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Abstract

Let G be a solvable subgroup of the automorphism group Aut(X) of a compact
Kähler manifold X of complex dimension n, and let N(G) be the normal subgroup of
G consisting of elements with null entropy. Let us denote by G∗ the image of G under
the natural map from Aut(X) to GL(V,R), where V is the Dolbeault cohomology group
H1,1(X ,R). Assume that the Zariski closure of G∗ in GL(VC) is connected. The main
aim of this paper is to show that, when the rank r(G) of the quotient group G/N(G)
is equal to n−1 and the identity component of Aut(X) is trivial, the normal subgroup
N(G) of G is finite. This affirmatively answers a question in Invent. Math. posed by
D.-Q. Zhang.
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1 Introduction and Main Results

Let X be a compact Kähler manifold of complex dimension n, and let us denote by Aut(X)
the biholomorphism (or automorphism) group of X . In this paper we mainly study the
structure of solvable subgroups of Aut(X) which are of null entropy. One motivation for this
study comes from the paper [5] of Dinh and Sibony that deals with only abelian subgroups
of automorphisms of a compact Kähler manifold. It will be also worth pointing out the fact
that the class of solvable subgroups of automorphisms of a compact Kähler manifold is not
exhausted by abelian subgroups. Moreover, we mention that recently there have been some
great interests in this field (see, e.g., [2], [6] and references therein).

In order to describe our results in more detail, we first need to set up some notations and
terminology. Let f be an automorphism of X . The spectral radius

ρ( f ) = ρ( f ∗|H2(X ,C))
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of the action of f on the cohomology ring H2(X ,C) is defined to be the maximum of the
absolute values of eigenvalues on the C-linear extension of f ∗|H2(X ,R). We call f of null
entropy (resp. of positive entropy) if the spectral radius ρ( f ) is equal to 1 (resp. > 1). It is
well-known as in [5] (or [10], Theorem 4.1 (2)) that

ρ( f ∗|H2(X ,C)) = ρ( f ∗|H1,1(X ,C)).

We say that a subgroup G of automorphisms is of null entropy (resp. of positive entropy)
if all non-trivial elements of G are of null entropy (resp. of positive entropy). It is easy to
show from the definition that ρ( f±1) is always less than or equal to ρ( f∓)n−1 (e.g., see [9]).
Similarly, a dynamical entropy of f can also be defined to be the logarithm of the maximum
of the absolute values of eigenvalues on the C-linear extension of f ∗|H∗(X ,R). It has been
shown in the works [13] and [8] by Yomdin and Gromov that the definition of dynamical
entropy as above is, in fact, equivalent to that of topological entropy.

Now let G∗ denote the image of a subgroup G of Aut(X) under the natural map from
Aut(X) to GL(V,R), where V is the Dolbeault cohomology group H1,1(X ,R). Then clearly
G∗ is a subgroup of GL(V,R). We call a group virtually solvable if it has a solvable subgroup
of finite index. Let VC be the complexification of V so that VC is now a finite dimensional
vector space over C. Then G∗ can be regarded as a subgroup of GL(VC) in a natural way,
and a solvable subgroup G∗ of GL(VC) is called Zariski-connected, or simply Z-connected,
if its Zariski closure Ḡ∗ in GL(VC) is connected. One important point to note here is that G∗

itself may not be connected, in general. From now on, for the sake of simplicity, we will say
that G is Zariski-connected or simply Z-connected if G∗ is Zariski-connected.

It is easy to see that given a virtually solvable subgroup G∗ of GL(VC), one can find a
Zariski-connected solvable finite-index subgroup G1 of G∗. Moreover, any subgroup of a
solvable group G∗ and any quotient group of G∗ are also solvable, and the closure of G∗ is
solvable as well (see Section 2 of [10]).

Next, let
N(G) = { f ∈ G | f is of null entropy}.

Then it is easy to see that N(G) is a normal subgroup of G, when G is a Zariski-connected
solvable subgroup of the automorphism group Aut(X) (see, e.g., Section 2 or [10]). More-
over, in this case it has been proved that G/N(G) is a finitely generated abelian group of
rank at most n−1 (see [14]).

In their paper [5], Dinh and Sibony proved that if, in addition, G is abelian and the rank
r(G) is equal to n− 1, then N(G) is finite ([5], Proposition 4.7). Let Aut0(X) denote the
identity component of Aut(X) consisting of automorphisms homotopically equivalent to the
identity. In a recent paper [16], Zhang also investigated a question of finiteness of N(G)
for Zariski-connected solvable subgroups G of Aut(X) for a minimal complex projective
threefold X . As a consequence, he proved that if r(G) = n− 1 = 2 and Aut0(X) is trivial,
then N(G) is finite ([16], Theorem 1.1 (3)).

The primary aim of this paper is to extend the result of Zhang, which holds only for
minimal complex projective threefolds, to any compact Kähler manifolds with complex di-
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mension n at least 3. To be precise, our main result of this paper which affirmatively answers
Question 2.17 in [14] is

Theorem 1.1. Let X be a compact Kähler manifold of complex dimension n≥ 3, and let G
be a Zariski-connected solvable subgroup of the automorphism group Aut(X). Assume that
the rank r(G) of the quotient group G/N(G) is equal to n− 1 and that Aut0(X) is trivial.
Then N(G) is finite.

It is quite interesting to notice that, if G is further assumed to be abelian in Theorem 1.1,
then N(G) is finite even without the assumption of the triviality of Aut0(X) (see also [11],
Proposition 2.2).

In order to explain that the result of this paper is quite sharp, we then recall Example
4.5 in [5]. To do so, let T = C/(Z+

√
−1Z) and X = Tn. Then X is an abelian variety

of complex dimension n. Let SL(n,Z) denote the group of n× n-integer matrices whose
determinant is equal to 1. Then SL(n,Z) acts diagonally on X , and it contains an abelian
subgroup G1 of rank n−1 whose non-trivial elements are diagonalizable over real numbers
and are also of positive entropy. Now let G be the group generated by G1 and Aut0(X). Then
G is a Zariski-connected solvable subgroup of Aut(X) which acts on the abelian variety X
of complex dimension n such that N(G) = Aut0(X)∼= X and the rank r(G) = n−1 (see also
[16], Remark 1.3 (1)). So the triviality of Aut0(X) cannot be dropped in Theorem 1.1, in
general.

This example also shows that our result in this paper is somewhat optimal in several
other respects. For example, by simply taking an abelian subgroup of rank n−2 of G1, we
can give an example whose G/N(G) has rank n−2, but N(G) is not finite. Moreover, note
that a recent result of B. Fu and D.-Q. Zhang in [6] shows that the Zariski-connectedness
assumption in Theorem 1.1 is really necessary, since otherwise the Kähler manifold X is
essentially a complex torus under some mild assumptions and so the question of finiteness
of N(G) becomes significantly trivial, as the preceding paragraph clearly shows (see [6] for
more details).

A class c in H1,1(X ;R) is called a Kähler class if it is a class of a Kähler form, and is
called numerically effective, or simply nef, if it lies in the closure of the set of Kähler classes.
On the other hand, a class c in H1,1(X ;R) is called nef and big if it is nef and

∫
X cn > 0.

Let Autc(X) denote the automorphism group preserving a class c ∈ H1,1(X ;R). If,
in addition, the class c is a Kähler class, then it is well-known that the quotient group
Autc(X)/Aut0(X) is finite by a theorem of Lieberman and independently Fujiki ([11], Propo-
sition 2.2 or [7], Theorem 4.8). For a compact complex projective manifold X of dimension
n, by using the arguments of Lieberman in [11] Zhang proved in [15], Lemma 2.23 that
Autc(X)/Aut0(X) is finite even for a nef and big class c (see also the proof of Theorem 4.6
in the published version of Dinh and Sibony’s paper [5] for a certain other case). As far as
we know, however, it appears to be still unknown whether Autc(X)/Aut0(X) is finite for a
nef and big class c on a general compact Kähler manifold X .

In view of this fact, the following theorem is interesting in its own right, and plays an
important role in finishing the proof of our main Theorem 1.1.

3



Theorem 1.2. Let X be a compact Kähler manifold of complex dimension n ≥ 3, and G
a Zariski-connected solvable subgroup of Aut(X) whose rank r(G) of the quotient group
G/N(G) is equal to n−1. For a nef and big, but not necessarily Kähler, class c∈H1,1(X ,R),
the quotient group Autc(X)/Aut0(X) is finite.

In Section 3, we give a proof of Theorem 1.2 (see Theorem 3.8).
Finally, we close this section with a refined statement of Theorem 1.1. To do so, note

that N(G) can be shown to be a subgroup of Autc(X) for a nef and big class c, as in Section
3, and that N(G)∩Aut0(X) is clearly a normal subgroup of N(G). So we have the following
corollary:

Corollary 1.3. Let X be a compact Kähler manifold of complex dimension n≥ 3, and let G
be a Zariski-connected solvable subgroup of the automorphism group Aut(X). Assume that
the rank r(G) of the quotient group G/N(G) is equal to n−1. Then N(G)/N(G)∩Aut0(X)
is always a finite group.

We organize this paper as follows. In Section 2, we first collect some basic facts which
are relevant to the proof of Theorem 1.1. In this section, we construct a homomorphism
from a solvable subgroup of automorphisms to the abelian group (Rm,+). Here one of the
key technical ingredients is a theorem of Lie-Kolchin type in [10] (Theorem 2.3 of Section
2). In Section 3, we finally give proofs of our main Theorem 1.1 and its Corollary 1.3 as
well as Theorem 1.2.

Form now on, we always assume that the complex dimension of the manifold X is at
least 3, unless stated otherwise.

2 Theorem of Lie-Kolchin type and its Applications

The goal of this section is to set up some preliminary results necessary for the proof of
our main Theorem 1.1. As mentioned earlier, one of the key ingredients for the proof is a
theorem of Lie-Kolchin type established in [10].

Let V be a finite dimensional real vector space and let VC be its complexification. For a
solvable group G, let ψ : G→GL(VC) be a complex linear representation of G. Then we take
the Zariski closure, denoted by Z, of ψ(G) in GL(VC). Let Z0 be the connected component
of the identity in Z and let G0 = ψ−1(Z0). Since G is a solvable group, the group Z0 is
conjugate to a group of upper triangular matrices whose determinant is non-zero. Let N(G0)
be the subgroup of G0 whose elements are defined by the statement that f is an element
of N(G0) if and only if the absolute values of all eigenvalues of f on VC are equal to 1.
Now observe that N(G0) is a normal subgroup of G0 and that the abelian group G0/N(G0)
embeds into (C∗)dimVC . Hence the rank of an abelian group G0/N(G0) should be finite and,
moreover, bounded from above by dimVC. From now on, we shall denote by G such a group
G0.

Then we will need the following lemma whose proof is simple (e.g., see [10], Lemma
2.5).
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Lemma 2.1. Let Z0 be a Zariski-connected solvable subgroup of GL(VC). Then the eigen-
values of every element of the commutator subgroup [Z0,Z0] of Z0 are all equal to 1.

Since G is solvable, there exists a derived series of G, as follows.

G = G(0) .G(1) .G(2) . · · · .G(k) .G(k+1) = {id},

where G(i+1) is a normal subgroup of G(i) and G(i+1) is the commutator subgroup [G(i),G(i)]
of G(i) (0 ≤ i ≤ k). Let A = G(k). Then A is an abelian subgroup of G, and clearly A is a
subset of [G,G]. Thus, by Lemma 2.1, every element of A has all the eigenvalues equal to 1.

Recall that if C is a subset of a real vector space V , then C is said to be a strictly convex
closed cone of V if C is closed in V , closed under addition and multiplication by a non-
negative scalar, and contains no 1-dimensional linear space.

We also recall the following theorem of Birkhoff-Perron-Frobenius in [1] which plays
an important role in the proof of Theorem 2.3.

Theorem 2.2. Let C be a non-trivial strictly convex closed cone of V with non-empty interior
in V . Then any element f of GL(V ) such that f (C) ⊂C has an eigenvector v f in C whose
eigenvalue is the spectral radius ρ( f ) of f in V .

In fact, if we use the subgroup A of [G,G] and Lemma 2.1 together with Theorem 2.2,
we obtain a stronger version for Zariski-connected solvable subgroups of GL(V ) as in [10]
which is called the theorem of Lie-Kolchin type for a cone. For more precise statement of
Theorem 2.3, see Theorem 2.1 in [10].

Theorem 2.3. Let V be a finite dimensional real vector space, and let C 6= {0} be a strictly
convex closed cone of V . Let G be a Zariski-connected solvable subgroup of GL(V ) such
that G(C)⊂C. Then there exists a nonzero vector in C\{0} which spans a one-dimensional
subcone of C invariant under G.

From now on, let X be a compact connected Kähler manifold of complex dimension
n as before, and let V denote the Dolbeault cohomology group H1,1(X ,R). In this paper,
we will apply the above general discussion to a solvable subgroup G of Aut(X) acting on
VC = V ⊗C = H1,1(X ,R)⊗C. Since every element of [G,G] has all the eigenvalues equal
to 1 (i.e., every element of [G,G] is unipotent) and A is a subset of [G,G], every element of
A also has all the eigenvalues equal to 1. In other words, this says that every element of A is
of null entropy.

Now let K denote the Kähler cone in the Dolbeault cohomology group H1,1(X ,R).
Then K is the cone of strictly positive smooth (1,1)-forms in H1,1(X ,R), and it is a strictly
convex open cone in H1,1(X ,R) whose closure ¯K is also a strictly convex closed cone such
that ¯K ∩− ¯K = {0}.

With these understood, we have the following lemma which is an immediate conse-
quence of Theorem 2.3 and its proof in [10], but will play an important role in the proof of
Theorem 1.1.
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Lemma 2.4. Let G be a Zariski-connected solvable group of automorphisms of a compact
Kähler manifold, and let f0 be an element of G. Then the following properties hold:

(a) For all f ∈G, there exist a non-zero class c f0 in ¯K and a positive real number χ( f )≤
ρ( f ) such that

f ∗(c f0) = χ( f )c f0 ,

(that is, c f0 spans a one-dimensional subcone of ¯K invariant under G) and such that
χ( f0) is greater than or equal to 1.

(b) If, in addition, f ∈ G is of null entropy, then χ( f ) is exactly equal to 1.

Remark 2.5. This corollary is a generalization of Lemma 4.1 in [5]. That is, if G is abelian
and f0 is of positive entropy, then the statement holds to be true with χ( f0) replaced by the
spectral radius ρ( f0) of f0 greater than 1 and also with χ( f ) replaced by ρ( f ).

Proof. To prove (a), we simply take C := ¯K in order to apply Theorem 2.3. Then it follows
from Theorem 2.3 of Lie-Kolchin type (or [10], Theorem 2.1 and its proof) that there exists
a non-zero eigenvector c f0 ∈ C = ¯K for G which spans a one-dimensional subcone of C
invariant under all of G. That is, we have f ∗(c f0) = χ( f )c f0 with a positive real number
χ( f ) ≤ ρ( f ). Moreover, the proof of Theorem 2.3 (or [10], Theorem 2.1) actually shows
that given an element f0 ∈G, χ( f0) is always taken to be a positive real number greater than
or equal to 1. This completes the proof of Lemma 2.4 (a).

For the proof of (b), note first that if f is of null entropy, then so is f−1. Hence, if χ( f )
is less than 1, it follows from ( f−1)∗(c f0) = χ( f )−1c f0 that f−1 cannot be of null entropy.
This contradicts the choice of f . Note also that, again by the choice of f , χ( f ) cannot be
greater than 1. This completes the proof of Lemma 2.4 (b).

To give a proof of Theorem 1.1, we need one more notation.

Definition 2.6. Let τ = (τ( f )) f∈G ∈ RG, and let Γτ be the cone of classes c in ¯K such that

f ∗(c) = exp(τ( f ))c

for all f ∈ G.

Then we set
F = {τ ∈ RG |Γτ 6= {0}}.

If Γτ 6= {0}, then exp(τ( f )) is an eigenvalue of f ∗ on V = H1,1(X ,R). Note that the maps
τ : G→R in the set F are continuous with respect to the standard topologies. So, since V is
finite dimensional and thus the number of eigenvalues of f ∗ are finite, F must be also finite.

Now, let τ1,τ2, · · · ,τm be all the elements of the finite set F . We then define a map
π : G→ Rm given by

(2.1) π : G→ Rm, f 7→ (τ1( f ),τ2( f ), . . . ,τm( f )).

It is not difficult to show that the following lemma holds:
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Lemma 2.7. (a) The integer m satisfies the inequality

m≤ h1 := dimH1,1(X ,R).

(b) The map π is always a homomorphism into the abelian group (Rm,+). In particular,
the image π(G) is also abelian.

Proof. For the proof of (a), since τ1,τ2, · · · ,τm are all distinct, there exists an element f0 ∈G
such that τi( f0) 6= τ j( f0) for 1≤ i < j≤m. Thus f ∗0 on V has at most m distinct eigenvalues.
Since the number of eigenvalues is clearly less than or equal to the dimension of V and the
maps τ : G→R in the set F are continuous, m should be less than or equal to the dimension
of V that is equal to h1 in our case. This completes the proof of (a).

For the proof of (b), it suffices to prove that π is a homomorphism. To do so, for each
ci ∈ Γτi observe first that

( f ◦g)∗ci = exp(τi( f )+ τi(g))ci.

Hence we have π( f ◦g) = π( f )+π(g) for all f and g in G, which means that π is a group
homomorphism. This completes the proof of Lemma 2.7.

3 Proofs of Theorems 1.1 and 1.2

The aim of this section is to give proofs of Theorems 1.1 and 1.2 as well as Corollary 1.3.
To do so, we first need the following key technical Lemma 3.1 below (or see [5], Lemma

4.3). Assume that X is a compact Kähler manifold of dimension n, as before.

Lemma 3.1. Let c,c′, and ci be the non-zero classes in ¯K with 1≤ i≤ t ≤ n−2 for some
integer t, and let f ∈ Aut(X). Assume that there exist two distinct positive real constants λ

and λ ′ such that

f ∗(c1∧·· ·∧ ct ∧ c) = λc1∧·· ·∧ ct ∧ c,

f ∗(c1∧·· ·∧ ct ∧ c′) = λ
′c1∧·· ·∧ ct ∧ c′.

Assume also that c1∧·· ·∧ ct ∧ c 6= 0 and c1∧·· ·∧ ct ∧ c∧ c′ = 0. Then we have

c1∧·· ·∧ ct ∧ c′ = 0.

Note that Lemma 3.1 will play an essential role in the proofs of Lemma 3.2 and Theorem
1.1. For their proofs, we adapt a variation of some arguments originated from [5] (see also
[14]).

Lemma 3.2. Let r̃ denote the rank of the image of the homomorphism π defined in (2.1).
Then there are non-zero classes c j ( j = 1,2, · · · , r̃) in ¯K such that

c1∧ c2∧·· ·∧ cr̃ 6= 0, and f ∗(c j) = exp(τ j( f ))c j for all f ∈ G,

where τ j : G→ R is a homomorphism.
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Remark 3.3. By the way of construction, it is obvious that each subcone of V spanned by a
non-zero class c j (1≤ j≤ r̃) in ¯K in the statement of Lemma 3.2 is not necessarily invariant
under G. However, it follows from Lemma 2.4 (b) that all of c1,c2, · · · , and cr̃ are invariant
under N(G). That is, all of

τ1( f ), · · · ,τr̃( f )

are zero for all f ∈ N(G). This fact will play a crucial role later. In particular, it enables us
to prove Theorem 1.1.

Proof of Lemma 3.2. To prove it, we assume without loss of generality that the first r̃ coor-
dinates of the map π generate the image of the map π . Let us denote by τ1, · · · ,τr̃ such r̃
coordinates. Let ci be a non-zero class in Γci (1 ≤ i ≤ r̃). Then for any I = {i1, · · · , ik} ⊂
{1,2, · · · , r̃}, set

cI = ci1 ∧·· ·∧ cik−1 ∧ cik .

For the proof, it suffices to show that cI 6= 0 for any subset I of {1,2, · · · , r̃}, and we prove
it only for the case of I = {1,2, · · · ,k}, since other cases are similar. Indeed, if k = 1, by
construction we have c1 6= 0 and so there is nothing to prove. For k ≥ 2, we can prove that
c1∧ c2∧·· ·∧ ck 6= 0 by contradiction. So suppose that

c1∧·· ·∧ ck−2∧ ck−1 6= 0, c1∧·· ·∧ ck−2∧ ck 6= 0, and

c1∧·· ·∧ ck−1∧ ck = 0.

We then apply Lemma 3.1 for t = k−2, c = ck−1, and c′ = ck. As a consequence, it is easy
to see that τk−1( f ) = τk( f ) for all f ∈ G (or see the proof of Lemma 3.5 below for a similar
argument). But, this implies that the image of π lies in the hyperplane {xk−1 = xk}, which
contradicts the choice of τi’s. This completes the proof of Lemma 3.2.

Observe that the arguments in the proof of Lemma 3.2 show that the rank r̃ cannot be
strictly greater than n−1, due to the obvious dimensional reason (see also [14]).

Definition 3.4. Let r̃ denote the rank of the image of the homomorphism π . From now on,
we assume without loss of generality that the first r̃ coordinates of the map π generate the
image of the map π . So, in case of r̃ = n−1, a homomorphism π : G→Rn−1 is just defined
to be the homomorphism π in (2.1) composed by the canonical projection onto the first n−1
factors.

Now, we are ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. To begin with the proof, by hypothesis assume first that the rank r(G)
of G/N(G) is equal to n−1. Then the proof consists of a series of lemmas, as follows.

Lemma 3.5. There exist non-zero classes c1, · · · ,cn in the closure ¯K of the Kähler cone K
such that

• f ∗ci = ci for all 1≤ i≤ n and all f ∈ N(G),
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• c1∧ c2∧·· ·∧ cn−1∧ cn 6= 0.

Proof. Let c1,c2, · · · ,cn−2, and cn−1 be the classes given by Lemma 3.2. Then, by Remark
3.3, we have f ∗ci = ci for all 1 ≤ i ≤ n− 1 and all f ∈ N(G). Since the rank r(G) is
assumed to be n− 1 and the kernel of π is same as N(G) (see, e.g., Claim 2.8 of [16]),
the homomorphism π : G→ Rn−1 induces an isomorphism from G/N(G) to Rn−1. This, in
particular, implies that its image spans Rn−1, so there exists an element f0 ∈ G such that all
of τ j( f0)’s (1≤ j ≤ n−1) are negative.

Applying Theorem 2.3 of Lie-Kolchin type for a cone (or Lemma 2.4 (a)) to the closure
¯K of the Kähler cone, we see that there exists another non-zero class cn ∈ ¯K such that cn

spans a one-dimensional subcone of ¯K invariant under G and such that

f ∗0 (cn) = exp(τn( f0))cn

for a non-negative real number τn( f0). In particular, this implies that τ j( f0) is not equal to
τn( f0) for all 1 ≤ j ≤ n− 1 and, by Lemma 2.4 (b), f ∗(cn) = cn for all f ∈ N(G). Recall
from Lemma 3.2 that c1∧ c2∧·· ·∧ cn−2∧ cn−1 is a non-zero class.

Next we claim that c1 ∧ c2 ∧ ·· · ∧ cn−2 ∧ cn is also a non-zero class. To see it, suppose
first that c j ∧ cn = 0 for 1≤ j ≤ n−1. Then, by applying Lemma 3.1 for f0 with c = c j and
c′ = cn for 1 ≤ j ≤ n−1, we would have 0 > τ j( f0) = τn( f0) ≥ 0, since both c j and cn are
non-zero classes and satisfy

f ∗0 (c j) = exp(τ j( f0))c j, f ∗0 (cn) = exp(τn( f0))cn.

But this is a contradiction. Thus all of c j ∧ cn are non-zero for 1≤ j ≤ n−1.
Using this fact, we can show further that this time c1∧ c2∧ cn is nonzero. For this, note

first that we have

f ∗0 (c1∧ c2) = exp(τ1( f0))exp(τ2( f0))c1∧ c2,

f ∗0 (c1∧ cn) = exp(τ1( f0))exp(τn( f0))c1∧ cn.
(3.1)

Suppose then that c1∧ c2∧ cn is zero. By applying Lemma 3.1 to the equations in (3.1) for
f0 with t = 1, c = c2 and c′ = cn once again, it is easy to obtain

exp(τ1( f0))exp(τ2( f0)) = exp(τ1( f0))exp(τn( f0)).

That is, exp(τ2( f0)) = exp(τn( f0)). This implies that 0 > τ2( f0) = τn( f0) ≥ 0, which is a
contradiction. By inductive arguments, it is now clear that c1 ∧ c2 ∧ ·· · ∧ cn−2 ∧ cn can be
shown to be a non-zero class.

Similarly, we can also show that c1∧ c2∧·· ·∧ cn−1∧ cn 6= 0. To be precise, suppose, on
the contrary, that c1∧ c2∧·· ·∧ cn−1∧ cn = 0. Then we have

f ∗0 (c1∧ c2∧·· ·∧ cn−2∧ cn−1)

= exp(τ1( f0)) · · ·exp(τn−2( f0))exp(τn−1( f0))c1∧ c2∧·· ·∧ cn−2∧ cn−1,

f ∗0 (c1∧ c2∧·· ·∧ cn−2∧ cn)

= exp(τ1( f0)) · · ·exp(τn−2( f0))exp(τn( f0))c1∧ c2∧·· ·∧ cn−2∧ cn.

(3.2)
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As above, if we apply Lemma 3.1 to the equations in (3.2) for f0 with t = n− 2, c = cn−1
and c′ = cn, then we obtain

exp(τ1( f0)) · · ·exp(τn−2( f0))exp(τn−1( f0))

= exp(τ1( f0)) · · ·exp(τn−2( f0))exp(τn( f0)).

Thus we have 0 > τn−1( f0) = τn( f0)≥ 0, which is again a contradiction. Therefore we have

c1∧ c2∧·· ·∧ cn−1∧ cn 6= 0,

as desired. This completes the proof of Lemma 3.5.

Lemma 3.6. Let
c = c1 + c2 + · · ·+ cn−1 + cn.

Then c is actually a nef and big class which is invariant under N(G).

Proof. To see it, note first that clearly f ∗(c) = c for all f in N(G), but not in the whole of
G. Since c1 ∧ c2 ∧ ·· · ∧ cn 6= 0, it is also clear that cn 6= 0. Moreover, it follows from its
construction that c lies in ¯K . Hence c is a nef and big class, as desired.

Finally, in order to finish the proof of Theorem 1.1, as before let Autc(X) denote the
automorphism group preserving the nef and big class c given in Lemma 3.6. Then, by the
way of construction of all ci’s and c, N(G) is a subgroup of Autc(X). If c is a Kähler
class and also Aut0(X) is trivial, then N(G) is always finite by a theorem of Lieberman and
independently Fujiki mentioned in Section 1, as desired.

On the other hand, if c is not a Kähler class, we first need to recall the following theorem
of Demailly and Paun ([4], Theorem 0.1 and [3], Theorem 2.2).

Theorem 3.7. Let X be a compact Kähler manifold, and c ∈ H1,1(X ,R) a nef and big class
which is not a Kähler class. Then the following holds:

(a) There exists an irreducible analytic subset Y ⊂ X of positive dimension such that∫
Y cdimY = 0.

(b) The union of all irreducible analytic subsets Y in (a) above is a proper Zariski closed
subset Z ⊂ X.

We then prove a version of the result of Liberman and Fujiki for a nef and big class, as
follows (see Theorem 1.2). For the sake of reader’s convenience, we recall the statement of
the theorem.

Theorem 3.8. Let X be a compact Kähler manifold of complex dimension n ≥ 3, and G
a Zariski-connected solvable subgroup of Aut(X) whose rank r(G) of the quotient group
G/N(G) is equal to n−1. For a nef and big, but not necessarily Kähler, class c∈H1,1(X ,R),
the quotient group Autc(X)/Aut0(X) is still finite.
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Proof. To prove it, note first that the union Z of all irreducible analytic subsets Y of maximal
dimension as in Theorem 3.7 (b) is invariant under the action of the quotient group G/N(G).
Moreover, since X is compact, the number of all irreducible analytic subsets Y of maximal
dimension in Z is finite. Thus, by taking a finite index subgroup of G/N(G), if necessary,
we may assume without loss of generality that each irreducible analytic subset Y as above is
invariant under G/N(G).

Since G/N(G) is a finite generated abelian group of rank n− 1 isomorphic to Rn−1,
clearly it contains a lattice Γ of rank n−1≥ 2 acting faithfully on X . Note also that the rank
n− 1 of Γ is exactly equal to the dimension of X minus one and that, by the very choice
of Γ, any non-trivial element of Γ as an element of Aut(X) is never virtually contained in
Aut0(X). Now, by applying Theorem 4.5 in the paper [3] (or Main Theorem on page 449
of [3]) to the proper Zariski closed subset Z as in Theorem 3.7 (b), it is easy to see that
the proper Zariski closed subset Z should be the union of a finite number of disjoint copies
of the complex projective space Zi = CPn−1. This, in particular, implies that there is no
irreducible analytic subset of maximal dimension less than n−1 in Z. Moreover, the normal
bundle of Zi is just OZi(−ki) for some integer ki > 0, and, by the rigidity theorem of Grauert,
the neighborhood of an exceptional divisor is isomorphic to the normal bundle of Y . Thus
we can consider a birational morphism p : X → X0 onto a compact Kähler orbifold X0 by
blowing down all irreducible analytic subsets of Z to points of X0. Then the image of the
nef and and big class c in X0, denoted by the letter c0, is now an orbifold Kähler class (or
just an ample class). Note that each automorphism f of X induces an automorphism f0 of
X0, and this correspondence is injective, since all automorphisms of X are holomorphic (so
bi-holomorphic) and Z is a proper Zariski closed subset of X by Theorem 3.7 (b).

It is straightforward to check that the result of Liberman and Fujiki saying that the quo-
tient group Autc′(X)/Aut0(X) is finite for any Kähler class c′ on a compact Kähler manifold
X still holds to be true for any orbifold Kähler class on a compact orbifold manifold. Hence
the quotient group Autc0(X0)/Aut0(X0) is finite. This implies that Autc(X)/Aut0(X) is also
a finite group, as asserted.

As a consequence of Theorem 3.8, the arguments used to show that N(G) is finite when
c is a Kähler class can be applied even for a nef and big class c. Therefore we can conclude
that if, in addition, Aut0(X) is trivial, N(G) is always finite. This completes the proof of
Theorem 1.1.

We are finally ready to prove Corollary 1.3.

Proof of Corollary 1.3. Recall that N(G) is a subgroup of Autc(X) for the choice of the
nef and big class c. So clearly N(G)/N(G)∩Aut0(X) is a subgroup of Autc(X)/Aut0(X).
Since the quotient group Autc(X)/Aut0(X) is finite by Theorem 1.2, the corollary easily
follows.
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