
FOURIER-MUKAI TRANSFORMATION ON ALGEBRAIC COBORDISM

ANANDAM BANERJEE AND THOMAS HUDSON

Abstract. We define a notion of Fourier-Mukai transform on algebraic cobordism cycles with Q-
coefficients on an abelian variety. We use this to produce a Beauville decomposition of algebraic

cobordism and study its consequences, including a decomposition of the cobordism motive of an

abelian variety.

1. Introduction

The Fourier transformation is a well-known operator in analysis that gives an isometry between
the L2-spaces of a real vector space and its dual vector space. In [10], Mukai introduced an
analogous notion for sheaves of modules over abelian varieties. Let A be an abelian variety and
Â be its dual abelian variety. Using the normalized Poincaré bundle on A × Â, Mukai defined a
functor between the derived categories of the sheaves of modules over A and Â, and proved that
this is an equivalence of categories. In [2], Beauville used his results to define such a functor on
cohomology, K-theory and the Chow ring of A with similar properties in each theory. He studied
the Fourier transformation on Chow rings in detail and proved interesting consequences, including
a decomposition of the Chow ring of an abelian variety into eigenspaces of the pullback by a
multiplication by n morphism, for integers n (see [3]). Deninger and Murre used Beauville and
Mukai’s work in [5] to give a decomposition of CH(A×A)⊗Q into eigenspaces of (id×n)∗, which
induces a canonical decomposition of Chow motives of an abelian variety.

The Chow ring being an oriented cohomology theory (see [8] for the definition), a natural
question to ask is whether a functor with the usual properties of a Fourier-Mukai transformation
can be defined on any other oriented cohomology theory. Levine and Morel defined the theory of
algebraic cobordism in [8] and showed that it is the universal oriented cohomology theory on Smk.
In this paper, we define a Fourier-Mukai operator on the theory ΩQ of algebraic cobordism with
Q-coefficients and study its consequences.

The key idea that helped us extend the definition of the Fourier-Mukai operator to ΩQ is the
following theorem:

Theorem 1.1. For any abelian variety A over a field k of characteristic 0, the canonical morphism
of oriented cohomology theories induces an isomorphism of rings

ψA : Ω∗Q(A)→ CHQ[t]∗(A),

where CHQ[t]∗(A) = CHQ(A)[t1, t2, . . .] is the graded polynomial ring on variables ti, i > 0 of
degree −i.

We also show that ψ commutes with push-forward maps and the pullbacks of morphisms between
abelian varieties. The Fourier-Mukai operator on CHQ induces one on CHQ[t]∗ by extension of
scalars. Denoting this operator as FCH , we show that the Fourier-Mukai operator FΩ on ΩQ that
we defined in § 4 satisfies

ψÂ ◦ F
Ω = FCH ◦ ψA.

This commutativity helps us obtain most of the properties of FΩ in Proposition 5.1.
We also prove an analogue of Beauville decomposition for algebraic cobordism with Q-coefficients,

that is, a decomposition of ΩQ into eigenspaces of n∗ where n in the multiplication by n morphism
of an abelian variety.
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Theorem 1.2. Let A be an abelian variety of dimension g over k. Then, we have

ΩpQ(A) =

Min(2p,p)⊕
s=2p−2g

Ω p
Qs(A),

where
Ω p

Qs(A) :=
{
x ∈ ΩpQ(A)|n∗x = n2p−sx

}
.

As an application of the properties of the Fourier-Mukai transformation, we generalize a result
of Bloch [4] to the case of cobordism cycles in § 7. Let N ∗(A) be the group of numerically trivial
cobordism cycles on A as defined in [1, Definition 3.1] and let ? be the Pontrygin product on
Ω∗(A). Then, we show

Proposition 1.3. N ∗?(g+1)
Q = (0).

In § 8, we prove that there is a canonical decomposition of the cobordism motive (defined in
[11, § 6]) of an abelian variety.

Theorem 1.4. There is a canonical decomposition of the cobordism motive of an abelian variety
A of dimension g over k:

hΩ(A) =

2g⊕
i=0

hiΩ(A) ,

where hΩ(A) = (A, idA, 0) is the motive of A, hiΩ(A) = (A, πi, 0) and the πi’s are such that
cΩ(n) ◦ πi = niπi = πi ◦ cΩ(n). Furthermore, we have ϕ̃(hiΩ(A)) = hiCH(A)can is the canonical
decomposition of the Chow motive of A.

2. Oriented cohomology theories and Algebraic cobordism

In [8], inspired by the work of Quillen on complex differentiable manifolds, Levine and Morel
introduced the notion of an oriented cohomology theory: a contravariant functor A∗ from Smk to
graded rings together with a collection of push-forward maps f∗ associated to projective morphisms.
This family is meant to respect functoriality and to be compatible with the pull-back morphisms g∗

on cartesian squares every time f and g are transverse. Finally, the functor is supposed to satisfy
the projective bundle formula, which expresses the evaluation of A∗ on a projective bundle in terms
of that of the base, together with the extended homotopy property, which requires p∗ : A∗(X)→
A∗(V ) to be an isomorphism for every vector bundle E → V and every E-torsor p : V → X. As one
might expect, a morphism of oriented cohomology theories is a natural transformation of functors
which is also compatible with the push-forward morphisms f∗. For the precise definition we refer the
reader to [8, Definition 1.1.2]. Important examples of functors which are also oriented cohomology
theories includes the Chow ring CH∗ and K0[β, β−1], a graded version of the Grothendieck ring
of vector bundles.

A relevant feature of oriented cohomology theories is that they allow a theory of Chern classes.
Even though in order to establish it for any bundle E → X it is necessary to rely on the pro-
jective bundle formula, the first Chern class of a line bundle L → X can be defined by making
use only of push-forward and pull-back morphisms: if s denotes the zero section of L one sets
c1(L) := s∗s∗1X ∈ A∗(X) and defines the first Chern class operator c̃1(L) : A∗(X) → A∗+1(X)
as multiplication by c1(L). Once the first Chern class is available, one may consider how it
relates to the tensor product: given two line bundles L and M over some smooth scheme X,
what is the relation between c1(L), c1(M) and c1(L ⊗M)? While for the Chow group one has
c1(L ⊗M) = c1(L) + c1(M), the equality is not true in general for oriented cohomology theories
and one is forced to replace the usual addition with a formal group law:

c1(L⊗M) = FA(c1(L), c1(M))

for a certain FA ∈ A∗(k)[[u, v]]. A commutative formal group law of rank one (R,FR) is constituted
by a ring R and a power series FR ∈ R[[u, v]] satisfying conditions which are analogues of those
for the operation in a group. For instance, the analogue of the associative property reads

FR(FR(u, v), w) = FR(u, FR(v, w)) ∈ R[[u, v, w]] .
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In [7], Lazard identified the universal such object (L, F ) and proved that the ring of coefficients, now
known as the Lazard ring, is isomorphic to Z[a1, a2, . . .]. In this context, the universality means
that for every formal group law (R,FR) there exist a unique ring homomorphism φR : L → R
such that φR(F ) = FR, where φR(F ) stands for the power series obtained by applying φR to the
individual coefficients of F . Since it will be needed later on, let us add that the Lazard ring can
be made into a graded ring L∗ by setting deg ai = −i.

Taking into consideration formal group laws makes it evident that the analogy with the situation
in topology does not end with the introduction of oriented cohomology theories. In fact, in [12],
Quillen proved that complex cobordism MU∗ is universal among complex oriented cohomology
theories, that MU∗(pt) ' L∗ and finally that its formal group law is the universal one. From this
perspective, the theory of algebraic cobordism Ω∗, developed in [8] by Levine and Morel, represents
the exact analogue of MU∗ as one has the following theorems:

Theorem 2.1 ([8, Theorem 1.2.6]). Let k be a field of characteristic 0. Then, given any oriented
cohomology theory A∗ on Smk, there is a unique morphism

νA : Ω∗ → A∗

of oriented cohomology theories.

Theorem 2.2 ([8, Theorem 1.2.7]). For any field k of characteristic 0, the canonical homomor-
phism classifying FΩ

φΩ : L∗ → Ω∗(k)

is an isomorphism.

Notice that, provided Ω∗(k) is identified with the Lazard ring through φΩ, the evaluation of νA on
Spec k coincides with φA and as a consequence one has νA(FΩ) = FA.

We briefly sketch the construction of algebraic cobordism. As a group Ω∗(X) is obtained from
the free group generated by the isomorphism classes of cobordism cycles

[f : Y → X,L1, . . . , Lr]

where f is a projective morphism with Y ∈ Smk and {L1, . . . , Lr} is a (possibly empty) family
of line bundles over Y . Such a cycle has dimension d = dimkY − r and codimension dimkX − d.
On this group one successively imposes three families of relations so that the quotient will satisfy
three corresponding axioms (Dim), (Sect) and (FGL). Note that in order to make sense of the last
axiom it is necessary to tensor the group obtained from the second quotient by the Lazard ring,
so as to have at hand a formal group law. For what concerns the multiplicative structure, it is
achieved by constructing pull-backs for l.c.i.morphisms through an adaptation of the method used
by Fulton for Chow groups: one relies on the deformation to the normal cone to reduce to the case
of a divisor, which is handled separately.

Let us finish by mentioning that the main technical tool used in the proofs of the various axioms
is represented by the localization sequence

Ω∗(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U) −→ 0

for any closed embedding i : Z → X with open complement j : U → X.

2.1. Twists of oriented cohomology theory. We recall from [8, § 4.1.8–9 & § 7.4.2] the con-
struction of the twisting of an oriented cohomology theory on Smk. Let A∗ be an oriented coho-
mology theory on Smk and τ = (τi) ∈

∏∞
i=0A

−i(k), with τ0 = 1.

Definition 2.3. The inverse Todd class operator of a line bundle L → X is defined to be the
operator on A∗(X) given by the infinite sum

T̃ d
−1

τ (L) =

∞∑
i=0

c̃1(L)iτi.

In [8, Proposition 4.1.20], Levine and Morel showed that this can be extended to any vector bundle

E → X in a unique way to give an endomorphism T̃ d
−1

τ (E) : A∗(X) → A∗(X) of degree 0, such
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that if 0 → E′ → E → E′′ → 0 is an exact sequence of vector bundles over X, then one has

T̃ d
−1

τ (E) = T̃ d
−1

τ (E′) ◦ T̃ d
−1

τ (E′′). Thus, it naturally extends to a map

T̃ d
−1

τ : K0(X)→ Aut(A∗(X)).

In fact, on an oriented cohomology theory on Smk, T̃ d
−1

τ (E) is the multiplication by a class

Td−1
τ (E) := T̃ d

−1

τ (E)(1X) ∈ A∗(X), called the inverse Todd class of E. For any smooth equidi-

mensional Y
f→ X, it is shown that Td−1

τ (f∗E) = f∗Td−1
τ (E).

Suppose X,Y are in Smk. Then, any f : Y → X is an l.c.i. morphism. Let f = q ◦ i be a
factorization such that i : Y → P is a regular embedding and q : P → X is smooth. Letting I
be the ideal sheaf of Y in P , we define the normal bundle Ni to be the bundle over Y whose dual
has sheaf of sections I/I2. We let Nf ∈ K0(Y ) be the class [Ni]− [i∗Tq], where Tq is the relative
tangent bundle associated to q. For any τ as above, one may construct an oriented cohomology
theory on Smk, denoted A∗(τ), by twisting the first Chern classes and the pull-back maps. If f∗

and c1 are the pull-back and the first Chern class respectively in A∗, then A∗(τ)(X) = A∗(X) as

groups and in A∗(τ),

• f∗(τ) = Td−1
τ (Nf ) · f∗, where Td−1

τ is the inverse Todd class;

• for any line bundle L over X, the first Chern class of L in A∗(τ) is c
(τ)
1 (L) =

∑∞
i=0 c1(L)i+1τi;

• if · denotes the product in A∗(X) and ·τ denotes the product in A∗(τ)(X), then x ·τ y =

Td−1
τ (NδX ) ·x · y, for any x, y ∈ A∗(X), where δX : X → X×X is the diagonal morphism.

The push-forward maps are unchanged.
If f = q ◦ i is a factorization such that i : Y → P is a regular embedding and q : P → X is

smooth, then note that P is smooth over k, since X is smooth and q is smooth. Thus, considering

Y
i //

%%
P

yy

Spec k

, we get by [6, B.7.2.], the exact sequence

(2.1) 0 −→ TY −→ i∗TP −→ Ni −→ 0.

Thus, in K0(Y ), [TY ] = [i∗TP ]− [Ni]. Also, since q is smooth, [Tq] = [TP ]− [q∗TX ]. Hence,

Nf = [i∗TP ]− [TY ]− i∗([TP ]− [q∗TX ]) = [f∗TX ]− [TY ].

When X and Y are abelian varieties, the tangent bundles TX and TY are trivial. Thus, f∗TX

is also trivial. It follows from the properties of T̃ d
−1

τ that

(2.2)

f∗(τ) = Td−1
τ (Nf ) · f∗ = Td−1

τ (f∗TX) · Td−1
τ (−TY ) · f∗

= 1A∗(Y ) · (Td−1
τ (TY ))−1 · f∗

= 1A∗(Y ) · f∗ = f∗.

Note that, if X is an abelian variety and δX : X → X×X is the diagonal map, then Td−1
τ (NδX ) =

1A∗(X) since X ×X is also an abelian variety and δX is an l.c.i.morphism. Thus, we obtain the
following:

Lemma 2.4. For an abelian variety X, there is a ring isomorphism A∗(τ)(X)
∼→ A∗(X).

Proof. Since A∗(X) and A∗(τ)(X) coincide as groups, we only need to verify that the identity map

is compatible with the multiplicative structure. Let · denote the product in A∗(X) and ·τ denote
the product in A∗(τ)(X). Then, for α, β ∈ A∗(X),

α ·τ β = Td−1
τ (NδX ) · α · β = α · β.

Thus the map A∗(τ) → A∗ identifying the two groups is a ring isomorphism as well. �

Let Z[t] := Z[t1, . . . , tn, . . .] be the graded ring of polynomials on variables ti, i > 0, of degree
−i. We may form an oriented cohomology theory A[t]∗ from A∗ by extension of scalars by defining
A[t]∗(X) := A∗(X) ⊗Z Z[t]. Now, consider the oriented cohomology theory CHQ[t](t) defined in
this way. We have the following theorem from [8]:
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Theorem 2.5. Let k be a field of characteristic 0. Then, the canonical morphism of oriented
cohomology theories induces an isomorphism over Q:

νCH[t](t) ⊗Q : Ω∗Q → CHQ[t]∗(t).

where νCH[t](t) is the canonical morphism given by universality of Ω∗.

In the rest of the article, we will write ν to denote νCH[t](t) ⊗Q. Combining Theorem 2.5 and
Lemma 2.4, we get

Theorem 2.6. Let X be an abelian variety over a field k of characteristic 0. Then, we have an
isomorphism of rings

ψX : Ω∗Q(X)→ CHQ[t]∗(X).

3. Recollection of A-motives

In [11, § 5-6], for an oriented cohomology theory A∗ on Smk, Nenashev and Zainoulline con-
structed the A-motive of a smooth projective variety X over k , following the ideas of [9]. We
briefly recall its construction.

3.1. A-correspondences. Let X and Y be smooth projective varieties over an algebraically closed
field k of characteristic 0. We recall some facts about the category of A-correspondences from [11].
Given an oriented cohomology theory A∗, we define the category of A-correspondences, denoted
CorA, as

• Ob(CorA) := Ob(SmProjk);
• HomCorA(X,Y ) := A∗(X × Y );
• the composition of morphisms α ∈ A∗(X × Y ) and β ∈ A∗(Y × Z) is the correspondence

β ◦ α := (pXZ)∗(p
∗
XY (α) · p∗Y Z(β)) ∈ A∗(X × Z).

where pXZ , pXY and pY Z are the respective projections from X × Y × Z.

There is a functor cA : SmProjopk → CorA given by cA(X) = X and cA(f) = (Γf )∗(1A(X)) ∈

A∗(Y × X) for a morphism f : X → Y , where Γf : X
(f,id)−→ Y × X is the graph morphism. For

α ∈ A∗(X × Y ), we have the transpose αt := ι∗(α) ∈ A∗(Y ×X), where ι : Y ×X → X × Y is
given by swapping the variables.

For a correspondence α ∈ HomCorA(Y,X), we define its realization RA(α) : A∗(Y ) → A∗(X)
as follows: identify A∗(Y ) with HomCorA(pt, Y ) and note that α defines a map HomCorA(pt, Y )→
HomCorA(pt,X) given by composition with α. This defines the map RA(α) as

β 7→ pX∗(α · p∗Y β),

where pX and pY are the respective projections to X and Y from Y ×X. We will denote RA by R
when there is no confusion. Note that the projection formula for the oriented cohomology theory
A∗ implies that R(cA(f)) = f∗, so that the functor A∗ : SmProjopk → AbZ factors through CorA.

If α ∈ A∗(X × Y ) and β ∈ A∗(Y × Z), it follows from the definition that

(3.1) R(β) ◦ R(α) = R(β ◦ α) = R
(
(pXZ)∗(p

∗
XY (α) · p∗Y Z(β))

)
,

Also, using the projection formula, we get that, for f : X → Y , α ∈ A∗(Z × Y ) and β ∈
A∗(X × Z),

(3.2) cA(f) ◦ α = (idZ × f)∗(α) and β ◦ cA(f) = (f × idZ)∗(β).

Applying transpose, we also get that for γ ∈ A∗(Y × Z) and δ ∈ A∗(Z ×X),

(3.3) γ ◦ cA(f)t = (f × idZ)∗(γ) and cA(f)t ◦ δ = (idZ × f)∗(δ).

The grading on A∗ induces a grading on HomCorA given as

Homn
CorA(X,Y ) := ⊕iAn+di(Xi × Y ),

where Xi are the irreducible components of X and di = dimXi, making HomCorA into a graded
algebra under composition. CorA forms an additive category by defining X ⊕ Y = X

∐
Y .
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3.2. A-motives.

Definition 3.1. Consider the category Cor0
A with thee same objects as CorA and HomCor0A

(X,Y ) :=

Hom0
CorA(X,Y ). The pseudo-abelian completion of Cor0

A is called the category of effective A-

motives, denoted byMeff
A . That is, the objects inMeff

A are pairs (X, p) where X ∈ Ob(CorA) and
p ∈ HomCor0A

(X,X) is a projector (that is, p ◦ p = p), and

HomMeff
A

((X, p), (Y, q)) =
{α ∈ HomCor0A

(X,Y )|α ◦ p = q ◦ α}
{α ∈ HomCor0A

(X,Y )|α ◦ p = q ◦ α = 0}
.

The category of A-motives, denoted by MA, has as objects triplets (X, p,m) where (X, p) is an
object in Meff

A and m ∈ Z. The morphisms are defined as:

HomMA
((X, p,m), (Y, q, n)) =

{α ∈ Homn−m
CorA

(X,Y )|α ◦ p = q ◦ α}
{α ∈ Homn−m

CorA
(X,Y )|α ◦ p = q ◦ α = 0}

.

Note that this means id(X,p,0) = idX = p ∈ HomMA
((X, p, 0), (X, p, 0)). The motive (X, idX , 0)

is called the motive of X and denoted by hA(X). The additive structure of CorA induces a direct
sum in the category MA.

Following [9, § 6], we call an irreducible variety X in SmProjk to be A-special if it has a k-
point, and for any morphism e : Spec k → X, e∗(1k) ∈ A∗(X) is independent of e. For an A-special
variety X of dimension d, we define the projectors pX0 and pX2d in HomCor0A

(X,X) by the formulas

(3.4) pX0 = e∗(1k)× 1X and pX2d = 1X × e∗(1k).

We denote hiA(X) = (X, pXi , 0) for i = 0, 2d.

4. Fourier-Mukai operator

Let A be an abelian variety of dimension g and let Â be its dual abelian variety. Denote by P
the normalized Poincaré bundle on A× Â. Here, “normalized” means that i∗P and î∗P are trivial,
where i : 0× Â→ A× Â and î : A× 0̂→ A× Â are inclusions.

We wish to define an operator F : Ω∗Q(A) → Ω∗Q(Â) which has the usual properties of the
Fourier-Mukai transformation on Chow rings or K-theory (see [2]).

Note that there is a Fourier-Mukai transformation on CHQ[t], that is induced from the one on
CHQ. This is defined as the map

FCHA = RCHQ[t](ch(P)) : CHQ[t](A) −→ CHQ[t](Â)

where by abuse of notation, ch(P) denotes the Chern character of P considered as an element in

CHQ[t]∗(A× Â) by extension of scalars.
We now imitate this to define a Fourier-Mukai operator on Ω∗Q. By [8, Lemma 4.1.29], there is

a unique power series lL(u) =
∑
i≥0 biu

i+1 ∈ L⊗Q[[u]] with b0 = 1 called the logarithm such that

lL(FΩ(u, v)) = lL(u) + lL(v). Define G := exp ◦lL ∈ L ⊗ Q[[u]], where exp denote the exponential

power series, exp(u) =
∑
i≥0

ui

i!
. Note that, G is a power series such that G(FΩ(u, v)) = G(u)G(v).

Definition 4.1. We define the Fourier-Mukai operator FΩ
A : Ω∗Q(A) → Ω∗Q(Â) to be FΩ

A :=

RΩ(G(cΩ1 (P))). The dual operator F̂Ω
A is defined to beRΩ(G(cΩ1 (P))t). When there is no confusion,

we will denote FΩ
A and F̂Ω

A by FΩ and F̂Ω respectively.

FΩ is related to FCH in the following way:

Proposition 4.2. We have

ψÂ ◦ F
Ω = FCH ◦ ψA.

Proof. Note that in CHQ[t]∗(t), c
(t)
1 (L) = λ(t)(c

CH
1 (L)) where λ(t) ∈ Z[t][[u]] is given as λ(t)(u) =

u +
∑
i≥2 ti−1u

i. This means that there is a power series l(t) such that l(t)(λ(t)(u)) = u. Thus,
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l(t)(c
(t)
1 (L)) = cCH1 (L). This implies that l(t) is the logarithm of the formal group law of CHQ[t]∗(t).

Also, note that, since ν is a morphism of oriented cohomology theories, we get ν(FΩ) = F(t). Thus,

ν(lL(FΩ(x, y))) = ν(lL(x)) + ν(lL(y))⇒ ν(lL)(F(t)(ν(x), ν(y)) = ν(lL)(ν(x)) + ν(lL)(ν(y)).

Since ν is an isomorphism and l(t) is unique, ν(lL) = l(t). Hence, ν(G) = exp ◦l(t).
Denote by ψ′A the ring isomorphism CHQ[t]∗(t)(A) → CHQ[t]∗(A) that is the identity on ele-

ments, so that ψA = ψ′A ◦ ν. ψ′A commutes with pushforwards and with the pullbacks of maps
between abelian varieties.

Let pA and pÂ be the respective projections of A× Â to A and Â. Then, for x ∈ ΩQ(A),

ψÂ ◦ F
Ω(x) = ψ′

Â
◦ ν(pÂ∗(p

∗
Ax ·G(cΩ1 (P))) = ψ′

Â
(pÂ∗(p

∗
Aν(x) · exp ◦l(t)(c

(t)
1 (P)))

= pÂ∗(ψ
′
A×Â(p∗Aν(x)) · ψ′

A×Â(exp(cCH1 (P)))) = pÂ∗(p
∗
AψA(x) · ch(P)) = FCH ◦ ψA(x),

which finishes the proof. �

Also, note that if F denotes the Fourier-mukai transform on CHQ defined in [2], then for

x =
∑

I=(n1,...,nr,...)

xIt
I ∈ CHQ[t](A), we have

(4.1) FCH(x) =
∑

I=(n1,...,nr,...)

F(xI)t
I .

Here, tI = tn1
1 · · · tnr

r · · · , all but finitely many nrs being zero.

5. Properties of the Fourier-Mukai operator

Let A be an abelian variety of dimension g. We denote by ? the Pontrjagin product on Ω∗Q, that
is for x, y ∈ Ω∗Q(A), we define

x ? y := µ∗(p
∗
1x · p∗2y),

where µ is the multiplication on the abelian variety A, p1 and p2 are the projections of A×A onto
the first and second factors, and · is the usual product on Ω∗Q.

The Fourier-Mukai operator on ΩQ of abelian varieties has the following properties:

Proposition 5.1. (1) Let σA denote the endomorphism of the abelian variety A given by
multiplication by −1. Then,

F̂Ω ◦ FΩ = (−1)g(σA)∗ and FΩ ◦ F̂Ω = (−1)g(σÂ)∗.

(2) For x, y ∈ ΩQ(A), we have

FΩ(x ? y) = FΩ(x)FΩ(y) and FΩ(xy) = (−1)gFΩ(x) ? FΩ(y).

(3) Let f : A→ B be an isogeny of abelian varieties, and f̂ : B̂ → Â be the dual isogeny. Then
we have

FΩ
B ◦ f∗ = f̂∗ ◦ FΩ

A and FΩ
A ◦ f∗ = f̂∗ ◦ FΩ

B .

(4) Let x ∈ ΩpQ(A). Write FΩ(x) =
∑
q≤g

yq, where yq ∈ ΩqQ(Â). Then, we have, for n ∈ Z,

n∗yq = ng−p+qyq,

where n denotes the multiplication by n on Â.

Proof. For (1), we first check that F̂CH ◦ FCH = (−1)g(σA)∗CH . This follows readily from (4.1)
and [2, Proposition 3]. Thus,

ψA ◦ F̂Ω ◦ FΩ = F̂CH ◦ FCH ◦ ψA
= (−1)g(σA)∗CH ◦ ψA = (−1)gψA ◦ (σA)∗Ω.

Since ψA is an isomorphism, we get the desired result. The other part can be shown similarly.
To show (2), we check that ψA(x?y) = ψA(x)?ψA(y). Indeed, ψA is a ring homomorphism and

commutes with pushforwards and with the pullbacks of maps between abelian varieties. As in the
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previous part, the result follows by applying ψÂ to both sides of the desired equality and noticing
that the result holds for FCH by [2, Proposition 3]. (3) also follows similarly.

For (4), note that, if x ∈ ΩpQ(A), then clearly, ψÂ ◦ FΩ(x) =
∑
q≤g ψÂ(yq), where ψÂ(yq) ∈

CHQ[t]q(Â). Since ψÂ ◦ FΩ(x) = FCH(ψA(x)), we get n∗CHψÂ(yq) = ng−p+qψÂ(yq) by [3, F3]
which implies n∗yq = ng−p+qyq as required.

�

6. Beauville decomposition for algebraic cobordism

We follow the ideas in [3] to give a decomposition of Ω∗Q(A) into eigenspaces of n∗ using the
Fourier-Mukai operator defined in § 4.

For s ∈ Z and A an abelian variety of dimension g over k, let Ω p
Qs(A) denote the sub-group

Ω p
Qs(A) :=

{
x ∈ ΩpQ(A)|n∗x = n2p−sx

}
.

Following the sketch of [3, Proposition 1] gives us the following.

Proposition 6.1. Let x ∈ ΩpQ(A), and m be any integer other than 0, 1 or −1. The following
conditions are equivalent:

(1) FΩ(x) ∈ Ωg−p+sQ (Â);

(2) x ∈ Ω p
Qs(A);

(3) m∗x = m2p−sx;
(4) m∗x = m2g−2p+sx;

(5) FΩ(x) ∈ Ω g−p+s
Qs (Â).

Proof. (1)⇒(2): Let y = (−1)g(σÂ)∗FΩ(x) and let F̂Ω(y) =
∑
q≤g

xq with xq ∈ ΩqQ(A). Then,

Proposition 5.1, part (4) gives us

n∗xq = ng−(g−p+s)+qxq = np+q−sxq.

But now,

F̂Ω(y) = (−1)gF̂Ω ◦ (σÂ)∗ ◦ FΩ(x)

= (−1)g(σA)∗ ◦ F̂Ω ◦ FΩ(x) [By Proposition 5.1, part (3)]

= x, [By Proposition 5.1, part (1)]

Then, x = xp and n∗x = n2p−sx, thus showing that x ∈ Ω p
Qs(A).

(2)⇒(3): This is by definition.
(3)⇒(4): Since m is a surjective endomorphism of A with finite kernel of size m2g, we have

mCH
∗ m∗CH = m2g · idCH . Then, ψA(m∗m

∗x) = mCH
∗ m∗CHψA(x) = m2gψA(x) implies

ψA(m∗x) = ψA(m2g−2p+sx) which gives the result by the injectivity of ψA since m 6= 0,±1.
(4)⇒(5): By Proposition 5.1, part (3), we get that

m∗FΩ(x) = FΩ(m∗x) = m2g−2p+sFΩ(x) = mg−p+(g−p+s)FΩ(x).

Since m 6= 0,±1, this implies by Proposition 5.1, part (4), that FΩ(x) ∈ Ωg−p+sQ (Â), but

then, by definition, FΩ(x) ∈ Ω g−p+s
Qs (Â).

(5)⇒(1): This is obvious.
�

Theorem 6.2. Let A be an abelian variety of dimension g over k. Then, we have

ΩpQ(A) =

Min(2p,p)⊕
s=2p−2g

Ω p
Qs(A).
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Proof. Let x ∈ ΩpQ(A) and let y = FΩ(x). We can write y =
∑
q≤g yq, with yq ∈ ΩqQ(Â). By

Proposition 5.1, part (4), n∗yq = ng−p+qyq. That is, yq ∈ Ω q
Qp+q−g(Â). Then, Proposition 6.1

gives us that F̂Ω(yq) ∈ Ω p
Qp+q−g(A). But,

(−1)g(σA)∗x = F̂Ω(y) =
∑
q≤g

F̂Ω(yq).

Putting xs = (−1)g(σA)∗F̂Ω(ys+g−p), we obtain x =
∑
s≤p xs. We now improve the limits of the

sum.

Since F̂(yq) has degree p, and by definition, ψA ◦ F̂(yq) =
∑
i≥0

p1∗
(
p∗2(ψÂ(yq))

(cCH1 (P))i

i!

)
, we

get

ψA ◦ F̂(yq) = p1∗
(
p∗2(ψÂ(yq))

(cCH1 (P))p+g−q

(p+ g − q)!
)
.

Also, since yq has degree q, we get

ψÂ(yq) = p2∗
(
p∗1(ψA(x))

(cCH1 (P))q+g−p

(q + g − p)!
)
.

Since (cCH1 (P))p+g−q = 0 if q > p + g and (cCH1 (P))q+g−p = 0 if q < p− g, we get that xs = 0 if
s > 2p or s < 2p− 2g. �

As an easy consequence of the definition of Ω p
Qs(A) and Proposition 6.1, we get the following:

Proposition 6.3. (1) FΩ(Ω p
Qs(A)) = Ω g−p+s

Qs (Â).

(2) If f : A → B is a homomorphism of abelian varieties of relative dimension m, then

f∗Ω p
Qs(B) ⊂ Ω p

Qs(A) and f∗Ω
p

Qs(A) ⊂ Ω p+m
Qs (B).

(3) If x ∈ Ω p
Qs(A), y ∈ Ω q

Qt (A), then xy ∈ Ω p+q
Qs+t (A) and x?y ∈ Ω p+q−g

Qs+t (A), where ? denotes
the Pontryagin product on A.

Proof. (1) is immediate from Proposition 6.1.
(2) follows from the fact that f ◦m = m◦f and the equivalence of (3) and (4) in Proposition 6.1.

If x ∈ Ω p
Qs(A), y ∈ Ω q

Qt (A), then xy ∈ Ω p+q
Qs+t (A) by definition. Also, note that FΩ(x ? y) =

FΩ(x)FΩ(y) ∈ Ω 2g−p−q+s+t
Qs+t (Â). Applying F̂Ω, we get (σA)∗(x ? y) ∈ Ω p+q−g

Qs+t (A), which gives

the result by part (2). �

7. Consequences for numerically trivial cobordism cycles

Let I ⊂ CHg(A) denote the set of 0-cycles of degree 0 on A. In [4, § 4], Bloch showed that

(7.1) I?(r+1) ? CHr(A) = (0)

in the cases r = 0, 1, g − 2, g − 1, g where g = dim(A). In [2], Beauville conjectured that

(Fp) For all x ∈ CHp
Q(A), we have F(x) ∈ CH>g−p

Q (Â).

He verified (Fp) for p = 0, 1, g − 2, g − 1, g ([2, Proposition 8.(i)]) and also showed that

Proposition 7.1 ([2, Proposition 9]). (Fp) implies that I?(p+1) ? CHp(A) = (0). In particular,

the groups I?(g+1), I?g ? CHg−1(A) and I?(g−1) ? CHg−2(A) are zero.

We prove an analogue of this Proposition replacing I with numerically trivial cobordism cycles.
A notion of numerical equivalence on Ω∗(X) was defined in [1]. We briefly recall the construction.

Definition 7.2. Let X be a smooth projective scheme over a field k of characteristic 0. Consider
the composition of maps

Ωm(X)⊗ Ωn(X)→ Ωm+n(X)
π∗→ Ωm+n−dimX (k),
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where π is the structure morphism X → Spec (k). This gives a map of L-modules Ω∗(X) −→
HomL(Ω∗(X),Ω∗(k)). We say that a cobordism cycle in Ω∗(X) is numerically equivalent to 0 if it
is in the kernel of this map:

N ∗(X) := ker
(

Ω∗(X)→ HomL(Ω∗(X),Ω∗(k))
)

and

Ω∗num(X) := Ω∗(X)/N ∗(X).

Let A be an abelian variety over k of dimension g.

Lemma 7.3. FΩ carries N ∗(A) to N ∗(Â).

Proof. Let α ∈ N ∗(A). Then, by definition, FΩ(α) = pÂ∗(p
∗
Aα ·G(cΩ1 (P))). Let πÂ and πA be the

structure morphisms of Â and A respectively and let pÂ and pA be the respective projections of

A× Â to Â and A. We obtain, by the projection formula, for any γ ∈ Ω∗Q(Â),

πÂ∗(F
Ω(α) · γ) = πÂ∗pÂ∗

(
p∗Aα ·G(cΩ1 (P)) · p∗

Â
γ
)

= πA∗pA∗
(
p∗Aα ·G(cΩ1 (P)) · p∗

Â
γ
)

= πA∗

(
α · F̂Ω(γ)

)
.

Thus, numerically triviality of α implies that FΩ(α) is numerically trivial. �

Proposition 7.4. Fix 0 ≤ p ≤ g. If x ∈ ΩpQ(A) is such that FΩ(x) ∈ Ω>g−p
Q (A). Then,

N ∗?(p+1)
Q ? x = 0.

Proof. Pick α1, . . . , αp+1 ∈ N ∗Q(A). Note that by Proposition 5.1, part (2),

(7.2) FΩ(α1 ? α2 ? · · · ? αp+1) = FΩ(α1)FΩ(α2) · · · FΩ(αp+1).

Suppose that, for some i, FΩ(αi) ∈ Ω60
Q (Â), then by the Generalized degree formula ([8,

Theorem 4.4.7]), we get

FΩ(αi) = deg(FΩ(αi))[IdÂ] +
∑

codimÂZ>0

ωZ [Z̃ → Â],

where the sum is over closed integral subschemes Z ⊂ Â, Z̃ is smooth with a birational morphism
Z̃ → Z and ωZ ∈ L<0. Lemma 7.3 shows that FΩ(αi) ∈ N ∗Q(Â). Then, by [1, Proposition 3.4],

deg(FΩ(αi)) = 0. Hence, FΩ(αi) ∈ L<0 · Ω>1(Â).

By (7.2), it follows that FΩ(α1 ? · · · ? αp+1) is in Ω>p+1(Â) or in L<0 · Ω>p+1(Â). Thus, by
Proposition 5.1, part (2),

FΩ(α1 ? · · · ? αp+1 ? x) = FΩ(α1 ? · · · ? αp+1)FΩ(x) = 0.

Applying F̂Ω and using Proposition 5.1, part (1), we get

(−1)g(σA)∗(α1 ? · · · ? αp+1 ? x) = 0.

Hence, α1 ? · · · ? αp+1 ? x = 0, which completes the proof. �

The same arguments as in the proof of the above proposition with p = g shows

Corollary 7.5. N ∗?(g+1)
Q = (0).

One can check thatN ∗Q(A) forms an ideal of Ω∗Q(A) under Pontryagin product. By [8, Lemma 4.5.10]

and [1, Theorem 3.2], N g
Q(A)

∼→ I, which is the subgroup of 0-cycles of degree 0. This implies

N g
Q(A)/N g

Q(A)?2
∼→ I/I?2

∼→ A. It would be interesting to study the structure of the group

NQ(A)/NQ(A)?2.
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8. Motivic decomposition

Our goal in this section is to get a canonical decomposition of cobordism motives of abelian
varieties as shown by Deninger and Murre in [5] for Chow motives. That is, a decomposition

hΩ(A) =
⊕
i

hiΩ(A) where hiΩ(A) = (A, πi, 0),

πi being orthogonal projectors such that n∗πi = niπi. In [13, § 5], Scholl gave an alternative proof
of the decomposition for Chow motives and also described the projectors in the decomposition
more explicitly.

Let A be an abelian variety of dimension g over k. Let ∆ denote the class of the diagonal
morphism [A→ A×A] in ΩgQ(A×A). We are going to show

Theorem 8.1. There is a canonical decomposition

∆ =

2g∑
i=0

πi in ΩgQ(A×A)

such that (idA × n)∗πi = niπi for all n ∈ Z and πi’s are mutually orthogonal projectors, that is,
π2
i = πi and πi ◦ πj = 0 for i 6= j. Also, cΩ(n) ◦ πi = niπi = πi ◦ cΩ(n).

Proof. Note that such a decomposition is unique if it exists. Indeed, if {ρi}2gi=0 is another such

decomposition, then πi =
∑2g
j=0 πi ◦ ρj . Composing with cΩ(n) from the left, we get niπi =∑2g

j=0 n
jπi ◦ ρj , which by substituting the expression for πi gives

2g∑
j=0

(nj − ni)πi ◦ ρj = 0.

Since, this is true for all n, we must have πi ◦ ρj = 0 for i 6= j, implying πi = πi ◦ ρi. We can
similarly show that ρi = πi ◦ ρi implying πi = ρi.

To see the existence, we first note that we have such a decomposition of the diagonal in
CHg

Q[t](A×A) induced by extension of scalars from the canonical decomposition of Chow motives

of A, as shown in [13, § 5]. That is, in CHg
Q[t](A × A), the diagonal [∆]CH may be expressed as

[∆]CH =
∑2g
i=0 p

can
i where for each i, pcan

i is a projector and pcan
i ◦ pcan

j = 0 ∈ HomCor0
CHQ[t]∗

(A,A)

for i 6= j. Also, cCH(n) ◦ pcan
i = nipcan

i = pcan
i ◦ cCH(n).

Now, take πi = ψ−1

A×Â
(pcan
i ). Since, for α, β ∈ Ω∗Q(A × A), we have ψA×Â(α ◦ β) = ψA×Â(α) ◦

ψA×Â(β), we readily get that πi is a projector and πi ◦ πj = 0 for i 6= j. Also, since, ψ(cΩ(n)) =

cCH(n), we get cΩ(n) ◦ πi = niπi = πi ◦ cΩ(n) for all n ∈ Z. �

LetMΩ be the category of cobordism motives over k, defined in 3.2. Let ϕ denote the canonical
morphism ϕ = νCH : Ω∗ → CH∗. ϕ induces a functor ϕ̃ : MΩ → MCH of the corresponding
categories of motives, acting as ϕ on the morphisms and on objects as (X, p,m) 7→ (X,ϕ(p),m).

Corollary 8.2. There is a canonical decomposition of the cobordism motive of an abelian variety
A of dimension g over k:

hΩ(A) =

2g⊕
i=0

hiΩ(A) ,

where hΩ(A) = (A, idA, 0) is the motive of A, hiΩ(A) = (A, πi, 0) and the πi’s are such that
cΩ(n) ◦ πi = niπi = πi ◦ cΩ(n). Furthermore, we have ϕ̃(hiΩ(A)) = hiCH(A)can, as defined in [13,
§ 5].

Proof. This is immediate since, if idA =

n∑
i=0

πi for mutually orthogonal projectors πi, then

(A, idA, 0) =

n⊕
i=0

(A, πi, 0).
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Also, it follows from the construction in the proof of Theorem 8.1 that ϕ(πi) = pcan
i for all i, which

implies ϕ̃(hiΩ(A)) = hiCH(A)can. �

Remark 8.3. Note that, by definition, the projectors π0 and π2g are the same as those defined in
(3.4), that is, π0 = pA0 and π2g = pA2g. Also, πti = π2g−i since this property holds for the pcan

i s.
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