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Abstract. We study geometric structures of smooth projective varieties of

small degree in birational geometric viewpoints. First, using the positivity of
double point divisors, we classify non-degenerate smooth projective varieties

X ⊂ Pr of degree d ≤ r + 2, and consequently, we show that every such X

is simply connected and rationally connected except in a few cases. This is a
generalization of P. Ionescu’s work ([Io4]). We also show the finite generation

of Cox rings of smooth projective varieties X ⊂ Pr of degree d ≤ r with a

counter-example for d = r + 1. On the other hand, we prove that a non-
degenerate non-uniruled smooth projective variety X ⊂ Pr of dimension n

and degree d ≤ n(r − n) + 2 is Calabi-Yau.

Introduction

Every n-dimensional smooth projective variety can be embedded in P2n+1 with
arbitrarily large degree. In contrast, there is a restriction to admit an embedding
with small degree. We expect that small degree varieties have special geometric
properties which in turn allow us to classify them. First, we consider the following
problem, which is a natural generalization of L. Ein’s classification ([E]) of surfaces
in Pr of degree d ≤ r + 3.

Problem A. Classify non-degenerate smooth projective varieties X ⊂ Pr of di-
mension n and degree d ≤ r + n+ 1.

Many classical results on classifications of lower dimensional projective varieties
were achieved by systematic studies of adjunction mappings. However, those meth-
ods cannot be directly generalized to higher dimensional cases. By recent develop-
ments of higher dimensional algebraic geometry, we can study geometric properties
(e.g., positivity of anticanonical divisors, rationally connectedness, vanishing of
higher cohomology groups, etc.) of small degree varieties before detailed classifi-
cations. Then, we obtain natural descriptions of small degree varieties in terms of
important classes of varieties (e.g., Fano, Calabi-Yau, ruled varieties, etc.) from
birational geometry. It is an interesting problem to determine embedded structures
of projective varieties via their intrinsic properties or vice versa.

In this paper, we adopt the approach described in the above to extend P.
Ionescu’s work ([Io4]) into the case d ≤ r + 2. Ionescu proved that if d ≤ r,
then X is simply connected. He deduced it from a classification result: such X is
either a Fano variety with b2(X) = 1 or a rational variety (there are 6 infinite series
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and 14 sporadic examples). In particular, this gave an answer to a question of F.
Russo and F. Zak which asks if X is regular (i.e., h1(OX) = 0) when d ≤ r. Our
main result is the following theorem, which is a consequence of Theorem C and
Theorem 6.1.

Theorem B. Let X ⊂ Pr be a non-degenerate smooth projective variety of degree
d ≤ r + 2. Assume that X is neither a curve nor an elliptic scroll. Then, X is
always simply connected, and it is rationally connected unless it is a K3 surface in
P4 of degree 6 or a hypersurface of degree d = r + 1 or r + 2.

In contrast with Ionescu’s approach in [Io4], we directly study the positivity
of the anticanonical divisors, which immediately imply some geometric properties,
especially, simply connectedness, rationally connectedness, and finite generation of
Cox ring. It seems difficult to derive our main results from Ionescu’s classification
([Io2, Theorem I]) of smooth projective varieties X ⊂ Pr of degree d ≤ 2e + 2 or
similar results based on adjunction theory.

For a while, we consider the case d ≤ r + 1 in detail.

Theorem C. Let X ⊂ Pr be an n-dimensional non-degenerate smooth projective
variety of degree d ≤ r + 1. Then, one of the following holds:

(a) X is a weak Fano variety. (If d ≤ r, then X is a Fano variety.)
(b) X is a Roth variety or a rational scroll.
(c) d = r + 1, r = n+ 1 ≥ 3 and X is a Calabi-Yau hypersurface.
(d) d = r + 1 and X is an elliptic normal scroll or an elliptic normal curve.

In particular, X is simply connected if and only if it is from (a), (b), or (c), and
X is rationally connected if and only if it is from (a) or (b).

We will study adjunction mappings of varieties from the case (a) to obtain a more
detailed classification, which is Theorem E. For definitions and basic properties of
scrolls and Roth varieties, see Sections 1 and 2 in which we classify those varieties
of degree d ≤ r + 1. We refer to [KMM] for rationally connected varieties. Note
that every rationally connected variety is simply connected.

Remark. (1) The fundamental group of an elliptic scroll or an elliptic curve is Z⊕Z.

(2) Every case of Theorem C really occurs. The existence of cases (b) and (c) is
clear. See Remark 1.6 for case (d) and see Examples 5.8 and 5.9 for case (a).

(3) Every variety from (b), (c), or (d) is projectively normal (i.e., the natural map
H0(OPr (k))→ H0(OX(k)) is surjective for every k ≥ 1) unless it is a non-linearly
normal rational scroll (see Remark 1.6 and Proposition 2.3).

(4) When X is a curve, d = r + 1 is equivalent to that X is of almost minimal
degree. Thus, Theorem C can be seen as a higher dimensional generalization of
the classification of curves of almost minimal degree (Theorem 1.2) in a topological
viewpoint because non-simply connected varieties appear only when d ≥ r+ 1. See
also Theorem 1.1 for the scroll case.

(5) Theorem C classifies n-dimensional polarized pairs (X,H) with ∆(X,H) ≤ n.
The ∆-genus for a n-dimensional polarized pair (X,H), where H is a very ample
divisor on a smooth projective variety X of dimension n, is defined by

∆(X,H) := n+Hn − h0(OX(H)).

For basic properties, we refer to [F3].
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We will prove Theorem C in Subsection 3.2 using A. Noma’s work on the double
point divisor from inner projection ([N]), which we review in Subsection 3.1. Theo-
rem C is an improvement of [N, Corollary 7.4], in which Noma showed that if d ≤ r
and X is neither a Roth variety nor a scroll, then−KX is ample. The Ionescu’s work
([Io4]) relies on the study of the adjunction mapping given by |KX+(n−1)H|, where
H is a hyperplane section. It is related to the ramification divisor (∼ KX+(n+1)H)
which is obtained by the ramified locus of an outer projection πΛ1

: X → Pn cen-
tered at a general (r − n− 1)-dimensional linear subspace Λ1. On the other hand,
the non-isomorphic locus of an outer projection πΛ2 : X → Pn+1 centered at a gen-
eral (r−n−2)-dimensional linear subspace Λ2 defines the double point divisor from
outer projection linearly equivalent to

Dout := −KX + (d− n− 2)H.

Note that Dout is base point free (see [BM, Technical appendix 4]), and hence, X
is a Fano variety provided that d ≤ n + 1. The double point divisor from inner
projection can be defined similarly, and it is linearly equivalent to

Dinn := −KX + (d− r − 1)H.

Noma proved that Dinn is semiample if it is defined ([N, Theorem 4]). Our classi-
fication is accomplished by showing that Dinn is big when d ≤ r + 1 except some
special cases which exactly correspond to the other cases in Theorem C. We empha-
size that a bound of the sectional genus (Lemma 3.6) from the embedded structure
plays a crucial role in proving the bigness of −KX , which is an intrinsic property.

Rationally connectedness and simply connectedness of small degree varieties
mean that they are simple in geometric and topological ways. It turns out that
small degree varieties are also simple in algebraic way by the following.

Corollary D. Let X ⊂ Pr be a non-degenerate smooth projective variety of degree
d. If d ≤ r, then the Cox ring of X is finitely generated.

Corollary D will be proved in Section 4, where the definition of Cox ring is
given. Every variety from (a) or (b) in Theorem C has finitely generated Cox ring,
and every hypersurface of dimension n ≥ 3 has also finitely generated Cox ring.
However, there is a quartic surface whose Cox ring is not finitely generated (see
Example 4.1). The Cox rings of non-regular varieties (i.e., h1(OX) 6= 0) cannot be
defined.

We note that simply connectedness, rationally connectedness, and finite gen-
eration of Cox rings of weak Fano varieties, scrolls, and hypersurfaces are well
understood. For this purpose, in Sections 2 and 4, we will study those properties
of Roth varieties in detail.

In Section 5, we will study adjunction mappings. In particular, we obtain the
following classification of the weak Fano case in Theorem C, which will be shown
in Subsection 5.2.

Theorem E. Let X ⊂ Pr be an n-dimensional non-degenerate smooth projective
variety of degree d ≤ r+ 1, and let H be a general hyperplane section. Assume that
n ≥ 2 and X is a weak Fano variety but not a rational scroll. Then, one of the
following holds:

(a) X is prime Fano, i.e., −KX = `H for some ` > 0 and Pic(X) = Z[H].
(b) X is a del Pezzo variety, i.e., −KX = (n− 1)H.



4 SIJONG KWAK AND JINHYUNG PARK

(c) X is a Veronese surface v2(P2) in P5 or P4, or a quadric hypersurface P1 ×
P1 ' Q ⊂ P3.

(d) |KX + (n− 1)H| induces a hyperquadric fibration over P1.
(e) |KX + (n− 1)H| induces a linear fibration over P2 or P1 × P1.

In particular, if X is not a Fano variety but a weak Fano variety, then it is a
rational variety.

Del Pezzo varieties are completely classified by Fujita ([F1] and [F2]; see Theorem
5.2 for complete list). We will also discuss the classification of prime Fano varieties
of degree d ≤ r + 1 in Subsection 5.4.

Remark. (1) Every case of Theorem E really occurs (see Subsection 5.3).

(2) Not every prime Fano variety is rational. E.g., smooth cubic threefolds in P4,
which are also del Pezzo varieties, are not rational.

(3) Every Roth variety of degree d ≤ r + 1 that is not a rational scroll has a
hyperquadric fibration over P1 which is induced by |KX + (n− 1)H| (see Remark
2.5). The natural fibrations of scrolls are induced by |KX + nH|.

The main ingredients of the proof of Theorem E are adjunction theory and
methods in [Io4], more precisely, Proposition 5 and Lemma 6 in that paper. On
the contrary to [Io4], we may assume that X is a weak Fano variety, and in partic-
ular, X is simply connected. Then, we can simplify arguments by excluding many
unnecessary cases in the first place.

Our methods can be applied to the case d = r + 2. Section 6 will be devoted to
classify non-degenerate smooth projective varieties X ⊂ Pr of degree d ≤ r+ 2 (see
Theorems 6.1 and 6.2). In our proofs of Theorem C and Theorem 6.1, we sometimes
use ad-hoc arguments, which force us to be faced with a difficulty as the degree
increases. To solve Problem A, we need to develop more systematic methods.

On the other hand, in view of A. Buium’s classification ([Bui]) of non-ruled
surfaces in Pr of degree d ≤ 2r + 1, it is natural to consider the following problem.

Problem F. Classify non-degenerate smooth projective varieties X ⊂ Pr of dimen-
sion n and degree d ≤ nr + 1 which are not uniruled.

In [Bui], Buium pointed out that every non-ruled surface of degree d ≤ 2r+ 1 is
regular. We expect that there is an organized way to prove such results in higher
dimensional case without classification.

Remark. When X is a curve, d ≤ nr+1 is equivalent to that X is of almost minimal
degree, and hence, Theorem 1.2 gives an answer to Problem F.

In this paper, we prove the following, which will be used for classifying projective
varieties of degree d = r + 2 (see Proof of Theorem 6.1).

Theorem G. Let X ⊂ Pr be a non-degenerate smooth projective variety of dimen-
sion n, codimension e, and degree d. If d ≤ ne + 2, then either X is a uniruled
variety or d = ne+ 2 and X is a Calabi-Yau variety.

This is a higher dimensional generalization of a classical theorem in surface case
(see e.g., [Bui, Lemmas 1.3 and 1.6]), and it seems to be well-known to specialists.
However, for lack of suitable references, we give a brief proof in Section 7. It will
be done by classifying Castelnuovo varieties (see Definition 7.1) of minimal degree
combining with Zak’s result ([Z, Corollary 1.6]), which says that if d ≤ ne+1, then
X is uniruled.
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Conventions. Throughout the paper, we work over the complex number field C,
and we use the following terminologies.

(1) A smooth projective variety X is called resp. Fano or weak Fano if the anti-
canonical divisor −KX is resp. ample or nef and big.

(2) A smooth projective variety X is called Calabi-Yau if OX(KX) = OX and
hi(OX) = 0 for 0 < i < dimX.

(3) A variety X is called uniruled if for any general point x on X, there is a rational
curve passing through x, and it is called rationally connected if for any general
points x1 and x2 on X, there is a rational curve connecting x1 and x2.

Acknowledgments. We would like to thank to Paltin Ionescu for his lecture series
at KAIST in 2011, where we learned the results in [Io4]. We are very grateful to
Atsushi Noma who gave lectures on his paper [N] at KAIST in 2012 and sent us
the final version of [N]. It is also our pleasure to express deep gratitude to Fyodor
Zak for interesting discussions and valuable suggestions for improving many results
from which we could obtain Theorems E and G.

1. Scrolls

In this section, we collect basic facts on scrolls. A vector bundle E on a smooth
projective curve C is called very ample if the tautological line bundle OPC(E)(1) is
very ample on PC(E). For a very ample vector bundle E of rank n on C, we have
an embedding PC(E) ⊂ Pr given by a linear subsystem of |OPC(E)(1)|. We call
PC(E) a scroll over C. Note that

h0(PC(E),OPC(E)(1)) = h0(C,E) and d = degPr (PC(E)) = degC(detE).

A scroll is called rational (resp. elliptic) if it is defined over a rational (resp. an
elliptic) curve. A scroll is simply connected (and rationally connected) if and only
if it is a rational scroll. Throughout the paper, we assume that n ≥ 2 (and hence,
r ≥ 3) for any scroll.

The main result of this section classifies scrolls of small degree, which is an easy
consequence of [IT2].

Theorem 1.1. Let X ⊂ Pr be a non-degenerate smooth projective variety of degree
d ≤ r + 1. If X is a scroll over a curve C, then either X is a rational scroll or
d = r + 1 and X is an elliptic normal scroll.

Proof. It follows from Propositions 1.3 and 1.4, which we will prove in the remaining
of this section. �

First, we recall the classification of curves of almost minimal degree. We include
the whole proof to motivate our proof of Proposition 1.4.

Theorem 1.2. Let C ⊂ Pr be a non-degenerate smooth projective curve of degree
d. If d ≤ r + 1, then either C is a rational curve or d = r + 1 and C is an elliptic
normal curve.

Proof. Denote by H the hyperplane section. If H is special (i.e., h1(OC(H)) 6= 0),
then by Clifford Inequality, we have

r + 1 ≤ h0(OC(H)) ≤ d

2
+ 1 ≤ r + 1

2
+ 1.
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Thus, we get r ≤ 1, which is a contradiction. Hence, H is non-special. By Riemann-
Roch Formula, we have

r + 1 ≤ h0(OC(H)) = d− g + 1 ≤ r + 1− g + 1,

where g is the genus of the curve C. Then, g ≤ 1, and the equality holds exactly
when d = r + 1 = h0(OC(H)). �

Recall the lower bound of the degree of scrolls over a curve of positive genus.

Proposition 1.3 (Corollary 3 of [Io4]). Let C be a smooth projective curve of
positive genus, and let E be a very ample vector bundle on C, which defines a
linearly normal scroll PC(E) ⊂ Pr over C of degree d. Then, we have d ≥ r + 1.

We classify scrolls of minimal degree over a curve of positive genus.

Proposition 1.4. Let C be a smooth projective curve of positive genus, and let E be
a very ample vector bundle on C, which defines a linearly normal scroll PC(E) ⊂ Pr
over C of degree d. If d = r + 1, then C is an elliptic curve.

Proof. Suppose that the genus g = g(C) ≥ 2. Recall the main theorem of [IT2]:

(1.1) h0(E) + n− 2 ≤ h0(detE).

According to [IT2, Corollary 4], we divide into two cases. Firstly, if detE is special
(i.e., h1(C,detE) 6= 0), then by Clifford Inequality, we have

r + 1 = h0(E) ≤ h0(detE)− n+ 2 ≤ d

2
− n+ 3 =

r + 1

2
− n+ 3.

Thus, we obtain r + 2n ≤ 5, which is a contradiction. Secondly, if detE is non-
special, then by Riemann-Roch Formula, we have

r + 1 = h0(E) ≤ h0(detE)− n+ 2 = d− g − n+ 3 = r − g − n+ 4.

Thus, we obtain g + n ≤ 3, which is also a contradiction. Hence, g = 1. �

The following lemma will be used in Section 5. Note that there is an n-dimensional
scroll in P2n−1 (e.g., Segre embedding of P1 × Pn−1).

Lemma 1.5. Let X ⊂ Pr be an n-dimensional scroll over a curve of genus g.
Then, r ≥ 2n− 1 for g = 0, and r ≥ 2n for g ≥ 1.

Proof. By Barth-Larsen Theorem ([L1, Corollaries 3.2.2 and 3.2.3]), the lemma
follows. �

Finally, we recall the following well-known facts on elliptic scrolls.

Remark 1.6. (1) (Proposition 5.2 of [Io3]) There exist n-dimensional elliptic normal
scrolls in P2n+k of degree 2n+ k + 1 for all k ≥ 0.

(2) (Theorem 5.1A of [But]) Elliptic normal scrolls and elliptic normal curves are
projectively normal.
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2. Roth varieties

In this section, we collect basic facts on Roth varieties. Let E = OP1(a1) ⊕
OP1(a2)⊕ · · · ⊕ OP1(an+1) be a globally generated vector bundle of rank n+ 1 on
P1 with all ai ≥ 0. Denote Sa1,...,an+1 := PP1(E), and let π1 : Sa1,...,an+1 → P1 be
the natural projection. Let F be a fiber of π1, and H be a base point free divisor
on Sa1,...,an+1

with OSa1,...,an+1
(H) = OPP1 (E)(1).

Definition 2.1 (Definition 3.1 and Theorem 3.7 of [Il]). Let n ≥ 2 be an inte-
ger. Consider the birational morphism π2 : S0,0,a1,...,an−1 → S ⊂ Pr given by the

complete linear system |H| for ai ≥ 1. Then, the singular locus of S is a line

L ⊂ Pr. For every integer b ≥ 1, take a smooth variety X̃ ∈ |bH + F | such that

π2|X̃ : X̃ → X := π2(X̃) is an isomorphism, and L ⊂ X ⊂ Pr. Then, X is called a
Roth variety.

We have an embedding X ⊂ S ⊂ Pr. By [Il, Proposition 3.5 and Theorem 3.14
(4)], X ⊂ Pr is non-degenerate and projectively normal, i.e., every linearly normal
Roth variety is projectively normal. For more detail, we refer to [Il, Section 3].

Note that H+F is very ample, because OS0,0,a1,...,an−1
(H+F ) is the tautological

line bundle of S1,1,a1+1,...,an−1+1. Thus, bH+F is very ample for every integer b ≥ 1.

Proposition 2.2. Every Roth variety is simply connected.

Proof. By Lefschetz Hyperplane Theorem (see e.g., [L1, Theorem 3.1.21]), the as-
sertion follows. �

Recall that by [Il, Theorem 3.7], we have

n−1∑
i=1

ai = r − n and d = b(r − n) + 1

for a linearly normal Roth variety X ⊂ Pr of dimension n and degree d. Note
that a Roth variety with b = 1 is a rational scroll S1,a1,...,an−1 ([Il, Theorem 3.14
(1)]). We can completely classify linearly normal Roth varieties X ⊂ Pr with
degPr (X) ≤ r + 1.

Proposition 2.3. Let X ⊂ Pr be a non-degenerate Roth variety of dimension n,
codimension e, and degree d. If d ≤ r + 1, then one of the following holds:

(1) b = 1 and X is a (not necessarily linearly normal) rational scroll.
(2) b = 2, d = r = 2n− 1, and X is projectively normal.
(3) b = 2, d = r + 1 = 2n+ 1, and X is projectively normal.

Proof. Assume that X ⊂ Pr is linearly normal. First, we show that e ≥ n−1. Since
the cases n = 2 and 3 are trivial, we may assume that n ≥ 4. If e ≤ n − 2, then
by Barth-Larsen Theorem ([L1, Corollary 3.2.3]), Pic(X) ' Z, but by Lefschetz
Theorem for Picard Group ([L1, Example 3.1.25]), Pic(X) ' Z⊕Z, and hence, we
get a contradiction. Thus, e ≥ n−1. Recall that d = be+ 1 ≤ n+ e+ 1. We obtain
e ≤ n

b−1 . It follows that b ≤ 2.

The case b = 1 is trivial by [Il, Theorem 3.14 (1)]. Now, put b = 2. We have
d = 2e + 1 ≤ n + e + 1, so we obtain e ≤ n. Thus, we have two cases e = n − 1
(then, d = r), and e = n (then, d = r + 1). By considering the Picard group and
linearly normality in small codimension, we see that every linearly normal Roth
variety X ⊂ Pr with b = 2 and d = r cannot have isomorphic projection. Thus,



8 SIJONG KWAK AND JINHYUNG PARK

every Roth variety X ⊂ Pr with b = 2 and d ≤ r+ 1 is linearly normal, and hence,
it is projectively normal. �

Now, we investigate the rationally connectedness of Roth varieties.

Proposition 2.4. Let X ⊂ Pr be a linearly normal Roth variety of dim(X) = n
and deg(X) = b(r − n) + 1. Then, X is rationally connected if and only if b ≤ n.

Proof. Let S be a rational scroll with the projection π1 : S → P1, and let X ⊂ S be
a Roth variety. Then, there is a surjective morphism π1|X : X → P1. Let FX be a
general fiber of π1|X , i.e., it is a restriction of a general fiber F of π1 to X. We note
that the natural map H0(OS(F )) → H0(OX(FX)) is an isomorphism. By Bertini
Theorem, FX is a smooth hypersurface in F ' Pn. Since X ∈ |bH + F |, we have
degPn(FX) = (bH + F ).Hn−1.F = b. If b ≤ n, then FX is rationally connected.
Thus, by [GHS, Corollary 1.3], X is rationally connected. Conversely, if b ≥ n+ 1,
then by [Il, Theorem 3.14 (5)], X is a Castelnuovo variety (see Definition 7.1).
Thus, h0(OX(KX)) 6= 0, and hence, X cannot be rationally connected. �

Remark 2.5. In the proof, we saw that every Roth variety X ⊂ Pr has a fibration
π1|X : X → P1 such that the fiber FX is a hypersurface of degree b via OX(1). In
particular, every Roth variety X ⊂ Pr of degree d ≤ r + 1 is a rational scroll or a
hyperquadric fibration over P1.

Corollary 2.6. Every Roth variety X ⊂ Pr of degree d ≤ r + 1 is rational.

3. Positivity of double point divisors and weak Fano varieties

In this section, we prove Theorem C after reviewing the Noma’s work on double
point divisors ([N]).

3.1. Double point divisors from inner projection. In this subsection, we sum-
marize the Noma’s work ([N]), which will be useful for our proof of Theorem C. Let
X ⊂ Pr be a non-degenerate smooth projective variety of dimension n, codimension
e, and degree d. Throughout the section, we assume that n ≥ 2 and e ≥ 2. First,
we need the following definition.

Definition 3.1. Let x1, . . . , xm (1 ≤ m ≤ e−1) be general points on X, and define

Ex1,...,xm
:= {z ∈ X \ {x1, . . . , xm} | dim 〈x1, . . . , xm, z〉 ∩X = 1}.

We say that X satisfies the property (Em) if dimEx1,...,xm = n−1 for general points
x1, . . . , xm.

Theorem 3.2 (Theorem 3 in [N]). If X ⊂ Pr satisfies the property (Ee−1), then
X is either a scroll over a smooth projective curve or the Veronese surface in P5.

Now, we assume that X ⊂ Pr does not satisfy property (Ee−1). Let x1, . . . , xe−1

be general points of X, and Λ := 〈x1, . . . , xe−1〉 be their linear span. Note that
Λ ∩X = {x1, . . . , xe−1} by the general position lemma (see e.g., [N, Lemma 1.1]).

Consider the inner projection from the center Λ and the blow-up σ : X̃ → X at
x1, . . . , xe−1. We have the following diagram:

X̃
σ //

π̃   

X

π

��

� � // Pn+e

πΛ

��

XΛ
� � // Pn+1.
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Note that deg(XΛ) = d − e + 1. Since X does not satisfy property (Ee−1) by
the assumption, the birational morphism π̃ has no exceptional divisor. Therefore,

there is an effective divisor D(π̃) on X̃ by the birational double point formula ([L2,
Lemma 10.2.8]) such that

OX̃(D(π̃)) ' π̃∗(ω◦
X

)⊗ ωX̃
−1.

Let Dinn(π) := σ(D(π̃)|X̃\E1∪···∪Ee−1
be a divisor on X, where E1, . . . , Ee−1 are

exceptional divisors of σ. Then, the effective divisor Dinn(π), called the double
point divisor from inner projection, is linearly equivalent to

Dinn = −KX + (d− r − 1)H.

By varying the centers of projections, Noma proved in [N, Theorem 1] that the base
locus of |Dinn| lies in the set of non-birational centers of simple inner projections,
i.e.,

Bs(|Dinn|) ⊂ C(X) := {u ∈ X | l(X ∩ 〈u, x〉) ≥ 3 for general x ∈ X}.

Theorem 3.3 (Theorem 2 of [N]). If dim C(X) ≥ 1, then X is a Roth variety.

To sum up, we have the following.

Theorem 3.4 (Theorem 4 of [N]). Suppose that X is not a scroll over a smooth
projective curve, the Veronese surface in P5, or a Roth variety. Then, the double
point divisor Dinn from inner projection is semiample.

3.2. Proof of Theorem C. First, recall some notations. Let X ⊂ Pr be a non-
degenerate smooth projective variety of dimension n, codimension e, and degree
d ≤ r + 1. We denote by H a hyperplane section.

By the classification of curves of almost minimal degree (Theorem 1.2), there is
nothing to prove when X is a curve. Thus, assume that n ≥ 2. When X ⊂ Pr is
a hypersurface, X is simply connected by Barth-Larsen Theorem ([L1, Corollary
3.2.2]). Moreover, by the adjunction theorem, X is a Fano variety if d ≤ r, and X
is a Calabi-Yau variety if d = r + 1. Note that a smooth hypersurface X ⊂ Pr is
rationally connected if and only if deg(X) ≤ r, i.e., X is a Fano variety.

We further assume that e ≥ 2. The case that X ⊂ Pr is a Roth variety or a
scroll over a curve is already treated in Sections 1 and 2. Thus, suppose that X
is neither a Roth variety nor a scroll over a curve. Note that the Veronese surface
in P5 is clearly a Fano variety. By Theorem 3.4, we only have to consider the case
that C(X) is finite and the double point divisor Dinn = −KX + (d − r − 1)H is
semiample (thus, nef). If d ≤ r, then we may write

−KX = Dinn + (r + 1− d)H,

and hence, −KX is ample, i.e., X is a Fano variety (see also [N, Corollary 7.6]).
Now, consider the case d = r+1. Then, Dinn = −KX is a non-trivial semiample

divisor. We will show that −KX is big, and hence, X is a weak Fano variety. Note
that every weak Fano variety is rationally connected and simply connected (see
e.g., [HM, Corollary 1.4]). If X ⊂ Pr is not linearly normal, then it is obtained by
an isomorphic projection from X ⊂ Pr+1 with degree d = r + 1, and hence, it is
a Fano variety. Thus, we may assume that X ⊂ Pr is linearly normal. We divide
into three cases: (1) e ≤ n− 2, (2) e = n− 1, and (3) e ≥ n.

If e ≤ n− 2, then by Barth-Larsen Theorem ([L1, Corollary 3.2.3]), −KX = `H
for some integer ` > 0, and hence, −KX is ample.
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Suppose that e = n − 1. By Barth-Larsen Theorem ([L1, Corollary 3.2.2]), X
is simply connected. Note that d = 2n = 2e + 2, and n ≥ 3 since e ≥ 2. By the
classification results by Ionescu (see tables in Introductions of [Io1] and [Io3]), case
f) of Theorem I in [Io2] does not occur in our case. Thus, by [Io2, Theorem I], X is
a Fano variety, a scroll, a linear fibration over a rational surface, or a hyperquadric
fibration because X is simply connected and −KX is non-trivial. Recall that we
already exclude scrolls. First, we show that X cannot have a hyperquadric fibration.
Suppose that X has a hyperquadric fibration. Let F be a hyperquadric fiber of X,
and let HF := H|F . Then, we have (cf., [IT1, p.217])

4n = 2nHn−1
F = cn−1(NX|P2n−1 |F ) = cn−1(NF |P2n−1) = 2(2n− 1),

which is a contradiction. Now, we show that if X has a linear fibration over a
rational surface B, then it is a weak Fano variety. Since X ⊂ Pr is linearly normal

and d = 2n, by [IT1, Proposition 4], B ' P2 and d = n(n+1)
2 . Thus, n = 3. The only

possible X is a Bordiga threefold by the classification (see tables in Introduction of
[Io1]). In Example 5.9, we will give a detailed description of the Bordiga threefold.
Note that X is neither a scroll (over a curve) nor a Roth variety, and hence, −KX

is semiample. By Riemann-Roch Formula, we obtain (−KX)3 = 6. Thus, X is a
weak Fano variety. In particular, we have shown the following.

Lemma 3.5. Let X ⊂ P2n−1 be an n-dimensional non-degenerate smooth projective
variety of degree 2n. Then, it does not admit hyperquadric fibration, and if it has
a linear fibration over a surface, then it is the Bordiga threefold.

Now, we consider the last case e ≥ n (d = r + 1 = n + e + 1) and X is not a
scroll. Let C be a curve section (C ⊂ Pe+1), and let g be the sectional genus, i.e.,
the genus of C. Denote HC := H|C . The following bound of the sectional genus
plays a crucial role (cf. Lemma 4 of [Io4]).

Lemma 3.6. If e ≥ n and r + 1 ≥ d, then n ≥ g and d ≥ 2g + 1.

Proof. If HC is special, then by Clifford Inequality, we have

e+ 2 ≤ h0(OC(HC)) ≤ d

2
+ 1 ≤ n+ e+ 1

2
+ 1.

Then, we get 2e+ 4 ≤ n+ e+ 1 + 2, and hence, e ≤ n− 1, which is a contradiction.
Thus, HC is non-special. By Riemann-Roch Formula, we have

e+ 2 ≤ h0(OC(HC)) = d+ 1− g ≤ (n+ e+ 1) + 1− g.
Then, we get g ≤ n and g + e + 1 ≤ d. Since g ≤ n ≤ e, we obtain 2g + 1 ≤
g + e+ 1 ≤ d. �

Remark 3.7. We obtain the same inequality n ≥ g by applying Castelnuovo’s Bound
on sectional genus.

If g = 0, then by Fujita’s classification (see e.g., [Io4, Theorem A]), X is a Fano
variety or a rational scroll. Thus, we may assume that g ≥ 1. Then, we can prove
the following.

Lemma 3.8. If n ≥ g ≥ 1 and d ≥ 2g+1, then d+ n
n−1{(n−1)d−2g+2}−nd > 0.

Proof. Since 3n > 2g + 1, we have

(2g + 1)(n− 1) = 2gn+ n− 2g − 1 > 2gn− 2n = (2g − 2)n.
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Thus, n− 1 > 2g−2
2g+1n, and hence, there exists a rational number ε > 0 such that

2g − 2

2g + 1
n+ ε = n− 1.

Note that

n− 1

n
+

(n− 1)d− 2g + 2

d
=

2g − 2

2g + 1
+
ε

n
+ (n− 1) +

−2g + 2

d
.

Since d ≥ 2g + 1, we get 2g−2
2g+1 ≥

2g−2
d . Then, we have

n− 1

n
+

(n− 1)d− 2g + 2

d
= (n− 1) +

2g − 2

2g + 1
+
−2g + 2

d
+
ε

n
> n− 1.

By multiplying nd
n−1 , we obtain d+ n

n−1{(n− 1)d− 2g + 2} > nd. �

Let D := H and E := 1
n−1KX +H = 1

n−1{KX + (n− 1)H}. By [Io1, Theorem

1.4], if KX + (n− 1)H is not base point free, then X is a Fano variety or a scroll.
Thus, we may assume that KX +(n−1)H is base point free (thus, nef), and hence,
E is a nef Q-divisor. Note that

2g − 2 = {KX + (n− 1)H}.Hn−1 = KX .H
n−1 + (n− 1)d,

and hence, we get
KX .H

n−1 = −(n− 1)d+ 2g − 2.

Now, we have

(D−nE).Dn−1 =

(
H − n

n− 1
KX − nH

)
.Hn−1 = d+

n

n− 1
{(n−1)d−2g+2}−nd.

By Lemma 3.8, we obtain Dn > nE.Dn−1. Thus, the divisor

D − E = H −
(

1

n− 1
KX +H

)
= − 1

n− 1
KX

is big by [L1, Theorem 2.2.15]. We complete the proof of Theorem C.

4. Cox rings

First, we recall the definition of Cox ring. Let X be a regular smooth projective
variety (i.e., h1(OX) = 0). Then, Pic(X) is finitely generated so that we can choose
generators L1, . . . , Lm of Pic(X). The Cox ring of X with respect to L1, . . . , Lm is
defined by

Cox(X) :=
⊕

(a1,...,am)∈Zm

H0(L⊗a1
1 ⊗ · · · ⊗ L⊗amm ).

Note that the finite generation of Cox(X) is independent of the choice of generators
of Pic(X) (see [HK, Remark in p.341]), and Cox(X) is finitely generated if and only
if X is a Mori dream space ([HK, Proposition 2.9]). Typical examples of Mori dream
spaces are toric varieties and regular varieties with Picard number one. For further
detail on Cox rings and Mori dream spaces, we refer to [HK].

Example 4.1. Let X ⊂ Pr be a smooth hypersurface. By Lefschetz Theorem
for Picard Group ([L1, Example 3.1.25]), if r ≥ 4, then X has finitely generated
Cox ring. If r = 2, then X has finitely generated Cox ring if and only if X is a
rational curve. When r = 3, determining finite generation of Cox ring is a delicate
problem even in the case of quartic surfaces. Although very general smooth quartic
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surfaces have finitely generated Cox rings, there is a smooth quartic surface whose
automorphism group is infinite (see e.g., [Og, Theorem 1.2]) so that its Cox ring is
not finitely generated by [AHL, Theorems 2.7 and 2.11].

Now, we prove Corollary D.

Proof of Corollary D. Since d ≤ r, by Theorem C, X is a Fano variety, a Roth
variety, or a rational scroll. By [BCHM, Corollary 1.3.2], the Cox ring of a Fano
variety is finitely generated. Moreover, every rational scroll is a toric variety, so the
Cox ring is a polynomial ring (see e.g., [HK, Corollary 2.10]). Thus, we only have
to consider the case that X is a Roth variety.

Every Roth variety X is supported on a very ample divisor of a rational scroll
S = PP1(E) for some globally generated vector bundle E on P1. Recall that d =
b(r − n) + 1, and b = 1 or 2 when d ≤ r. If b = 1, then X is a rational scroll, and
hence, Cox(X) is finitely generated. Assume that b = 2. If n = 2, then r = 3 by
Proposition 2.3, i.e., X is a cubic surface in P3. Since X is a Fano surface, its Cox
ring is finitely generated. The assertion for n ≥ 3 follows from Proposition 4.2. �

Proposition 4.2. The Cox ring of a Roth variety of dimension n ≥ 3 is finitely
generated.

Proof. Let X ⊂ Pr be a Roth variety of dimension n ≥ 3 and degree d = b(r−n)+1.
We only have to consider the case that b ≥ 2. Recall that X is a divisor of
a rational scroll S = S0,0,a1,...,an−1

with all ai ≥ 1, and let π1 : S → P1 be
the natural projection with a general fiber F . Recall that we have a birational
morphism π2 : S → S ⊂ Pr given by the complete linear system |H|, where
OS0,0,a1,...,an−1

(H) = OPP1 (E)(1). The singular locus of S is a line L ⊂ Pr, which is

contained inX. There are effective divisors L1 ∈ |H−a1F |, . . . , Ln−1 ∈ |H−an−1F |
(we can arrange them to be (C∗)n+1-invariant divisors by the maximal torus action
on S) such that

π−1
2 (L) = L1 ∩ · · · ∩ Ln−1 ' L× P1.

Note that L1 ∩ · · · ∩ Ln−1 ∩X = L.
By Lefschetz Theorem for Picard Group, the map Pic(S) → Pic(X) is an iso-

morphism. In particular, the Picard number of X is two. For all i, we have an
isomorphism

H0(OS(H − aiF ))→ H0(OX(HX − aiFX)),

where FX = F |X is the restriction, from the exact sequence

0→ OS(−bH − F )→ OS → OX → 0.

Let D1 := L1|X , . . . , Dn−1 := Ln−1|X . We denote by Dout := −KX+(d−n−2)HX

the double point divisor from outer projection, where HX = H|X is the restriction.
By [Il, Proposition 3.8], Dout.L = 0. Since Dout is base point free, we can choose
an effective divisor Dn ∈ |Dout| such that Dn ∩ L = ∅. Thus, we obtain

D1 ∩ · · · ∩Dn−1 ∩Dn = (L1 ∩ · · · ∩ Ln−1 ∩X) ∩Dn = L ∩Dn = ∅.

On the other hand, let D′1 := F1|X , D′2 := F2|X , where F1 and F2 are distinct
fibers of π1. Then, we have D′1 ∩ D′2 = ∅. Divisor classes of D1, . . . , Dn−1 are in
outside of the nef cone of X, and the divisor class of Dn is a ray generator of the
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nef cone of X. The other ray generator of the nef cone of X is the divisor class of
FX which is also a ray generator of the effective cone of X. Thus, we have

Cone(D1, · · · , Dn) ∩ Cone(D′1, D
′
2) = {0}

By [It, Theorem 1.3], Cox(X) is finitely generated. �

Remark 4.3. We first show that a Roth surface X ⊂ Pr with deg(X) = r + 1
and b = 2 has a finitely generated Cox ring. By Proposition 2.3, r = 4, and by
Corollary 2.6, X is a rational surface. We have −KX = HX − FX , where HX is
the hyperplane section and FX is a general hyperquadric fiber. Thus, (−KX)2 = 1.
By Riemann-Roch Theorem, −KX is big, and hence, the Cox ring of X is finitely
generated by [TVAV, Theorem 1]. However, we do not know whether Cox rings of
all Roth surfaces are finitely generated.

5. Adjunction mappings

In this section, we study adjunction mappings of weak Fano varieties of small
degree, and then, we prove Theorem E. The end product of the minimal model
program (see [KM] for basics and [BCHM] for recent progress) should be either
a Mori fiber space or a minimal model. Recall Theorem C: if X ⊂ Pr is an n-
dimensional smooth projective variety of degree d ≤ r + 1, then it is (a) a weak
Fano variety, (b) a Roth variety or a rational scroll, (c) a Calabi-Yau hypersurface,
or (d) an elliptic scroll or an elliptic curve. Note that smooth elliptic curves and
Calabi-Yau hypersurfaces are minimal models. It is natural to study a contraction
appeared in the minimal model program for the other cases in Theorem C. The
fibration of a scroll can be regarded as a contraction of a KX -negative extremal
ray, and hence, every scroll is a Mori fiber space. Similarly, the adjunction mapping
(if it is defined) also gives a KX -negative contraction of Roth varieties and weak
Fano varieties. It turns out that the base space and the fibers of the adjunction
mapping are very simple in our case. More precisely, we will prove that the base
space is P1, P2 or P1×P1, and the fiber is either a hyperquadric or a linear subspace.

5.1. Basics of adjunction mappings. We recall basic notions in adjunction the-
ory (for further detail, see [BS]). Throughout the section, we denote by H a general
hyperplane section of X ⊂ Pr. By [Io1, Theorem 1.4], if KX + (n− 1)H is not base
point free, then X is a prime Fano variety or a scroll (over a curve) when n ≥ 3. In
the case n = 2, we should add a Veronese surface v2(P2) in P5 or P4 and a quadric
hypersurface Q2 ∈ P3. Now, assume that KX + (n− 1)H is base point free. Then,
we can define a surjective morphism ϕ : X → B given by |KX + (n − 1)H|, which
is called an adjunction mapping.

Proposition 5.1 (Proposition 1.11 of [Io1]). Let X ⊂ Pr be a smooth projective
variety of dimension n. Assume that KX + (n− 1)H is base point free so that we
have the adjunction mapping ϕ : X → B. Then, one of the following holds:

(1) dimB = 0, or equivalently, −KX = (n− 1)H.
(2) n ≥ 2 and ϕ gives a hyperquadric fibration over a smooth curve B.
(3) n ≥ 3 and ϕ gives a linear fibration over a smooth surface B.
(4) dimB = n.

For reader’s convenience, we give the complete list of del Pezzo varieties (i.e.,
−KX = (n − 1)H), which was classified by Fujita ([F1] and [F2]; see also [Io4,
Theorem B] and [IP, Section 12.1]).
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Theorem 5.2 (Fujita). Let X ( Pr be a non-degenerate linearly normal smooth
del Pezzo variety of dimension n ≥ 2 and degree d. Then, d = r − n+ 2 and X is
one of the following:

(1) a cubic hypersurface of dimension n ≥ 3;
(2) a complete intersection of type (2, 2);
(3) the Plücker embedding of the Grassmannian Gr(2, 5) or its linear section;
(4) the Veronese threefold v2(P3);
(5) a del Pezzo surface embedded by the anticanonical divisor −KX ;
(6) the Segre embedding of P2 × P2 or its hyperplane section;
(7) the Segre embedding of P1 × P1 × P1;
(8) PP2(OP2(1)⊕OP2(2)) embedded by the tautological line bundle.

A del Pezzo surface whose anticanonical divisor is very ample is either P1 × P1

or the blow-up of P2 at r points in general position for r ≤ 6.

Remark 5.3. In the above list, varieties from (1)∼(3) are prime Fano, and varieties
from (5)∼(8) have the Picard number ρ ≥ 2 except for the third Veronese surface
v3(P2) ⊂ P9 from (5).

5.2. Proof of Theorem E. To prove Theorem E, we need two lemmas which
concern resp. hyperquadric fibrations and linear fibrations (cf. resp. Lemma 7 and
Proposition 5 of [Io4]).

Lemma 5.4. Let X ⊂ Pr be a non-degenerate smooth projective variety of degree
d ≤ r+ 1. Assume that the adjunction mapping ϕ : X → C induces a hyperquadric
fibration over a curve C. Then, C ' P1.

Proof. Note that X is not an elliptic scroll. By Theorem C, we have q = h1(OX) =
0, which coincides with the genus of C by [Io4, Lemma 6]. �

Lemma 5.4 also follows from [FG, Corollary 3.3].

Lemma 5.5. Let X ⊂ Pr be a non-degenerate smooth projective variety of degree
d ≤ r+1. Assume that the adjunction mapping ϕ : X → S induces a linear fibration
over a surface S. Then, S ' P2 or P1 × P1.

Proof. We will closely follow [Io4, Proof of Proposition 5]. Note that the case d ≤ r
is treated in [Io4, Proposition 5]. We may assume that d = r+ 1. By Barth-Larsen
Theorem ([L1, Corollary 3.2.3]), we can further assume that e ≥ n − 1. For the
case e = n− 1, we already verified the assertion in Lemma 3.5. Thus, assume that
e ≥ n. Since X is not an elliptic scroll, we have q = h1(OX) = 0.

Let S′ = X ∩H1 ∩ · · · ∩Hn−2 be a smooth surface, where each Hi is a generic
hyperplane section. By the adjunction formula and Lemma 3.6, we have

2g − 2 = H2
S′ +HS′ .KS′ = d+HS′ .KS′ ≥ 2g + 1 +HS′ .KS′ ,

and hence, HS′ .KS′ < 0. In particular, h0(OS′(KS′)) = h2(OS′) = 0. Now, observe
that n ≥ 3. We have the following exact sequence

0→ OX(KX + (n− 2)H)→ OX(KX + (n− 1)H)→ OH(KH + (n− 2)HH)→ 0.

Since KX + (n − 1)H is not big, h0(OX(KX + (n − 2)H)) = 0. Furthermore, by
Kodaira Vanishing, h1(OX(KX + (n − 2)H)) = 0. Let g be the sectional genus of
X ⊂ Pr. Then, we have

h0(OX(KX +(n−1)H)) = h0(OH(KH +(n−2)HH)) = · · · = h0(OS′(KS′+HS′)),
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and by [Io1, Lemma 1.1], h0(OS′(KS′+HS′)) = g. Thus, we get ϕ : X → S ⊂ Pg−1.
Let HS be a generic hyperplane section of S ⊂ Pg−1, and let Y := ϕ−1(HS). Note
that Y is a scroll of dimension n−1 and degree dY = (KX+(n−1)H).Hn−1 = 2g−2
over the curve HS . Let m be the dimension of the smallest linear subspace of Pr
containing Y , i.e., Y ⊂ Pm is non-degenerate. By Lemma 1.5, m ≥ 2(n− 1)− 1 =
2n − 3. By Lemma 3.6, m ≥ 2n − 3 ≥ 2g − 3 = dY − 1. Thus, by Theorem 1.1,
the genus g′ of HY is 0 or 1. Suppose that g′ = 1. By Lemma 1.5, we must have
m ≥ 2(n−1). It follows that m ≥ 2n−2 ≥ 2g−2 = dY , which is a contradiction to
Theorem 1.1. Thus, g′ = 0. By Fujita’s classification ([Io4, Theorem A]), S ' P2

(in this case, we have g = ∆(X,H) = 3 or g = 6) or S is a scroll over P1, i.e.,
Hirzebruch surface.

It suffices to show that if S is a Hirzebruch surface, then S ' P1 × P1. Suppose
that S ' Fa := PP1(OP1⊕OP1(−a)) be a Hirzebruch surface for some integer a ≥ 0.
Then, HS = C + bF , where C is a section with C2 = −a and F is a general fiber
of the projection Fa → P1, such that b > a. Let Y0 := ϕ−1(C) and Y1 := ϕ−1(F )
be (n− 1)-dimensional rational scrolls. For each i, let mi be the dimension of the
smallest linear subspace of Pr containing Yi, and let di be the degree of Yi ⊂ Pmi .
Then, by Lemma 1.5, mi ≥ 2(n−1)−1 = 2n−3. Thus, di ≥ mi−(n−1)+1 ≥ n−1.
It follows that

2g − 2 = dY = d0 + bd1 ≥ d0 + d1 ≥ 2(n− 1),

and hence, we get g ≥ n. By Lemma 3.6, we obtain g = n. Thus, we must have
b = 1, and hence, a = 0, i.e., S = P1 × P1. In this case, we have n = g =
h0(OS(HS)) = 4. (By the same argument, we can show that if S ' P2 and g = 6,
then n = 6.) �

Now, we consider the following special case.

Lemma 5.6. Let X ⊂ P2n−1 be a non-degenerate smooth projective variety of
dimension n ≥ 3 and degree d ≤ 2n, and let H be a general hyperplane section. If
−KX = (n− 2)H, then X is a prime Fano variety.

Proof. By Ionescu’s classification (see tables in Introductions of [Io1] and [Io3]), X
is a complete intersection provided that n ≤ 4. Thus, assume n ≥ 5. We claim that
the Picard number ρ(X) of X is 1. By [W1, Theorem A], if n ≥ 7, then ρ(X) = 1.
Consider the case n = 6. By [W2, Theorem B], either ρ(X) = 1 or X ' P3 × P3.
However, P3 × P3 cannot have an embedding in P11 with degree d ≤ 12 so that
ρ(X) = 1 for n = 6. Suppose that n = 5. A general hyperplane section Y of X is a
Fano fourfold with −KY = 2HY and H4

Y = 10. Clearly, a general member of |HY |
is irreducible and smooth. Thanks to Wísniewski’s classification ([W2]; see also
[IP, Secion 12.7]), we see that there is no such Fano fourfold with Picard number
ρ(Y ) ≥ 2. By Lefschetz Theorem for Picard Group, we obtain ρ(X) = ρ(Y ) = 1.
We have shown the claim.

Since the Picard group of a Fano variety is torsion-free ([IP, Proposition 2.1.2]),
Pic(X) is generated by an ample divisor L. Let H = mL for some integer m ≥ 1.
Then, we have d = Hn = mnLn ≤ 2n. Since n ≥ 5, we must have m = 1. Thus, X
is prime Fano. �

We are ready to prove Theorem E.
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Proof of Theorem E. Let e = r−n be the codimension. We divide into three cases.
Firstly, assume that e ≤ n − 2. By Barth-Larsen Theorem ([L1, Corollary 3.2.3]),
X is a prime Fano variety. Secondly, assume that e = n− 1 (then, d ≤ 2e+ 2). By
Ionescu’s classification (see tables in Introductions of [Io1] and [Io3]), we can easily
verify the assertion for n ≤ 4. For n ≥ 5, by [Io2, Theorem I], the assertion follows
from Lemmas 5.4, 5.5, and 5.6. Finally, suppose that e ≥ n (then, d ≤ 2e+ 1). We
denote by g the sectional genus. By Lemma 3.6, g ≤ n. If g ≤ 1, then the assertion
follows from Fujita’s classification (see [Io1, Proposition 2.4] and [Io4, Theorems A
and B]). If g = 2, then X has a hyperquadric fibration over P1 by [Io1, Corollary
3.3] for n ≥ 3 and Castelnuovo’s Theorem (see e.g., [Io1, Proposition 3.1]) for n = 2.
If g = 3 (resp. g = 4), then the assertion follows from [Io1, Theorem 4.2] (resp.
[BS, Theorem 11.6.3] together with Lemmas 5.4 and 5.5). It remains the case
5 ≤ g ≤ n. If KX + (n− 1)H is not base point free, then X is a prime Fano variety
by [Io1, Theorem 1.4]. Now, suppose that we can define the adjunction mapping
ϕ : X → B. By [Io2, Theorem I], we only have to consider the cases dimB = 1 or
2, and then, the remaining part is an immediate consequence of Lemmas 5.4 and
5.5. �

Remark 5.7. We can analyze in detail the cases (d) and (e) in Theorem E. If X is
from (d), then it is a divisor of a rational scroll ([Io4, Lemma 6]). If X is from (e)
and the base is P2, then g = ∆(X,H) = 3 (e.g., Bordiga threefold in Example 5.9)
or n = g = 6 (e.g., Segre embedding of P2 × P4). If X is from (e) and the base is
P1 × P1, then n = g = ∆(X,H) = 4, and by [LN, Theorem 6.3], there is only one
case (see Example 5.10).

5.3. Examples. We give examples of weak Fano varieties having fibrations coming
from adjunction mappings.

Example 5.8. (1) Let F2 := PP1(OP1⊕OP1(−2)) be a Hirzebruch surface with the
fibration f : F2 → P1. Then, F2 is not a Fano surface but a weak Fano surface. For
the embedding X := ϕ|H|(F2) ⊂ P11 given by a very ample divisor H := 2C + 5F ,

where F is a fiber of f and C is a section of f with C2 = −2, we have H2 = 12,
i.e., deg(X) = 12. Note that KX +H ∼ F and F.H = 2, and hence, the adjunction
mapping ϕ|KX+H| gives a hyperquadric fibration over P1.

(2) Let π : F̃2 → F2 be the blow-up at a point not in C, and let E be the exceptional

divisor. Then, F̃2 is also not a Fano surface but a weak Fano surface. Furthermore,

the very ample divisor H ′ := π∗(H)−E gives an embedding X ′ := ϕ|H′|(F̃2) ⊂ P10

with deg(X ′) = 11. Note that KX′ + H ′ ∼ π∗F and π∗F.H ′ = 2, and hence,
the adjunction mapping ϕ|KX′+H

′| gives a hyperquadric fibration over P1 with a
singular fiber.

Example 5.9. There exists a stable vector bundle E of rank 2 on P2 such that it
is given by an extension

0→ OP2 → E → IY (4)→ 0,

where Y is a closed subscheme of P2 consisting of 10 distinct points, c1(E) =
4, c2(E) = 10, and E|L ' OL(2)⊕OL(2) when L is a generic line (see [Io1, Propo-
sition 7.5] and [Ot]). Then, for X := PP2(E) ⊂ P5, we have deg(X) = 6, and the
adjunction mapping induces a linear fibration over P2. This X is called the Bordiga
threefold. Now, we show that X is a weak Fano variety but not a Fano variety. Re-
call that X is a weak Fano variety with (−KX)3 = 6. By the classification of Mori
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and Mukai ([MM]; see also [IP, Section 12.3]), there is no rational Fano threefold
with (−K)3 = 6, and hence, X is not a Fano variety.

More examples having fibrations over P1 or P2 can be found in [Io4].

Example 5.10. Let Q := P1 × P1 and E := OQ(1, 1)⊕3. Consider the embed-
ding X := PQ(E) ⊂ P11 given by the complete linear system |OPQ(E)(1)|. Then,
deg(X) = 12. Moreover, X is a Fano variety, and the adjunction mapping induces
a linear fibration over a quadric hypersurface in P3.

5.4. Prime Fano varieties of small degree. Finally, we further investigate the
prime Fano case in Theorem E. Let X ⊂ Pr be a non-degenerate prime Fano variety
of dimension n, codimension e, and degree d ≤ r + 1. If e ≤ n−1

2 , then Hartshorne
conjectured that X must be a complete intersection ([Ht]). If e ≥ n, then by [Io2,
Theorem I], X is a del Pezzo variety. It only remains the case e + 1 ≤ n ≤ 2e.
We may write −KX = `H for some integer ` > 0, where H is the ample generator
of Pic(X). If ` ≥ n − 1, then (X,OX(H)) ' (Pn,OPn(1)), X is a hyperquadric in
Pn+1, or X is a del Pezzo variety (see e.g., [IP, Corollary 2.1.14]). Thus, we may
assume that ` ≤ n− 2.

Proposition 5.11. Let X ⊂ Pr be a non-degenerate prime Fano variety of dimen-
sion n, codimension e, and degree d with −KX = `H. If e+ 1 ≤ n ≤ 2e, d ≤ r+ 1,
and ` ≤ n− 2, then ` = n− 2.

Proof. By [Io4, Theorem A, Theorem B, and Proposition 10], we only have to
consider the case d = r + 1. By the adjunction formula, we have

(5.1) 2g − 2 = (n− `− 1)d,

where g is the sectional genus of X. Recall Castelnuovo’s Bound:

(5.2) g ≤ m(m− 1)

2
e+mε,

where m = bd−1
e c and ε = d − me − 1. Suppose that n = 2e (d = 3e + 1).

Then, m = 3 and ε = 0, and hence, by (5.2), we get g ≤ 3e. By (5.1), we have
(n − ` − 1)(3e + 1) ≤ 6e − 2, so we obtain n − ` − 1 ≤ 1, i.e., ` ≥ n − 2. Now,
suppose that n ≤ 2e − 1 (d = n + e + 1). Then, m = 2 and ε = n − e, and hence,
by (5.2), we get g ≤ 2n− e. By (5.1), we have (n− `− 1)(n+ e+ 1) ≤ 4n− 2e− 2.
If n− `− 1 ≥ 2, then 2e+ 2 ≤ n, which is a contradiction. Thus, ` ≥ n− 2. �

For reader’s convenience, we give the complete list of Mukai varieties (i.e., Fano
varieties with −KX = (n−2)H and Pic(X) = Z[H]), which are completely classified
by Mukai ([M]; see also [IP, Theorem 5.2.3]), of degree d ≤ r + 1.

Theorem 5.12 (Mukai). Let X ⊂ Pr be a non-degenerate Mukai variety of dimen-
sion n and degree d. If d ≤ r + 1, then X satisfies one of the following:

(1) a complete intersection of type (2, 3) and n ≥ 3 or of type (2, 2, 2) and n ≥ 4;
(2) n = 5, 6, d = 10, and the intersection C ∩ Q ⊂ P10, where C ⊂ P10 is the

cone over the Plücker embedding of the Grassmannian Gr(2, 5) ⊂ P9 and
Q ⊂ P10 is a quadric hypersurface, or its hyperplane section;

(3) 6 ≤ n ≤ 10, d = 12, and the spinor variety X ⊂ P15 or its linear sections;
(4) n = 7, 8, d = 14, and the Plücker embedding of the Grassmannian Gr(2, 6) ⊂

P14 or its hyperplane section.
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6. Smooth projective varieties of degree at most r + 2

In this section, we prove the following theorem, which immediately implies The-
orem B.

Theorem 6.1. Let X ⊂ Pr be an n-dimensional non-degenerate smooth projective
variety of degree d ≤ r + 2. Then, one of the following holds:

(1) X is rationally connected. (If e ≥ n+ 1 ≥ 4, then −KX is big.)
(2) X is a Roth variety or a rational scroll.
(3) r = n+ 1 or r = 4, n = 2 and X is a Calabi-Yau variety.
(4) r = n+ 1, d = r + 2 and X is a hypersurface of general type.
(5) X is a curve of genus g ≤ 2 or an elliptic scroll.

In particular, X is simply connected if and only if it is from (1), (2), (3), or (4)
and it is not a plane quintic curve, and X is rationally connected if and only if it
is from (1) or (2).

Proof. By Theorem C, we may assume that X is linearly normal and d = r + 2.
If X is a curve of genus g or a scroll over a curve of genus g, then by the same
arguments in Section 1, we get g ≤ 2. Since the equality of (1.1) does not hold
when g = 2 ([IT2]), the assertion follows. Let e := r − n be the codimension of
X ⊂ Pr, and let H be a general hyperplane section. If e = 1, then there is nothing
to prove. Now, assume that e ≥ 2 and X is neither a scroll nor a Roth variety.
By Theorem 3.4, Dinn = −KX + H is semiample. If e ≤ n − 2, then by Barth-
Larsen Theorem, X must be a Fano variety or a Calabi-Yau variety. If n = e = 2
(d = 6), then we can verify the assertion by the classification result (see [Io1, table
in Introduction]). We note that there exists a K3 surface S ⊂ P4 of degree 6.
Assume that e ≥ n − 1. Since d = n + e + 2 ≤ en + 1 unless e = n = 2, it follows
that X is uniruled by Theorem G. Moreover, if n ≥ 3 and e ≤ n − 2, then X is
uniruled, and hence, it cannot be Calabi-Yau. In particular, every variety from (3)
is simply connected. Moreover, by Lefschetz Hyperplane Theorem ([L1, Theorem
3.1.21]) and Proposition 2.2, varieties from (2) or (4) are also simply connected.
Moreover, by Proposition 2.4, Roth varieties X ⊂ Pr of degree d ≤ r + 2 are
rationally connected.

Now, suppose that X is not from (2), (3), (4), or (5). We prove that X is
rationally connected, and hence, it is simply connected. If e ≤ n − 2, then we
already shown that X is Fano, and hence, it is rationally connected. If e = n− 1,
then X is simply connected by Barth-Larsen Theorem ([L1, Corollary 3.2.2]). In
this case, d = 2n + 1, and ∆(X,H) = n + 1. The case n = 3 can be directly
checked by the classification result (see [Io1, table in Introduction]). If n ≥ 4,
then d > 3

2∆(X,H) + 1. By [Fu, Corollary 4.5], we only have to show that if
X has a hyperquadric fibration over a curve C or it has a linear fibration over a
surface S with h0(OS(KS)) = 0, then X is rationally connected. In the first case,
C is rational by [Io4, Lemma 6]. In the second case, S is also rational by [IT1,
Proposition 4]. Thus, in both cases, X is rational.

We assume that e ≥ n. First, we show that h1(OX) = 0. We claim that−KX+H
is big except when a general surface section of X is a K3 surface, which is simply
connected. In the exceptional case, X is simply connected by Lefschetz Hyperplane
Theorem. Let g be the sectional genus of X ⊂ Pr. By Castelnuovo’s Bound for
sectional genus, we have g ≤ n+2 for n = e, and g ≤ n+1 for n ≤ e−1. In the first
case, we have d = 2e+ 2. If g = e+ 2, then the curve section of X is a Castelnuovo



GEOMETRIC PROPERTIES OF PROJECTIVE MANIFOLDS OF SMALL DEGREE 19

curve, and hence, by [Hr, p.67] or [Il, Proposition 3.13], the surface section of X is
also a Castelnuovo surface (see Definition 7.1). By Lemma 7.2, this surface is K3.
Thus, we can assume that g ≤ n+ 1 so that 2g − 2 ≤ 2n < n+ e+ 2 = d. On the
other hand, let D := nH and E := KX + (n− 1)H. By [Io1, Theorem 1.4], we may
assume that E is nef. We have

nE.Dn−1 = nn(KX + (n− 1)H).Hn−1 = nn(2g − 2) < nnd = Dn.

By [L1, Theorem 2.2.15], D − E = −KX +H is big.
We proceed the induction on n to show that h1(OX) = 0 provided that X is

not a scroll over a curve. The case n = 2 can be done by case-by-case analysis
as follows. We already showed the assertion when n = e = 2. When e ≥ 3, we
have g ≤ 3. Then, the assertion follows from [Io4, Theorem A] for g = 0, [Io1,
Proposition 2.6] for g = 1, [Io1, Proposition 3.1] for g = 2, and [Io1, Theorem 4.1]
for g = 3. Suppose that n ≥ 3. By Bertini Theorem, H ⊂ Pr−1 is a non-degenerate
smooth projective variety of degree d = (r − 1) + 3. Note that H should not be a
scroll over a curve. We have the exact sequence

(6.1) 0→ OX(−H)→ OX → OH → 0.

Note that −KX + H is nef and big and H = KX + (−KX + H), and hence, by
Kawamata-Viehweg Vanishing, h1(OX(H)) = 0. From (6.1) with twisting OX(H),
h1(OX) = 0 if and only if the natural map H0(OX(1))→ H0(OH(1)) is surjective.
Suppose that H0(OX(1))→ H0(OH(1)) is not surjective. Since X ⊂ Pr is linearly
normal, H ⊂ Pr−1 must not be linearly normal. Then, H ⊂ Pr−1 can be obtained
by an isomorphic projection from H ⊂ Pr with degree of H is r + 2. By induction
hypothesis, H is regular. By Kodaira Vanishing, h1(OX(−H)) = h2(OX(−H)) =
0. Thus, from (6.1), we have h1(OX) = h1(OH) = 0.

We still assume that X is not from (2), (3), (4), or (5), and e ≥ n. Then, we
have d = n+ e+ 2 ≤ 2e+ 2. By [Io2, Theorem I], we only have to consider the case
that the adjunction mappings of X induce hyperquadric fibration over a curve C
or linear fibrations over a ruled surface S. In the first case, by [Io4, Lemma 6], C
is a rational curve. In the second case, h1(OX) = h1(OS) = 0, and hence, S is a
rational surface. Thus, in both cases, X is rational.

It remains to show that −KX is big when e ≥ n + 1 ≥ 4. Recall that g is the
sectional genus of X. We proved that n+ 1 ≥ g, which implies that d ≥ 2g+ 1. As
in Lemma 3.8, it follows that d+ n

n−1{(n−1)d−2g+2}−nd > 0, and hence, we can

conclude that −KX is big by [L1, Theorem 2.2.15] except when n = 3, e = 4 and
g = 4 (d = 9). By the classification of degree nine varieties (see [FL, Proposition
3.1]), we can easily check that −KX is also big for the exceptional case. �

By the same arguments in Section 5, we can prove the analogous statement to
Theorem E. We leave it to the interested reader.

Theorem 6.2. Let X ⊂ Pr be an n-dimensional non-degenerate smooth projective
variety of degree d = r+ 2, and let H be a general hyperplane section. Assume that
n ≥ 5 and X is from the case (1) in Theorem 6.1. Then, one of the following holds:

(1) X is prime Fano, i.e., −KX = `H for some ` > 0 and Pic(X) = Z[H].
(2) |KX + (n− 1)H| induces a hyperquadric fibration over P1.
(3) |KX + (n− 1)H| induces a linear fibration over a smooth del Pezzo surface.

In particular, if X is not a prime Fano, then it is a rational variety.
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Finally, we give examples of varieties from (1) in Theorem 6.1. There are some
exceptional cases for n = 2, 4 and 5, which can be completely classified.

Example 6.3. (1) Let π : S → P2 be the blow-up at 9 points in general position,
and let E1, . . . , E9 be the exceptional divisors. Then, the very ample divisor H :=
π∗(4L)−E1 − · · · −E9 gives an embedding S ⊂ P5 with deg(S) = 7. where L is a
line in P2. Note that −KS is not big. Moreover, the Cox ring of S is not finitely
generated because there are infinitely many (−1)-curves.

(2) Let X ⊂ P5 be a Palatini threefold (see e.g., [Ot]). Then, deg(X) = 7 and X
has a linear fibration over a cubic surface in P3.

(3) There is a threefold X ⊂ P5 of degree 7 such that |KX+H| induces a hypercubic
fibration over P1 (see [Io1, table in Introduction]).

7. Smooth projective varieties of degree at most ne+ 2

In this section, we prove Theorem G. For this purpose, we need to study Castel-
nuovo varieties.

Definition 7.1 (p.44 of [Hr]). Let X ⊂ Pr be a smooth projective variety of
dimension n, codimension e, and degree d. Then, X is called a Castelnuovo variety
if d ≥ ne+ 2 and

pg(X) = h0(OX(KX)) =

(
m

n+ 1

)
e+

(
m

n

)
ε,

where m = bd−1
e c and ε = d−me− 1.

See [Hr] for more detail on (possibly singular) Castelnuovo varieties.

Lemma 7.2. Let X ⊂ Pr be a non-degenerate smooth Castelnuovo variety of di-
mension n, codimension e, and degree d. If d = ne + 2, then X is a Calabi-Yau
variety.

Proof. Note that every Castelnuovo variety is arithmetically Cohen-Macaulay (see
[Hr, p.66]), and in particular, hi(OX) = 0 for 0 < i < n. According to Harris’
classification (see [Hr, p.65]), one of the following holds: (1) X is supported on a
rational normal scroll S, (2) X is a complete intersection of type (2, n + 1) (since
d = 2(n + 1)), or (3) X is a divisor of a cone over the Veronese surface in P5.
Suppose that we are in Case (1). Recall that X ∈ | −KS | when d = ne + 2 (see
[Hr, p.56]), and thus, OX(KX) = OX by the adjunction formula, i.e., X is Calabi-
Yau. If we are in Case (2), then by the adjunction formula, X is also a Calabi-Yau
variety. Since d = 4n + 2 is not divisible by 4 (see [Hr, p.64]), Case (3) cannot
occur. �

Proof of Theorem G. In [Z, Proof of Corollary 1.6], using the Castelnuovo’s bound
on the sectional genus and the concavity theorem (see e.g., [Z, Theorem 1.1] or [L1,
Example 1.6.4]), Zak showed that KX .H

n−1 < 0 (resp. KX .H
n−1 ≤ 0) provided

that d ≤ ne+ 1 (resp. d ≤ ne+ 2). It only remains the case Hn = d = ne+ 2 and
KX .H

n−1 = 0. Let g be the sectional genus of X ⊂ Pr. Then, we have

2g−2 = (KX+(n−1)H).Hn−1 = (n−1)Hn = (n−1)(ne+2) = 2

(
m

2

)
e+2

(
m

1

)
ε−2,

where m = n and ε = 1, and hence, the generic curve section C is a Castelnuovo
curve. By [Hr, p.67] or [Il, Proposition 3.13], X is a Castelnuovo variety, and hence,
the assertion follows from Lemma 7.2. �
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Remark 7.3. There is a non-degenerate smooth projective surface S ⊂ Pr of codi-
mension e and degree d = 2e + 3 such that S is neither Castelnuovo nor uniruled
(see [Bui, Proposition 2.1 and Corollary 3.2]).
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[W2] J. Wísniewski, Fano 4-folds of index 2 with b2 ≥ 2. A contribution to Mukai classification,

Bull. Polish Acad. Sci. Math. 38 (1990), 173-184.
[Z] F. L. Zak, Castelnuovo bounds for higher-dimensional varieties, Compos. Math. 148 (2012),

1085-1132.

Department of Mathematical Sciences, KAIST, Daejeon, Korea
E-mail address: sjkwak@kaist.ac.kr

E-mail address: parkjh13@kaist.ac.kr


	Introduction
	Conventions
	Acknowledgments.

	1. Scrolls
	2. Roth varieties
	3. Positivity of double point divisors and weak Fano varieties
	3.1. Double point divisors from inner projection
	3.2. Proof of Theorem C

	4. Cox rings
	5. Adjunction mappings
	5.1. Basics of adjunction mappings
	5.2. Proof of Theorem E
	5.3. Examples
	5.4. Prime Fano varieties of small degree

	6. Smooth projective varieties of degree at most r+2
	7. Smooth projective varieties of degree at most ne+2
	References

