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Abstract. We first extend the results of Chan([4]) and Baruah([2]) on the modular equa-
tions of the Ramanujan’s cubic continued fraction to all primes p by finding the affine
models of modular curves X(Γ) with Γ = Γ1(6) ∩ Γ0(3) and then derive the Kronecker’s
congruence relations for these modular equations. And, we further show that the singular
values of C(τ) generate ray class fields modulo 6 over imaginary quadratic fields and find
their class polynomials by working with 1

C(τ)
as algebraic integers.

1. Introduction

Let H be the complex upper half plane and τ ∈ H. We define the Rogers-Ramanujan
continued fraction by

r(τ) =
q

1
5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

= q
1
5

∞∏
n=1

(1− qn)(
n
5
)

where q = e2πiτ and (n
5 ) is the Legendre symbol.

In the Ramanujan’s first letter to Hardy, he showed that r(i) =
√

5+
√

5
2 −

√
5+1
2 , r(5+i

2 ) =√
5−
√

5
2 −

√
5−1
2 and r(

√
−n
2 ) can be exactly found if n is any positive rational quantity. Since

r(τ) is a modular function, the existence of radical expressions is clear by class field theory.
Strictly speaking r(τ) is a modular function for Γ(5)([10]) so that any singular value of r(τ)
at imaginary quadratic argument is contained in some ray class field. Thus the splitting field
of its minimal polynomial is abelian. In other words its Galois group is solvable and hence
any singular value of r(τ) can be written by radicals. But finding the radical expressions
explicitly is another problem which was settled down by Gee and Honsbeek who used, to
this end, the Shimura reciprocity law([10]).

Besides, one of the other important subjects is the one about modular equations. Since
the modular function field of level 5 has genus 0, there should be certain polynomials giving
the relations between r(τ) and r(nτ) for all positive integers n. These are what we call the
modular equations. Most of the followings were originally stated by Ramanujan and later
on proved by several people.
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n mathematician (year)
2 Rogers (1920)
3 Rogers (1920)
4 Andrews, Berndt, Jacobsen, Lamphere (1992)
5 Rogers, Watson, Ramanathan (1984)
7 Yi (2001)
11 Rogers (1920)

These modular equations for r(τ) satisfy certain Kronecker’s congruences in prime level.
Moreover, for an element τ of an imaginary quadratic field the singular value r(τ) is a
unit that can be expressed in terms of radicals over Q. For more details, we refer to
[8]. On the other hand, Cais and Conrad succeeded in generalizing the above results on
modular equations to all primes p by means of geometric method, namely using the theory
of arithmetic models of modular curves ([3]).

This paper is a continuation of our previous work([7]). Duke introduced in [8] the fol-
lowing continued fraction C(τ) defined by

C(τ) =
q

1
3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 + · · ·

= q
1
3

∞∏
n=1

(1− q6n−1)(1− q6n−5)
(1− q6n−3)2

,

which is now called the Ramanujan’s cubic continued fraction as a holomorphic function on
H. Like the case of Rogers-Ramanujan continued fraction there are some known results for
modular equations with v := C(τ) and u := C(nτ) on a case-by-case basis.

n mathematician (year) equation
2 Chan (1995) v2 + 2vu2 − u = 0
3 Chan (1995) 4v3u2 + 2v3u+ v3 − u+ u2 − u3 = 0
5 Baruah(2002) v6 − vu+ 5vu(v3 + u3)(1− vu) + u6

−v2u2(16v3u3 − 20v2u2 + 20vu− 5) = 0
7 Baruah(2002) v8 − vu− 56v3u3(v2 + u2) + 7vu(v3 + u3)(1− 8v3u3)

+28v2u2(v4 + u4 + u8 + v4u4(21− 64v3u3) = 0

Chan’s results can be found in [4] and Baruah’s results in [2], in which they used the
theory of combinatorics. And the latter further presented the modular equation for the
case n = 11 in the same paper which is too long to write it down so that we omit here. In
general their existence was known to Klein long ago, but in our case there does not seem
to have been a systematic construction given before for all primes p.

Unlike the arguments of Chan-Baruah and Cais-Conrad we first find in §3 the affine
models of some modular curves from the theory of algebraic functions and then extend
the above results to all primes p (Theorem 9), from which we rediscover Chan’s results
when n = 2, 3 (Theorem 8). And, we also provide a table of modular equations for n =
5, 7, 11, 13, 17 by means of our algorithm and the Maple program. We then further give an
analytic proof of the Kronecker congruence relations for these modular equations (Theorem
10).
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Since C(τ) is a Hauptmodul for Γ1(6)∩Γ0(3)(Theorem 4), we show in §4 that the singular
value of C(τ) generates the ray class field K(6) modulo 6 over an imaginary quadratic field
K(Theorem 13) by means of certain new method of Cho and Koo ([6]). Although singular
values of the Rogers-Ramanujan and Ramanujan-Göllnitz-Gordon continued fractions at
imaginary quadratic arguments are known to be units ([8] or [7]), we can hardly say that
in our case the Ramanujan’s cubic continued fraction C(τ) is a unit or even an algebraic
integer. For a counterexample, we have C(3+

√
−3

6 ) = − 1
3√4

([1]) (or C(1+i
2 ) = 1−

√
3

2 ([4])).

Hence, in the matter of estimating class polynomials we first prove that 1
C(τ) instead be-

comes an algebraic integer (Theorem 16) and then by using this fact together with the idea
of Gee([9]) we establish relevent class polynomials of K(6) whose coefficients seem to be
relatively small when compared with others’ works([5], [12] and [15]).

In §2 we provide necessary preliminaries about modular functions and Klein forms, and
give some lemmas illustrating the cusps of congruence subgroups which will be used in §3.

2. Preliminaries

Before starting out the main results we would like to state some necessary definitions and
properties from the theory of modular functions. Let Γ(1) = SL2(Z) be the full modular
group. For any integer N ≥ 1, we have congruent subgroups Γ(N), Γ1(N), Γ0(N) and

Γ0(N) of Γ(1) consisting of matrices
(
a b
c d

)
congruent modulo N to

(
1 0
0 1

)
,

(
1 ∗
0 1

)
,(

∗ ∗
0 ∗

)
and

(
∗ 0
∗ ∗

)
respectively. And, let H = {τ ∈ C| Im τ > 0} be the complex upper

half plane and H∗ = H ∪Q ∪ {∞}.
Then a congruence subgroup Γ acts on H∗ by linear fractional transformations so that

γ(τ) = (aτ + b)/(cτ + d) for γ =
(
a b
c d

)
∈ Γ, and the quotient space Γ\H∗ becomes a

compact Riemann surface with the appropriate complex structure. By definition an element
s of Q ∪ {∞} is called a cusp, and two cusps s1, s2 are equivalent under Γ if there exists
γ ∈ Γ such that γ(s1) = s2. Then the equivalence class of a cusp s or its representative
s is called a cusp of Γ by abuse of terminology. Indeed, there exist at most finitely many
inequivalent cusps of Γ. Let s be any cusp of Γ, and let ρ ∈ SL2(Z) be such that ρ(s) = ∞.
We define the width of the cusp s in Γ\H∗ by the smallest positive integer h satisfying

ρ−1

(
1 h
0 1

)
ρ ∈ {±1} ·Γ. Then the width depends only on the equivalence class of the cusp

s under Γ and is independent of the choice of ρ.
By a modular function with respect to a congruence subgroup Γ we mean a C-valued

function f(τ) of H satisfying the following three conditions.
(1) f(τ) is meromorphic on H.
(2) f(τ) is invariant under Γ, i.e., f ◦ γ = f for all γ ∈ Γ.
(3) f(τ) is meromorphic at all cusps of Γ.
The precise meaning of the last condition is as follows. For a cusp s for Γ, let h be the

width for s and ρ be an element of SL2(Z) such that ρ(s) = ∞. Since (f ◦ρ−1)(τ+h) = (f ◦

ρ−1

(
1 h
0 1

)
ρ)(ρ−1τ) = (f ◦ ρ−1)(τ), f ◦ ρ−1 has a Laurent series expansion in qh = e2πiτ/h,

namely for some integer n0, (f ◦ ρ−1)(τ) =
∑

n≥n0
anq

n
h with an0 6= 0. This integer n0 is
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called the order of f(τ) at the cusp s and denoted by ordsf(τ). If ordsf(τ) is positive
(respectively, negative), then we say that f(τ) has a zero (respectively, a pole) at s. If a
modular function f(τ) is holomorphic on H and ordsf(τ) is greater than or equal to 0 for
every cusp s, then we say that f(τ) is holomorphic on H∗. Since we may identify a modular
function with respect to Γ with a meromorphic function on the compact Riemann surface
Γ\H∗, any holomorphic modular function with respect to some congruence subgroup Γ is a
constant.

Let A0(Γ) be the field of all modular functions with respect to Γ, and A0(Γ)Q be the
subfield of A0(Γ) in which the Fourier expansion of f(τ) has rational coefficients. Then we
may identify A0(Γ) with the field C(Γ\H∗) of all meromorphic functions of the compact
Riemann surface Γ\H∗, and if f(τ) ∈ A0(Γ) is nonconstant, then the field extension degree
[A0(Γ) : C(f(τ))] is finite and is equal to the total degree of poles of f(τ). Since we will
consider the modular functions with neither zeros nor poles on H, the total degree of poles
of f(τ) is −Σs ordsf(τ) where the summation runs over all the inequivalent cusps s at
which f(τ) has poles.

Next, we illustrate some facts about the Klein forms which will be used in the expression
of C(τ). For a complete treatment, the reader may consult [14].

Let τ ∈ H and γ =
(
a b
c d

)
∈ SL2(Z). And let a = (a1 a2) ∈ R2 − Z2. Here we use the

same letter a by abuse of notation. Then the Klein form ka(τ) satisfies the followings:

(K0) k−a(τ) = −ka(τ).

(K1) ka(γ(τ)) = (cτ + d)−1kaγ(τ).

(K2) For any b = (b1 b2) ∈ Z2 we have ka+b(τ) = ε(a, b)ka(τ), where ε(a, b) = (−1)b1b2+b1+b2

eπi(b2a1−b1a2).

(K3) For a = ( r
N

s
N ) ∈ 1

N Z2 − Z2 and any γ ∈ Γ(N) with an integer N > 1, ka(γ(τ)) =
εa(γ)·(cτ+d)−1 ·ka(τ) where εa(γ) = −(−1)(

a−1
N

r+ c
N

s+1)( b
N

r+ d−1
N

s+1) · eπi(br2+(d−a)rs−cs2)/N2
.

(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1 a2) ∈ Q2 − Z2, and further let q =
e2πiτ , qz = e2πiz = e2πia2e2πia1τ . Then ka(τ) = − 1

2πi e
πia2(a1−1) · q

1
2
a1(a1−1) · (1 − qz) ·∏∞

n=1
(1−qnqz)(1−qnq−1

z )
(1−qn)2

, and ordqka(τ) = 1
2 < a1 > (< a1 > −1) where < a1 > denotes the

number such that 0 ≤ < a1 > < 1 and a1− < a1 >∈ Z.

(K5) Let f(τ) =
∏

a k
m(a)
a (τ) be a finite product of Klein forms with a = ( r

N
s
N ) ∈

1
N Z2 − Z2 for an integer N > 1, and let k = −

∑
am(a). Then f(τ) is a modular function

with respect to Γ(N) if and only if k = 0 and{ ∑
am(a)r2 ≡

∑
am(a)s2 ≡

∑
am(a)rs ≡ 0 mod N if N is odd∑

am(a)r2 ≡
∑

am(a)s2 ≡ 0 mod 2N,
∑

am(a)rs ≡ 0 mod N if N is even.

Furthermore, we need the following three lemmas for later use which can be proved by
using the standard theory of modular functions.

Let N , m be positive integers and Γ = Γ1(N)∩Γ0(mN). Note that if we let Γ\Γ(1)/Γ(1)∞
= {Γγ1Γ(1)∞, · · · ,ΓγgΓ(1)∞}, then {γ1(∞), · · · , γg(∞)} is a set of all cusps of Γ which
satisfies that γi(∞) and γj(∞) are not equivalent under Γ for any i 6= j. Let M = {(c̄, d̄) ∈
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Z/mNZ × Z/mNZ | (c̄, d̄) = 1̄, i.e., (c, d,mN) = 1}. Further, let ∆ = {±(1 +Nk) ∈
(Z/mNZ)×|k = 0, · · · ,m−1} which is a subgroup of (Z/mNZ)×. We define an equivalence
relation ∼ on M by (c1, d1) ∼ (c2, d2) if there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c2 =
s̄ · c1 and d2 = s̄ · d1 + n̄ · c1. Then ∼ is indeed an equivalence relation. And we further

define a map φ : Γ\Γ(1)/Γ(1)∞ → M/ ∼ by φ(Γ
(
a b
c d

)
Γ(1)∞) = [(c̄, d̄)]. Here we see

without difficulty that the map φ is well-defined and bijective. Thus we get the following
lemma.

Lemma 1. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We understand that
±1
0 = ∞. Then, with the notation ∆ as above, a

c and a′

c′ are equivalent under Γ1(N) ∩

Γ0(mN) if and only if there exist s̄ ∈ ∆ ⊂ (Z/mNZ)× and n ∈ Z such that
(
a′

c′

)
≡(

s̄−1a+ nc
s̄c

)
mod mN .

Proof. Let Γ = Γ1(N) ∩ Γ0(mN). We take b, d, b′, d′ ∈ Z such that
(
a b
c d

)
,
(
a′ b′

c′ d′

)
∈

Γ(1). Note that a
c and a′

c′ are equivalent under Γ ⇔ Γ
(
a b
c d

)
Γ(1)∞ = Γ

(
a′ b′

c′ d′

)
Γ(1)∞

⇔ [(c̄, d̄)] = [(c′, d′)] ⇔ there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and d′ =
s̄d̄ + n̄c̄. Since ad − bc = a′d′ − b′c′ = 1, the last statement is equivalent to the first one
of the followings. Note that (there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and
(ad− bc) · d′ = s̄ · (a′d′ − b′c′) · d̄+ n̄c̄) ⇔ (there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′

= s̄c̄ and ādd′ = s̄a′ dd′ + n̄c̄) ⇔ (there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and
ā = s̄a′ + n̄c̄) by observing (dd′, c̄) = 1̄. This completes the proof. �

For a positive divisor x of mN , let πx : (Z/mNZ)× → (Z/xZ)× be the natural homomor-
phism. Observe that πx is surjective. And for a positive divisor c of mN , let s′c,1, · · · , s′c,nc

∈ (Z/mN
c Z)× be all the distinct coset representatives of πmN

c
(∆) in (Z/mN

c Z)× where nc

= ϕ(mN
c

)

|π mN
c

(∆)| . Here, ϕ is the Euler’s ϕ-function. Then for any s′c,i with i = 1, · · · , nc we

take sc,i ∈ (Z/mNZ)× such that πmN
c

(sc,i) = s′c,i. We further let Sc = {sc,1, · · · , sc,nc ∈
(Z/mNZ)×}. For a positive divisor c of mN , let a′c,1, · · · , a′c,mc

∈ (Z/cZ)× be all the dis-

tinct coset representatives of πc(∆∩ ker(πmN
c

)) in (Z/cZ)×, where mc = ϕ(c)
|πc(∆∩ker(π mN

c
))| =

ϕ(c)
|π mN

(c, mN
c )

(∆)|/|π mN
c

(∆)| . Then for any a′c,j with j = 1, · · · ,mc we take ac,j ∈ (Z/mNZ)× such

that πc(ac,j) = a′c,j . With the notations as above, we finally let Ac = {ac,1, · · · , ac,mc ∈ Z}
be a set such that 0 < ac,1, · · · , ac,mc ≤ mN , (ac,j ,mN) = 1 and ac,j is the representative
of ac,j for every j = 1, · · · ,mc.

Lemma 2. With the notations as above, let S = {(c̄ · sc,i, ac,j) ∈ Z/mNZ× Z/mNZ |0 <
c|mN, sc,i ∈ Sc, ac,j ∈ Ac}. For a given (c̄ · sc,i, ac,j) ∈ S, we can take x, y ∈ Z such that
(x, y) = 1, x̄ = c̄ · sc,i and ȳ = ac,j because (c · sc,i, ac,j ,mN) = 1. Then for such x, y ∈ Z, y

x
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form a set of all the inequivalent cusps of Γ1(N) ∩ Γ0(mN) and the number of such cusps

is |S| =
∑

c>0
c|mN

nc ·mc =
∑

c>0
c|mN

ϕ(c)ϕ(mN
c

)

|π mN

(c, mN
c )

(∆)| .

Proof. Since there is a bijection between Γ\Γ(1)/Γ(1)∞ and M ′/∼ where M ′ = {(c̄, ā) ∈
Z/mNZ × Z/mNZ | (c̄, ā) = 1̄, i.e., (c, a,mN) = 1} and (c1, a1) ∼ (c2, a2) if there exist
s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c2 = s̄ · c1 ∈ Z/mNZ and a2 = s̄−1a1 + n̄c1 ∈ Z/mNZ,
it is enough to prove that the natural map f : S → M ′/ ∼ is a bijection. We first prove
the injectivity. Suppose that [(c̄ · sc,i, ac,j)] = [(c′ · sc′,i′ , ac′,j′)]. Then there exist s̄ ∈ ∆ and
n̄ ∈ Z/mNZ such that c′ · sc′,i′ = s̄ · c̄ · sc,i ∈ Z/mNZ and ac′,j′ = s̄−1ac,j + n̄ · c̄ · sc,i ∈
Z/mNZ. Since s̄, sc,i, sc′,i′ ∈ (Z/mNZ)× and c, c′ |mN , we obtain c = c′; hence πmN

c
(sc,i′)

= πmN
c

(s̄) · πmN
c

(sc,i) ⇒ s′c,i′ ∈ πmN
c

(∆)s′c,i ⇒ s′c,i′ = s′c,i ⇒ i′ = i ⇒ πmN
c

(s̄) = 1̄, i.e.,

s̄ ∈ ∆∩ker(πmN
c

). Thus ac,j′ = πc(s̄−1)ac,j ∈ (Z/cZ)× implies ac,j′ ∈ πc(∆∩ker(πmN
c

))ac,j ,

from which we get ac,j′ = ac,j . Now we prove the surjectivity. Let [(c′, a′)] ∈ M ′/∼. We
take c = (c′,mN). Then ( c′

c ) ∈ (Z/mN
c Z)× implies ( c′

c ) ∈ πmN
c

(∆)s′c,i = πmN
c

(∆)πmN
c

(sc,i)

for some i. Since (c′, a′) = 1̄ ∈ Z/mNZ, we get 1 = (c′, a′,mN) = (c, a′), namely a′ ∈
(Z/cZ)×, and hence a′ ∈ πc(∆ ∩ ker(πmN

c
))ac,j for some j. We further claim that there

exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄ · c · sc,i and a′ = s̄−1ac,j + n̄ · c̄ · sc,i. It
is enough to prove that there exist s̄ ∈ ∆ such that πmN

c
(s̄) = ( c′

c )πmN
c

(sc,i)−1 ∈ πmN
c

(∆)

⊂ (Z/mN
c Z)× and πc(s̄) = a′

−1
ac,j ∈ πc(∆ ∩ ker(πmN

c
)) ⊂ (Z/cZ)×, which is equivalent

to prove the following isomorphisms π mN

(c, mN
c )

(∆)/π mN

(c, mN
c )

(∆ ∩ ker(πmN
c

)) ∼= πmN
c

(∆) and

π mN

(c, mN
c )

(∆ ∩ ker(πmN
c

)) ∼= πc(∆ ∩ ker(πmN
c

)) under the natural maps. Note that the kernel

of the natural map π mN

(c, mN
c )

(∆) → πmN
c

(∆) is equal to π mN

(c, mN
c )

(∆ ∩ ker(πmN
c

)). As for the

second, let s̄ ∈ ∆ ∩ ker(πmN
c

) be such that πc(s̄) = 1̄ ∈ (Z/cZ)×. Then s ≡ 1 mod mN
c and

s ≡ 1 mod c, which implies s ≡ 1 mod mN
(c, mN

c
)
. This completes the proof. �

Note that if Γ = Γ1(N) or Γ0(m) then Lemma 1 and Lemma 2 may be reduced to concise
statements. In particular if Γ = Γ0(m), i.e., N = 1 then ∆ = (Z/mZ)×, and so Sc =
{1̄ ∈ (Z/mZ)×} for any positive divisor c of m. Since (c, ac,j) = 1 and ac,j = ac,j′ ⇔
ac,j ≡ ac,j′ mod c and ac,j ≡ ac,j′ mod m

c ⇔ ac,j ≡ ac,j′ mod (c, m
c ), we conclude by Lemma

2 that {ac,j

c ∈ Q | 0 < c |m, 0 < ac,j ≤ m, (ac,j ,m) = 1 and ac,j = ac,j′ ⇔ ac,j ≡ ac,j′ mod
(c, m

c )} is a set of all the inequivalent cusps of Γ0(m). Similarly if Γ = Γ1(N), i.e., m = 1
then ∆ = {±1} ⊂ (Z/NZ)×; hence Lemma 1 can be restated as a simpler one.

Here we observe that Lemma 2 gives us a set of all the inequivalent cusps of Γ1(N) ∩
Γ0(mN). And we can figure out the width of each cusp by the following lemma.

Lemma 3. Let a
c be a cusp of Γ = Γ1(N) ∩ Γ0(mN) with a, c ∈ Z and (a, c) = 1. We

understand ±1
0 as ∞. Then the width h of a cusp a

c in Γ\H∗ is given by

h =


m

(( c
2
)2,m)

if N = 4 and (m, 2) = 1 and (c, 4) = 2,
mN

(c,N)·(m, c2

(c,N)
)

otherwise.
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Proof. First, we consider the case where N does not divide 4. We take b, d ∈ Z such that(
a b
c d

)
∈ SL2(Z). Observe that the width of the cusp a

c in Γ\H∗ is the smallest positive

integer h such that
(

1− ach ∗
−c2h 1 + ach

)
=

(
a b
c d

) (
1 h
0 1

) (
a b
c d

)−1

∈ {±1} · (Γ1(N) ∩

Γ0(mN)). If
(

1− ach ∗
−c2h 1 + ach

)
∈ {−1} · (Γ1(N)∩Γ0(mN)), then by taking the trace we

have 2 ≡ −2 mod N , which is a contradiction. So
(

1− ach ∗
−c2h 1 + ach

)
∈ Γ1(N)∩Γ0(mN).

Thus h ∈ N
(ac,N)Z∩

mN
(c2,mN)

Z = mN

(c,N)·(m, c2

(c,N)
)
Z. For the cases N = 1, 2, 4, we can verify the

statement in a similar fashion. �

Now, we remark that arbitrary intersection Γ = Γ0(N1) ∩ Γ0(N2) ∩ Γ1(N3) ∩ Γ1(N4)
∩ Γ(N5) is in fact conjugate to the above form Γ1(N) ∩ Γ0(mN). More precisely, α−1Γα

= Γ1(N) ∩ Γ0(mN) where α =
(
lcm(N2, N4, N5) 0

0 1

)
, N = lcm(N3, N4, N5) and m =

lcm(N1, N3, N5) · lcm(N2, N4, N5)/N . Note that if we let {s1, · · · , sg} be a set of all the
inequivalent cusps of some congruence subgroup Γ′ and set Γ′ = α−1Γα for some α, then
{α(s1), · · · , α(sg)} gives us a set of all the inequivalent cusps of Γ.

3. Ramanujan’s cubic continued fraction C(τ)

In this section, by using the lemmas introduced in §2 we establish certain properties of the
Ramanujan’s cubic continued fraction C(τ). Since C(τ) has an infinite product expression,
we can show by routine calculations that it has the following finite product of Klein forms

C(τ) = ζ5
12

5∏
j=0

k(
1
6

j
6

)
k(

3
6

j
6

) (τ)

, where ζ12 = exp(2πi
12 ).

Theorem 4. Let C(τ) be the Ramanujan’s cubic continued fraction as before. Then C(τ)
is a Hauptmodul for Γ1(6) ∩ Γ0(3).

Proof. Using (K5) we can check that the level of C(τ) is 6. By (K1) and (K2) or definition

of C(τ) in §1, it is readily verified that C ◦
(

1 1
0 1

)
(τ) = C(τ + 1) = ζ3C(τ) where ζ3 =

exp(2πi
3 ); hence C(τ)3 is invariant under

(
1 1
0 1

)
. Since Γ1(6) =< Γ(6),

(
1 1
0 1

)
>, we

obtain that C(τ)3 ∈ A0(Γ1(6)). We first claim that C(C(τ)3) = A0(Γ1(6)). It follows
from Lemma 2 and 3 that there are four cusps 1, 1/2, 1/3, 1/6 ∼ ∞ of widths 6, 3, 2, 1
respectively. For a cusp 1/c of width 6/c with c|6, we get by applying (K1) and (K4) that

C3 ◦
(

1 0
c 1

)
(τ) is of the form

(some root of unity) · qr
6/c + (higher terms),
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where r = 9
c

∑5
j=0(<

1+cj
6 > (< 1+cj

6 > −1)− < 3+cj
6 > (< 3+cj

6 > −1)). An easy
calculation shows that r = 0, 0, −1, 1 according as c = 1, 2, 3, 6. Therefore C3(τ) has
only a simple pole at 1/3 and only a simple zero at ∞, which proves the claim. Let Γ′ be a
subgroup of Γ(1) such that C(C(τ)) = A0(Γ′), which is possible by the above claim. Then
[A0(Γ′) : A0(Γ1(6))] = 3, i.e., [Γ1(6) : Γ′] = 3. Note that C(τ) is invariant under the action

of
(

1 3
0 1

)
because C ◦

(
1 1
0 1

)
(τ) = ζ3C(τ). So Γ′ ⊇ < Γ(6),

(
1 3
0 1

)
> = Γ1(6) ∩ Γ0(3).

Observing that [Γ1(6) : Γ1(6) ∩ Γ0(3)] = 3 we can conclude that Γ′ = Γ1(6) ∩ Γ0(3). �

Since C(τ) has rational Fourier coefficients, the above theorem implies that Q(C(τ)) =
A0(Γ1(6)∩Γ0(3))Q. Thus the following proposition indicates the existence of an affine plane
model defined over Q, which is called in our case the modular equation.

Proposition 5. Let n be a positive integer. Then Q(C(τ), C(nτ)) = A0(Γ1(6) ∩ Γ0(3) ∩
Γ0(6n))Q.

Proof. Since C(τ) is a Hauptmodul for Γ1(6) ∩ Γ0(3), we see that for any α ∈ GL+
2 (Q),

C ◦ α = C implies α ∈ Q× · (Γ1(6) ∩ Γ0(3)). Let Γ = Γ1(6) ∩ Γ0(3) and β =
(
n 0
0 1

)
. Note

that Γ∩Γ0(6n) = Γ1(6)∩Γ0(3)∩Γ0(6n) = Γ∩ β−1Γβ, hence it is clear that C(τ), C(nτ) ∈
A0(Γ ∩ β−1Γβ)Q. Thus it is enough to show that Q(C(τ), C(nτ)) ⊂ A0(Γ ∩ β−1Γβ)Q. Let
Γ′ be the subgroup of SL2(Z) such that Q(C(τ), C(nτ)) = A0(Γ′)Q and let γ be an element
of Γ′. Since C(τ) is an Hauptmodul for Γ1(6) ∩ Γ0(3) and invariant under γ, we derive
that γ ∈ Γ. Moreover, C(nτ) is invariant under γ and C(τ) is invariant under βγβ−1, from
which we have γ ∈ Γ ∩ β−1Γβ. Therefore, this completes the proof because it means that
Γ′ ⊂ Γ ∩ β−1Γβ, namely A0(Γ′)Q ⊃ A0(Γ ∩ β−1Γβ)Q. �

In general, if we let C(f1(τ), f2(τ)) be the field of all modular functions with respect to
some congruence subgroup for which f1(τ) and f2(τ) are nonconstant, then [C(f1(τ), f2(τ)) :
C(fi(τ))] is equal to the total degree di of poles of fi(τ) for i = 1, 2. So there exists
a polynomial Φ(X,Y ) ∈ C[X,Y ] such that Φ(f1(τ), Y ) is an irreducible polynomial of
f2(τ) over C(f1(τ)) with degree d1, and similarly so is Φ(X, f2(τ)) with degree d2. Then
Proposition 5 guarantees the existence of a polynomial Φn(X,Y ) ∈ Q[X,Y ] such that
Φn(C(τ), C(nτ)) = 0 and Φn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and
as a polynomial in Y over C(X), for every positive integer n.

Let Γ′ = Γ1(6) ∩ Γ0(18n). Then Γ′ is conjugate to Γ1(6) ∩ Γ0(3) ∩ Γ0(6n), that is,(
3 0
0 1

)
Γ′

(
3 0
0 1

)−1

= Γ1(6) ∩ Γ0(3) ∩ Γ0(6n). And Q(C(3τ), C(3nτ)) = A0(Γ′)Q. Since

it is much easier to handle with Γ′ than with the group Γ1(6) ∩ Γ0(3) ∩ Γ0(6n), we will
concentrate on the modular equation of C(3τ) and C(3nτ), which gives rise to in return
the modular equation of C(τ) and C(nτ). Now that it is also easier to handle with a
Hauptmodul having a simple pole at ∞, we let f(τ) = 1

C(3τ) and Γ = Γ1(6) ∩ Γ0(18)
hereafter and consider the modular equation Fn(X,Y ) ∈ Q[X,Y ] for f(τ) and f(nτ). Since
C(τ) is a Hauptmodul for Γ1(6)∩Γ0(3), we see from the proof of Theorem 4 that C(τ) has
a simple pole only at 1/3 and a simple zero only at ∞. Thus for inequivalent cusps under
Γ, f(τ) has a simple pole only at ∞ and a simple zero only at 1

9 .

Lemma 6. Let a, c, a′, c′ ∈ Z and f(τ) = 1
C(3τ) . Then we achieve the following assertions.
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(1) f(τ) has a pole at a
c ∈ Q ∪ {∞} with (a, c) = 1 ⇔ (a, c) = 1, c ≡ 0 mod 18.

(2) f(nτ) has a pole at a′

c′ ∈ Q ∪ {∞} ⇔ there exist a, c ∈ Z such that a
c = na′

c′ , (a, c) = 1,
c ≡ 0 mod 18.

(3) f(τ) has a zero at a
c ∈ Q ∪{∞} with (a, c) = 1 ⇔ (a, c) = 1, c ≡ 9 mod 18.

(4) f(nτ) has a zero at a′

c′ ∈ Q ∪ {∞} ⇔ there exist a, c ∈ Z such that a
c = na′

c′ , (a, c) = 1,
c ≡ 9 mod 18.

Proof. Since f(τ) is a Hauptmodul for Γ with a simple pole only at∞, f(τ) has a pole only at
a
c ∈ Q∪{∞} such that a

c is equivalent to∞ under Γ. By Lemma 1 we get that a
c is equivalent

to ∞ under Γ if and only if there exist s ∈ ∆ = {±1,±7,±13 ∈ (Z/18Z)×} = (Z/18Z)×

and n ∈ Z such that
(
a
c

)
≡

(
s̄−1

0

)
mod 18. So the first assertion follows. Furthermore,

f(τ) has a zero at a
c if and only if a

c is equivalent to 1
9 under Γ. Applying Lemma 1 we have(

a
c

)
≡

(
s̄−1 + 9n

9

)
mod 18. Hence we conclude the statement (3). Next, by using these

we can derive the second and fourth assertions without difficulty. �

Let d1 (respectively, dn) be the total degree of poles of f(τ) (respectively, f(nτ)).
Then we may let Fn(X,Y ) be a polynomial

∑
0≤i≤dn
0≤j≤d1

Ci,jX
iY j ∈ Q[X,Y ], which satis-

fies Fn(f(τ), f(nτ)) = 0. Ishida and Ishii([11]) showed the following theorem by means of
the standard theory of algebraic functions, which will be useful in removing unnecessary
coefficients Ci,j from the polynomial Fn(X,Y ).

Theorem 7. For any congruence subgroup Γ′, let f1(τ), f2(τ) be nonconstants such that
C(f1(τ), f2(τ)) = A0(Γ′) with the total degree Dk of poles of fk(τ) for k = 1, 2, and let
F (X,Y ) =

∑
0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ] be such that F (f1(τ), f2(τ)) = 0. Let SΓ′ be a set

of all the inequivalent cusps of Γ′, and Sk,0 = {s ∈ SΓ′ | fk(τ) has zeros at s}, and Sk,∞
= {s ∈ SΓ′ | fk(τ) has poles at s} for k = 1, 2. Further let a = −

∑
s∈S1,∞∩S2,0

ordsf1(τ),
and b =

∑
s∈S1,0∩S2,0

ordsf1(τ). Here we assume that a (respectively, b) is 0 if S1,∞ ∩ S2,0

(respectively, S1,0 ∩ S2,0) is empty. Then we obtain the following assertions.
(1) CD2,a 6= 0. If further S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j 6= a.
(2) C0,b 6= 0. If further S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j 6= b.
(3) Ci,D1 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩ S2,∞| or D2 − |S1,∞ ∩ S2,∞| < i ≤ D2.
(4) Ci,0 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩ S2,0| or D2 − |S1,∞ ∩ S2,0| < i ≤ D2.
If we interchange the roles of f1(τ) and f2(τ), then we may obtain further properties

similar to (1)∼(4). Suppose further that there exist r ∈ R and N,n1, n2 ∈ Z with N > 0
such that fk(τ+r) = ζnk

N fk(τ) for k = 1, 2, where ζN = e2πi/N . Then we obtain the following
assertion.

(5) n1i+ n2j ≡/ n1D2 + n2a mod N ⇒ Ci,j = 0. Here note that n2b ≡ n1D2 + n2a mod
N .

From now on using Theorem 7 we rediscover Chan’s results on the modular equations
when p = 2 and 3.

Theorem 8. Let C(τ) be the Ramanujan’s cubic continued fraction. Then
(1) {C(τ)}2 + 2C(τ){C(2τ)}2 − C(2τ) = 0



10 BUMKYU CHO, JA KYUNG KOO AND YOON KYUNG PARK

(2) {C(τ)}3 = C(3τ) 1−C(3τ)+{C(3τ)}2
1+2C(3τ)+4{C(3τ)}2 .

Proof. To prove (1) ( respectively, (2)), we should find the modular equation F2(X,Y )
(respectively, F3(X,Y )) for f(τ) and f(2τ) (respectively, f(3τ)), where f(τ) = 1

C(3τ) .
Let us prove (1). By Proposition 5 we see that the congruence subgroup which we

should consider is Γ1(6) ∩ Γ0(36) ; hence ∆2 = {±1,±5,±7,±11,±13,±17 ∈ (Z/36Z)×} =
(Z/36Z)×, where the notation ∆2 is the subgroup in §2. We will first obtain d1. By
Lemma 2 and Lemma 6 we must consider S18, A18, S36 and A36, which are easily derived
as S18 = S36 = {1} and A18 = A36 = {1}, because n18, m18, n36 and m36 are 1. So all
the cusps of Γ1(6) ∩ Γ0(36) at which f(τ) has poles are 1/18 and 1/36 by (1) of Lemma 6,
where 1/36 is equivalent to ∞ by Lemma 1. And we know by Lemma 3 the widths of 1/18
and ∞ are 1 and 1, respectively. Since f(τ) = q−1 + O(1), we get that ord∞f(τ) = −1.

Now that (f ◦
(

1 0
18 1

)
)(τ) = f(τ) = q−1 +O(1) due to the fact

(
1 0
18 1

)
∈ Γ1(6)∩Γ0(18),

we claim that ord1/18f(τ) = −1. Thus the total degree d1 of poles of f(τ) is 2. Next,
we will estimate d2. In like manner, by Lemma 2 and Lemma 6 we should consider S36

and A36, which are already obtained in the above as S36 = {1} and A36 = {1}. And all
the cusps of Γ1(6) ∩ Γ0(36) at which f(2τ) has poles is 1/36 by (2) of Lemma 6. Since
1/36 is equivalent to ∞ and the width of ∞ is 1, using f(2τ) = q−2 + O(1) we get that
ord∞f(2τ) = −2. So the total degree d2 of poles of f(2τ) is 2. Hence, F2(X,Y ) is of the
form

∑
0≤i≤2
0≤j≤2

Ci,jX
iY j ∈ Q[X,Y ].

Now, by utilizing Theorem 7 we can determine which coefficients Ci,j should be elimi-
nated. If we let f1(τ) = f(τ) and f2(τ) = f(2τ) in the theorem, we know that S1,∞ =
{ 1

18 ,
1
36}, S1,0 = {1

9}, S2,∞ = { 1
36} and S2,0 = {1

9 ,
1
18}. Since S1,∞ ∩ S2,0 = 1

18 , we have

a = 1. And, as for b, calculating ord 1
9
f1(τ) we derive b = 2 because (f ◦

(
1 0
9 1

)
)(τ) =

1/(C ◦
(

3 0
0 1

) (
1 0
9 1

)
)(τ) = 1/(C ◦

(
1 0
3 1

)
)(3τ) = q

1
2 + · · · and the width of 1

9 is 4 in

(Γ1(6)∩Γ0(36))\H∗. It follows from Theorem 7 (1) and (2) that C2,1 6= 0 and C2,2 = C2,1 = 0
and C0,2 6= 0 and C0,1 = C0,0 = 0. In order to use (5) of the theorem we calculate the fol-
lowings in advance:

f1(τ +
1
3
) = f(τ +

1
3
) =

1
C(3τ + 1)

= ζ2
3f(τ) = ζ2

3f1(τ)

f2(τ +
1
3
) = f(2τ +

2
3
) =

1
C(6τ + 2)

= ζ3f(2τ) = ζ3f2(τ).

So we may assume that N = 3, n1 = 2, n2 = 1. Applying these to (5) of Theorem 7,
C2,2 = C1,2 = C1,1 = C0,1 = C2,0 = C0,0 = 0. Hence, we are able to simplify our modular
equation as F2(X,Y ) = C2,1X

2Y + C1,0X + C0,2Y
2. Since C0,2 6= 0, let it be 1.

Next, by replacing X(respectively, Y ) by the q-expansion of f(τ) (respectively, f(2τ)),
we get that C2,1 = −1 and C1,0 = 2. Thus, F2(X,Y ) = −X2Y + 2X + Y 2. Multiplying
F2( 1

C(τ) ,
1

C(2τ)) by C(τ)2C(2τ)2 we achieve the first assertion.
In a similar way, by considering Γ1(6) ∩ Γ0(54) and ∆3 = (Z/54Z)× we can estimate

the polynomial F3(X,Y ) =
∑

0≤i≤d3
0≤j≤d1

Ci,jX
iY j such that F3(f(τ), f(3τ)) = 0. In this case,

since S18 = S54 = {1}, A18 = {1, 5} and A54 = {1}, f(τ) has poles at 1/18, 5/18 and 1/54



ON THE RAMANUJAN’S CUBIC CONTINUED FRACTION 11

with width 1, 1 and 1 respectively by Lemma 3, in which 1/54 is equivalent to ∞ under

Γ1(6)∩Γ0(54). And, we already know that f(τ) = q−1+O(1) and (f◦
(

1 0
18 1

)
)(τ) = f(τ) =

q−1+O(1). By the action of Klein forms (K1) ∼ (K5) we then see that (f◦
(

5 −2
18 −7

)
)(τ) =

(some root of unity) · f(τ) = (some root of unity) · q−1 + O(1). Considering the widths of
cusps we have ord∞f(τ) = ord1/18f(τ) = ord5/18f(τ) = −1. And, d1 = 3. Likewise, f(3τ)
has a pole only at 1/54 ∼ ∞ and f(3τ) = q−3 + O(1). Hence, ord∞f(3τ) is −3. In other
words, we deduce d3 = 3.

We let f1(τ) = f(τ) and f2(τ) = f(3τ) in Theorem 7. Then S1,∞ = { 1
18 ,

5
18 ,

1
54},

S1,0 = {1
9 ,

2
9 ,

1
27}, S2,∞ = { 1

54} and S2,0 = { 1
27}. Since S1,∞ ∩ S2,0 = φ, the number

a in Theorem 7 is 0. By (1) of Theorem 7, we have C3,0 6= 0. Interchanging the roles
of f1(τ) and f2(τ) we get C0,3 6= 0 and Cj,3 = 0 for any j 6= 0. Then by the same
argument as above, substituting τ + 1

3 for τ in f(τ) and f(3τ) we obtain that C1,0 =
C1,1 = C1,2 = C1,3 = C2,0 = C2,1 = C2,2 = C2,3 = 0. So, we may write F3(X,Y ) =
C0,0 +C0,1Y +C0,2Y

2 +C0,3 +C3,0X
3 +C3,1X

3Y +C3,2X
3Y 2. Since C0,3 6= 0, we let it be

1.
Now, by replacing X(respectively, Y ) by the q-expansion of f(τ) (respectively, f(3τ)),

we conclude that C0,0 = 0, C0,1 = 4, C0,2 = 2, C3,0 = −1, C3,1 = 1 and C3,2 = −1.
So, F3(X,Y ) = 4Y + 2Y 2 + Y 3 − X3 + X3Y − X3Y 2. If we multiply F3( 1

C(τ) ,
1

C(3τ)) by
C(τ)3C(3τ)3, our second assertion is established. �

In order to extend the above results to all primes p we confine each prime p to the one
relatively prime to 6 and find the relation between f(τ) and f(pτ).

Theorem 9. Let p be a prime greater than 3. Then Fp(X,Y ) =
∑

0≤i,j≤p+1Ci,jX
iY j ∈

Q[X,Y ] satisfies the following conditions.
(1) Cp+1,0 6= 0 and Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0, C0,0 = 0
(2) If p ≡ 1 mod 6 and i+ j ≡ 0 or 1 mod 3, then Ci,j = 0.
(3) If p ≡ −1 mod 6 and i− j ≡ 1 or 2 mod 3, then Ci,j = 0.

Proof. The congruence subgroup under consideration is Γ′ = Γ1(6) ∩ Γ0(18p), and hence
∆ = {±(1 + 6k) ∈ (Z/18pZ)×|k = 0, 1, · · · , 3p− 1} where ∆ is the subgroup as in §2. Since
every integer relatively prime to 6 is congruent to ±1 modulo 6, we have to consider Sj

and Aj only for j ∈ {9, 18, 9p, 18p} by Lemma 2 and 6. Since nj = 1 for all j = 9, 18, 9p
and 18p, Sj = {1}. Thus all the inequivalent cusps under consideration are 1

9 ,
1
18 ,

1
9p and

1
18p with widths 2p, p, 2 and 1, respectively by Lemma 3. And it follows from Lemma 1
that 1

18p is equivalent to ∞ . If we let f1(τ) = f(τ) and f2(τ) = f(pτ) in Theorem 7, then
we know by Lemma 6 that S1,∞ = { 1

18 ,
1

18p} and S1,0 = {1
9 ,

1
9p}. Further we obtain that

S2,∞ = { 1
18 ,

1
18p} and S2,0 = {1

9 ,
1
9p}. Now that (f ◦

(
1 0
18 1

)
)(τ) = f(τ) = q−1 +O(1) due

to the fact that
(

1 0
18 1

)
∈ Γ, we derive that ord∞f(τ) = −1 and ord 1

18
f(τ) = −p. So the

total degree d1 of poles of f(τ) is p+1. Since f(pτ) = q−p +O(1), we get ord∞f(pτ) = −p.

In order to find ord 1
18
f(pτ), we first take b, d ∈ Z such that

(
1 b
18 d

)
∈ SL2(Z). Since there
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exists x ∈ Z such that d−6x ≡ 0 mod p,
(

3p 0
0 1

) (
1 b
18 d

)
=

(
p 3b− x

6 d−6x
p

) (
3 x
0 p

)
where(

p 3b− x

6 d−6x
p

)
∈ SL2(Z). Thus the Fourier expansion of f(pτ) at 1

18 can be derived from

(f ◦
(
p 0
0 1

) (
1 b
18 d

)
)(τ) = 1/(C ◦

(
3p 0
0 1

) (
1 b
18 d

)
)(τ) = (

1
C
◦

(
p 3b− x

6 d−6x
p

) (
3 x
0 p

)
)(τ)

by (K1) and (K2). We see by (K4) that the above is of the form

(some root of unity) · qk
p + higher order term,

where k = 6(1
2 < p

2 > (< p
2 > −1) − 1

2 < p
6 > (< p

6 > −1)) × 3 with the notation
as in (K4). Considering p ≡ ±1 mod 6 we have k = −1. Hence ord 1

18
f(pτ) = −1.

And the total degree dp of poles of f(pτ) is p + 1. Therefore Fp(X,Y ) is of the form
Fp(X,Y ) =

∑
0≤i,j≤p+1Ci,jX

iY j . Since S1,∞ ∩ S2,0 is empty, we claim that a = 0 in
Theorem 7 and hence Cp+1,0 6= 0 and Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0. Interchanging
the role of f1(τ) and f2(τ) we have b = ord 1

9
f2(τ) + ord 1

9p
f2(τ) = p+ 1 and C0,0 = 0. Then

we can derive by Theorem 7 (5) all the other assertions. Next, we observe that f1(τ + 1
3) =

f(τ + 1
3) = 1

C(3τ+1) = ζ2
3f(τ) = ζ2

3f1(τ) and f2(τ + 1
3) = f(p(τ + 1

3)) = 1
C(3pτ+p) = ζ−p

3 f(pτ)
imply f2(τ + 1

3) = ζ2
3f2(τ) (respectively, ζ3f2(τ)) if p ≡ 1 mod 6 (respectively, if p ≡ −1

mod 6). Therefore, we establish that i+j ≡ 0, 1 mod 3 ⇒ Ci,j = 0 (respectively, i−j ≡ 1, 2
mod 3 ⇒ Ci,j = 0) if p ≡ 1 mod 6 (respectively, if p ≡ −1 mod 6). This completes the
proof. �

Now we are ready to find the modular equation Φn(X,Y ) = 0 of C(τ) and C(nτ) for the
case where n is a prime greater than 3. Using Theorem 9 and inserting enough terms of
the Fourier expansions of f(τ) and f(pτ) into Fp(X,Y ) we can find Φp(X,Y ) = 0. Here we
must deliberate the relation Φp(X,Y ) = Xp+1Y p+1Fp( 1

X ,
1
Y ).

The following table shows that the coefficients of the modular equations are congruent to
zero modulo p except for the ones of the terms vp+1, wp+1, vw and vpwp in each case, which
indicates the existence of Kronecker’s congruences. Thus, we will work with the equation
Φp(X,Y ) = 0 in order to find such congruences.
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As before, let Γ = Γ1(6) ∩ Γ0(18). For any integer a with (a, 6) = 1, we fix σa ∈ Γ(1) so

that σa ≡
(
a−1 0
0 a

)
mod 18. Then for every positive integer a prime to 6 one has

Γ
(

1 0
0 n

)
Γ =

⋃
a>0
a|n

⋃
0≤b< n

a

Γσa

(
a b
0 n

a

)
,

in which the right hand side is a disjoint union. Indeed, first note that |Γ\Γ
(

1 0
0 n

)
Γ| =

n
∏

p|n(1 + 1
p) and then use [16], Proposition 3.36.

Since σa depends only on a modulo 18, we fix σa as σ±1 = ±
(

1 0
0 1

)
, σ±5 = ±

(
65 18
18 5

)
and σ±7 = ±

(
−5 18
18 −65

)
. Actually, since σa ∈ (±1) · Γ for a ∈ {±1,±5,±7}, we have

f ◦ σa = f .

For convenience, we let αa,b = σa

(
a b
0 n

a

)
for such a, b. We now consider the following

polynomial Ψn(X, τ) with the indeterminate X

Ψn(X, τ) =
∏
a>0
a|n

∏
0≤b< n

a
(a,b, n

a
)=1

(X − (f ◦ αa,b)(τ)).

Note that deg Ψn(X, τ) = n
∏

p|n(1 + 1
p). Since all the coefficients of Ψn(X, τ) are the

elementary symmetric functions of the f ◦αa,b, they are invariant under Γ, i.e., Ψn(X, τ) ∈
C(f(τ))[X]; hence we may write Ψn(X, f(τ)) instead of Ψn(X, τ).

When f(nτ) = f1(τ) and f(τ) = f2(τ), we define Sj,∞ to be the set of cusps at which
fj(τ) has pole and by Sj,0 we mean the set of cusps at which fj(τ) has zero. And we recall
from Theorem 7 that a is a nonnegative integer defined by

a =
{

0 , if S1,∞ ∩ S2,0 = φ
−

∑
s∈S1,∞∩S2,0

ordsf1(τ) , otherwise.

Then, in order to have a polynomial Fn(X, f(τ)) in C[X, f(τ)] which satisfies Fn(f(τ), f(nτ)) =
0, we should multiply Ψn(X, f(τ)) by f(τ)a. However, S1,∞ ∩ S2,0 = φ due to the fact that
S1,∞ = { 1

18n} and S2,∞ = { 1
18 , · · · ,

1
18n}. Thus a = 0 so that we are to work with just

Ψn(X, f(τ)) as a polynomial of X and f(τ) to prove the following theorem.

Theorem 10. With the notation as above, for any positive integer n with (n, 6) = 1 we de-
fine Ψn(X,Y ) to be a polynomial such that Ψn(f(τ), f(nτ)) = 0. Then we get the following
assertions.

(1) Ψn(X,Y ) ∈ Z[X,Y ] and degX Ψn(X,Y ) = degY Ψn(X,Y ) = n
∏

p|n(1 + 1
p).

(2) Ψn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial in
Y over C(X).

(3) Ψn(X,Y ) = Ψn(Y,X).
(4) If n is not a square, then Ψn(X,X) is a polynomial of degree > 1 whose leading

coefficient is ±1.



ON THE RAMANUJAN’S CUBIC CONTINUED FRACTION 15

(5) (Kronecker’s congruence) Let p be an odd prime. Then

Ψp(X,Y ) ≡ (Xp − Y )(X − Y p) mod pZ[X,Y ].

Proof. Since f(τ) = 1/C(3τ), we let f(τ) = q−1 +
∑∞

m=1 cmq
m with cm ∈ Z. We further let

d = n
∏

p|n(1 + 1
p) and let ψk be an automorphism of Q(ζn) over Q defined by ψk(ζn) = ζk

n

for some integer k with (k, n) = 1. Then ψk induces an automorphism of Q(ζn)((q
1
n )) by the

action on the coefficients. We denote the induced automorphism by the same notation ψk.

Since (f ◦
(
a b
0 n

a

)
)(τ) = f(

(
a b
0 n

a

)
τ) = f(a2

n τ + ab
n ) = ζ−ab

n q−
a2

n +
∑∞

m=1 cmζ
abm
n q

a2m
n , we

obtain that ψk((f ◦
(
a b
0 n

a

)
)(τ)) = ζ−abk

n q−
a2

n +
∑∞

m=1 cmζ
abkm
n q

a2m
n . Let b′ be the unique

integer such that 0 ≤ b′ < n
a and b′ ≡ bk mod n

a . Then ψk(f ◦
(
a b
0 n

a

)
) = f ◦

(
a b′

0 n
a

)
because ζabk

n = ζab′
n . And for all a ∈ {±1,±5,±7} we have f ◦ σa = f , from which we

get that ψk(f ◦ αa,b) = f ◦ αa,b′ and all the coefficients of Ψn(X, f(τ)) are contained in
Q((q

1
n ))[X].

Note that Ψn(f( τ
n), f(τ)) = 0 yields [C(f( τ

n), f(τ)) : C(f(τ))] ≤ d. Let F be the field of all
meromorphic functions on H which contains C(f( τ

n), f(τ)) as a subfield. We further observe
that for any element γ of Γ the map h(τ) 7→ h(γ(τ)) gives an embedding of C(f( τ

n), f(τ))
into F, which is trivial on C(f(τ)). Also, note that for any αa,b there exists γa,b ∈ Γ

such that
(

1 0
0 n

)
γa,bα

−1
a,b ∈ Γ. Since f(αa,b(τ)) 6= f(αa′,b′(τ)) for αa,b 6= αa′,b′ , there are

at least d distinct embeddings of C(f( τ
n), f(τ)) into F over C(f(τ)) defined by f( τ

n) 7→

f ◦
(

1 0
0 n

)
◦ γa,b = f(αa,b(τ)). Hence [C(f( τ

n), f(τ)) : C(f(τ))] = d. This implies that

Ψn(X, f(τ)) is irreducible over C(f(τ)). Now that Ψn(X, f(τ)) is an irreducible polynomial
of f( τ

n) over C(f(τ)) and Ψn(f( τ
n), Y ) is also an irreducible polynomial of f(τ) over C(f( τ

n)),
we derive the fact that Ψn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and
as a polynomial in Y over C(X). On the other hand, since Ψn(X, f(τ)) ∈ Q[X, f(τ)]
and all the Fourier coefficients of Ψn(X, f(τ)) are algebraic integers, we conclude that
Ψn(X,Y ) ∈ Z[X,Y ]. It proves (1) and (2).

Now that (X − (f ◦αn,0)(τ)) is a factor of Φn(X, f(τ)) and f ◦αn,0 = f ◦ σn ◦
(
n 0
0 1

)
=

f ◦
(
n 0
0 1

)
, we get Ψn(f(nτ), f(τ)) = 0, namely Ψn(f(τ), f( τ

n)) = 0. Hence, f( τ
n) is a

root of the equation Ψn(f(τ), X) = 0 and Ψn(f(τ), X) ∈ Z[X, f(τ)]. Meanwhile, f( τ
n) is

also a root of Ψn(X, f(τ)) = 0 and Ψn(X, f(τ)) is irreducible over C(f( τ
n)). So there exists

a polynomial g(X, f(τ)) ∈ Z[X, f(τ)] such that Ψn(f(τ), X) = g(X, f(τ))Ψn(X, f(τ)).
However, the identity

Ψn(f(τ), X) = g(X, f(τ)) · g(f(τ), X) ·Ψn(f(τ), X)

implies g(X, f(τ)) = ±1. If g(X, f(τ)) = −1, Ψn(f(τ), f(τ)) = −Ψn(f(τ), f(τ)). Thus,
f(τ) is a root of Ψn(X, f(τ)) = 0, which is a contradiction to the irreducibility of Ψn(X, f(τ))
over C(f(τ)). Therefore, (3) is proved.



16 BUMKYU CHO, JA KYUNG KOO AND YOON KYUNG PARK

As for the verification of (4), we assume that n is not a square. Then f(τ)−(f ◦αa,b)(τ) =

q−1 − ζ−ab
n q−

a2

n + O(q
1
n ). And, the coefficient of the lowest degree in Ψn(f(τ), f(τ)) is a

unit. Since it is an integer and Ψn(X,X) is a polynomial of degree > 1, (4) is proved.
In order to justify the last assertion, let p be a prime greater than 3. For g(τ), h(τ) ∈

Z[ζp]((q
1
n )) and α ∈ Z[ζp], we know that g(τ) ≡ h(τ) mod α if g(τ)− h(τ) ∈ αZ[ζp]((q

1
p )).

On the other hand, since f(τ) = q−1 +
∑∞

m=1 cmq
m with cm ∈ Z, we deduce that

f(α1,b(τ)) = ζ−b
p q

− 1
p +

∞∑
m=1

cmζ
bm
p q

m
p

≡ q
− 1

p +
∞∑

m=1

cmq
m
p mod (1− ζp).

Hence, f(α1,b(τ)) ≡ f(α1,0(τ)) mod (1− ζp) for any b = 0, · · · , p− 1. And, by making use
of the relation cpm ≡ cm mod p we see that

f(αp,0(τ)) = q−p +
∞∑

m=1

cmq
pm

≡ q−p +
∞∑

m=1

cpmq
pm ≡ (f(τ))p mod p.

So, f(αp,0(τ)) ≡ f(τ)p mod (1 − ζp). In a similar way we get f(α1,0(τ))p = (q−
1
p +∑∞

m=1 cmq
m
p )p ≡ q−1 +

∑∞
m=1 c

p
mqm = f(τ) mod (1− ζp). Thus we achieve that

Ψp(X, f(τ)) =
∏

0≤b<p

(X − f(α1,b(τ)))× (X − f(αp,0(τ)))

≡ (X − f(α1,0(τ))p(X − f(τ)p) ≡ (Xp − f(α1,0(τ))p)(X − f(τ)p)
≡ (Xp − f(τ))(X − f(τ)p) mod (1− ζp).

Now, let Ψp(X, f(τ)) − (Xp − f(τ))(X − f(τ)p) be
∑

ν ψν(f(τ))Xν ∈ (1 − ζp)Z[X, f(τ)],
where ψν(f(τ)) ∈ Z[f(τ)]. Since all the Fourier coefficients of ψν(f(τ)) are rational integers
and divisible by 1 − ζp, we obtain that ψν(f(τ)) ∈ pZ[f(τ)]. Therefore Ψp(X, f(τ)) ≡
(Xp − f(τ))(X − f(τ)p) mod pZ[X, f(τ)]. �

4. Constructions of ray class fields and class polynomials

Let K be an imaginary quadratic field and N be a positive integer. Let K(N) be the ray
class field moduloN overK and τ ∈ K∩H be a root of the primitive equation ax2+bx+c = 0
such that b2 − 4ac = dK where dK is the discriminant of K. In this section we show that
C(τ) generates K(6) over K and then find the class polynomial of K(6) by using the fact
that 1

C(τ) is an algebraic integer.
We first consider the principal congruence subgroup Γ(N) of SL2(Z) as the kernel of

the map SL2(Z) → SL2(Z/NZ) obtained by reducing the entries modulo N . If h is a
meromorphic function on the modular curve X(N) = Γ(N)\H∗, its Laurent series expansion
in the parameter q

1
N = e

2πi
N

τ is called the Fourier expansion of h. Embedding the algebraic
closure Q of the rational numbers into C we see that X(N) can be defined over Q(ζN ), and
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hence let FN be its function field over Q(ζN ). Then one can have F1 = Q(j) and define the
automorphic function field F as the union F =

⋃
N≥1 FN . For a subfield F′ of F and z ∈ K,

the notation K · F′(z) in the following theorem means the compositum of K and the field
F′(z) which is generated over Q by {h(z)|h ∈ F′ and h is defined and finite at z}.

Theorem 11. Let K be an imaginary quadratic field and τ ∈ K ∩ H be a root of the
primitive equation aX2 + bX + c = 0 with a, b, c ∈ Z such that its discriminant is the field
discriminant of K. Let x (respectively, y) be the least positive integer such that x = (Nx, a)
(respectively, y = (Ny, c)), and let

F
(1)
min = Q(j, j ◦

(
Nx 0
0 1

)
, f(

0 1
N

)),

F
(2)
min = the field of all automorphic functions for Γ0(Nx) ∩ Γ1(N)

with rational Fourier coefficients,

F
(3)
min = the field of all automorphic functions for Γ0(Ny) ∩ Γ1(N)

with rational Fourier coefficients,

F
(4)
min = Q(j, j ◦

(
1 0
0 Ny

)
, f(

0 1
N

) ◦
(

1 0
0 Ny

)
),

Fmax = the field of all automorphic functions for Γ0(Nc) ∩ Γ0(Na) ∩ Γ(N)

whose Fourier coefficients with respect to e2πiz/Nc belong to Q(ζN ).

Then for any field F′ in the hypothesis, K · F′(z) is the ray class field modulo N over
K. Furthermore, if F′′ is any intermediate field such that F

(i)
min ⊂ F′′ ⊂ Fmax for some i

(1 ≤ i ≤ 4) or FN ⊂ F′′ ⊂ Fmax, then K ·F′′(z) is also the ray class field modulo N over K.

Proof. Theorem 29 in [6]. �

Lemma 12. Let K be an imaginary quadratic field with discriminant dK and τ ∈ K ∩H be
a root of the primitive equation ax2 + bx+ c = 0 such that b2− 4ac = dK , and let Γ′ be any
congruence subgroup containing Γ(N) and contained in Γ1(N). Suppose that (N, a) = 1.
Then the field generated over K by all the values h(τ), where h ∈ A0(Γ′)Q is defined and
finite at τ , is the ray class field modulo N over K.

Proof. With the notations as in Theorem 11, if (N, a) = 1 then x in the theorem is equal
to 1. Therefore the inclusions F

(2)
min = A0(Γ1(N))Q ⊂ A0(Γ′)Q ⊂ A0(Γ(N))Q ⊂ FN ⊂ Fmax

imply the lemma. �

Theorem 13. Let K be an imaginary quadratic field with discriminant dK and τ ∈ K ∩H
be a root of the primitive equation ax2 + bx+ c = 0 such that b2−4ac = dK . Then K(C(τ))
is the ray class field modulo 6 over K if (6, a) = 1. In particular, if Z[τ ] is the ring of
integers in K, then K(C(τ)) is the ray class field modulo 6 over K.

Proof. Since C(τ) is a Hauptmodul for Γ1(6) ∩ Γ0(3) with rational Fourier coefficients and
Γ(6) ⊂ Γ1(6)∩Γ0(3) ⊂ Γ1(6), we get the first assertion by Lemma 12. In particular, if Z[τ ]
is the ring of integers in K, then a = 1 and hence we readily conclude the last statement. �

Next, we show that 1
C(τ) is an algebraic integer for an imaginary quadratic argument τ ,

which helps us to approximate the coefficients of class polynomial.
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Theorem 14. Let K be an imaginary quadratic field with discriminant dK and t = N (j1,N )
be the normalized generator of A0(Γ1(N)). Let s be a cusp of Γ1(N) whose width is hs and
SΓ1(N) is the set of inequivalent cusps of Γ1(N)\H∗. If t ∈ q−1Z[[q]] and

∏
s∈SΓ1(N)−{∞}(t(z)−

t(s))hs is a polynomial in Z[t], then t(τ) is an algebraic integer for τ ∈ K ∩ H.
Here we call f the normalized generator of A0(Γ) for a congruence subgroup Γ associated

to the genus zero modular curve Γ\H∗, if its q-expansion starts with q−1+0+a1q+a2q
2+· · · .

Proof. See [13]. �

Lemma 15. The normalized generator of A0(Γ1(6)) is 1
C3(τ)

− 3.

Proof. Let g(τ) = 1
C3(τ)

. It follows from Theorem 4 that C(C(τ)) = A0(Γ1(6) ∩ Γ0(3)).
Since Γ1(6) ∩ Γ0(3) is a subgroup of Γ1(6) with index 3, for γ ∈ Γ1(6) ∩ Γ0(3) we deduce

g◦γ = g. Furthermore, using C◦
(

1 1
0 1

)
(τ) = e

2πi
3 C(τ) we have g◦

(
1 1
0 1

)
= g. But, Γ1(6)

=< Γ1(6)∩Γ0(3),
(

1 1
0 1

)
>, and so C(g(τ)) ⊂ A0(Γ1(6)). Observing [A0(Γ1(6)) : C(g(τ))] =

[C(C(τ)):C(g(τ))]
[A0(Γ1(6)∩Γ0(3)):A0(Γ1(6))]

= [C(C(τ)):C(g(τ))]
[Γ1(6):Γ1(6)∩Γ0(3)]

= 1 we see that g(τ) is a generator of A0(Γ1(6))
with pole at ∞. And at ∞ we can easily find a q-expansion g(τ) = q−1+3+a1q+a2q

2+ · · · .
Therefore, the normalized generator of Γ1(6) is 1

C3(τ)
− 3. �

Theorem 16. Let K be an imaginary quadratic field with discriminant dK and τ ∈ K ∩H.
Then 1

C(τ) is an algebraic integer.

Proof. We see by Lemma 15 that the normalized generator t(τ) is 1
C3(τ)

− 3 ∈ q−1Z[[q]].

And, before we go further we recall that hs is the width of the cusp s and ζm = e
2πi
m . Since

Γ0(6) = Γ1(6), we have SΓ1(6) = {∞, 0, 1
2 ,

1
3}.

(i)

C ◦
(

0 −1
1 0

)
(τ) = ζ5

12

5∏
j=0

k(
1
6

j
6

)
k(

3
6

j
6

)
(

0 −1
1 0

)
(τ) = ζ5

12

5∏
j=0

k(
j
6 −1

6

)
k(

j
6 −3

6

) (τ)

= ζ5
12

∏5
j=0 expπi{(−1

6)( j
6 − 1)− (−3

6)( j
6 − 1)}1−ζ−1

6

1−ζ−3
6

× (1+O(q)) = 1
2 +O(q). So,

C(0) = lim
τ→∞

C ◦
(

0 −1
1 0

)
(τ) = lim

q→0

1
2

+O(q) =
1
2
.

Thus we get t(0) = 1
C3(0)

− 3 = 5.
(ii)

C ◦
(

1 0
2 1

)
(τ) = ζ5

12

5∏
j=0

k(
1+2j

6
j
6

)
k(

3+2j
6

j
6

) (τ) = 1 +O(q).

Then, C(1
2) = limq→0(1 +O(q)) = 1 yields t(1

2) = −2.
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(iii)

C ◦
(

1 0
3 1

)
(τ) = ζ5

12

5∏
j=0

k(
1+3j

5
j
6

)
k(

3+3j
6

j
6

) (τ).

We know by (K5) in §2 that ordqC ◦
(

1 0
3 1

)
(τ) = −1

6 . In other words, C(τ) has

a pole at 1
3 and t(1

3) = 1
C3(τ)

− 3 = −3.

On the other hand, if follows from Lemma 3 that h0 = 6, h 1
2

= 3 and h 1
3

= 2. Hence, the

polynomial
∏

s∈SΓ1(6)−{∞}(t(z)− t(s))hs becomes (t−5)6(t+2)3(t+3)2 so that it belongs to

Z[t]. Then we conclude by Theorem 14 that 1
C3(τ)

− 3 is an algebraic integer for τ ∈ K ∩H.
Therefore 1

C(τ) is an algebraic integer, too. �

We see from Theorem 13 that if an imaginary quadratic number θ generates the ring of
integers in K = Q(θ), then K(C(θ)) is the ray class field modulo 6 over K. In this case to
find its class polynomial we shall use the Shimura’s reciprocity law by adopting the idea of
Gee([9]).

We first consider the finite Galois extension F1 ⊂ FN . Let αN ∈ SL2(Z/NZ) rep-
resent the Γ(N)-equivalence class of a linear fractional transformation α ∈ SL2(Z) on
H∗. For h ∈ FN , the action hαN = h ◦ α is well defined and induces an isomorphism
SL2(Z/NZ)/{±1} ∼= Gal(FN/F1(ζN )) = Gal(C · FN/C · F1). And for d ∈ (Z/NZ)×, let σd

denote the automorphism of Q(ζN ) given by ζN 7→ ζd
N . Then the action of σd gives rise to

a natural isomorphism Gal(F1(ζN )/F1) ∼= Gal(Q(ζN )/Q) ∼= (Z/NZ)×, which we can lift to
FN by changing h =

∑
k ckq

k
N ∈ FN to hσd =

∑
k σd(ck)q

k
N . Thus h 7→ hσd defines a group

action of (Z/NZ)× on FN whose invariant field FN,Q is the subfield of FN having Fourier
coefficients in Q. Here we have FN,Q ∩ F1(ζN ) = F1.

Now, define the subgroup GN = {
(

1 0
0 d

)
|d ∈ (Z/NZ)×} of GL2(Z/NZ). Then the

map (Z/NZ)× ∼→GN gives an isomorphism GN
∼= Gal(FN/FN,Q). From this fact we get the

following exact sequence

{±1} → GL2(Z/NZ) → Gal(FN/F1) → 1.

Passing to the projective limit we then have an exact sequence

1 → {±1} → GL2(Ẑ) → Gal(F/F1) → 1.

Let Kp = Qp ⊗Q K and Op = Zp ⊗Z O for the ring of integer O = Z[θ] of K. By the
main theorem of complex multiplication j(θ) generates the Hilbert class field over K and
the maximal abelian extension Kab is equal to K(F(θ)). Moreover, the sequence

1 → O× →
∏
p

O×
p → Gal(Kab/K(j(θ))) → 1

is exact. Here the map
∏

pO×
p → Gal(Kab/K(j(θ))) is the Artin map [∼,K]. In addition,

the ray class field modulo N over K is K(FN (θ)) and the subgroup of
∏

pO×
p which acts

trivially on K(FN (θ)) with respect to the Artin map is generated by O× and
∏

p((1 +
NOp) ∩ O×

p ).
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Let Jf
K be the finite idéles

∏′
pK

×
p of K. The restricted product is taken with respect

to the subgroup O×
p ⊂ K×

p . For every prime p we consider the map (gθ)p defined by

(gθ)p : K×
p → GL2(Qp) as the injection satisfying (gθ)p(xp)

(
θ
1

)
= xp

(
θ
1

)
. Since Z[θ] is

the ring of integers of K, θ has the minimal polynomial X2+BX+C ∈ Z[X] which satisfies
θ2 +Bθ + C = 0. Then for sp and tp ∈ Qp we explicitly have

(gθ)p : spθ + tp 7→
(
tp −B · sp −C · sp

sp tp

)
.

Therefore on Jf
K we get an injective map gθ =

∏
p(gθ)p : Jf

K →
∏′

pGL2(Qp). Here the
restricted product is taken with respect to the subgroups GL2(Zp) ⊂ GL2(Qp). Moreover,
g−1
θ (GL2(Ẑ)) =

∏
pO×

p . So we get the row exact diagram
[∼,K]

1 → O× →
∏

pO×
p → Gal(Kab/K(j(θ))) → 1

↓ gθ

1 → {±1} → GL2(Ẑ) → Gal(F/F1) → 1.
And by the Shimura reciprocity law, h(θ)[x

−1,K] = h(gθ(x))(θ) for h ∈ F and x ∈
∏

pO×
p .

For a positive integer N , g−1
θ (StabFN

) =
∏

p((1 + NOp) ∩ O×
p ) where StabFN

is the in-
verse image of Gal(F/FN ) in GL2(Ẑ). Using the isomorphism g−1

θ (StabF1)/g
−1
θ (StabFN

) '
(O/NO)× we define the reduction map gθ,N of gθ modulo N from (O/NO)× to GL2(Z/NZ).
Define WN,θ = gθ,N ((O/NO)×) ⊂ GL2(Z/NZ). Precisely speaking, WN,θ is a finite sub-

group {
(
t−Bs −Cs
s t

)
∈ GL2(Z/NZ)|t, s ∈ Z/NZ}.

Theorem 17. Let K be an imaginary quadratic field of discriminant dK and θ =
√

dK
2

(respectively, 3+
√

dK
2 ) if d ≡ 0 mod 4 (respectively, d ≡ 1 mod 4), and let Q = [a, b, c] be a

primitive positive definite quadratic form of discriminant dK and τQ denote −b+
√

dK
2 ∈ H.

Define u = (up)p ∈
∏

pGL2(Zp) as follows. (p runs over all rational primes.)

Case 1 : d ≡ 0 mod 4

up =



(
a b

2
0 1

)
, if p - a,(

− b
2 −c

1 0

)
, if p|a and p - c,(

−a− b
2 −c− b

2
1 −1

)
, if p|a and p|c.
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Case 2 : d ≡ 1 mod 4

up =



(
a 3+b

2
0 1

)
, if p - a,(

3−b
2 −c
1 0

)
, if p|a and p - c,(

−a+ 3−b
2 −c− 3+b

2
1 −1

)
, if p|a and p|c.

Then h(θ)[a,−b,c] = hu(τQ) for any h ∈ F such that h(θ) ∈ K(j(θ)).

Proof. See [9]. �

With the notations as above, if h ∈ Fp for a prime p, then h(θ)[a,−b,c] = hup(τQ) because
the action hu depends only on the p−component. Here we observe that our continued
fraction C(τ) is contained in F6. Let f(τ) = 1

C(τ) . Then f(θ)[a,−b,c] = f (u2,u3,u5,··· )(τQ) =
fMQ(τQ) where MQ ∈M2(Z) ∩GL+

2 (Q) satisfies MQ ≡ up mod 6 for all primes p. There-
fore, we may take MQ = 3u2 − 2u3 ∈ GL2(Z/6Z).

Let H be the Hilbert class field of K. Then there is a surjective homomorphism of WN,θ

onto Gal(K(N)/H) defined by α 7→ (h(τ) 7→ hα−1
(θ)). Let C be the kernel of this surjection.

In fact, C is the image of gθ(O×
K) in GL2(Z/NZ). Since Gal(K(N)/K)/Gal(K(N)/H) is

isomorphic to Gal(H/K) ∼= C(dK), where C(dK) is the form class group of discriminant
dK . Thus, the image of the homomorphism

C(dK) → Gal(K(N)/K)

[Q]−1 7→ (h(θ) 7→ hMQ(θ))

gives all the coset representatives of Gal(K(N)/H) in Gal(K(N)/K). Hence, we obtain that
{hα·MQ | α ∈ WN,θ/C and Q is any reduced primitive quadratic form of discriminant dK}
is the set of all the conjugates of h(θ) over K.

Let F (X) =
∏

α∈W6,θ/C, Q∈C(dK)

(X − fα·MQ(τQ)) ∈ K[X] be the minimal polynomial of

f(θ) over K. Then, F (X) is in Z[X]. Indeed, since f has rational Fourier coefficients and
e

2πiθ
3 ∈ R for θ defined in Theorem 17, f(θ) is always real. Observing 0 = F (f(θ)) =

F (f(θ)) = F (f(θ)) = F (f(θ)) we see that F (X) ∈ (K ∩ R)[X] = Q[X]. Furthermore,
f(θ) is an algebraic integer by Theorem 16 so that F (X) is a polynomial with integral
coefficients, that is, F (X) ∈ Z[X].

Now before closing this section we present an example with K = Q(
√
−3) as follows.

Proposition 18. Let K = Q(
√
−3) be an imaginary quadratic field and K(6) be the ray

class field of K modulo 6. And let F (X) be the class polynomial of K(6). Then F (X) =
X3 + 6X2 + 4.

Proof. If K = Q(
√
−3), then we have θ = 3+

√
−3

2 and dK = −3. We may assume that a
positive definite quadratic form Q is [1, 1, 1] and τQ = −1+

√
−3

2 . Then as is well known it is
the unique reduced primitive quadratic form of discriminant −3. It follows from Theorem
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17 that u2 = u3 =
(

1 2
0 1

)
, MQ = 3u2 − 2u3 =

(
1 2
0 1

)
∈ GL2(Z/6Z). And B = −3, C = 3

because θ2 − 3θ + 3 = 0. Using these we get W6,θ and C as follows.

W6,θ = {±
(

1 0
0 1

)
,±

(
1 0
2 1

)
,±

(
1 0
4 1

)
,±

(
2 3
3 5

)
,

±
(

2 3
5 5

)
,±

(
2 3
1 5

)
,±

(
1 3
3 4

)
,±

(
1 3
1 4

)
,±

(
1 3
5 4

)
}

C = {±
(

1 0
0 1

)
,±

(
1 −3
1 −2

)
,±

(
2 −3
1 −1

)
}.

So, W6,θ/C has 3 distinct cosets
[ (

1 0
0 1

) ]
,
[ (
−2 −3
1 1

) ]
,
[ (

1 0
4 1

) ]
. Therefore

{f (1 2
0 1)(−1+

√
−3

2 ), f (−2 −3
1 1

)(1 2
0 1)(−1+

√
−3

2 ), f (1 0
4 1)(

1 2
0 1)(−1+

√
−3

2 )} = {f(3+
√
−3

2 ), f(−2θ−3
θ+1 ),

f( θ
4θ+1)} is the set of all the conjugates of f(θ) over K. Hence, through the approximation

of these three values by using the fact F (X) ∈ Z[X] we get F (X) = (X − f(3+
√
−3

2 ))(X −
f(−2θ−3

θ+1 ))(X − f( θ
4θ+1)) = X3 + 6X2 + 4. �

By means of the same arguments we have the following class polynomials whose co-
efficients seem to be relatively small when compared with others’ works, for examples,
Morain([15]), Kaltofen-Yui([12]) and Chen-Yui([5]).

dK the class polynomial of K(6)

-3 X3 + 6X2 + 4
-4 X4 − 8X3 − 8X − 8
-7 X4 + 16X3 − 8X + 16
-8 X4 − 20X3 + 12X2 + 16X − 8
-11 X6 + 30X5 − 72X4 + 8X3 + 120X2 + 16
-15 X6 + 60X5 + 132X4 + 56X3 + 96X2 + 96X + 64
-19 X12 + 96X11 + 232X9 − 1440X8 + 960X6 + 4608X5 + 256X3 + 6144X2 + 256
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