py,16 ¢

When ¢ = 3mod4, we know that ¢ is ramified in I?/K So L,(p;, s) =
1 for odd j in this case. Assume ¢ = lmod4. Since I, =< o, > and

q is unramifed in K/K we have _7 =< 04 > or I, =< o4 >. Thus

Vi = 0if j #0, and Ve has dimension 1 if j = 0.
The Frobemus map Fr, of ¢ in G modulo [, is the identity map. So

Fr r, = 1 or e. In [Sect.5, 8] we have showed that ¢ splits in K/K if
¢ = 1lmod8 and is inert if ¢ = 5mod8. So Frz = 1if ¢ = 1mod8 and
Fry = ¢ if ¢ = 5mod8. Thus we get

| if 50
Ly(pj,s) =< 1—¢* if j=0, ¢ =1mod8
1+q¢*® if j=0, ¢ =>5mods.
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We have computed all the local factors, obtaining that
~ e =1 g g
L(py5) =(1 = uyGa_y27) M1 = (1) g %)™
< I a-ghe™

(62) (=1, 2fby or (=3, 2|by
< [T a+¢xe>)™ TI G —uwgi_ ),
€E3, 21’})@ ZEL 2‘1)5

where u, = 1if ¢ & Py, 161 ¢* — 1, or g € P,16 | ¢* — 1 and u, = —1

otherwise; dp; = 0 1f] # 0 and dpg = 1; and up = (025)(—1)%2. Here in

the products 7 =7 denotes the congruence modulo 4.

Theorem 6.1. Except for the Dirichlet L-functions, all Artin L-functions
of the Galois extension K/Q are explicitly given by (5.1) in the case

q =2 and by (5.2) in the case q is odd, where in (5.2)0 < j < q—1, 2|
jifg=1mod4d and 0 < j < q—1, 217 if ¢ = 3mod4.

6.3. A formula. Let (;(s) and (x(s) be the Dedekind zeta functions

of K and K respectively. By Artin’s formula of the decomposition of
Dedekind zeta functions we have

H H Léﬂj? )

pj £: prime

where p; runs over all 2-dimensional irreducible representations of G.
When g = 2, there is only one 2-dimensional irreducible representation
of G. So the square of (5.1) gives the formula. When ¢ is odd, by
computing Hﬁj Li(pj,s), we get the following

Corollary 6.2. For a prime number { # q, let f, = m be the
order of fmodq and let go = ged(by,q — 1) = q;—el. If ¢ = 1mod4, we
have

Ckls)
Ck(s)

qg—1

:(1 _ u£22*f28>*92(1 - (_1)qus)72 H (1 _ gffes)*2gz

(=1, 24by or (=3
< T -y
551, 2|bg

and if ¢ = 3mod4, we have

??Ei; :(1 + u(];22*f23)*92 H (1 + g*fzS)*de H(l _ g*szS)*ge
K (=1, 2fp, (=3
« H (1 + u{ze—fzS)—Qge7

fEl, 2|bg

where u, and u, are as above.
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6.4. The corresponding modular forms. All the 2-dimensional ir-
reducible representations of G in the case p = —1 are monomial. It
is easy to see that they are odd. By Deligne-Serre’s theorem [Th.2,
7], these Artin L-functions above are equal to the L-functions of some
normalized newforms of weight one, which allows one to determine
a newforms of weight one by a 2-dimensional irreducible odd repre-
sentations of G. More precisely, the irreducible representation p; of
conductor N corresponds to a normalized newform f;(z) of weight one
on I'g(N) with nebentype ¢; = det(p;), which has a Fourier expansion
at infinity

o0
_ Z ag)qn7 q= e27rzz7
n=1
where agj ) = 1 and the other coefficients a,, are equal to those of the
L-function L(¢;,s) = Y .-, a,n~*. In this subsection we describe these

modular forms explicitly. Since these newforms are elgenfunctlons of

Hecke operators, to determine all a' it is enough to determine ae ) for
all primes /.

When ¢ = 2, we get one normalized newform fy(z) of weight 1 on
[o(27) with nebentype ¢q : (Z/8Z)* — C*, where ¢o(0_;) = —1 and
¢o(09) = 1. By the formula (6.1), we directly have that for primes ¢
the coefficients aéo) of the newform are given by

0 if {=2o0r¢=3,5"7mod8
a’={2 iflen
—2 if {=1mod8 but ¢ ¢ F,

When ¢ is odd, we get % normalized newforms f;(z) of weight 1 on
[o(4' o8- G Jq?) with neputye ¢; : (Z/4qZ)* — C*, where ¢;(c-1) =
—1 and ¢;(0y) = —¢_;. By the formula (6.2) we directly have that for
primes ¢ # q the coefficients of the newforms are given by

o (wG,y  ife=2
ay) = Que(gé’;_l) if /=1mod4 and 2| b,
0 otherwise,
and
ad) — 0 1 itj#0
1 (-1)= if j =0,

where 0 < j<g—1, 2| jifg=1moddand 0 < j<qg—1, 2¢7if
¢ = 3mod 4; by is defined by ¢ = ¢* mod ¢ for a primitive root ¢ modulo

q; up = (%)(—1)%Z for an integral number ay such that of = ¢* mod ¢;
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and
1 if g Py,161¢*—1lorqg€ Py, 16| ¢* — 1
1 ifq¢ P16| ¢ —lorqge Py,164q" — 1.

Here P, is the set of all prime numbers of the form A2 + 64582 with
A BeZ.
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