ON THE RAMANUJAN’S CUBIC CONTINUED FRACTION
AS MODULAR FUNCTION
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ABSTRACT. We first extend the results of Chan([4]) and Baruah([2]) on the modular equa-

tions of the Ramanujan’s cubic continued fraction to all primes p by finding the affine

models of modular curves X(I') with T' = I'1(6) N T°(3) and then derive the Kronecker’s

congruence relations for these modular equations. And, we further show that the singular

values of C(7) generate ray class fields modulo 6 over imaginary quadratic fields and find
1

their class polynomials by working with T 3 algebraic integers.

1. INTRODUCTION

Let 9 be the complex upper half plane and 7 € $. We define the Rogers-Ramanujan
continued fraction by

r(r) = = ¢ [J1 - ¢H®

where ¢ = ¢*™7 and (%) is the Legendre symbol.
In the Ramanujan’s first letter to Hardy, he showed that r(i) = 1/ 5+—2‘/3 - @, r(2F) =

A/ % — @ and r(@) can be exactly found if n is any positive rational quantity. Since
r(7) is a modular function, the existence of radical expressions is clear by class field theory.
Strictly speaking r(7) is a modular function for I'(5)([10]) so that any singular value of r(7)
at imaginary quadratic argument is contained in some ray class field. Thus the splitting field
of its minimal polynomial is abelian. In other words its Galois group is solvable and hence
any singular value of r(7) can be written by radicals. But finding the radical expressions
explicitly is another problem which was settled down by Gee and Honsbeek who used, to
this end, the Shimura reciprocity law([10]).

Besides, one of the other important subjects is the one about modular equations. Since
the modular function field of level 5 has genus 0, there should be certain polynomials giving
the relations between 7(7) and r(n7) for all positive integers n. These are what we call the
modular equations. Most of the followings were originally stated by Ramanujan and later
on proved by several people.
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n mathematician (year)

2 Rogers (1920)

3 Rogers (1920)

4 | Andrews, Berndt, Jacobsen, Lamphere (1992)
5 Rogers, Watson, Ramanathan (1984)

7 Yi (2001)

11 Rogers (1920)

These modular equations for r(7) satisfy certain Kronecker’s congruences in prime level.
Moreover, for an element 7 of an imaginary quadratic field the singular value r(7) is a
unit that can be expressed in terms of radicals over Q. For more details, we refer to
[8]. On the other hand, Cais and Conrad succeeded in generalizing the above results on
modular equations to all primes p by means of geometric method, namely using the theory
of arithmetic models of modular curves ([3]).

This paper is a continuation of our previous work([7]). Duke introduced in [8] the fol-
lowing continued fraction C(7) defined by

1 fe’e)
q3 1 1_q6n—1 1_q6n—5
C(r) = 3 =4q3 H ( )G(n—3 2 )’
q+gq - (1—¢%?)
1+ 2, 4 "
q +q
L+ 31 6
1—|—q a
1+---

which is now called the Ramanujan’s cubic continued fraction as a holomorphic function on
9. Like the case of Rogers-Ramanujan continued fraction there are some known results for
modular equations with v := C(7) and u := C(n7) on a case-by-case basis.

n | mathematician (year) equation
2 Chan (1995) v2+20u? —u =0
3 Chan (1995) 4v3u? + 203u + 03 —u 4 u? —ud =0
5 Baruah(2002) 0% — vu + 5vu(v® + u?)(1 — vu) + ub
—v2u?(16v3u® — 20v%u? + 20vu — 5) = 0
7 Baruah(2002) v® — vu — 5603u3 (v? + u?) + Tou(v® + u3)(1 — 8vdud)
+28v%u? (v + ut + u® + vt (21 — 6403u3) =0

Chan’s results can be found in [4] and Baruah’s results in [2], in which they used the
theory of combinatorics. And the latter further presented the modular equation for the
case n = 11 in the same paper which is too long to write it down so that we omit here. In
general their existence was known to Klein long ago, but in our case there does not seem
to have been a systematic construction given before for all primes p.

Unlike the arguments of Chan-Baruah and Cais-Conrad we first find in §3 the affine
models of some modular curves from the theory of algebraic functions and then extend
the above results to all primes p (Theorem 9), from which we rediscover Chan’s results
when n = 2,3 (Theorem 8). And, we also provide a table of modular equations for n =
5,7,11,13,17 by means of our algorithm and the Maple program. We then further give an
analytic proof of the Kronecker congruence relations for these modular equations (Theorem
10).
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Since C(7) is a Hauptmodul for I'1 (6)NT'Y(3)(Theorem 4), we show in §4 that the singular
value of C'(7) generates the ray class field Ky modulo 6 over an imaginary quadratic field
K (Theorem 13) by means of certain new method of Cho and Koo ([6]). Although singular
values of the Rogers-Ramanujan and Ramanujan-Gollnitz-Gordon continued fractions at
imaginary quadratic arguments are known to be units ([8] or [7]), we can hardly say that
in our case the Ramanujan’s cubic continued fraction C(7) is a unit or even an algebraic

integer. For a counterexample, we have C(SJ”G/TS) = —%([1}) (or C(H) = 1_—2‘/5 (M])).-

Hence, in the matter of estimating class polynomials we first prove that ﬁ instead be-

comes an algebraic integer (Theorem 16) and then by using this fact together with the idea
of Gee([9]) we establish relevent class polynomials of K, whose coefficients seem to be
relatively small when compared with others’ works([5], [12] and [15]).

In §2 we provide necessary preliminaries about modular functions and Klein forms, and
give some lemmas illustrating the cusps of congruence subgroups which will be used in §3.

2. PRELIMINARIES

Before starting out the main results we would like to state some necessary definitions and
properties from the theory of modular functions. Let I'(1) = SLy(Z) be the full modular
group. For any integer N > 1, we have congruent subgroups I'(N), T'1(N), To(N) and

I'O(N) of T'(1) consisting of matrices <i Z) congruent modulo N to ((1) (1)>, <(1) T),

(; I) and <i 2) respectively. And, let §§ = {7 € C[ Im 7 > 0} be the complex upper

half plane and $* = H U QU {oo}.

Then a congruence subgroup I' acts on $* by linear fractional transformations so that
v(1) = (a1 4+ b)/(cT + d) for v = ¢ Z
compact Riemann surface with the appropriate complex structure. By definition an element
s of QU {oo} is called a cusp, and two cusps s, s2 are equivalent under I' if there exists
v € T" such that y(s1) = s2. Then the equivalence class of a cusp s or its representative
s is called a cusp of I' by abuse of terminology. Indeed, there exist at most finitely many
inequivalent cusps of I'. Let s be any cusp of I', and let p € SL2(Z) be such that p(s) = oco.
We define the width of the cusp s in I'\$* by the smallest positive integer h satisfying
pt (1) }1L p € {1} -T. Then the width depends only on the equivalence class of the cusp
s under I' and is independent of the choice of p.

By a modular function with respect to a congruence subgroup I' we mean a C-valued
function f(7) of § satisfying the following three conditions.

(1) f(7) is meromorphic on $.

(2) f(7) is invariant under T, i.e., fo~y = f for all y € T".

(3) f(7) is meromorphic at all cusps of T".

The precise meaning of the last condition is as follows. For a cusp s for ', let h be the
width for s and p be an element of SLs(Z) such that p(s) = co. Since (fop™1)(r+h) = (fo

€ I', and the quotient space I'\$H* becomes a

pt (é }1L> p)(p~'7) = (fop~1)(7), fop ! has a Laurent series expansion in g, = e>™7/",

namely for some integer ng, (f o p~')(7) = > n>ng @nd), With ap, # 0. This integer ng is
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called the order of f(7) at the cusp s and denoted by ordsf(7). If ordsf(r) is positive
(respectively, negative), then we say that f(7) has a zero (respectively, a pole) at s. If a
modular function f(7) is holomorphic on $) and ordsf(7) is greater than or equal to 0 for
every cusp s, then we say that f(7) is holomorphic on $*. Since we may identify a modular
function with respect to I' with a meromorphic function on the compact Riemann surface
'\$*, any holomorphic modular function with respect to some congruence subgroup I is a
constant.

Let Ag(I") be the field of all modular functions with respect to I', and Ag(I')g be the
subfield of Ay(I") in which the Fourier expansion of f(7) has rational coefficients. Then we
may identify Ap(I") with the field C(I'\$*) of all meromorphic functions of the compact
Riemann surface I'\$*, and if f(7) € Ap(I") is nonconstant, then the field extension degree
[Ao(T) : C(f(7))] is finite and is equal to the total degree of poles of f(7). Since we will
consider the modular functions with neither zeros nor poles on §), the total degree of poles
of f(r) is =X ordsf(r) where the summation runs over all the inequivalent cusps s at
which f(7) has poles.

Next, we illustrate some facts about the Klein forms which will be used in the expression

of C(7). For a complete treatment, the reader may consult [14].
Let 7 € § and v = <Z 2) € SLy(Z). And let a = (a; ag) € R? — Z2. Here we use the

same letter a by abuse of notation. Then the Klein form £,(7) satisfies the followings:
(KO) £-o(7) = —ta(7).
(K1) ta(v(7)) = (e7 + d) ™oy (7).
(K2) For any b = (b by) € Z? we have £,,4(7) = £(a,b)€,(7), where £(a, b) = (—1)0rbz+bi+bz
i(b

emi(b2a1— blaz)

(K3) For a = (% &) € +Z* —Z* and any v € I'(N) with an integer N > 1, &,(v(7)) =
5a(7)'(07—+d)_1'éa(7—) where 4(y) = _(_1)(%r+ﬁs+l)(%r+%s+l) . emi(br?+(d—a)rs—cs?) /N
(

K4) Let 7 € 9, 2 = a17 + a2 with a = (a1 az) € Q? — Z?, and further let ¢ =

e27ri‘r’ ¢ = eQm’z — 627ria2€27ria17_ Then Ea(T) — _% em’ag(alfl) qzal(al 1) | (1 _ q,z) X

T n 71
| ) (=g (qfl(;TT)g 9z ), and ordyt, (1) = % < ay; > (< ap > —1) where < a; > denotes the

number such that 0 < < a1 > <1 and a1— < a1 >€ Z.

(K5) Let f(r) = [1, g (7) be a finite product of Klein forms with a = (§ %) €
+Z* — 72 for an integer N > 1, and let k = — >, m(a). Then f(r) is a modular function
with respect to I'(V) if and only if £ = 0 and

S m(a)r? =3, m(a)s®> =Y, m(a)rs =0 mod N if N is odd
{ S m(a)r? =3, m(a)s* =0 mod 2N, >, m(a)rs =0 mod N if N is even.

Furthermore, we need the following three lemmas for later use which can be proved by
using the standard theory of modular functions.

Let N, m be positive integers and I' = I'; (N )NIg(mN). Note that if we let T\I'(1)/T'(1) o
= {TIT' (D)oo, -+, TYI'(1)sc }, then {v1(00), -+ ,74(c0)} is a set of all cusps of I" which
satisfies that v;(c0) and ,(c0) are not equivalent under T for any i # j. Let M = {(¢,d) €
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Z/mNZ x Z/mNZ | (¢,d) = 1, i.e., (¢,d;mN) = 1}. Further, let A = {+(1+ Nk) €
(Z/mNZ)*|k =0,---,m—1} which is a subgroup of (Z/mNZ)*. We define an equivalence
relation ~ on M by (¢1,d1) ~ (¢2,d2) if there exist 5§ € A and n € Z/mNZ such that ¢z =

5-ctand do = 5-d; + n-¢. Then ~ is indeed an equivalence relation. And we further

define a map ¢ : T\I'(1)/T(1)oc — M/ ~ by ¢(T (Z Z) I'(1)s) = [(¢,d)]. Here we see

without difficulty that the map ¢ is well-defined and bijective. Thus we get the following
lemma.

Lemma 1. Let a,c,d’,d € Z be such that (a,¢) = 1 and (d’,') = 1. We understand that

% = oo. Then, with the notation A as above, ¢ and Z—: are equivalent under I'1(N) N
/
To(mN) if and only if there exist s € A C (Z/mNZ)* and n € Z such that <CCL,> =
=1
(S a_—i— nc) mod mN.
5c

Proof. Let I' = T1(N) NTo(mN). We take b, d, b/, d' € Z such that ¢ N
c

b
d
/ /
I'(1). Note that ¢ and ‘é—,, are equivalent under I' & I’ (Z Z) I'l)oo =T <CCL, b ) I'1)oo

& [(6,d)] = [(d,d')] < there exist 5 € A and 7 € Z/mNZ such that ¢ = 3¢ and d’ =
5d + ne. Since ad — be = a/d’ — b'¢ = 1, the last statement is equivalent to the first one
of the followings. Note that (there exist 5 € A and 7 € Z/mNZ such that ¢ = 5¢ and
(ad —bc)-d =5-(a’d —b)-d+nc) < (there exist 5 € A and 7 € Z/mNZ such that ¢/
= 5¢ and add’ = 5a’ dd’' + nc) < (there exist 5 € A and 7 € Z/mNZ such that ¢/ = 3¢ and
a = 5a’ + nc) by observing (dd’,¢) = 1. This completes the proof. O

For a positive divisor z of mN, let 7, : (Z/mNZ)* — (Z/xZ)* be the natural homomor-
phism. Observe that 7, is surjective. And for a positive divisor ¢ of mN, let 8271, St
€ (Z/™N7Z)* be all the distinct coset representatives of mmn (A) in (Z/™X7Z)* where n,

mN ¢ -
= &ﬁ))‘. Here, ¢ is the Euler’s ¢-function. Then for any s’cﬁ- with ¢ = 1,--- ;n. we

take 5.; € (Z/mNZ)* such that mmn (50;) = s.;. We further let S, = {1, ,5cn, €
(Z/mNZ)*}. For a positive divisor ¢ of mN, let a’ | al.., € (Z/cZ)* be all the dis-

c,10" "7 v Yeme
©(c) _

[7re (Aﬁker(W% N

tinct coset representatives of m.(AN ker(mmn )) in (Z/cZ)*, where m, =

(©)

oy (i)l/\ﬂﬂ(A)\' Then for any @ with j =1,---,m, we take a.; € (Z/mNZ)* such

(c,

that m.(ac;) = af:j. With the notations as above, we finally let A, = {ac1, -, aem. € Z}
be a set such that 0 < ac1, -, acm. < mN, (ac,j,mN) =1 and ac; is the representative
of ac; for every j =1,--- ,me.

Lemma 2. With the notations as above, let S = {(¢-5c;,ac;) € Z/mNZ x Z/mNZ |0 <
clmN,5q; € Se, ac; € Act. For a given (C- 505, Gej) € S, we can take x, y € Z such that
(r,y) =1,% = ¢-5c; and § = Gc; because (¢- Sc;,acj, mN) = 1. Then for such x,y € Z, £
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form a set of all the inequivalent cusps of I'1(N) NTo(mN) and the number of such cusps
mN
8 [S] = X5 o0 me-me = 3 g (2O
N

clm clmN |ﬂ—%

(c, 1

Proof. Since there is a bijection between I'\I'(1)/T'(1)s and M’/ ~ where M' = {(¢,a) €
Z/mNZ x Z/mNZ | (¢,a) = 1, i.e., (c,a,mN) = 1} and (c1,a1) ~ (cz,az) if there exist
5€ Aand n € Z/mNZ such that &3 = 5-¢1 € Z/mNZ and a3 = 5 'ay + neg € Z/mNZ,
it is enough to prove that the natural map f : S — M’/ ~ is a bijection. We first prove
the injectivity. Suppose that [(¢- 5.7, @c;)] = [(¢ - Se77,aw j)]. Then there exist 5 € A and
n € Z/mNZ such that ¢/ -5o 7 = 5-¢-5.; € Z/mNZ and Gz j = § 'ac; +n-C 5., €
Z/mNZ. Since §,5¢;,57 € (Z/mNZ)* and ¢, | mN, we obtain ¢ = ¢’; hence mmn (5¢7)

—TI'mN(S) 7TmN(Sc7i) = s, /GWmN(A)IJ:?@:STiZ —z:>7rmzv(s) =1, ie.,

C,1
5€ Aﬁker(wmw) Thus @ ;7 = wc(s Yae; € (Z/cZ)* implies a. i € Wc(Aﬁker(ﬂmN))ac],
from which we get a.j = acj. Now we prove the surjectivity. Let [(/,a)] € M’ / ~. We
take ¢ = (¢, mN). Then (£) € (Z/™XZ)* implies (£) € Tmy (A)s! ;= Tmn (A)Tmn (507)

c,i

for some 7. Since (?Lg) =1¢€ Z/mNZ, we get 1 = (c,d ,mN) = (¢,d'), namely a’ €
(Z/cZ)*, and hence a' € m.(A Nker(mmn ))ac; for some j. We further claim that there

exist 5 € A and 1 € Z/mNZ such that ¢ = 5-¢-35.; and @’ -1

is enough to prove that there exist § € A such that mmn (8) = ($)Tmn (567) "L € Tmn (A)

(Z)™N7)* and 7.(5) = 571@ € m(ANker(rwmn)) C (Z/cZ)*, which is equivalent

to prove the following isomorphisms 7 _mN_ (A)/m_mn_ (AN ker(wmw)) = mmn (A) and
(e, ) (=) ¢

T_mN_ (AN ker(ﬂmN )) = (A Nker(mmy )) under the natural maps. Note that the kernel

(e, N
of the natural map 77( 77111\17\/) (A) — W%(A) is equal to 7r( Tﬁv) (AN ker(meN)). As for the
second, let 5 € A Nker(mmy ) be such that 7.(5) = 1 € (Z/cZ)*. Then s = 1 mod @ and

mN
(™)

Note that if ' = I'1(N) or I'g(m) then Lemma 1 and Lemma 2 may be reduced to concise
statements. In particular if I' = T'g(m), i.e., N = 1 then A = (Z/mZ)*, and so S. =
{1 € (Z/mZ)*} for any positive divisor ¢ of m. Since (c, acj) =1and acj = acjy <
Qe,j = ¢ mod ¢ and acj = a.j mod 7 & ac; = ae; mod (¢, ), we conclude by Lemma
2 that {*22 € Q| 0 < ¢|m, 0 < ac; g m, (acj,m) =1and acj = acj < acj = a; mod
(c, )} is a set of all the inequivalent cusps of 'g(m). Similarly if [' = T'y(N), i.e., m =1
then A = {£1} C (Z/NZ)*; hence Lemma 1 can be restated as a simpler one.

Here we observe that Lemma 2 gives us a set of all the inequivalent cusps of T';(N) N
Lo(mN). And we can figure out the width of each cusp by the following lemma.

Lemma 3. Let ¢ be a cusp of I' = T'1(N) NTo(mN) with a, ¢ € Z and (a,c) = 1. We
understand % as 0co. Then the width h of a cusp % in T'\H* is given by

((%;”72%) if N=4 and (m,2) =1 and (c,4) = 2,
h = (N)(% otherwise.

’(c,N))

5 c; +n-c-S5q;. It

s = 1 mod ¢, which implies s = 1 mod

This completes the proof. ]
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Proof. First, we consider the case where N does not divide 4. We take b,d € Z such that

(2 Z) € SLy(Z). Observe that the width of the cusp % in I'\9H* is the smallest positive

-1
. 1 —ach * _f(a b 1 h\ (a b
integer h such that ( _2h 1 +ach> = <c d) <O 1) <c d> e {£1}- (T1(N)N

1—ach * .
Lo(mN)). If < _2h 14 ach) € {-1}-(T'1(N)NTy(mN)), then by taking the trace we

1—ach *

have 2 = —2 mod N, which is a contradiction. So ( —h 1+ach

) e I'1(N)NTy(mN).

N mN _ mN _ :
Thus h € (aC’N)Zﬁ (CQ’mN)Z = (QN).(m’(%\U)Z. For the cases N = 1, 2, 4, we can verify the
statement in a similar fashion. ]

Now, we remark that arbitrary intersection I' = To(N7) N TO(Ny) N T'1(N3) N TL(Ny)
N T'(Ns) is in fact conjugate to the above form T'y(N) N To(mN). More precisely, a ‘T«
= T'1(N) N To(mN) where a = (lcm(N26N4’N5) (1]>, N = lem(Ns3, Ny, N5) and m =
lem(Ny, N3, N5) - lem(N2, Ny, N5)/N. Note that if we let {s1,---,s4} be a set of all the
inequivalent cusps of some congruence subgroup I'V and set IV = a~'T'a for some «, then
{a(s1),- -+ ,(sq)} gives us a set of all the inequivalent cusps of I'.

3. RAMANUJAN’S CUBIC CONTINUED FRACTION C(1)

In this section, by using the lemmas introduced in §2 we establish certain properties of the
Ramanujan’s cubic continued fraction C(7). Since C'(7) has an infinite product expression,
we can show by routine calculations that it has the following finite product of Klein forms

5t
0w =i T g2
XY

, where (15 = exp(%).

Theorem 4. Let C(7) be the Ramanugjan’s cubic continued fraction as before. Then C(T)
is a Hauptmodul for T'1(6) NTY(3).

Proof. Using (K5) we can check that the level of C(7) is 6. By (K1) and (K2) or definition

of C(7) in §1, it is readily verified that C o <[1) i) (1) = C(t +1) = 3C(1) where (3 =

exp(28%); hence C(7)? is invariant under <(1) }) Since I'1(6) =< I'(6), <(1) D 7 we

obtain that C(7)% € Ay(T'1(6)). We first claim that C(C(7)3) = Ap(I'1(6)). It follows
from Lemma 2 and 3 that there are four cusps 1, 1/2, 1/3, 1/6 ~ oo of widths 6, 3, 2, 1
respectively. For a cusp 1/c of width 6/c with ¢|6, we get by applying (K1) and (K4) that

C3o (i (1)> (1) is of the form

(some root of unity) - gg . + (higher terms),
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where r = %Z?:0(< % > (< % > —1)— < % > (< % > —1)). An easy
calculation shows that 7 = 0, 0, —1, 1 according as ¢ = 1, 2, 3, 6. Therefore C3(7) has
only a simple pole at 1/3 and only a simple zero at oo, which proves the claim. Let IV be a
subgroup of I'(1) such that C(C(7)) = Ao(I"), which is possible by the above claim. Then
[Ap(T7) : Ao(T1(6))] = 3, i.e., [['1(6) : I'] = 3. Note that C(7) is invariant under the action
of <(1) ?) because C o (é }) (1) = 3C(1). So I" D < I'(6), <é ?) > =T1(6)NTIY3).
Observing that [T'1(6) : T'1(6) NT°(3)] = 3 we can conclude that I” = T'1(6) N T%(3). O

Since C(7) has rational Fourier coefficients, the above theorem implies that Q(C(7)) =
Ap(T1(6)NT2(3))g. Thus the following proposition indicates the existence of an affine plane
model defined over Q, which is called in our case the modular equation.

Proposition 5. Let n be a positive integer. Then Q(C(7),C(n1)) = Ag(I'1(6) NT2(3) N
Lo(6n))q-

Proof. Since C(7) is a Hauptmodul for T'1(6) N T°(3), we see that for any a € GLj (Q),
Coa = C implies a € Q* - (T'1(6)NT9(3)). Let T =T1(6)NTY3) and 3 = (8 (1)> Note
that T NTo(6n) = T'1(6)NTY(3)NTo(6n) = ' N BTG, hence it is clear that C (1), C(nT) €
Ao(I' N B71I'B)g. Thus it is enough to show that Q(C(7),C(n7)) C Ao(I' N B7IIB)g. Let
I'" be the subgroup of SLy(Z) such that Q(C(7),C(nt)) = Ag(I")g and let v be an element
of T”. Since C(7) is an Hauptmodul for I';(6) N T°(3) and invariant under v, we derive
that v € I'. Moreover, C(n7) is invariant under v and C(7) is invariant under 8y3~!, from

which we have v € I' N 37'T'3. Therefore, this completes the proof because it means that
IV C I'N BB, namely Ag(I")g D Ao(I' N B7ITB)g. O

In general, if we let C(f1(7), f2(7)) be the field of all modular functions with respect to
some congruence subgroup for which fi(7) and f2(7) are nonconstant, then [C(f1(7), fa(7)) :
C(fi(1))] is equal to the total degree d; of poles of f;(7) for i = 1,2. So there exists
a polynomial ®(X,Y) € C[X,Y] such that ®(fi(7),Y) is an irreducible polynomial of
fa(7) over C(f1(7)) with degree dy, and similarly so is ®(X, fo(7)) with degree do. Then
Proposition 5 guarantees the existence of a polynomial ®,(X,Y) € Q[X,Y] such that
®,(C(1),C(nT)) =0 and ®,(X,Y) is irreducible both as a polynomial in X over C(Y') and
as a polynomial in Y over C(X), for every positive integer n.

Let IV = I'1(6) N T(18n). Then I is conjugate to I'1(6) N T?(3) N [g(6n), that is,

~1

(g ?) r <3 (1)> — T1(6) NT°(3) N To(6n). And Q(C(37),C(3n7)) = Ag(I")q. Since
it is much easier to handle with I than with the group I'1(6) N T%(3) N To(6n), we will
concentrate on the modular equation of C(37) and C(3n7), which gives rise to in return
the modular equation of C(7) and C(n7). Now that it is also easier to handle with a
Hauptmodul having a simple pole at oo, we let f(7) = ﬁ and I' = T'1(6) N Tp(18)
hereafter and consider the modular equation F,,(X,Y) € Q[X,Y] for f(7) and f(n7). Since
C(7) is a Hauptmodul for I'1(6) NT%(3), we see from the proof of Theorem 4 that C(7) has
a simple pole only at 1/3 and a simple zero only at co. Thus for inequivalent cusps under
I, f(7) has a simple pole only at co and a simple zero only at %.

Lemma 6. Let a,c,d’,d € Z and f(1) = C(ET). Then we achieve the following assertions.
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(1) f(7) has a pole at ¢ € Q U {oo} with (a,c) =1 & (a,c) =1, c =0 mod 18.

(2) f(nT) has a pole at ‘;—,’ € QU {oo} & there exist a,c € Z such that & = ”C—‘Z“/, (a,c) =1,
¢ =0 mod 18.

(3) f(7) has a zero at & € Q U{oc} with (a,c) =1 & (a,c) =1, c=9 mod 18.

(4) f(nT) has a zero at %/’ € QU {oo} & there exist a,c € Z such that & = "C—‘f/, (a,c) =1,
c=9 mod 18.

Proof. Since f(7) is a Hauptmodul for " with a simple pole only at co, f(7) has a pole only at
2 € QU{oc} such that ¢ is equivalent to oo under I'. By Lemma 1 we get that ¢ is equivalent

to oo under T' if and only if there exist 5 € A = {£1,+7,+13 € (Z/18Z)*} = (Z/18Z)*
—1

and n € Z such that (i) = <80 ) mod 18. So the first assertion follows. Furthermore,

f(7) has a zero at ¢ if and only if ¢ is equivalent to % under I". Applying Lemma 1 we have

c 9
we can derive the second and fourth assertions without difficulty. O

a 571+ 9n .
= mod 18. Hence we conclude the statement (3). Next, by using these

Let dy (respectively, dn) be the total degree of poles of f(7) (respectively, f(n7)).

Then we may let F,(X,Y) be a polynomial » <i<q, Ci; X'Y? € Q[X,Y], which satis-
0<j<d1

fies F,,(f(7), f(n7)) = 0. Ishida and Ishii([I1]) showed the following theorem by means of

the standard theory of algebraic functions, which will be useful in removing unnecessary

coefficients C; ; from the polynomial F;,(X,Y).

Theorem 7. For any congruence subgroup I, let f1(7), fa(7T) be nonconstants such that
C(fi(7), fa(7)) = Ao(I") with the total degree Dy, of poles of fr(T) for k = 1,2, and let
F(X,Y) = Y o<i<p, Ci j XY7 € C[X,Y] be such that F(f1(7), f2(7)) = 0. Let Sps be a set
0<j<D1

of all the z'nequizj)alent cusps of IV, and Sk = {s € Sp | fu(T) has zeros at s}, and S o
= {s € Sy | fr(7) has poles at s} for k =1,2. Further let a = — Zsesl,mﬁsz,o ords fi(1),
and b = 256517005270 ords fi(7T). Here we assume that a (respectively, b) is 0 if S1.0 N S2,0
(respectively, S10 M Sa0) is empty. Then we obtain the following assertions.

(1) Cpyq # 0. If further Si o C S200 U S20, then Cp, j =0 for any j # a.

(2) Cop # 0. If further Si9 C S2,00 U Sy, then Cyj =0 for any j # b.

(3) Cip, =0 for all i satisfying 0 < i < [S1,0 N S2,00| 07 D2 — [S1,00 N S2.00| < @ < Da.

(4) Cio =0 for all i satisfying 0 < i < |S10NS2,0| or Dy — [S1,00 N S20| < i < Da.

If we interchange the roles of fi(7) and fo(7), then we may obtain further properties
similar to (1)~(4). Suppose further that there exist r € R and N,ni,ny € Z with N > 0
such that fr(T+71) = (3 fi(T) for k = 1,2, where (n = e2™/N . Then we obtain the following
assertion.

(5) nii+n2j # ni1Da+nga mod N = C;; = 0. Here note that nab = ny Dy + noa mod
N.

From now on using Theorem 7 we rediscover Chan’s results on the modular equations
when p = 2 and 3.

Theorem 8. Let C(7) be the Ramanujan’s cubic continued fraction. Then

(1) {C(m)}* +2C(1){C(27)}* - C(27) =0
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1—-C(37)+{C(37)}2
(2) {C(1)}* = C(3) 1+2c§373+z{1{c(~<3§5}2'

Proof. To prove (1) ( respectively, (2)), we should find the modular equation Fy(X,Y)
(respectively, F3(X,Y)) for f(7) and f(27) (respectively, f(37)), where f(7) = ﬁ

Let us prove (1). By Proposition 5 we see that the congruence subgroup which we
(Z/367Z)*, where the notation Ag is the subgroup in §2. We will first obtain d;. By
Lemma 2 and Lemma 6 we must consider Stg, Aig, S3¢ and Asg, which are easily derived
as S1g8 = S36 = {1} and A3 = Ass = {1}, because nig, mis, nss and msg are 1. So all
the cusps of I'1(6) NTg(36) at which f(7) has poles are 1/18 and 1/36 by (1) of Lemma 6,
where 1/36 is equivalent to oo by Lemma 1. And we know by Lemma 3 the widths of 1/18
and oo are 1 and 1, respectively. Since f(7) = ¢! + O(1), we get that ords f(7) = —1.

Now that (fo (118 (1)))(7') = f(r) = ¢ 1+ O(1) due to the fact (118 (1)) e I'1(6)NTo(18),
we claim that ord;;;gf(7) = —1. Thus the total degree di of poles of f(7) is 2. Next,
we will estimate ds. In like manner, by Lemma 2 and Lemma 6 we should consider Ssg
and Asg, which are already obtained in the above as S35 = {1} and Asg = {1}. And all
the cusps of I'1(6) N I'x(36) at which f(27) has poles is 1/36 by (2) of Lemma 6. Since
1/36 is equivalent to co and the width of oo is 1, using f(27) = ¢~ 2 + O(1) we get that
ords f(27) = —2. So the total degree da of poles of f(27) is 2. Hence, F5(X,Y) is of the
form ZOSiSQ Cm‘Xiyj S @[X, Y].
0<5<2

Now, B}]ffutilizing Theorem 7 we can determine which coefficients C; ; should be elimi-
nated. If we let fi(7) = f(7) and fo(7) = f(27) in the theorem, we know that Si . =
{%8’%}’ S10 = {%}, 5200 = {%} and Syp = {%’%8} Since S1.00 N S20 = %8’ we have

a = 1. And, as for b, calculating ord%fl(r) we derive b = 2 because (f o <é ?))(7’) =

1/(C o (g (1)) (é 2))(7) —1/(Co (é 2))(37) — ¢} + - and the width of  is 4 in

(I'1(6)NT'0(36))\$H*. It follows from Theorem 7 (1) and (2) that Cy 1 # 0 and Cr o = Ca 1 =0
and Cpo # 0 and Cp; = Cpo = 0. In order to use (5) of the theorem we calculate the fol-
lowings in advance:

flr +1§> = S+ ;,)) - 0(3}1) = Gf() = Gh()
fa(m+ g) = f2r + g) “Clri2) G3f(27) = Gafa(T).

So we may assume that N = 3, nj = 2, ng = 1. Applying these to (5) of Theorem 7,
Coo =C1p=C11 = Cp1 =Cyo=Cpp = 0. Hence, we are able to simplify our modular
equation as Fy(X,Y) = 0271X2Y +C1oX + C[)’QYQ. Since Cpo # 0, let it be 1.

Next, by replacing X (respectively, Y') by the g-expansion of f(7) (respectively, f(27)),
we get that Co1 = —1 and C1o = 2. Thus, F5(X,Y) = —X?Y + 2X + Y2, Multiplying
Fg(ﬁ, ﬁ) by C(7)2C(27)? we achieve the first assertion.

In a similar way, by considering I'1(6) N I'g(54) and Az = (Z/54Z)* we can estimate

the polynomial F5(X,Y) = Y o<i<d, CijX'Y7 such that F3(f(7), f(37)) = 0. In this case,
0<j<d;

since Sig = Ss4 = {1}, A18 = {1,5} and As4 = {1}, f(7) has poles at 1/18, 5/18 and 1/54
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with width 1, 1 and 1 respectively by Lemma 3, in which 1/54 is equivalent to oo under

I'1(6)NTo(54). And, we already know that f(7) = ¢~ 1+O(1) and (fo <118 (1)> (1) = f(1) =

18 -7
(some root of unity) - f(7) = (some root of unity) - ¢~ + O(1). Considering the widths of
cusps we have ordo. f(7) = ord; 13 f(7) = ords18f(7) = —1. And, di = 3. Likewise, f(37)
has a pole only at 1/54 ~ co and f(37) = ¢~3 + O(1). Hence, ords f(37) is —3. In other
words, we deduce ds = 3.

We let fi(r) = f(r) and fo(7) = f(37) in Theorem 7. Then Si = {3k, 1%, 21}
S0 = {8,251}, S200c = {55} and Sz = {5}. Since Si N S20 = ¢, the number
a in Theorem 7 is 0. By (1) of Theorem 7, we have C5o # 0. Interchanging the roles
of fi(r) and fa(r) we get Coz # 0 and Cj3 = 0 for any j # 0. Then by the same
argument as above, substituting 7 + % for 7 in f(7) and f(37) we obtain that Cg =
Ci1 =Cig =C13 =Cy9 =Cyp = Cra = Cy3 = 0. So, we may write F3(X,Y) =
Co’() + C(]JY + C(LQYZ + 00,3 + C3)0X3 + 0371X3Y + 0372X3Y2. Since 0073 =% 0, we let it be
1.

Now, by replacing X (respectively, Y) by the g-expansion of f(7) (respectively, f(37)),

g 1+0O(1). By the action of Klein forms (K1) ~ (K5) we then see that (fo < o _2> )(T) =

we conclude that C(),() = O, 00,1 = 4, 00,2 = 2, 03,0 = —1, 0371 = 1 and 0372 = —1.
So, F3(X,Y) = 4Y +2Y? +Y? — X% + XV — X°Y?. If we multiply F3(¢(5, o) by
C(7)3C(37)3, our second assertion is established. O

In order to extend the above results to all primes p we confine each prime p to the one
relatively prime to 6 and find the relation between f(7) and f(p7).

Theorem 9. Let p be a prime greater than 3. Then F,(X,Y) = ZOSZ’JSPH C;; XY €
Q[X,Y] satisfies the following conditions.

(1) Cpr1,0 # 0 and Cpp11 =Cpy12 ="+ = Cpyip+1 =0,Co0 =0

(2) Ifp=1 mod 6 andi+j =0 or 1 mod 3, then C;; = 0.

(3) If p=—1 mod 6 andi—j =1 or2 mod 3, then C;; = 0.

Proof. The congruence subgroup under consideration is IV = T'1(6) N Ty(18p), and hence
A ={+(1+6k) € (Z/18pZ)*|k =0,1,---,3p— 1} where A is the subgroup as in §2. Since
every integer relatively prime to 6 is congruent to +1 modulo 6, we have to consider S;
and A; only for j € {9,18,9p,18p} by Lemma 2 and 6. Since n; = 1 for all j = 9,18,9p
and 18p, S; = {1}. Thus all the inequivalent cusps under consideration are %, %, % and
ﬁ with widths 2p, p, 2 and 1, respectively by Lemma 3. And it follows from Lemma 1
that Tép is equivalent to oo . If we let f1(7) = f(7) and fa(7) = f(p7) in Theorem 7, then

we know by Lemma 6 that Sj . = {1—18, ﬁ} and S1o = {%, %}. Further we obtain that

1 0
Sz.00 = {15 ﬁ} and Sz = {3, %}. Now that (f o <18 1))(7) = f(r) =q¢ '+ 0(1) due

to the fact that (118 (1)> € I', we derive that ords f(7) = —1 and ord 1 f(7) = —p. So the
18

total degree d;y of poles of f(7) is p+1. Since f(pr) = ¢ P+ O(1), we get orde, f(p7) = —p.

L b) € SLy(Z). Since there

In order to find OI'd%gf(pT), we first take b, d € Z such that <18 d



12 BUMKYU CHO, JA KYUNG KOO AND YOON KYUNG PARK

. 3p 0 1 b p 3b—x\ (3 =z
exists x € Z such that d—6x =0 mod p, < ) < ) = ( d—6 where
0 1 18 d 6 = 0 p

3b—
(Zg d_6xx> € SLo(Z). Thus the Fourier expansion of f(p7) at % can be derived from
P

vo (b 1) (s apm=ves (T V) (s o= (f ") (0 )

by (K1) and (K2). We see by (K4) that the above is of the form

(some root of unity) - qll; + higher order term,

where k = 6(3 <2 > (<2 >-1)—1 <2 > (<2 > —1)) x 3 with the notation

as in (K4). Considering p = +1 mod 6 we have ¥ = —1. Hence ordﬁf(pT) = —1.
And the total degree d,, of poles of f(pr) is p + 1. Therefore Fj(X,Y) is of the form
F(X)Y) = ZOSi,jng C;; X'Y7. Since Sioo N Sap is empty, we claim that @ = 0 in
Theorem 7 and hence Cp119 # 0 and Cpt1,1 = Cpr12 = -+ = Cpt1p+1 = 0. Interchanging
the role of f1(7) and fo(7) we have b = Ord%fQ(T) +ord$ f2(7) =p+1and Cyo=0. Then

we can derive by Theorem 7 (5) all the other assertions. Next, we observe that fi(7+ %) =
F(r+3) = gt = QI = GA() and fo(r+1) = Fp(r+1) = b = &7 (r)
imply fo(T + %) = (2f2(7) (respectively, (3f2(7)) if p =1 mod 6 (respectively, if p = —1
mod 6). Therefore, we establish that i4+j = 0,1 mod 3 = C; ; = 0 (respectively, i—j = 1,2
mod 3 = C;; = 0) if p =1 mod 6 (respectively, if p = —1 mod 6). This completes the
proof. O

Now we are ready to find the modular equation ®,(X,Y) =0 of C(7) and C(nr) for the
case where n is a prime greater than 3. Using Theorem 9 and inserting enough terms of
the Fourier expansions of f(7) and f(pr) into F),(X,Y") we can find ®,(X,Y) = 0. Here we
must deliberate the relation ®,(X,Y) = XPH1yrHip (L 1)

The following table shows that the coefficients of the modular equations are congruent to
zero modulo p except for the ones of the terms vP*!, wPt! vw and vPw? in each case, which
indicates the existence of Kronecker’s congruences. Thus, we will work with the equation
$,(X,Y) =0 in order to find such congruences.
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0= g™+ ma— (M — MG+ (MG — ;MG — §;M)ALT—
(M + ¢M8T — M8 + | MVET + 5 M8LT + ,1MT) LT+
(¢m9 — gMIT — (MEIE + 71 MESOT + ¢;MTEI) LT+
(4 mp) — ,MG6E + (1 M6E6 + ¢ MTO0T + g METL) LT+
(;M8T — (MTET + gMGOT + ({MEETT — 5 PTO0T — , PTL) AFE+
(eMIT + oMFEG — MLSTT + 71 MLLIOT + o MTLYS) gULT—

(MG + ,MGEE — ,MITHT + (1 MITOE + ¢ M09IG6 + o M8STL) ,ALT—
ANSﬂN - mSmON - wB%ﬂmm + Hﬂswﬂom - wﬁSNHmN - hﬁsONMvaﬁM|
(eMBIE + oML8TT — ¢MIESTT — 1 MIGFLT + ¢ MITIET) LT+
(MG + ,MBE6 + ,MITOE — (1 MFBLIT — ¢ MOTTIET — o MV/TTT) (1 ALT+
(ZMLIT — ¢MGETT + gMITOE — [ M8TEGT + 1 MOSTET + ,;M09ET) 1 WE—
(emBGOT + gMLLIOT — MIGTLT + 71 MITOSE + ¢ MTOT8) 1AL+
(M6 + ,mTO0T + ,M0956 — o POGIET — ¢iMTO6LEE + o1 MFIRIE) ¢ UL+
(;m68 — ¢MTO0T + gMETGL — (1 M08TET + 1 M888LE + ,1MIG0T) ; WE—
(eMBL — gMEEOT + ¢MTG6E — 71 MFE0T — ¢ MTLOE) ¢ V9ET —

(M — MZTL+ ,M88FL — (1 M8STTT + ¢ MFIRIE + o MFSEIT) o ALT+
(;Mg — MFFT — gPOF9 + (1 MOGTS + 51 MT6I8 + , 1 MGERE) , [ ALT — , M) 12 — o1

LT

0= M+ ma— (o4 ,mg — 10— o MZ)ALT + (MG — gNTT + (NOE + 71 MET) 08T + (MG — (Mg + gMEE + 11M09) LT+
(4 ,meT — ,mee + 1MTET + 1 M8)AET + (¢ME — M6 — (MYSE + ;1 MOFT) PET—
(¢ — (Mg — NTLT + (1M8TT)26E — (M + ;MTT — ,MO0T + ;188 + ¢ MF9) , 266~
(eMTE 4 gMTLT — MFT — 71MICT) 6L + (MCT + (NFET — gMIE — 11MI6) 49T+
(m + ,mZET — ,MFIT + (;NTES + ¢ MTTG) 0 €T — (¢MCT + oMI]T — (N8Y + 1 MIGT) 112CG+
ANSMN + mSOﬂN — wswwh + ﬂﬁSﬁNOﬁvmﬁQMﬁ + ASN — wsw — hSN@ﬁ + OASNﬁm + mﬁSmHmeﬁb\MH — mﬁg\mﬂb\ _ wHQ

!

0= g+ ma— (;m— mg+ (MZ)TT — (;@ — MY + gMLT + M) ATT + (oM + oMl — MT) LT~
(M +,mQ — ,mPT + ;M8 ATT + (;ME — (MTE + gMFT + 11 MIT) AT — (M — oM + cNY) AFGT—
(4 m) — 58T + (;196) ,08C — (zMLT — ¢M8T + gM8TT + (1 M8TT) AT T — (M + gM8Z + (MTE) AT —
AS |T %Sﬁm - NS@@ |T oiﬁ@NﬁvOﬂ@NN - Amsﬂu - mSNm. |T waNﬁ AT HHSMGVAHDHﬁ - AHSAHQ - Nﬁ@

0 = M+ Mo — M) + (M AT + (Me9G — (M — Mg — ,MQ); A), — M QG — ;M AT + (M + ,MG) AL — ,M,0 — 0

0= oM+ ma — mag 4 (,m — (MZ),0G — M00g — (M + ;mF) A6 + (MG + (NE) NG — (Ml — o0

((2d)p =:)m pue ((L1)H =:)a jo uoryenbe rempour o)

—
o [~ |
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As before, let I' = T'1(6) N I'y(18). For any integer a with (a,6) = 1, we fix o, € I'(1) so

-1
that o, = (a

0 2) mod 18. Then for every positive integer a prime to 6 one has

10 b
r<0 n)r:U U Faa<8 n>
a>0 0<b<2 @

in which the right hand side is a disjoint union. Indeed, first note that |T'\I' <(1) 2) I =

n] L1+ I%) and then use [16], Proposition 3.36.

Since o, depends only on a modulo 18, we fix 0, as 041 = + <(1) (1)>, o155 =+ <(15§ 158>

and o017 = £ (IS5 _1(?5> Actually, since o, € (£1) - T for a € {£1,45,£7}, we have
fooa=f.
For convenience, we let aqp = 04 g 2) for such a,b. We now consider the following
a

polynomial ¥,,(X,7) with the indeterminate X

X, =] I (X—(foawn).

a>0  0<b<2
an (ap,2)=1
a

Note that deg Wn(X,7) = n]],, (1 + %) Since all the coefficients of ¥, (X,7) are the
elementary symmetric functions of the f o« , they are invariant under I', i.e., ¥, (X, 7) €
C(f(7))[X]; hence we may write ¥, (X, f(7)) instead of ¥, (X, 7).

When f(n1) = fi(7) and f(7) = fa(7), we define S to be the set of cusps at which
fj(7) has pole and by S; o we mean the set of cusps at which f;(7) has zero. And we recall
from Theorem 7 that a is a nonnegative integer defined by

_J o  Af 8106 NS20 = ¢
7 - Zsesl,wmsm ordsfi(r) , otherwise.

Then, in order to have a polynomial F,, (X, f(7)) in C[X, f(7)] which satisfies F},(f(7), f(nT)) =
0, we should multiply ¥, (X, f(7)) by f(7)*. However, S, N S20 = ¢ due to the fact that
Sieo = {18=} and S200 = {55, " 1&-}- Thus a = 0 so that we are to work with just
U, (X, f(7)) as a polynomial of X and f(7) to prove the following theorem.

Theorem 10. With the notation as above, for any positive integer n with (n,6) =1 we de-
fine U,,(X,Y) to be a polynomial such that W,,(f(7), f(nT)) = 0. Then we get the following
assertions.

(1) Un(X,Y) € Z[X,Y] and degx W (X,Y) = degy Un(X,Y) = n],,(1+ ).

(2) U, (X,Y) is irreducible both as a polynomial in X over C(Y) and as a polynomial in
Y over C(X).

(4) If n is not a square, then ¥, (X, X) is a polynomial of degree > 1 whose leading
coefficient is +1.
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(5) (Kronecker’s congruence) Let p be an odd prime. Then
U, (X,Y) = (XP - V)(X —YP) mod pZ[X,Y].

Proof. Since f(7) = 1/C(37), we let f(7) = ¢ 1 +>°°_, c;ng™ with ¢, € Z. We further let
d=n][,,1+ %) and let 1}, be an automorphism of Q(¢,) over Q defined by vy ((,) = ¢*

for some integer k with (k,n) = 1. Then v induces an automorphism of @(Cn)((q% )) by the

action on the coefficients. We denote the induced automorphism by the same notation .

since (70 (5w )0 =1((§ 1)) - f(%w ) =G e 5, we
a - a

0 2

/
integer such that 0 < 0" < 2 and ¥ = bk mod 2. Then vy (f o (g b)) fo (a Z;L)

because (2% = ng/. And for all @ € {£1,£5,£7} we have f o0, = f, from which we
get that ¢, (f o agp) = f o gy and all the coefficients of W, (X, f(7)) are contained in
Q(gm))[X].

Note that W,,(f(7), f(7)) = 0yields [C(f(%), f(7)) : C(f(7))] < d. Let § be the field of all
meromorphic functions on $ which contains (C( f(7), f(7)) as a subfield. We further observe
that for any element « of I' the map h(7) — h(vy(7)) gives an embedding of C(f(7), f(7))
into §, which is trivial on C(f(7)). Also, note that for any a,; there exists v, € T

such that (é 2) YabQqy € I Since f(aqp(7)) # flaa (7)) for aqp # ag p, there are
at least d distinct embeddings of C(f(%), f(7)) into § over C(f(7)) defined by f(T)

fo <(1) 2) °Yap = flaap(r)). Hence [C(f(7), f(7)) : C(f(7))] = d. This implies that

U, (X, f(7)) is irreducible over C(f(7)). Now that ¥, (X, f(7)) is an irreducible polynomial
of f(T) over C(f(7)) and ¥,,(f(%),Y) is also an irreducible polynomial of f(7) over C(f(%)),
we derive the fact that ¥, (X,Y) is irreducible both as a polynomial in X over C(Y) and
as a polynomial in Y over C(X). On the other hand, since ¥, (X, f(7)) € Q[X, f(7)]
and all the Fourier coefficients of W, (X, f(7)) are algebraic integers, we conclude that
U, (X,Y) € Z[X,Y]. It proves (1) and (2).

Now that (X — (f oan)(7)) is a factor of ®,,(X, f(7)) and foa,o= foo,o (8 (1)> =

obtain that 1 ((f o >)(7’)) = (kg —i— Yoy cmC“bkm “n . Let V' be the unique

7), f(7)) = 0, namely \Iln(f(T),f(l)) = 0. Hence, f(%) is a

X) = O and W, (f(7),X) € Z[X, f(7)]. Meanwhile, f(T) is
and ¥, (X, f(7)) is irreducible over C(f(Z)). So there exists

X, ( )] such that W, (f(7),X) = g(X, f(7))¥n(X, f(7)).

fo (0 ﬁ’) we get U, (f

root of the equation W, (f
also a root of ¥, (X, f(7))
a polynomial g(X, f( ) €
However, the identity

U, (f(7), X) = g(X, £(7)) - g(f(7), X) - W (£(7), X)
implics (X, f(r)) = 1. If g(X, f(r)) = =1, W (f(r), f(r)) = —W,(f(r), f(r)). Thus,

f(r)isaroot of ¥, (X, f(7)) = 0, which is a contradiction to the irreducibility of ¥,,(X, f(7))
over C(f(7)). Therefore, (3) is proved.

(n
7

3 I

7),
0
=/
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As for the Veriﬁcation of (4), we assume that n is not a square. Then f(7)—(foay,p)(T) =

g — (% +0(q ) And, the coefficient of the lowest degree in ¥, (f(7), f(7)) is a
unit. Smce it is an integer and ¥, (X, X) is a polynomial of degree > 1, (4) is proved.
In order to justify the last assertion, let p be a prime greater than 3. For g(7), h(T)
1
Z[Cp]((q%)) and o € Z[(p], we know that ¢(7) = h(7) mod «a if g(7) — k(1) € aZ[,|((gP
On the other hand, since f(7) = ¢~ + Y. o0_ ¢;ng™ with ¢, € Z, we deduce that

€
)

))-

fla(™) = Gla 7+ enllmq’
m=1

1 > m
= q r+ Z cmq?  mod (1 —¢p).

m=1
Hence, f(o1 (7)) = f(a1,0(7)) mod (1 —(p) for any b=0,--- ,p — 1. And, by making use
of the relation cb, = ¢, mod p we see that

flapo(r) = ¢ P+ Z cm@”™

_p+Zc P = (f(7))? mod p.

So, flopo(r)) = f(1)P mod (1 — (). In a similar way we get f(a1o(7))P = (qii +
S cmq%)p =q 14+ 3 chg™ = f(r) mod (1 — (,). Thus we achieve that

V(X () =[] (X = flarp()) x (X = flapo(r)))
0<b<p
= (X- f(a1 o(7)"(X = f(7)P) = (XP = fon,0(7))")(X = f(7)")
(XP = f(T)(X = f(7)") mod (1 —¢p).
Now, let Wy, (X, f(7)) = (XP — f(7))(X = f(7)7) be 2, (f(T)) X" € (1 = G)ZIX, f(7)],
where ¥, (f(7)) € Z[f(7)]. Since all the Fourier coefficients of ¢, (f(7)) are rational integers
and divisible by 1 — (,, we obtain that ¢, (f(7)) € pZ[f(7)]. Therefore ¥,(X, f(7)) =

(XP = f(7))(X = f(7)P) mod pZ[X, f(T)]. 0
4. CONSTRUCTIONS OF RAY CLASS FIELDS AND CLASS POLYNOMIALS

Let K be an imaginary quadratic field and N be a positive integer. Let K(y) be the ray
class field modulo N over K and 7 € KN$ be a root of the primitive equation az?+bx+c = 0
such that b? — 4ac = dx where dg is the discriminant of K. In this section we show that
C(1) generates K () over K and then find the class polynomial of K) by using the fact
that ( ) is an algebraic integer.

We first consider the principal congruence subgroup I'(N) of SLy(Z) as the kernel of
the map SLyo(Z) — SLo(Z/NZ) obtained by reducing the entries modulo N. If h is a
meromorphic function on the modular curve X (N) = I'(N)\9*, its Laurent series expansion
in the parameter q% — ¢’ is called the Fourier expansion of h. Embedding the algebraic
closure @ of the rational numbers into C we see that X (V) can be defined over Q({y), and
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hence let Fy be its function field over Q((x). Then one can have F; = Q(j) and define the
automorphic function field § as the union § = |y~ Fv. For a subfield § of § and z € K,
the notation K - §(z) in the following theorem means the compositum of K and the field
§'(z) which is generated over Q by {h(z)|h € § and h is defined and finite at z}.

Theorem 11. Let K be an imaginary quadratic field and 7 € K N $ be a root of the
primitive equation aX? 4+ bX 4+ ¢ = 0 with a,b,c € Z such that its discriminant is the field
discriminant of K. Let x (respectively, y) be the least positive integer such that x = (Nz,a)
(respectively, y = (Ny,c)), and let

N
32 = the field of all automorphic functions for To(Nz) NT1(N)
with rational Fourier coefficients,
3% = the field of all automorphic functions for To(Ny) NT*(N)

with rational Fourier coefficients,

4 .. (10 1 0
Smax = the field of all automorphic functions for T°(Nc) NTo(Na) NT(N)

whose Fourier coefficients with respect to €>™*/N¢ belong to Q(¢w).

Then for any field §' in the hypothesis, K - §'(z) is the ray class field modulo N over
K. Furthermore, if §" is any intermediate field such that Sffl)m C §" C Fmaz for some i
(1<i<4)orFnCF" CFmax, then K-F"(2) is also the ray class field modulo N over K.

Proof. Theorem 29 in [6]. O

Lemma 12. Let K be an imaginary quadratic field with discriminant dg and 7 € KN$ be
a root of the primitive equation ax® + bz + ¢ = 0 such that b*> — dac = dg, and let I be any
congruence subgroup containing I'(N) and contained in I'1(N). Suppose that (N,a) = 1.
Then the field generated over K by all the values h(T), where h € Ag(I')q is defined and
finite at T, is the ray class field modulo N over K.

Proof. With the notations as in Theorem 11, if (N,a) = 1 then x in the theorem is equal
to 1. Therefore the inclusions §\2) = Ag(T'1(N))g C Ao(I")g C Ao(T(N))g C Fiy C Fmax

min
imply the lemma. g
Theorem 13. Let K be an imaginary quadratic field with discriminant dg and 7 € KN $H
be a root of the primitive equation azx®+bx +c = 0 such that b* — 4ac = dx. Then K(C(T))
is the ray class field modulo 6 over K if (6,a) = 1. In particular, if Z[T] is the ring of
integers in K, then K(C(7)) is the ray class field modulo 6 over K.

Proof. Since C(7) is a Hauptmodul for I'1(6) N TY(3) with rational Fourier coefficients and
I'(6) C T1(6)NT9(3) C T'1(6), we get the first assertion by Lemma 12. In particular, if Z[r]
is the ring of integers in K, then a = 1 and hence we readily conclude the last statement. [

Next, we show that ﬁ is an algebraic integer for an imaginary quadratic argument 7,
which helps us to approximate the coefficients of class polynomial.
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Theorem 14. Let K be an imaginary quadratic field with discriminant di and t = N (ji,n)

be the normalized generator of Ag(I'1(IN)). Let s be a cusp of I'y(IN) whose width is hs and

Sty () is the set of inequivalent cusps of T1(N)\$*. Ift € ¢~ Z[[q]] and [Ises. (N)_{Oo}(t(z)—
1

t(s))s is a polynomial in Z[t], then t(1) is an algebraic integer for T € K N $.
Here we call f the normalized generator of Ag(I') for a congruence subgroup I' associated
to the genus zero modular curve T\$*, if its q-expansion starts with ¢~ +0+a1q+azq®+- - - .

Proof. See [13]. O

Lemma 15. The normalized generator of Ayg(I'1(6)) is C%(T) - 3.

Proof. Let g(1) = C%o-) It follows from Theorem 4 that C(C(7)) = Ao(T1(6) N TY(3)).
Since I'1(6) NT%(3) is a subgroup of I'1(6) with index 3, for v € I'1(6) N T°(3) we deduce

goy = g. Furthermore, using C'o <(1) }) (1) = G%C(T) we have go (é i) =g. But, I'1(6)

=< Ty(6)nT(3), ( D >, and s0 C(g(r)) C A(T's(6)). Observing [Ao(T's(6)) : C(g(r))] =

[C(C(1)):C(g(7))] _ _[c(C(1):Cg(n))]
[Ao(T1(6)NT0(3)): Ao (T'1(6))] — [I'1(6):T'1(6)NI'0(3)]
with pole at co. And at oo we can easily find a g-expansion g(7) = ¢~ ' +3+a1q+asg®+---.
Therefore, the normalized generator of I'1(6) is C%(T) - 3. O

= 1 we see that g(7) is a generator of Ay(I'1(6))

Theorem 16. Let K be an imaginary quadratic field with discriminant dg and 7 € KN $H.
Then ﬁ 18 an algebraic integer.

Proof. We see by Lemma 15 that the normalized generator ¢(7) is C%(T) -3 € q'Z]4q]).

And, before we go further we recall that hs is the width of the cusp s and (,, = e . Since
['y(6) =T1(6), we have Spl(G) = {0, 0, %, %}
(i)
5 ¢ 1 5 ¢ j 1
0 -1 § 1) (0 -1 § -6
oo Ne=aIl =2 (0 N m=all e
0 ‘LB 0 Ll g 3
=0 (3 %) =0 (3 —3)
= BTy expri{(—1)(E — 1) — (=) (L — 1)} =%, x 1+ 0(q)) = L +O(g). S
12115=0 pm{( 6)(6 )—( 6)(6 )}I*Cg?’x( + (Q)) 5+ (Q) o,
. 0 —1 1 1
C(O)_TILIEOCC)(l 0)(7’)—(%1Lr(1]+0(q)—2.
. —_1 -
Thus we get t(O)—C3(0) 3=5
(ii)

5 E(ﬂ

10 §
cofy V)=l o
21 11 o
St )
Then, C(3) = limg_o(1 + O(g)) = 1 yields ¢(3) = —2.
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(iii)

Eiigsi
ot Oy d (52 ) -
c <3 1)( )—C12]1_[OE(3%3], é)( )-

We know by (K5) in §2 that ord,C o <i1’> (1)> (1) = —%. In other words, C(7) has

a pole at % and t(%) = C%(T) —-3=-3.

On the other hand, if follows from Lemma 3 that hy = 6, h% = 3 and h% = 2. Hence, the
polynomial [[ g (6)7{00}(t(z) —1(s))"s becomes (t—5)%(t+2)3(t+3)? so that it belongs to
1

Z[t]. Then we conclude by Theorem 14 that C%(T) — 3 is an algebraic integer for 7 € K N $H.
Therefore % is an algebraic integer, too. O

We see from Theorem 13 that if an imaginary quadratic number 6 generates the ring of
integers in K = Q(#), then K (C(#)) is the ray class field modulo 6 over K. In this case to
find its class polynomial we shall use the Shimura’s reciprocity law by adopting the idea of
Gee([9]).

We first consider the finite Galois extension Fy C Fy. Let ay € SLy(Z/NZ) rep-
resent the I'(IV)-equivalence class of a linear fractional transformation a € SLo(Z) on
H*. For h € Fy, the action h*N = h o a is well defined and induces an isomorphism
SLy(Z/NZ)/{£1} = Gal(Fn/Fi1({n)) = Gal(C - Fx/C- Fy). And for d € (Z/NZ)*, let o4
denote the automorphism of Q({x) given by (ny — C]Cf,. Then the action of o4 gives rise to
a natural isomorphism Gal(F;(¢n)/F1) = Gal(Q(¢n)/Q) = (Z/NZ)*, which we can lift to
Fy by changing h =), ckq% € Fytoh% =5, ad(ck)q%. Thus h +— h%? defines a group
action of (Z/NZ)* on Fy whose invariant field Fiy g is the subfield of F having Fourier
coefficients in Q. Here we have Fy o N Fi((n) = Fi.

Now, define the subgroup Gy = {((1) 2) |d € (Z/NZ)*} of GL2(Z/NZ). Then the

map (Z/NZ)* = Gy gives an isomorphism Gy = Gal(Fx/Fy ). From this fact we get the
following exact sequence

{£1} = GL2(Z/NZ) — Gal(Fn/F1) — 1.
Passing to the projective limit we then have an exact sequence
1 — {1} — GLy(Z) — Gal(§/Fy) — 1.

Let K, = Q, ®g K and O, = Z, ®z O for the ring of integer O = Z[f] of K. By the
main theorem of complex multiplication j(#) generates the Hilbert class field over K and
the maximal abelian extension K% is equal to K (F(#)). Moreover, the sequence

1—- 0% =[]0y — Gal(K™/K(j(6))) — 1

is exact. Here the map [[, O — Gal(K®/K(j(6))) is the Artin map [~, K]. In addition,
the ray class field modulo N over K is K(Fn(f)) and the subgroup of [, Op which acts
trivially on K(Fn(0)) with respect to the Artin map is generated by O and J[,((1 +
NO,)NOy).
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Let J {( be the finite idéles H; pr of K. The restricted product is taken with respect
to the subgroup (95 C pr. For every prime p we consider the map (gy), defined by

(90)p + K} — GL2(Qp) as the injection satisfying (gq),(zp) <f> =z, (f) Since ZI[0)] is

the ring of integers of K, § has the minimal polynomial X2+ BX +C € Z[X] which satisfies
62 + B + C = 0. Then for s, and t, € Q, we explicitly have

t, — B -sp C’-sp>
. )

(gg)p : Sp9 +tp — < 5 ¢

Therefore on J[f( we get an injective map go = [[,(g0)p : J}; — H; GL>(Qp). Here the
restricted product is taken with respect to the subgroups GL2(Z,) C GL2(Q,). Moreover,
9, (GLo(Z)) = [, O, So we get the row exact diagram

[N7K]
1 - 0% — JLOf — Ga(K®/K(j®) — 1
)
1 — {£1} — GLy(Z) — Gal(F/F)) — 1

And by the Shimura reciprocity law, h(6)= K] = h90®)(9) for h € § and x € I, 0,
For a positive integer N, g, ' (Stabry) = [[,((1 + NOp) N O;) where Stabp, is the in-
verse image of Gal(F/Fy) in GLQ(z). Using the isomorphism g, ' (Stabp,)/g, ' (Stabpy ) ~
(O/NO)* we define the reduction map gy n of go modulo N from (O/NO)* to GL2(Z/NZ).
Define Wy = go.n((O/NO)*) C GL2(Z/NZ). Precisely speaking, Wi g is a finite sub-

group {<t _SB s _fs> € GLy(Z/NZ)|t,s € Z/NZ}.

Theorem 17. Let K be an imaginary quadratic field of discriminant dx and 6 = @
(respectively, %} ifd=0 mod 4 (respectively, d =1 mod 4), and let Q = [a,b, ] be a
primitive positive definite quadratic form of discriminant dx and T denote % € 9.

Define u = (up)p € [1, GL2(Zp) as follows. (p runs over all rational primes.)

Case 1 : d=0 mod 4

< S) ,ifpta,
1
b
w=1 (3 ) i pla and pe,

A .
1 4 ) , if pla and plc.
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Case 2 : d=1 mod 4

o i |
<0 1) ,'prJfCL,
3-b
222 ¢ .
up = <f 0 ; if pla and ptec,
_ 3=b _._ 3%b
< CHl_ 2 C_l 2 > , if pla and ple.

Then h(0)l»=24 = h¥(1q) for any h € F such that h(9) € K(j(6)).
Proof. See [9]. O

With the notations as above, if h € F), for a prime p, then h(§)le=bel = pup (1) because
the action h" depends only on the p—component. Here we observe that our continued
fraction C(7) is contained in Fg. Let f(7) = % Then f(§)le—bd = fluzusus, ) (1) =
fMa (1) where Mg € Mx(Z) N GLF (Q) satisfies Mg = u, mod 6 for all primes p. There-
fore, we may take Mg = 3ug — 2uz € GL2(Z/6Z).

Let H be the Hilbert class field of K. Then there is a surjective homomorphism of Wy ¢
onto Gal(K(yy/H) defined by o+ (h(7) — he ' (0)). Let C be the kernel of this surjection.
In fact, C is the image of go(Oy) in GLy(Z/NZ). Since Gal(K yy/K)/Gal(Ky)/H) is
isomorphic to Gal(H/K) = C(dk), where C(dk) is the form class group of discriminant
dg. Thus, the image of the homomorphism

Q17" = (h(6) — nM2(6))

gives all the coset representatives of Gal(K(yy/H) in Gal(K(y)/K). Hence, we obtain that
{heMa | o € Wy yp/C and @ is any reduced primitive quadratic form of discriminant dg }
is the set of all the conjugates of h(#) over K.

Let F(X) = H (X — f*Me(7g)) € K[X] be the minimal polynomial of

a€Ws 9/C, QeC(dk)

f(0) over K. Then, F(X) is in Z[X]. Indeed, since f has rational Fourier coefficients and
5’ € R for 0 defined in Theorem 17, f(0) is always real. Observing 0 = F(f(0)) =
F(f(0)) = F(f(0)) = F(f(0)) we see that F(X) € (K NR)[X] = Q[X]. Furthermore,
f(0) is an algebraic integer by Theorem 16 so that F(X) is a polynomial with integral
coefficients, that is, F/(X) € Z[X].

Now before closing this section we present an example with K = Q(y/—3) as follows.

Proposition 18. Let K = Q(v/—3) be an imaginary quadratic field and K be the ray
class field of K modulo 6. And let F(X) be the class polynomial of K. Then F(X) =
X3 +6X%+4.

Proof. If K = Q(v/—3), then we have § = % and dg = —3. We may assume that a

positive definite quadratic form @ is [1,1,1] and 7q = _1%‘/?3 Then as is well known it is
the unique reduced primitive quadratic form of discriminant —3. It follows from Theorem
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17 that U2 = U3z = <(1) ?), MQ = 3U2 —QU3 = <(1) ?) € GLQ(Z/6Z). And B = —3,C =3

because 0§ — 30 + 3 = 0. Using these we get Wg 9 and C' as follows.

vamisy 023 02 92 Y
(8= (8 =6 D =00 =6 D
c={i<(1] ?)iG g),j:(z >}.

So, W ¢/C has 3 distinct cosets [ <(1) ) } [ < 2 ) }, [ (le [1)> } Therefore
©D

{f@%(—lwfs) FOT TG0 D=8y pG D06 D(=LY=8)y - (p(30y=8) (2053,

fla 1957) ) is the set of all the conjugates of f(#) over K. Hence, through the approximation
of these three values by using the fact F(X) € Z[X] we get F(X) = (X — f(%ﬁ))(x _
FEEEN(X — f(h) = X2+ 6X2 + 4. -

By means of the same arguments we have the following class polynomials whose co-

efficients seem to be relatively small when compared with others’ works, for examples,
Morain([I5]), Kaltofen-Yui([12]) and Chen-Yui([5]).

di the class polynomial of Kg)

-3 X3+6X%2+4

-4 X+ -8X3-8X —38

-7 X4 4+16X% —8X + 16

-8 X4 —20X3 +12X2+16X — 8

-11 X0 +30X5 —72X4+8X3 +120X2 + 16

-15 X6 +60X° + 132X* +56X3 4+ 96X2 + 96X + 64

S19 | X2 496X 1M 4+ 232X9 — 1440X8 + 960X + 4608 X5 + 256 X3 + 6144X2 + 256
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