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Abstract

Given a closed contact three-manifold with a compatible Rieman-
nian metric g, in this paper we show that if the Ricci curvature Ric(g)
of g is positive, then the contact structure is universally tight. This
result can be thought of as a three-dimensional contact version of the
well-known sphere theorem in Riemannian geometry, and affirmatively
answers an important question posed by Etnyre, Komendarczyk, and
Massot. The basic idea of the proof of main result is to make use of the
one-parameter family of Riemannian metrics obtained by the Hamil-
ton’s Ricci flows and their corresponding family of contact one-forms.
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1 Introduction and Main Results

One of the fundamental problems in Riemannian geometry is to study the
topology of Riemannian manifolds with certain curvature conditions. In
particular, it is still an intriguing open problem to classify the Rieman-
nian manifolds with positive sectional curvature in full generality. However,
it have been shown recently in [11] via the works of Fintushel, Pao, and
Perelman that every positively curved Riemannian four-manifold with an
isometric circle action is diffeomorphic to S4, RP4, or CP2. It is also worth-
while to mention that it is generally believed that every positively curved
four-manifold always admits an isometric circle action.
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In a similar context, it will be one of the interesting problems in contact
geometry and topology to study how the existence of certain Riemannian
metric can affect the topology of contact manifolds. According to the au-
thors of the paper [7], one interesting reference result in Riemannian ge-
ometry from the point of view of contact geometry is the sphere theorem.
The reason is that the sphere theorem is regarded as one of the fundamen-
tal results in Riemannian geometry which clearly shows how geometry can
control the topology of the underlying manifold.

We say that a manifold M has pointwise 1
4 -pinched sectional curvature

K if M has positive sectional curvature and for every point p ∈ M the ratio
of the maximum to the minimum sectional curvature at that point is less
than 4. In other words, for every pair of two-planes π1 and π2 of TpM we
have

0 <
1

4
K(π1) < K < K(π2).

The sphere theorem recently proved by Brendle and Schoen in [3] says that
every compact Riemannian manifold of dimension n ≥ 4 with pointwise
1
4 -pinched sectional curvature admits a metric of constant curvature and
therefore is diffeomorphic to a spherical space form (see also [4] and [2]). In
case of dimension there, Hamilton showed a much stronger result (refer to
[9]). To be more precise, using the techniques of Ricci flows, he showed that
any Riemannian metric on a three-manifold with positive Ricci curvature
converges to a Riemannian metric with positive constant curvature. As a
consequence, every closed Riemannian manifold of dimension 3 with positive
sectional curvature has the universal cover diffeomorphic to S3.

A contact three-manifold (M, ξ, g) is a contact metric manifold if there
is a Riemannian metric g that is compatible with the contact structure ξ in
the sense that a contact form α of ξ satisfies

||α|| = 1 and ∗g dα = θ′α,

where || · || means the pointwise norm, θ′ is a positive constant, and ∗g is
the Hodge star operator associated to g (refer to the paper [5] of Chern and
Hamilton for the case of θ′ = 2). Note that the positivity of θ′ is equivalent
to ξ being a positive contact structure (see Section 2 of the paper [7]). The
geometric meaning of the constant θ′ is the instantaneous rotation speed of ξ
with respect to g, and θ′ is called the instantaneous rotation or just rotation
of ξ. This definition of the contact metric three-manifold is equivalent to
saying that the instantaneous rotation θ′ of ξ with respect to g is constant
and the Reeb vecto field Rα is of unit length and orthogonal to ξ (see, e.g.,
the first paragraph of [7], page 634).
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Recall that a contact structure on a three-manifold is classified as over-
twisted or tight, depending on whether or not it contains an embedded disk
whose boundary is tangent to the contact planes (see [6]). In the paper [7],
Etnyre, Komendarczyk, and Massot investigated how the sectional curva-
ture bound of a contact metric manifold (M, ξ, g) implies the tightness of ξ.
To be precise, their result that is called 4

9 -pinched contact sphere theorem is

Theorem 1.1. Let (M, ξ) be a closed contact manifold of dimension three
and g a Riemannian metric compatible with ξ. If there is a constant KM

such that the sectional curvature K(g) of g satisfies

0 <
4

9
KM < K(g) ≤ KM ,

then the universal cover of M is diffeomorphic to the standard 3-sphere S3

by a diffeomorphism taking the lift of ξ to the standard contact structure on
S3.

This theorem says that every contact structure compatible with a 4
9 -

pinched positively curved Riemannian metric on a contact metric three-
manifold is universally tight. Some essential ingredients of the proof of
Theorem 1.1 are certain nice comparison of Riemannian and almost-complex
convexity and pseudo-holomorphic curves arguments of Gromov and Hofer
in [10]. It is unfortunate that the proof of Theorem 1.1 given in [7] does not
tell us very much information about whether or not the pinching constant 4

9
can be improved further. However, in view of the results of Hamilton’s Ricci
flows, it seems to be natural to ask if the positivity of the Ricci curvature is
sufficient to obtain the same conclusion of Theorem 1.1 (refer to Question
6.4 in [7]).

Our main result of this present paper is that asking only the Ricci curva-
ture to be positive is indeed enough to prove the various versions of contact
sphere theorem. To be precise, we have the following

Theorem 1.2. Let (M, ξ) be a closed contact manifold of dimension three
and g a Riemannian metric compatible with ξ. If the Ricci curvature Ric(g)
of g is positive, then the contact structure ξ is universally tight.

In Section 2, we give a proof of Theorem 1.2.
The basic strategy of the proof of Theorem 1.2 given in Section 2 is to

make use of the one-parameter family {gt} (0 ≤ t ≤ 1) of Riemannian met-
rics obtained by the Hamilton’s Ricci flows and their corresponding family
{αt} of contact one-forms. It turns out that for each 0 ≤ t ≤ 1 the Rie-
mannian metric gt is compatible with the contact structure ξt = kerαt (see
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Section 2 for the precise definition). As a consequence of the result of Hamil-
ton’s Ricci flows, we may assume without loss of generality that under the
positivity of the Ricci curvature of the initial metric g0 the terminal Rie-
mannian metric g1 has positive and constant sectional curvature equal to 1.
So the universal cover of the manifold should be the standard three-sphere.
It then follows from Theorem 1.1 of Etnyre, Komendarczyk, and Massot
that the contact structure ξ1 associated to the terminal Riemannian metric
g1 is universally tight. On the other hand, by essentially using the tech-
niques of the proof of the Gray’s theorem it can be shown in Lemma 2.3
that, given the one-parameter family {αt} of contact one-forms, there is a
one-parameter family {φt} of diffeomophisms such that φ∗

t (αt) = α0. So we
can conclude that the initial contact structure ξ0 should be also universally
tight.

For the purposes of this paper, we do not need any deep facts about
the Ricci flows, except for the unnormalized Ricci flow equation (2.6) and
Hamilton’s results in [9]. So we do not review any general properties on the
Ricci flows, in order to make this paper concise as much as possible. We
refer any interested reader to the excellent papers and books such as [9],
[15], [14], [12], and [1] for more complete details on Ricci flows.

Finally we remark that, as mentioned above, the sphere theorem holds
also for higher dimensional Riemannian manifolds with certain curvature
conditions. So it is possible to extend and generalize Theorem 1.2 to higher
dimensions by using the notions such as PS-overtwisted or PS-tight contact
structures given in the paper [8] analogous to overtwisted or tight contact
structures on a three-manifold. Actually, this can be easily achieved without
much modification by using Theorem 1.1 in [8] along the same lines of this
paper. But we will not pursue this direction further in this paper, since, we
think, the three dimensional case is most interesting until now.

2 Proof of Theorem 1.2

The aim of this section is to provide a proof of Theorem 1.2 in detail.
To do so, let ξ0 := ξ be a contact structure on a closed oriented three-

manifold M , and let α0 be a contact one-form on M whose kernel is exactly
equal to ξ0. Let g0 be a Riemannian metric compatible with ξ0, i.e.,

||α0|| = 1 and ∗g0 dα0 = θ′0α0,

where θ′0 is a positive constant.
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For the rest of this paper, we shall also assume that the Riemannian
metric g0 has a positive Ricci curvature, unless stated otherwise.

Next we apply the Hamilton’s theorem to the Riemannian metric g0
as an initial one so that g0 can be deformed along the Ricci flows to a
Riemannian metric g1 whose sectional curvature is positive and constant,
say +1. As a consequence, we may assume without loss of generality that
M is simply connected and M is just the standard three-sphere. For the
sake of notational convenience, as before let {gt} (0 ≤ t ≤ 1) be the family
of Riemannian metrics starting from g0 and ending to g1 obtained by the
techniques of Hamilton’s Ricci flows.

Let Rβ denote the Reeb vector field for a contact one-form β on M .
Then the following lemma holds (see Proposition 2.1 in [7]).

Lemma 2.1. Let β be a positive contact one-form on a three-manifold M
and g a Riemannian metric on M . The following statements are equivalent:

(a) The Reeb vector field Rβ is orthogonal to ξ with respect to g.

(b) There is some positive function θ′ such that

∗gdβ = θ′β,

where ∗g is the Hodge star operator associated to g.

Let n be the unit normal vector field to the contact structure ξ0, and let
nt be the vector field on M given by

nt =
n√

gt(n,n)
.

Then n0 = n and nt is the unit vector field on M with respect to the
Riemannian metric gt.

Next for each 0 ≤ t ≤ 1 we define a new one-form αt on M by

αt(·) = gt(nt, ·).

Then αt is a nowhere vanishing one form on M , since gt is a Riemannian
metric and nt is a nowhere vanishing (actually, unit) vector field on M . Let
ξt = kerαt. Then clearly nt is always orthogonal to ξt with respect to gt for
all t ∈ [0, 1]. Since αt(nt) is always equal to one for each 0 ≤ t ≤ 1, we can
define a smooth function θ̃t : M → R such that

∗gtdαt = θ̃tαt, 0 ≤ t ≤ 1.
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Then θ̃t is at least continuous as a function of t. Moreover, it is easy to show
that

(2.1) αt ∧ dαt = θ̃tvolgt .

The following lemma plays a crucial role in the proof of Theorem 1.2.

Lemma 2.2. Let

t∗ = sup{t ∈ [0, 1] |αt is a positive contact one-form on M}.

Then t∗ is equal to 1 and α1 is a positive contact one-form on M .

Proof. It is clear by the choice of ξ0 and its contact one-form α0 that t∗ is
greater than 0 and that αt is a positive contact one-form for at least t with
0 ≤ t < t∗.

We then show that αt∗ is actually a positive contact form on M . To see
it, note first that for 0 ≤ t < t∗ the Reeb vector field Rαt is exactly same
as the unit normal vector field nt to the contact structure ξt. Indeed, since
gt(nt, u) = 0 for any u ∈ ξt = kerαt, by using the flow lines of nt we have

0 = gt([nt,nt], u) + gt(nt, [nt, u]) = gt(nt, [nt, u]).

This implies that

ιntdαt = −αt([nt, ·]) = −gt(nt, [nt, ·]) = 0.

Since αt(nt) = 1, it follows that nt is actually the Reeb vector field for αt,
as desired.

Since Rαt = nt is now shown to be orthogonal to ξt = kerαt with respect
to the Riemannian metric gt, it follows from Lemma 2.2 that there is some
positive function θ′t such that

∗gtdαt = θ′tαt, 0 ≤ t < t∗.

Since αt(nt) = 1 for each 0 ≤ t ≤ 1, it is also easy to see that the function
θ′t coincides with θ̃t for 0 ≤ t < t∗. Since θ′t = θ̃t is positive for 0 ≤ t < t∗

and θ̃t is continuous as a function of t ∈ [0, 1], it follows from the continuity
that θ̃t∗ is non-negative at t = t∗. In fact, we can show further that θ̃t∗ is
actually positive, as follows.

Lemma 2.3. The non-negative function θ̃t∗ of M does not vanish at t = t∗,
and, in fact, is positive.
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Proof. To see it, note first that, if dαt∗ |ξt∗ ̸= 0, then it follows from (2.1)

and αt(nt) = 1 that we have θ̃t∗ ̸= 0. Thus we are done.
Next, suppose that dαt∗ |ξt∗ = 0 at a fixed point p of M , and for the

rest of the proof we will do all the computations at the same point p of M ,
unless stated otherwise.

Let
f(t) = (αt ∧ dαt)(nt,ut,vt), 0 ≤ t ≤ 1,

where ut and vt lie in the kernel ξt = ker(αt) of αt, and {nt,ut,vt} forms
an oriented orthogonal frame of the tangent space TpM of M with respect
to the Riemannian metric gt such that

(2.2) [ut,vt] ̸= 0

at the point p. We remark that the extra condition (2.2) can be easily
achieved: for instance, if [ut,vt] happens to be zero at the point p, then it
suffices to take ũt and ṽt instead of ut and vt such that

ũt := kut, ṽt := lvt,

where k and l are smooth non-zero functions on M satisfying kut(l) ̸= 0 or
lvt(k) ̸= 0 at p. Then, by construction, ũt and ṽt which lie in the kernel ξt
of αt are still orthogonal to each other, but we now have

[ũt, ṽt] = kl[ut,vt] + kut(l)vt − lvt(k)ut = kut(l)vt − lvt(k)ut ̸= 0

at the point p, as desired.
Since αt(nt) = 1, we then have

f(t) = dαt(ut,vt) = −αt([ut,vt]) = −gt(nt, [ut,vt]).

Recall that by assumption f(t∗) = 0. Thus, it is also true that at t = t∗ we
have

(2.3) gt

(
∂nt

∂t
, [ut,vt]

)
= 0.

Indeed, since gt(ut,vt) = 0, we have

(2.4) gt(ut, [ut,vt]) = gt([vt,ut],vt) = 0.

Thus, if we write
∂nt

∂t
= atnt + btut + ctvt,
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then it is easy to see from f(t∗) = 0 together with (2.4) that (2.3) holds at
t = t∗.

By differentiating f(t) with respect to t, it follows from (2.3) that, at
t = t∗, we can obtain

f ′(t) = −∂gt
∂t

(nt, [ut,vt])− gt

(
∂nt

∂t
, [ut,vt]

)
− gt

(
nt,

∂[ut,vt]

∂t

)
= −∂gt

∂t
(nt, [ut,vt])− gt

(
nt,

∂[ut,vt]

∂t

)
= 2Ric(nt, [ut,vt])− gt

(
nt,

∂[ut,vt]

∂t

)
,

(2.5)

where in the last equality we used the assumption that gt satisfies the Ricci
flow equation

(2.6)
∂gt
∂t

= −2Ric.

Now, we claim that we can take ut and vt in such a way that they satisfy
one more extra condition at t = t∗;

(2.7)

∣∣∣∣∣∣∣∣∂[ut,vt]

∂t

∣∣∣∣∣∣∣∣
gt

< 2Ct||[ut,vt]||gt ,

where Ct is a positive lower bound for the positive Ricci curvature Ric. To
see it, let us first write ut and vt in ξt, as follows: near t = t∗,

ut = ut∗ + (t− t∗)w1 +O((t− t∗)2),

vt = vt∗ + (t− t∗)w2 +O((t− t∗)2).

Then, we take

ũt = ut∗ + (t− t∗)ϵw1 +O((t− t∗)2),

ṽt = vt∗ + (t− t∗)ϵw2 +O((t− t∗)2),

where ϵ is a sufficiently small positive number. It is easy to see that at t = t∗

both of ũt and ṽt still lie in the kernel ξt of αt. Furthermore, they satisfy the
required condition (2.7) for a sufficiently small ϵ > 0 and a contact one-form
αt∗ , since at t = t∗ we have

[ũt, ṽt] = [ut∗ ,vt∗ ],
∂[ũt, ṽt]

∂t
= ϵ([ut∗ ,w2] + [w2,vt∗ ]).
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Finally, it should be clear that, by the continuity of αt near t = t∗ and the
openness of the condition (2.7), we can achieve the required condition (2.7)
for a general one-form αt, not just αt∗ , as claimed.

As a final step of the proof of Lemma 2.3, note that, by (2.5) and (2.7),
at t = t∗ we have

f ′(t) = 2Ric(nt, [ut,vt])− gt

(
nt,

∂[ut,vt]

∂t

)
≥ 2Ct||[ut,vt]||gt −

∣∣∣∣∣∣∣∣∂[ut,vt]

∂t

∣∣∣∣∣∣∣∣
gt

> 0.

(2.8)

On the other hand, since f(t) is strictly positive for 0 ≤ t < t∗ and f(t∗) is
assumed to be zero, f ′(t∗) should be non-positive. This observation contra-
dicts the inequality (2.8), and so the case of dαt∗ |ξt∗ = 0 actually does not
occur.

As a consequence, we can conclude that θ̃t∗ is indeed non-zero and so
positive, which completes the proof of Lemma 2.3.

In particular, Lemma 2.3 implies that from the equation (2.1) we have

αt∗ ∧ dαt∗ = θ′t∗volgt∗

with a positive function θ′t∗ that is equal to θ̃t∗ . Therefore we see that αt∗

is a positive contact one-form on M so that the kernel ξt∗ of αt∗ is now a
positive contact structure, as claimed.

Finally, if t∗ is equal to 1, then we are done. Otherwise, by the standard
continuity argument we can show that there is some t greater than t∗ where
αt is a positive contact one-form on M . Clearly this contradicts the choice
of t∗. This completes the proof of Lemma 2.2.

As a consequence of the proof of Lemma 2.2, the Reeb vector field Rαt

(0 ≤ t ≤ 1) has unit length, so that the flow lines of Rαt are actually
geodesics (refer to, e.g., Proposition 2.5 in [8]).

The proof of the following lemma uses the well-known techniques of
Gray’s theorem in contact geometry which is analogous to the Moser’s tech-
niques in symplectic geometry.

Lemma 2.4. There is a family {φt} (0 ≤ t ≤ 1) of diffeomorphisms of M
such that

φ∗
t (αt) = α0.
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Proof. As mentioned above, we shall apply the Gray’s arguments to prove
the lemma (refer to [13], p. 112). To do so, note first that d

dtαt vanishes on
the Reeb vector field Rαt = nt. Indeed, starting from the identity αt(nt) =
1, along the flow of Xt tangent to ξt = kerαt we have

0 =

(
d

dt
αt

)
(nt) + αt(LXtnt)

=

(
d

dt
αt

)
(nt) + gt(nt, [Xt,nt]), αt(·) = gt(nt, ·) and LXtnt = [Xt,nt],

=

(
d

dt
αt

)
(nt), gt(nt, [Xt,nt]) = 0 by (2.2),

as desired.
On the other hand, since dαt is symplectic on ξt and

d
dtαt vanishes on

nt, there exists a unique smooth vector field Xt ∈ ξt such that

(2.9) − ιXtdαt =
d

dt
αt.

Let {φt} (0 ≤ t ≤ 1) be a family of diffeomorphisms as the flow of a family
{Xt} of vector fields on M such that

d

dt
φt = Xt ◦ φt, φ0 = id.

Then from the identity (2.9) we have

φ∗
t

(
d

dt
αt + LXtαt

)
= 0.

This implies that d
dt (φ

∗
tαt) = 0 for all 0 ≤ t ≤ 1, so that φ∗

tαt = α0. This
completes the proof of Lemma 2.4.

The following lemma will be also used in the proof of Theorem 1.2.

Lemma 2.5. The following statements are true:

(a) (φt)∗(nt) = n0.

(b) φ∗
t (gt) = g0.

Proof. For the proof of (a), it suffices to note that every Reeb vector field is
preserved by the contact isomorphism φt. Since Rαt = nt (resp. Rα0 = n0)
is the Reeb vector field for αt (resp. α0), we are done.

For (b), its proof is also immediate by the definition of αt = gt(nt, ·),
since the contact isomorphism φt preserves the contact structures as well as
the Reeb vector fields.
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Now we are in a position to give a proof of Theorem 1.2.

Proof of Theorem 1.2. To prove the theorem, recall first that M is assumed
to be simply connected and so is the standard three-sphere S3. Note also
that by Lemma 2.2 the one-form α1 is a positive contact one-form whose
kernel is a positive contact structure. Moreover, since {αt} (0 ≤ t ≤ 1) is
now a family of (positive) contact one-forms on M , it follows from a version
of Gray’s theorem (Lemma 2.4) that there is a contact isomorphism φt on
M such that φ∗

t (αt) = α0.
We can then claim that the Riemannian metric gt is compatible with ξt.

To prove it, it suffices to show that θ′t is constant as a function of M . Note
that θ′t is well-defined for all 0 ≤ t ≤ 1 by Lemma 2.2. Indeed, we have

φ∗
t (θ

′
t)α0 = φ∗

t (θ
′
t)φ

∗
t (αt) = φ∗

t (θ
′
tαt) = φ∗

t (∗gtdαt)

= ∗φ∗
t (gt)

dφ∗
t (αt) = ∗g0dα0

= θ′0α0,

where in the second-to-last equality we used the fact that φ∗
t (gt) = g0 by

Lemma 2.5 (b). Thus we have φ∗
t (θ

′
t) = θ′0. Since θ′0 is constant, it follows

that for each 0 ≤ t ≤ 1 the function θ′t is also constant as a function of M ,
as claimed.

On the other hand, since M is the standard three-sphere S3 and g1 has
positive and constant sectional curvature equal to 1, it follows from Theorem
1.1 in [7] (or Theorem 1.1) that ξ1 is tight on M . Hence ξ0 is also tight,
since ξ0 and ξ1 are contactomorphic to each other. This completes the proof
of Theorem 1.2.
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