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Abstract. We deal with several arithmetic properties of the Siegel functions
which are modular units. By modifying the ideas in [14], we establish certain
criterion for determining a product of Siegel functions to be integral over Z[j].
We also find generators of the function fields K(

X1(N)
)

by examining the
orders of Siegel functions at the cusps and apply them to evaluate the Ra-
manujan’s cubic continued fraction systematically. Furthermore we construct
ray class invariants over imaginary quadratic fields in terms of singular values
of j and Siegel functions.
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1. Introduction

Let H be the complex upper half plane and N be a positive integer. We let

H∗ = H ∪ P1(Q)

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(∗ ∗
0 ∗

)
(mod N)

}

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
.
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We are especially concerned with the following three modular curves

X0(N) = Γ0(N)\H∗, X1(N) = Γ1(N)\H∗ and X(N) = Γ(N)\H∗

and their function fields

K(
X0(N)

)
, K(

X1(N)
)

and K(
X(N)

)
,

respectively. For the sake of arithmetic applications we consider the modular curve
X(N) defined over the N -th cyclotomic field, and take the integral closure of Q[j]
where j is the elliptic modular function. The units in this ring which are called the
modular units are the objects we deal with in this paper. We are mainly interested
in the following three problems.

The first is to replace the Fricke functions, which play the roles of classical gen-
erators of the modular function fields, by the Siegel functions. The order formulas
at the cusps in this case enable us to find such generators. In Sections 4, 5, 6 and
8, we shall examine some arithmetic properties of Siegel functions for this purpose.

The second problem concerns about the integrality over Z[j] for modular func-
tions. In Section 3, we shall establish a criterion for determining a product of Siegel
functions to be integral over Z[j]. To this end, we intensively analyze the Fourier
coefficients of Siegel functions. Although Kubert and Lang([14]) have already pro-
vided a criterion, it seems to be scarcely known to experts so that we try to reveal
and clarify it. If a function is integral over Z[j], its values evaluated at some points
would become algebraic integers in many cases, for instance, at imaginary qua-
dratic arguments. In Section 7, we explain why the reciprocals of the values of the
Ramanunjan’s cubic continued fraction([6]) at imaginary quadratic arguments are
algebraic integers.

The third problem is certain construction of ray class fields over imaginary qua-
dratic fields by means of singular values of some analytic functions. Ramachandra
presented in [19] a ray class invariant as algebraic unit, its constructions is, how-
ever, too abstract and complicated in practical use. In Section 9, we find relatively
simple ray class invariants in terms of the special values of j and Siegel functions.

For generic theory of modular functions, we refer to [21] and [16]. Unlike the
classical approach to modular functions and the class field theory depending mainly
on elliptic functions and theory of complex multiplication, our results are based on
the Galois theory and the Shimura’s reciprocity law.

2. Preliminaries

For a positive integer N we denote by QN and FN the N -th cyclotomic field QN

with ζN = e
2πi
N and the field of modular functions of level N defined over QN , re-

spectively. Then we have F1 = Q(j) and K(
X(1)

)
= C(j)([16], [21]). Furthermore

we let

RN = the integral closure of Z[j] in FN

QRN = the integral closure of Q[j] in FN .

Here, the elements of (QRN )∗ will be called the modular units of level N and those
of R∗N will be called the modular units over Z of level N . And we have the diagram:
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F1 Q[j]

QRN ⊃ (QRN )∗ : group of modular unitsFN

......................................................................................................................................................................................................................................................

.....................................................................................................

integral
closure

.................................................................................................................................................................................................................................................

.....................................................................................................

Galois
extension

The points τ on the modular curve X(N) such that j(τ) = ∞ are called the
cusps. We then recall the following assertion which interprets algebraic objects as
geometric ones. For the sake of completeness we give a proof.

Lemma 2.1. If f ∈ FN has zeros and poles only at the cusps, then the norm
NFN /QN (j)(f) is a constant. Hence, so is NFN /F1(f).

Proof. As we shall summarize in Section 4, Gal(FN/QN (j)) has a representation by
SL2(Z/NZ)/{±12} and the action of each element in SL2(Z/NZ)/{±12} is given
by composition. Hence if a function f ∈ FN has zeros and poles only at the cusps,
so does NFN /QN (j)(f).

On the other hand, NFN /QN (j)(f) ∈ QN (j) is a function on the Riemann sphere
X(1). So, if it is not a constant, it has zeros and poles at least at two distinct
points on the sphere. But this means that NFN /QN (j)(f) should have a zero or a
pole on H, which contradicts the first part of the proof. Therefore NFN /QN (j)(f) is
a constant, and so is NFN /F1(f). ¤

Theorem 2.2. Let f ∈ FN . Then f is a modular unit if and only if it has zeros
and poles only at the cusps.

Proof. Assume that f is a modular unit. Then f and 1/f satisfy integral equations
over Q[j], that is,

fn + an−1f
n−1 + · · ·+ a0 = 0

1
fm

+ bm−1
1

fm−1
+ · · ·+ b0 = 0

for some an−1, · · · , a0, bm−1, · · · , b0 ∈ Q[j]. Dividing the first equation by fn and
multiplying the second by fm we achieve

1 + an−1
1
f

+ · · ·+ a0
1
fn

= 0(2.1)

1 + bm−1f + · · ·+ b0f
m = 0.(2.2)

Suppose that f has a zero at some point τ0 ∈ H. By (2.2) we get

1 + bm−1(τ0)f(τ0) + · · ·+ b0(τ0)f(τ0)m = 0,

which gives a contradiction 1 = 0. Next suppose that f has a pole at some point
τ∞ ∈ H. Then by (2.1) we have

1 + an−1(τ∞)
1

f(τ∞)
+ · · ·+ a0(τ∞)

1
f(τ∞)n

= 0,

which again renders a contradiction 1 = 0. Thus f does not have zeros and poles
on H, namely f has zeros and poles only at the cusps.
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Conversely, assume that f has zeros and poles only at the cusps. Since Q[j] is a
Dedekind domain, so is QRN . Hence

(2.3) QRN =
⋂

P

(QRN )P

where the intersection is taken over all prime ideals P of QRN (of height 1). On the
other hand, since NFN /F1(f) is a constant by Lemma 2.1, we have f ∈ (

(QRN )P

)∗
for all prime ideals P so that f ∈ (QRN )∗. Therefore f is a modular unit. ¤

Now, we introduce the Siegel functions as modular units. For a lattice L in C
the Weierstrass ℘-function is defined by

℘(τ ; L) =
1

τ2
+

∑

ω∈L\{0}

{
1

(τ − ω)2
− 1

ω2

}
(τ ∈ C).

And the Weierstrass σ-function is defined by

σ(τ ; L) = τ
∏

ω∈L\{0}

(
1− τ

ω

)
e

τ
ω

+ 1
2 ( τ

ω
)2 (τ ∈ C)

which is clearly an odd function. Taking the logarithmic derivative we come up
with the Weierstrass ζ-function

ζ(τ ; L) =
σ′(τ ; L)

σ(τ ; L)
=

1

τ
+

∑

ω∈L\{0}

(
1

τ − ω
+

1

ω
+

τ

ω2

)
(τ ∈ C).

Differentiating the function ζ(τ + ω; L) − ζ(τ ; L) for ω ∈ L results in 0 because
ζ ′(τ ; L) = −℘(τ ; L) and the ℘-function is periodic with respect to L. Hence there
is a constant η(ω; L) such that ζ(τ + ω; L) = ζ(τ ; L) + η(ω; L).

For r = (r1, r2) ∈ Q2 \ Z2 we define the Klein form kr by

(2.4) kr(τ) = e−
1
2 (r1η1+r2η2)(r1τ+r2)σ(r1τ + r2; [τ, 1]) (τ ∈ C)

where η1 = η(τ ; [τ, 1]) and η2 = η(1; [τ, 1]). Note that η1 and η2 satisfy the
Legendre relation η2τ − η1 = 2πi([16]). The following proposition provides us the
transformation formulas of the Klein forms.

Proposition 2.3. (1) For r ∈ Q2 \ Z2 we have

k−r = −kr.

(2) For r ∈ Q2 \ Z2 and α =
(

a b
c d

) ∈ SL2(Z) we derive

kr ◦ α = (cτ + d)−1krα.

(3) For r = (r1, r2) ∈ Q2 \ Z2 and s = (s1, s2) ∈ Z2 we get

kr+s = ε(r, s)kr

where ε(r, s) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1).

Proof. Since the Weierstrass σ-function is an odd function, we can verify (1) from
(2.4). For (2) and (3), see [14]. ¤

Finally we define the Siegel function gr for any r ∈ Q2 \ Z2 by

(2.5) gr(τ) = kr(τ)η2(τ) (τ ∈ H)
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where η is the Dedekind η-function defined by

η(τ) =
√

2πζ8q
1
24
τ

∞∏
n=1

(1− qn
τ ) (qτ = e2πiτ , τ ∈ H)

and η2 has the transformation formulas

η2 ◦ S = ζ9
12τη2(2.6)

η2 ◦ T = ζ12η
2(2.7)

for S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ). Thus it follows that ∆(τ) = η24(τ) is a modular
form for SL2(Z) of weight 12. We then have the following transformation formulas.

Proposition 2.4. (1) For r ∈ Q2 \ Z2 we have

g−r = −gr.

(2) For r = (r1, r2) ∈ Q2 \ Z2 we get

gr ◦ S = ζ9
12grS = ζ9

12g(r2,−r1)

gr ◦ T = ζ12grT = ζ12g(r1,r1+r2).

(3) For r = (r1, r2) ∈ Q2 \ Z2 and s = (s1, s2) ∈ Z2 we have

gr+s = ε(r, s)gr

where ε(r, s) is the root of unity given in Proposition 2.3(3).

Proof. We can readily verify the formulas by using Proposition 2.3, (2.6) and (2.7).
¤

We define a function 〈 〉 on R whose value 〈X〉 takes the fractional part of X,
namely 0 ≤ 〈X〉 < 1. Then, for α =

(
a b
c d

) ∈ SL2(Z) with c > 0 we have the
transformation formula

η2

(
aτ + b

cτ + d

)
= e2πi

(
a+d
12c + 1

2+
∑

µ(mod c) B1(〈µ
c 〉)B1(〈 dµ

c 〉)
)
(cτ + d)η2(τ)

where B1(X) = X − 1
2 is the first Bernoulli polynomial([3] (2.10)). Thus it follows

from Proposition 2.3(2) and the definition gr = krη
2 that

gr ◦ α = e2πi
(

a+d
12c + 1

2+
∑

µ(modc) B1(〈µ
c 〉)B1(〈 dµ

c 〉)
)
grα

for r ∈ Q \ Z2. When one is particularly interested in constructing class fields, he
may efficiently use this formula.

In addition to these transformation formulas a Siegel function has a fairly simple
order formula. Let B2(X) = X2 − X + 1

6 be the second Bernoulli polynomial.
Using the qτ -expansion formula of the Weierstrass σ-function we get the following
expansion formula of a Siegel function gr

g(r1,r2)(τ) = −q
1
2B2(r1)
τ eπir2(r1−1)(1− qz)

∞∏
n=1

(1− qn
τ qz)(1− qn

τ q−1
z )(2.8)

where qz = e2πiz with z = r1τ + r2. By analyzing (2.8) we obtain

(2.9) ordqτ g(r1,r2) =
1
2
B2

(〈r1〉
)
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([14] Chapter 2 Section 1).

For a given positive integer N > 1, Kubert and Lang provided a necessary and
sufficient condition for a product of Siegel functions to be of level N . Here we give a
sufficient condition as follows. We say that a family of integers {m(r)}r=(r1,r2)∈ 1

N Z2\Z2

with m(r) = 0 except finitely many r satisfies the quadratic relation modulo N if
∑

r

m(r)(Nr1)2 ≡
∑

r

m(r)(Nr2)2 ≡ 0 (mod gcd(2, N) ·N)

∑
r

m(r)(Nr1)(Nr2) ≡ 0 (mod N).

Theorem 2.5. Let {m(r)}r∈ 1
N Z2\Z2 be a family of integers such that m(r) = 0

except finitely many r. Then a product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r

belongs to FN , if {m(r)}r satisfies the quadratic relation modulo N and 12 divides
gcd(12, N) ·∑r m(r).

Proof. See [14] Chapter 3 Theorem 5.2 and Theorem 5.3. ¤

In particular, gr and g12N
r lie in F12N2 and FN , respectively, for r ∈ 1

NZ
2 \ Z2.

We can easily check by (2.8) that a Siegel function has zeros and poles only at
the cusps. Hence by Theorem 2.2 and Theorem 2.5 we conclude that a product of
Siegel functions becomes a modular unit of some level. For a given level N > 1 the
products of Siegel functions of level N generate the group of modular units of level
N up to 2-torsions([14] Chapter 4).

3. Integrality over Z[j]

A Siegel function and its inverse are integral over Q[j] because they are modular
units. Kubert and Lang provided in [14] a criterion for determining a product of
Siegel functions to be a unit over Z. In this section, however, we shall investigate
their criterion and further develop it to have more effective test for the integrality
over Z[j].

Let L = [ω1, ω2] be a lattice in C such that ω1/ω2 ∈ H . For a point t ∈ C \ L
of finite period with respect to L, we can write t as

t = r1ω1 + r2ω2

for a unique r = (r1, r2) ∈ Q2 \ Z2. We define a function

(3.1) g

(
t;

(
ω1

ω2

))
= gr

(
ω1

ω2

)
,

which depends on the choice of ω1 and ω2. But if we raise g to the 12-th power,
it becomes a function of t and L and so we just write it as g12(t; L). Furthermore
g12(t; L) has weight 0, namely

(3.2) g12(λt; λL) = g12(t; L)

for any λ ∈ C∗.
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Theorem 3.1. Let L′ ⊃ L be two lattices in C and let c be the smallest positive
integer such that cL′ ⊂ L. Let

t1 = 0, · · · , tk

be a complete system of coset representatives of L′/L. If t is a complex number
such that t 6∈ L′, dt ∈ L for some positive integer d and m = lcm(c, d), then we
have

g12m(t; L′) =
k∏

i=1

g12m(t + ti; L).

Proof. See [14] Chapter 2 Theorem 4.1(ii). ¤

For a vector r = (r1, r2) ∈ Q2 \ Z2, a positive integer N such that Nr =
(Nr1, Nr2) belongs to Z2 is called a denominator of r. In particular, the smallest
denominator of r is called the primitive denominator of r. When the primitive
denominator has at least two prime factors, we say that r or the primitive denom-
inator is composite.

In what follows by the notation .= we mean the equality = up to a root of unity.
As a corollary of Theorem 3.1, we give a so-called distribution relation of Siegel
functions.

Corollary 3.2. Let pn be a prime power and let r = (r1, r2) ∈ 1
pnZ2 \ Z2. Then

the Siegel function gr can be written as a product

gr
.=

∏
s

gm(s)
s

where all indices s with m(s) 6= 0 have the same primitive denominator pn.

Proof. If r already has the primitive denominator pn, we are done. Suppose that r
has the primitive denominator pl with l < n. In the statement of Theorem 3.1 we
set

L′ =
1
p
[τ, 1], L = [τ, 1] and t =

r1τ + r2

p
.

Then we have k = [L′ : L] = p2, c = p, d = pl+1 and m = pl+1. Taking

aτ + b

p
with 0 ≤ a, b < p

as a complete system of coset representatives of L/L′ we get that

g12pl+1

(r1,r2)
(τ) = g12pl+1

(r1τ + r2; [τ, 1])

= g12pl+1
(

r1τ + r2

p
;

1
p
[τ, 1]

)
by (3.2)

=
∏

0≤a, b<p

g12pl+1
(

r1τ + r2

p
+

aτ + b

p
; [τ, 1]

)
by Theorem 3.1

=
∏

0≤a, b<p

g12pl+1
(

r1 + a

p
τ +

r2 + b

p
; [τ, 1]

)

=
∏

0≤a, b<p

g12pl+1

(
r1+a

p ,
r2+b

p )
(τ).
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Deleting the power 12pl+1 we establish

g(r1,r2)
.=

∏

0≤a, b<p

g
(

r1+a
p ,

r2+b
p )

.

Note that each index ( r1+a
p , r2+b

p ) in the above product has the primitive denomi-
nator pl+1. Applying this procedure successively we can express gr as a product of
Siegel functions indexed with vectors of primitive denominator pn. ¤

Let N be a given positive integer. For a modular unit f of level N , let

f =
∑

n

cnq
n
N
τ

be its qτ -expansion. We write
cn(f) = cn

for all n ∈ Z and, in particular,

c(f) = the first non-zero coefficient.

When we write
f = c(f)f∗,

we understand f∗ as a qτ -series with leading coefficient 1. For f, f ′ ∈ (QRN )∗ we
have obvious identities

c(f · f ′) = c(f) · c(f ′)(3.3)
(f · f ′)∗ = f∗ · f ′∗.(3.4)

Lemma 3.3. Let f be a modular unit of level N . If cn(f ◦α) are algebraic integers
for all n ∈ Z and α ∈ SL2(Z), then f is integral over Z[j]. If, in addition, c(f ◦ α)
are units for all α ∈ SL2(Z), then f is a unit over Z.

Proof. See [14] Lemma 2.1. ¤

Remark 3.4. [14] Lemma 2.1 is a slightly weaker version of Lemma 3.3 which will
be used in the matter of determining integrality over Z[j].

For N > 1 and r = (r1, r2) ∈ 1
NQ

2 \ Z2, let us write

gr = c(gr)g∗r
g(〈r1〉,〈r2〉) = c(g(〈r1〉,〈r2〉))g

∗
(〈r1〉,〈r2〉).

Since gr
.= g(〈r1〉,〈r2〉) by Proposition 2.4(3), we deduce

c(gr)
.= c(g(〈r1〉,〈r2〉))

g∗r = g∗(〈r1〉,〈r2〉).

Note that from the qτ -expansion formula (2.8) we see that g∗(〈r1〉,〈r2〉) has in fact a
qτ -series all of whose coefficients are algebraic integers and has leading coefficient 1.
Hence cn(gr) are algebraic integers for all n ∈ Z if and only if c(gr) is an algebraic
integer. The same argument holds for any conjugate of a Siegel function and any
product of Siegel functions by Proposition 2.4(2), (3.3) and (3.4). Thus we have

Lemma 3.5. Let g be a product of Siegel functions. Then g is integral over Z[j] if
and only if c(g ◦ α) are algebraic integers for all α ∈ SL2(Z).
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Proof. First assume that g is integral over Z[j], then g satisfies an equation

gm + am−1g
m−1 + · · ·+ a0 = 0

for some am−1, · · · , a0 ∈ Z[j]. Taking composition with any α ∈ SL2(Z) on both
sides yields

(g ◦ α)m + am−1(g ◦ α)m−1 + · · ·+ a0 = 0,

from which it follows that

(3.5)
{
c(g ◦ α)

}m{
(g ◦ α)∗

}m + am−1

{
c(g ◦ α)

}m−1{(g ◦ α)∗
}m−1 + · · ·+ a0 = 0.

When the left side of (3.5) is regarded as a qτ -series, each coefficient of the series
should be zero. Note that the coefficients of qτ -series of j and (g ◦α)∗ are algebraic
integers. Hence, when t = ordqτ (g ◦ α)∗, the coefficient of the term qtm

τ in (3.5) is
given by

{
c(g ◦α)

}m +bm−1

{
c(g ◦α)

}m−1 + · · ·+ b0 = 0 for some algebraic integers
bm−1, · · · , b0. This implies that c(g ◦ α) is an algebraic integer.

Conversely, assume that c(g ◦ α) are algebraic integers for all α ∈ SL2(Z). Then
cn(g ◦ α) are algebraic integers for all n ∈ Z. And, the assertion is a consequence
of Lemma 3.3. ¤

Theorem 3.6. Let r ∈ Q2 \ Z2 have the primitive denominator N > 1.
(1) If N is composite, then g12N

r is a modular unit over Z of level N . Hence gr is
a modular unit over Z of level 12N2.
(2) If N = pn is a prime power, then g12N

r is a unit in RN [ 1p ]. Thus gr is a unit
in R12N2 [ 1p ].

Proof. See [14] Chapter 2 Theorem 2.2. ¤

Let pn be a prime power and suppose that r = (r1, r2) ∈ Q2\Z2 has the primitive
denominator pn. Then the constant c(gr) has the property

c(gr)
.= c(g(〈r1〉,〈r2〉))

.=
{

1 if 〈r1〉 6= 0
1− e2πi〈r2〉 = 1− ζ

pn〈r2〉
pn if 〈r1〉 = 0

from the qτ -expansion formula (2.8). Hence

ordp

(
c(gr)

)
=

{
0 if 〈r1〉 6= 0
ordp

(
1− ζ

pn〈r2〉
pn

)
= 1

φ(pn) if 〈r1〉 = 0
(3.6)

where φ is the Euler φ-function, and

ordp′
(
c(gr)

)
= 0 for other primes p′.(3.7)

Lemma 3.7. For a prime power pn, consider a product of Siegel functions

g(p) =
∏

r∈ 1
pn Z2\Z2

gm(r)
r .

Then g(p) is integral over Z[j] if and only if ordp

(
c(g(p)◦α)

) ≥ 0 for all α ∈ SL2(Z).

Proof. By (3.6) and (3.7), c(g(p)◦α) are algebraic integers if and only if ordp

(
c(g(p)◦

α)
) ≥ 0. Hence we get our assertion by Lemma 3.5. ¤
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Lemma 3.8. For a given product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r ,

decompose it into the form

g = gcomp

∏
p

g(p)

where gcomp is the product taken over all composite r and g(p) for each prime p
is the product taken over those r whose denominator is a power of p. Then g is
integral over Z[j] if and only if g(p) are integral over Z[j] for all primes p.

Proof. By Theorem 3.6, gcomp is a unit over Z. Hence we deduce an assertion that

g is integral over Z[j]

⇐⇒
∏
p

g(p) is integral over Z[j]

⇐⇒ c(
∏
p

g(p) ◦ α) are algebraic integers for all α ∈ SL2(Z) by Lemma 3.5

⇐⇒ ordp

(
c(

∏
p

g(p) ◦ α)
) ≥ 0 for all primes p.

On the other hand, for a fixed prime p we have by (3.7)

ordp

( ∏
p

c(g(p))
)

= ordp

(
c(g(p))

)
.

Thus we achieve that

g is integral over Z[j]
⇐⇒ ordp

(
c(g(p))

) ≥ 0 for all primes p

⇐⇒ g(p) are integral over Z[j] for all primes p by Lemma 3.7.

¤

Therefore we restrict ourselves to analyzing each g(p) separately. Let pn be the
maximal primitive denominator appearing in the indices of g(p) and ( 1

pnZ2/Z2)∗ be
the set of all primitive elements in the additive group 1

pnZ2/Z2. By Corollary 3.2
we may assume that all indices have the primitive denominator pn. Moreover, by
Proposition 2.4(1) and (3) we take ( 1

pnZ2/Z2)∗/ ± 1 as the index set. And, note
that the group (Z/pnZ)∗ naturally acts on ( 1

pnZ2/Z2)∗/± 1 by multiplication.

Theorem 3.9. Let
g(p)

.=
∏

r∈( 1
pn Z2/Z2)∗/±1

gm(r)
r .

Then g(p) is integral over Z[j] if and only if for each orbit of (Z/pnZ)∗ we get
∑

r∈orbit

m(r) ≥ 0.
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Proof. By Lemma 3.7 we know that g(p) is integral over Z[j] if and only if ordp

(
c(g(p)◦

α)
) ≥ 0 for all α ∈ SL2(Z). It then follows from (3.6) and Lemma ?? that

ordp

(
c(g(p))

) ≥ 0 ⇐⇒
∑

r∈orbit containing (0, 1
pn )

m(r) ≥ 0.

Furthermore since SL2(Z) permutes the orbits transitively, we conclude that

ordp

(
c(g(p) ◦ α)

) ≥ 0 for all α ∈ SL2(Z) ⇐⇒
∑

r∈orbit

m(r) ≥ 0 for each orbit.

¤

Before closing this section we summarize the algorithm for determining whether
a product of Siegel functions is integral over Z[j] or not as follows:

Step 1. For a product of Siegel functions

g =
∏

r∈ 1
N Z2\Z2

gm(r)
r ,

decompose it into the form

g = gcomp

∏

p : prime

g(p).

Step 2. For each prime number p, let pn be the maximal primitive denominator
appearing in the indices of g(p). Using Corollary 3.2 we can write g(p) as

g(p)
.=

∏

r∈
(

1
pn Z2/Z2

)∗
/±1

gm(r)
r .

Step 3. For each orbit of (Z/pnZ)∗ in
(

1
pnZ2/Z2

)∗
/± 1, check if

∑

r∈orbit

m(r) ≥ 0.

Step 4. Then g is integral over Z[j] if and only if the third step is true for each
prime p.

4. Field of modular functions of level N

For a congruence subgroup Γ we denote by K(
X(Γ)

)
the function field of the

modular curve X(Γ) = Γ\H∗. Let h be the width of the cusp ∞. For a subfield
Q′ of the maximal abelian extension Qab of Q, let K′ be the field of all modular
functions in K(

X(Γ)
)

whose Fourier coefficients with respect to q
1
h
τ = e

2πiτ
h belong

to Q′.

Lemma 4.1. Let K(
X(Γ)

)
= C(S) for a subset S in K(

X(Γ)
)
. If S ⊂ K′, then

K′ = Q′(S).
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Proof. First note that C and K′ are linearly disjoint over Q′. Indeed, let c1, · · · , cm

be the elements of C which are linearly independent overQ′. Assume that
∑

k=1 ckfk =
0 for some f1, · · · , fm ∈ K′. Writing fk =

∑∞
n=−∞ cknq

n
h
τ with ckn ∈ Q′, we have

m∑

k=1

ckfk =
m∑

k=1

ck

∞∑
n=−∞

cknq
n
h
τ =

∞∑
n=−∞

( m∑

k=1

ckckn

)
q

n
h
τ = 0,

which yields
∑m

k=1 ckckn = 0 for each n ∈ Z. Since c1, · · · , cm are linearly indepen-
dent over Q′, we have ckn = 0 for all k and n. Hence f1 = · · · = fm = 0.
Now consider the field tower:

Q′

C Q′(S)

C(S) K′

...........
...........

...........
..........

...........
...........
...........
......

...........
...........
...........
..........

...........
...........

...........
......

...........
...........
...........
......

Since C(S) and K′ are linearly disjoint over Q′(S)([15] VIII Proposition 3.1), we
have

1 ≤ [K′ : Q′(S)] ≤ [CK′ : C(S)] ≤ [K(
X(Γ)

)
: K(

X(Γ)
)
],

which yields that K′ = Q′(S). ¤

Now we turn our interest to the study of modular function fields. Since the alge-
braic closure ofQ in FN isQN , we have Gal

(FN/QN (j)
) ∼= Gal

(K(
X(N)

)
/K(

X(1)
))

.
And, as is well-known Gal

(K(
X(N)

)
/K(

X(1)
))

has the representation

SL2(Z/NZ)/{±12} ∼= Γ1/± Γ(N)

where each element of SL2(Z/NZ)/{±12} acts on modular functions by composi-
tion. For the representation of Gal(FN/F1), we first note that

(4.1) GL2(Z/NZ)/{±12} = GN · SL2(Z/NZ)/{±12} = SL2(Z/NZ)/{±12} ·GN

where

GN =
{(

1 0
0 d

)
: d ∈ (Z/NZ)∗

}
.

For an element ( 1 0
0 d ) ∈ GN , let σd be the automorphism of QN defined by ζσd

N = ζd
N .

This automorphism σd is naturally extended to FN by
∑

n

cnq
n
N
τ 7→

∑
n

cσd
n q

n
N
τ

where
∑

n cnq
n/N
τ is the qτ -expansion of a modular function. Then Gal(FN/F1)

has the representation GL2(Z/NZ)/{±12} from the decomposition (4.1)([16], [21]).

Next we exhibit generators of the function field FN in terms of Siegel functions
and explain the action of Gal(FN/F1) on them explicitly. Consider the first Weber
function defined by

f0(z; L) = −2735 g2(L)g3(L)
∆(L)

℘(z; L) (z ∈ C, L a lattice in C)
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where g2(L) = 60
∑

w∈L\{0}
1

w4 , g3(L) = 140
∑

w∈L\{0}
1

w6 and ∆(L) = g3
2(L) −

27g2
3(L). For (a, b) ∈ Z2 \NZ2, we let

f( a
N , b

N )(τ) = f0

(
a

N
τ +

b

N
; [τ, 1]

)
.

Then we have

FN = Q
(
j, f( a

N , b
N )

)
∀(a,b)∈Z2\NZ2

K(X(N)) = CFN .

The action of α ∈ GL2(Z/NZ) is described by the rule

fα
( a

N , b
N )

= f( a
N , b

N )α

([16], [21]). We can then restate these fields in terms of Siegel functions as follows:

Theorem 4.2. For N > 1, we have

K(
X(N)

)
= C

(
j, g12N

( a
N , b

N )

)
∀(a,b)∈Z2\NZ2 = C

(
j, g12N

( 1
N ,0), g12N

(0, 1
N )

)

FN = QN

(
j, g12N

( 1
N ,0), g12N

(0, 1
N )

)
.

Proof. Put
E = C

(
j, g12N

( a
N , b

N )

)
∀(a,b)∈Z2\NZ2

which is a subfield of K(
X(N)

)
over K(

X(1)
)
. We shall show that any element

γ ∈ Γ1 which acts trivially on E must lie in ±Γ(N). Then E should be all of
K(

X(N)
)

by Galois theory. To this end, we consider the effect of γ on two functions
g12N
( 1

N ,0)
and g12N

(0, 1
N )

. Letting γ =
(

a b
c d

)
we have by Proposition 2.4(2)

(
g12N
( 1

N ,0)

)γ = g12N
( 1

N ,0)γ = g12N
( a

N , b
N )(

g12N
(0, 1

N )

)γ = g12N
(0, 1

N )γ = g12N
( c

N , d
N )

.

Since the action of γ is trivial, we establish

g12N
( a

N , b
N )

= g12N
( 1

N ,0)(4.2)

g12N
( c

N , d
N )

= g12N
(0, 1

N ).(4.3)

The action of
(

0 1
−1 0

)
on both sides of (4.2) and (4.3) respectively yields

g12N
(− b

N , a
N )

= g12N
(0, 1

N )(4.4)

g12N
(− d

N , c
N )

= g12N
(− 1

N ,0).(4.5)

Then by virtue of (2.9) we can compute the orders with respect to qτ of both sides
of (4.2), (4.3), (4.4) and (4.5), which read

12N · 1
2B2

(〈
a
N

〉)
= 12N · 1

2B2

(〈
1
N

〉)
12N · 1

2B2

(〈
c
N

〉)
= 12N · 1

2B2(〈0〉)

12N · 1
2B2

(〈− b
N

〉)
= 12N · 1

2B2(〈0〉) 12N · 1
2B2

(〈− d
N

〉)
= 12N · 1

2B2

(〈− 1
N

〉)
.

Together with the fact det(γ) = 1 we have a ≡ d ≡ ±1 (mod N) and b ≡ c ≡ 0
(mod N). Hence γ lies in ±Γ(N), which proves E = K(

X(N)
)
. In fact, our obser-

vation implies that K(
X(N)

)
= C

(
j, g12N

( 1
N ,0)

, g12N
(0, 1

N )

)
. Furthermore since j, g12N

( 1
N ,0)

and g12N
(0, 1

N )
have Fourier coefficients in QN , we have FN = QN

(
j, g12N

( 1
N ,0)

, g12N
(0, 1

N )

)

by Lemma 4.1. ¤
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5. Modular functions for Γ0(N)

In this section we construct certain family of modular functions for the Hecke
congruence group Γ0(N) as products of Siegel functions and find their orders, which
will be used in constructing principal divisors of X0(p) supported only at the cusps
and generators of some function fields K(

X0(pq)
)
.

Proposition 5.1. For N > 1, we define a function

gN (τ) =
N−1∏
n=1

g
12

gcd(12,N−1)

(0, n
N ) (τ).

Then it is modular for Γ0(N) and

ordqτ
gN =

N − 1
gcd(12, N − 1)

.

Proof. Using the indentity

1−XN

1−X
= (1− ζNX)(1− ζ2

NX) · · · (1− ζN−1
N X)

and by the qτ -expansion formula (2.8), we can easily see that

(5.1)
N−1∏
n=1

g(0, n
N )(τ) = Neπi N−1

2
η2(Nτ)
η2(τ)

.

Thus

gN (τ) =
(

N
η2(Nτ)
η2(τ)

) 12
gcd(12,N−1)

.

Instead of referring certain theorem about Dedekind eta functions([18] Theorem
1.64), we shall directly verify the proposition by making use of the transformation
formulas of Klein forms.

Let α =
(

a b
Nc d

)
with a, b, c, d ∈ Z be an element of Γ0(N). Then by Proposition

2.3(2) and (3) we obtain that

gN ◦ α =
{ N−1∏

n=1

(k(0, n
N ) ◦ α)(η2 ◦ α)

} 12
gcd(12,N−1)

by (2.5)

=
{ N−1∏

n=1

k(0, n
N )α(Ncτ + d)−1(η2 ◦ α)

} 12
gcd(12,N−1)

by Proposition 2.3(2)

=
{ N−1∏

n=1

k(cn, dn
N )

} 12
gcd(12,N−1)

{
(Ncτ + d)−12(η24 ◦ α)

} N−1
gcd(12,N−1)

=
{ N−1∏

n=1

k(0, dn
N )+(cn,0)

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0, dn
N )(−1)cne−πi· cdn2

N

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1) by Proposition 2.3(3)

=
{ N−1∏

n=1

k(0, dn
N ) · (−1)

c(N−1)N
2 e−πi· cd(N−1)(2N−1)

6

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)
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=
{ N−1∏

n=1

k(0, dn
N )

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0,〈 dn
N 〉)+(0, dn

N −〈 dn
N 〉)

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0,〈 dn
N 〉)(−1)

dn
N −〈 dn

N 〉
} 12

gcd(12,N−1)

(η24)
N−1

gcd(12,N−1) by Proposition 2.3(3)

=
{ N−1∏

n=1

k(0,〈 n
N 〉) · (−1)

∑
n

dn
N −∑

n〈 dn
N 〉

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0, n
N ) · (−1)

(d−1)(N−1)
2

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0, n
N )

} 12
gcd(12,N−1)

(η24)
N−1

gcd(12,N−1)

=
{ N−1∏

n=1

k(0, n
N )η

2

} 12
gcd(12,N−1) (2.5)

=
{ N−1∏

n=1

g(0, n
N )

} 12
gcd(12,N−1)

= gN .

Hence g is modular for Γ0(N). Furthermore, by (2.9) we get

ordqτ gN =
12

gcd(12, N − 1)

N−1∑
n=1

ordqτ g(0, n
N )

=
12

gcd(12, N − 1)

N−1∑
n=1

1
2
B2(0)

=
N − 1

gcd(12, N − 1)
.

¤

Atkin([1]) showed that for any prime p the cusp ∞ is not a Weierstrass point on
the modular curve X0(p) = Γ0(p)\H∗. This means that for any positive integer n
with 1 ≤ n ≤ genus gp of X0(p), there does not exist any function on X0(p) which
has a pole of order n at ∞ and is holomorphic elsewhere. Using this fact we shall
completely determine all principal divisors of X0(p) supported only at the cusps.
Note that our method is totally different from that of Ogg([17]) who relied on some
facts from algebraic geometry.

For this purpose we first provide some distribution relations of Siegel functions.

Theorem 5.2. (1) For an odd prime p, if a product
∏

r∈( 1
pZ2/Z2)∗/±1

gm(r)
r

is a constant, then all exponents m(r) are the same.
(2) Let l and p be odd primes. Suppose that a modular function g satisfies

gl .=
∏

r∈( 1
pZ2/Z2)∗/±1

gm(r)
r
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for some family of integers {m(r)}r. Then there exists a representation

g = λ
∏

r∈( 1
pZ2/Z2)∗/±1

gm′(r)
r

for some family of integers {m′(r)}r and some λ ∈ C.

Proof. See [14] Chapter 2 and 4. ¤

Theorem 5.3. For a prime p ≥ 5, the smallest positive integer dp for which
dp

(
(0)− (∞)

)
is a principal divisor of X0(p) is given as follows:

dp =





p−1
12 = gp + 1 if p ≡ 1 (mod 12)

p−1
4 = 3gp + 1 if p ≡ 5 (mod 12)

p−1
6 = 2gp + 1 if p ≡ 7 (mod 12)

p−1
2 = 6gp − 1 if p ≡ 11 (mod 12)

where gp is the genus of the curve X0(p)([18]).

Proof. Note that ∞ and 0 are all the inequivalent cusps on X0(p) of widths 1 and
p, respectively([10]). And every principal divisor supported only at the cusps is a
multiple of the divisor dp

(
(0)− (∞)

)
. Since the cusp ∞ is not a Weierstass point,

it follows that dp ≥ gp + 1.
p ≡ 1 (mod 12). Consider a function

g = g−1
p =

p−1∏
n=1

g−1
(0, n

p ).

By Proposition 5.1, g is an element of K(X0(p)) and

ord∞g = − p− 1
gcd(12, p− 1)

= −p− 1
12

= −(gp + 1).

Since dp divides the order −(gp + 1) and dp ≥ gp + 1, dp should be equal to gp + 1.
p ≡ 5 (mod 12). We also consider a function

g = g−1
p =

p−1∏
n=1

g−3
(0, n

p )

.=

p−1
2∏

n=1

g−6
(0, n

p ).

Then by Proposition 5.1 we have

ord∞g = − p− 1
gcd(12, p− 1)

= −p− 1
4

= −(3gp + 1).

Since dp divides the order −(3gp + 1) and dp ≥ gp + 1, we get dp = 3gp + 1 or
dp = 3gp+1

2 . Suppose that dp = 3gp+1
2 , then there exists a function f ∈ K(X0(p))

such that

div(f) =
3gp + 1

2
((0)− (∞)).

On the other hand, div(f2g−1) = 2div(f) − div(g) = 0 implies that f2g−1 is a
constant. So we may assume that

f =

p−1
2∏

n=1

g−3
(0, n

p ).
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Note that dp = 3gp+1
2 = p−1

8 is an integer. Take an element α =
(

a b
p 3

)
with a, b ∈ Z

of Γ0(p) and observe that

f ◦ α =
{ p−1

2∏
n=1

g(0, n
p ) ◦ α

}−3

=
{ p−1

2∏
n=1

(k(0, n
p ) ◦ α)(η2 ◦ α)

}−3

by (2.5)

=
{ p−1

2∏
n=1

k(n, 3n
p )(pτ + 3)−1(η2 ◦ α)

}−3

by Proposition 2.3(2)

=
{ p−1

2∏
n=1

k(n, 3n
p )

}−3{
(pτ + 3)−12(η24 ◦ α)

}− p−1
8

=
{ p−1

2∏
n=1

k(0, 3n
p )+(n,0)

}−3

(η24)−
p−1
8

=
{ p−1

2∏
n=1

k(0, 3n
p ) · (−1)

∑ p−1
2

n=1 ne−πi
∑ p−1

2
n=1

3n2
p

}−3

(η24)−
p−1
8 by Proposition 2.3(3)

=
{ p−1

2∏
n=1

k(0, 3n
p )

}−3

(η24)−
p−1
8

=
{ p−1

2∏
n=1

k(0,〈 3n
p 〉)+(0, 3n

p −〈 3n
p 〉)

}−3

(η24)−
p−1
8

=
{ p−1

2∏
n=1

k(0,〈 3n
p 〉) · (−1)

∑ p−1
2

n=1 ( 3n
p −〈 3n

p 〉)
}−3

(η24)−
p−1
8 by Proposition 2.3(3)

=
{ p−1

2∏
n=1

k(0,〈 3n
p 〉) · (−1)

∑ p−1
2

n= p+1
3

1
}−3

(η24)−
p−1
8

=
{ p−1

2∏
n=1

k(0,〈 3n
p 〉)η

2

}−3

(−1)−
p+1
2 =

{ p−1
2∏

n=1

g(0,〈 3n
p 〉)

}−3

(−1)

=
{ p−1

2∏
n=1

g(0, n
p )

}−3

(−1) = −f.

The last line is obtained by verifing g(0,r2) = g(0,1−r2) for r2 ∈ Q\Z from Proposition
2.4(1) and (3). This contradicts the fact f ∈ K(X0(p)). Therefore dp = 3gp + 1.
p ≡ 7 (mod 12). Considering a function

g = g−1
p =

p−1∏
n=1

g−2
(0, n

p )

and by Proposition 5.1 we see that

ord∞g = − p− 1
gcd(12, p− 1)

= −p− 1
6

= −(2gp + 1).
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Since dp divides the order −(2gp + 1) and dp ≥ gp + 1, dp equals 2gp + 1.
p ≡ 11 (mod 12). We consider a function

g = g−1
p =

p−1∏
n=1

g−6
(0, n

p )

.=

p−1
2∏

n=1

g−12
(0, n

p ).

Then by Proposition 5.1 we achieve

ord∞g = − p− 1
gcd(12, p− 1)

= −p− 1
2

= −(6gp − 1).

Since dp divides the order −(6gp − 1) and dp ≥ gp + 1, dp is equal to 6gp − 1 or
6gp−1

5 . Assume that dp = 6gp−1
5 , then there exists a function f ∈ K(X0(p)) such

that

div(f) =
6gp − 1

5
((0)− (∞)).

On the other hand, div(f5g−1) = 5div(f) − div(g) = 0 implies that f5g−1 is a
constant. So we may assume that f5 = g. Then by Theorem 5.2(2), f has a
representation

f = λ
∏

r∈( 1
pZ2/Z2)∗/±1

gm′(r)
r

for some family of integers {m′(r)}r and some λ ∈ C. Decompose f5g−1 into

f5g−1 = λ

p−1
2∏

n=1

g
5m′(0, n

p )+12

(0, n
p ) ·

∏

r not of the form (0, n
p )

g5m′(r)
r = a constant.

By Theorem 5.2(1) we know that all exponents should be the same, but it is obvi-
ously impossible because 5 cannot divide 12. Therefore dp = 6gp − 1. ¤

Remark 5.4. We note from Theorem 5.3 that dp is in fact the numerator of p−1
12 . For

a given modular curve one can define the cuspidal divisor class group([14]) as the
additive group of divisors of degree 0 generated by the cusps modulo the subgroup
of principal divisors obtained from the modular units. The order of this group is
called the cuspidal class number. Then our number dp in Theorem 5.3 is none other
than the cuspidal class number of such modular curve when N is a prime number
larger than 3. On the other hand, Takagi also computed in [23] the cuspidal class
number of X0(N) with N square-free. In general the cuspidal divisor group can be
identified with a group ring R of a finite group. He expressed in the paper certain
family of divisors from the modified Siegel functions as multiples of a so-called
Stickelberger element θ ∈ R ⊗Q. He also proved that the family becomes a set of
generators for the subgroup of divisors from the modular units, which made him
possible to find the cuspidal class number. Observe that the subgroups of divisors
from modular units is an ideal of the ring R and is an analogue of the Stickelberger
ideal in the theory of cyclotomic fields.

Let p and q be two distinct primes such that both p, q ≡ 1 (mod 12). Consider
the functions

gp =
p−1∏
n=1

g(0, n
p ), gq =

q−1∏
n=1

g(0, n
q ), gpq =

pq−1∏
n=1

g(0, n
pq ).
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We see from Proposition 5.1 that gp, gq and gpq are modular for Γ0(p), Γ0(q) and
Γ0(pq), respectively. We shall view all of them as functions on the modular curve
X0(pq) = Γ0(pq)\H∗. Then the inequivalent cusps on X0(pq) are ∞, 0, 1

p , 1
q of

widths 1, pq, q, p, respectively([10]). For a product of Siegel functions

g =
∏

r∈ 1
pqZ2\Z2

gm(r)
r

which lies in K(X0(pq)) we can estimate the order at each cusp s as follows. Let
γs be an element of SL2(Z) such that γs(∞) = s. And, we take

γ∞ =
(

1 0
0 1

)
, γ0 =

(
0 −1
1 0

)
, γp =

(
1 0
p 1

)
, γq =

(
1 0
q 1

)
.

Then (2.9) and Proposition 2.4(2) enable us to compute the order of g at s as

ordsg = width at s · ordqτ
(g ◦ γs)

= width at s ·
∑

r

m(rγs)
1
2
B2

(〈(rγs)1〉
)

where (rγs)1 is the first entry of the vector rγs. Here we summarize the orders of
gp, gq, gpq and the additional functions gpgq/g2

pq and gq/g2
pq in the table below.

XXXXXXXXXXCusps

Functions
gp gq gpq

gpgq

g2
pq

gq

g2
pq

∞ p−1
12

q−1
12

pq−1
12 − 2pq−p−q

12 − 2pq−q−1
12

0 − q(p−1)
12 −p(q−1)

12 −pq−1
12

p+q−2
12

pq+p−2
12

1
p

q(p−1)
12 − q−1

12 − q−p
12

pq+1−2p
12

q+1−2p
12

1
q −p−1

12
p(q−1)

12
q−p
12

pq+1−2q
12

pq+p−2q
12

Table 1. The orders at the cusps on X0(pq)

Note that the genus gpq of X0(pq) is given by (p+1)(q+1)
12 − 10

3 ([10]). Now we
know from the table 1 that gpgq/g2

pq satisfies

ord∞
gpgq

g2
pq

= −2gpq +
p + q − 26

4

and is holomorphic elsewhere. And gq/g2
pq satisfies

ord∞
gq

g2
pq

= −2gpq +
2p + 3q − 77

12

and is holomorphic elsewhere if q ≥ 2p − 1. At this stage we hope that these two
functions will play a certain role in examining whether the cusp ∞ is a Weierstrass
point of X0(pq) or not. On the other hand, we also have the following interesting
result from the table 1.

Theorem 5.5. Let p and q be primes such that both p, q ≡ 1 (mod 12) and
q ≥ 2p− 1. If p−1

12 and q−1
12 are relatively prime, then K(

X0(pq)
)

= C
(
gp, gq/g2

pq

)
.
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Proof. For convenience, put A = 2pq−p−q
12 and B = 2pq−q−1

12 , then −A + B = p−1
12

and 2qA+(1−2q)B = q−1
12 . And by assumption A and B are relatively prime. Then

the table 1 indicates that the total degrees of poles of gpgq/g2
pq and gq/g2

pq are equal
to A and B, respectively. Hence [K(

X0(pq)
)

: C
(
gpgq/g2

pq

)
] = A and [K(

X0(pq)
)

:
C

(
gq/g2

pq

)
] = B, which implies that [K(

X0(pq)
)

: C
(
gpgq/g2

pq, gq/g2
pq

)
] should be

1. Therefore gpgq/g2
pq and gq/g2

pq(or, gp and gq/g2
pq) are generators of K(

X0(pq)
)
.

In particular, when p = 13 and q(≥ 25) is a prime ≡ 1 (mod 12), we see that
g13 and gq/g2

13q are generators of K(
X0(13q)

)
. ¤

6. Hauptmoduln of K(
X1(N)

)

Since gN is an element of K(
X0(N)

)
, it is an element of K(

X1(N)
)

too. However
it doesn’t seem to be good enough as a generator of K(

X1(N)
)
, because K(

X1(N)
)

is much bigger than K(
X0(N)

)
in general. To find its relevant generators we need

more machinery. We have only thought of Siegel functions of the form g(0,∗) so
far. From now on we shall consider Siegel functions g(r1,r2) with r1 /∈ Z. Precisely
speaking, we shall consider the functions

g( t
N ,0)(Nτ)

with t 6≡ 0 (mod N).

Lemma 6.1. For an integer t 6≡ 0 mod N ,
N−1∏
n=0

g( t
N , n

N )(τ) = eπi N−1
2 ( t

N +1)g( t
N ,0)(Nτ).

Proof. One can readily prove the lemma by using the identity

1−XN = (1−X)(1− ζNX) · · · (1− ζN−1
N X)

and the qτ -expansion formula (2.8). ¤

The following theorem gives us a sufficient condition for a product of g( t
N ,0)(Nτ)’s

to be an element of K(
X1(N)

)
.

Theorem 6.2. A product

g =
N−1∏
t=1

g
m(t)

( t
N ,0)

(Nτ)

is an element of K(
X1(N)

)
if

∑
t

m(t) ≡ 0 (mod 12) and
∑

t

m(t)t2 ≡ 0 (mod gcd(2, N) ·N).

Furthermore, for α =
(

a b
c d

) ∈ SL2(Z) we have

(6.1) ordqτ g ◦ α =
gcd(c,N)2

2N

N−1∑
t=1

m(t)B2

(〈
at

gcd(c,N)

〉)
.

Proof. Assume the hypothesis of the theorem. By Lemma 6.1,

g = λ

N−1∏
t=1

{ N−1∏
n=0

g( t
N , n

N )

}m(t)
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for some root of unity λ. For notation, we set

g = λ
∏

r=(r1,r2)∈ 1
N Z

2\Z2

0≤r1,r2<1

gm′(r)
r .

Then

∑
r

m′(r)(Nr1)
2 = N

∑
t

m(t)t2

∑
r

m′(r)(Nr2)
2 =

(N − 1)N(2N − 1)

6

∑
t

m(t)

∑
r

m′(r)(Nr1)(Nr2) = N
∑

t

m(t)t

∑
r

m′(r) = N
∑

t

m(t).

Hence by Theorem 2.5, g is modular of level N . Note that Γ1(N) = 〈Γ(N), T 〉
with T = ( 1 1

0 1 ) and

g ◦ T = λ

N−1∏
t=1

{ N−1∏
n=0

(k( t
N , n

N ) ◦ T )(η2 ◦ T )
}m(t)

by (2.5)

= λ

{ N−1∏
t=1

N−1∏
n=0

k
m(t)

( t
N , t+n

N )

}
(η2 ◦ T )N

∑
t m(t) by Proposition 2.3(2)

= λ

{ N−1∏
t=1

N−1∏
n=0

k
m(t)

( t
N , t+n

N )

}
(η24)

N
12

∑
t m(t),

and

N−1∏
t=1

N−1∏
n=0

k
m(t)

( t
N , t+n

N )
=

N−1∏
t=1

{ N−1−t∏
n=0

k( t
N , t+n

N )

N−1∏

n=N−t

k( t
N , t+n

N )

}m(t)

=
N−1∏
t=1

{ N−1−t∏
n=0

k( t
N , t+n

N )

N−1∏

n=N−t

k( t
N , t+n

N −1)+(0,1)

}m(t)

=
N−1∏
t=1

{ N−1−t∏
n=0

k( t
N , t+n

N )

N−1∏

n=N−t

k( t
N , t+n

N −1)(−eπi t
N )

}m(t)

by Proposition 2.3(3)

=
{ N−1∏

t=1

N−1∏
n=0

k
m(t)

( t
N , n

N )

}
(−1)

∑
t tm(t)eπi 1

N

∑
t t2m(t).

Since
∑

t tm(t) ≡ ∑
t t2m(t) (mod 2), it follows from our assumption that

g ◦ T = g · (−1)
∑

t tm(t)eπi 1
N

∑
t t2m(t) = g.
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Therefore g is an element of K(
X1(N)

)
. Moreover, for α =

(
a b
c d

) ∈ SL2(Z) we
deduce that

ordqτ
g ◦ α =

N−1∑
t=1

m(t)
N−1∑
n=0

ordqτ
g( t

N , n
N )β by Proposition 2.4(2)

=
N−1∑
t=1

m(t)
N−1∑
n=0

ordqτ g( at+cn
N , bt+dn

N )

=
N−1∑
t=1

m(t)
N−1∑
n=0

1
2
B2

(〈
at + cn

N

〉)
by (2.9)

=
gcd(c, N)2

2N

N−1∑
t=1

m(t)B2

(〈
at

gcd(c,N)

〉)
.

The last equality is obtained from the following well-known lemma concerning the
distribution relations of the Bernoulli polynomials. We only need that of the second
Bernoulli polynomial. ¤

Lemma 6.3. For any y ∈ Q/Z and a positive integer D we have
∑

Dx=y, x∈Q/Z
Bn

(〈x〉) = D1−nBn

(〈y〉).

Proof. For the sake of completeness we give a proof. The n-th Bernoulli polynomial
Bn(X) is defined by

WeWX

eW − 1
=

∞∑
n=0

Bn(X)
Wn

n!
.

Here we observe directly from the above definition of Bn(X) that

∞∑
n=0

Bn

(〈y〉)Wn

n!
=

WeW 〈y〉

eW − 1
=

D−1∑

k=0

WeW (〈y〉+k)

eDW − 1
=

D−1∑

k=0

1
D

(DW )e(DW )
〈y〉+k

D

eDW − 1

=
D−1∑

k=0

∞∑
n=0

1
D

Bn

( 〈y〉+ k

D

)
(DW )n

n!

=
∞∑

n=0

D−1∑

k=0

Dn−1Bn

( 〈y〉+ k

D

)
Wn

n!
.

Thus we achieve

Bn

(〈y〉) = Dn−1
D−1∑

k=0

Bn

( 〈y〉+ k

D

)
= Dn−1

∑

Dx=y, x∈Q/Z
Bn

(〈x〉).

¤

The genus zero condition and the inequivalent cusps on the modular curve X1(N)
are given in the following theorem.
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Theorem 6.4. The genus of X1(N) is zero if and only if 1 ≤ N ≤ 10 or N = 12.
Let N 6= 1, 2, 4. All the inequivalent cusps on X1(N) are represented by the pairs
of integers (u, v) satisfying

{
1 ≤ v < N

2 , 1 ≤ u ≤ D, gcd(u,D) = 1, or
v = N

2 , N, 1 ≤ u ≤ D
2 , gcd(u,D) = 1,

where D = gcd(v, N). If gcd(u, v) 6= 1, we replace (u, v) by other pair of integers
(u′, v′) such that u′ ≡ u (mod N), v′ ≡ v (mod N) and gcd(u′, v′) = 1. Then all
the inequivalent cusps on X1(N) are given by the quotients u

v .

Proof. See [10]. ¤

Theorem 6.5. Assume that X1(N) is of genus 0 and let a product

g =
N−1∏
t=1

g
m(t)

( t
N ,0)

(Nτ)

be a function in K(
X1(N)

)
. For each cusp s = a

c ∈ Q with gcd(a, c) = 1 which is
inequivalent to ∞, g is a generator of K(

X1(N)
)

if

N

2

∑
t

m(t)B2

(
t

N

)
= −1 and

∑
t

m(t)B2

(〈
at

gcd(c,N)

〉)
≥ 0.

Proof. Note that the width of ∞ on X1(N) is 1. From the order formula (6.1) in
Theorem 6.2 we see that the hypothesis in this theorem renders the fact that g has
simple pole at ∞ and is holomorphic elsewhere. Hence X1(N) is isomorphic to the
projective line P1

C through the map τ 7→ [1 : g(τ)] and K(
X1(N)

)
= C(g). ¤

Remark 6.6. This result is similar to that of Yang([24] Lemma 3) developed by
making use of the generalized Dedekind eta function. But we believe that the
Siegel functions are more systematic and convenient to use than the generalized
Dedekind eta functions, especially in the matter of transformation formulas.

As an application of Theorem 6.5 we can explicitly find generators of K(
X1(N)

)
of genus zero as shown in the table 2 below. We denote them by GN for conve-
nience. On the other hand, in the table 3 below we additionally introduce relations
between GN and the generators j1,N of K(

X1(N)
)

which appeared in [13] ahead of
Yang’s([24]). As for j1,N we need the following definitions:

θ2(τ) =
∑

n∈Z
eπi(n+ 1

2 )2 , θ3(τ) =
∑

n∈Z
eπin2

, θ4(τ) =
∑

n∈Z
(−1)neπin2

H2(τ) = 2ζ(2)− 8π2
∞∑

n=1

σ1(n)qn
τ

E2(τ) =
1

2ζ(2)
H2(τ), E4(τ) = 1 + 240

∞∑
n=1

σ3(n)qn
τ

H
(p)
2 (τ) = H2(τ)− pH2(pτ) for each prime p

E
(p)
2 (τ) = E2(τ)− pE2(pτ) for each prime p

℘(r1,r2)(τ) = ℘(r1τ + r2; [τ, 1]) for (r1, r2) ∈ Q2 \ Z2.
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N GN j1,N

2 g12
( 1
2 ,0)

(2τ) θ8
2(τ)

θ8
4(2τ)

3 g12
( 1
3 ,0)

(3τ) E4(τ)
E4(3τ)

4 g−8
( 1
4 ,0)

(4τ)g8
( 2
4 ,0)

(4τ) θ4
2(2τ)

θ4
3(2τ)

5 g−5
( 1
5 ,0)

(5τ)g5
( 2
5 ,0)

(5τ) 4η5(τ)/η(5τ)+E
(5)
2 (τ)

η5(5τ)/η(τ)

6 g−3
( 1
6 ,0)

(6τ)g3
( 3
6 ,0)

(6τ) H
(2)
2 (τ)−H

(2)
2 (3τ)

2H
(2)
2 (τ)−H

(3)
2 (τ)

7 g−3
( 1
7 ,0)

(7τ)g2
( 2
7 ,0)

(7τ)g( 3
7 ,0)(7τ)

℘( 1
7 ,0)(7τ)−℘( 2

7 ,0)(7τ)

℘( 1
7 ,0)(7τ)−℘( 4

7 ,0)(7τ)

8 g−2
( 1
8 ,0)

(8τ)g2
( 3
8 ,0)

(8τ) θ3(2τ)
θ3(4τ)

9 g−2
( 1
9 ,0)

(9τ)g( 2
9 ,0)(9τ)g( 4

9 ,0)(9τ)
℘( 1

9 ,0)(9τ)−℘( 2
9 ,0)(9τ)

℘( 1
9 ,0)(9τ)−℘( 4

9 ,0)(9τ)

10 g−1
( 1
10 ,0)

(10τ)g−1
( 2
10 ,0)

(10τ)g( 3
10 ,0)(10τ)g( 4

10 ,0)(10τ)
℘( 1

10 ,0)(10τ)−℘( 2
10 ,0)(10τ)

℘( 1
10 ,0)(10τ)−℘( 4

10 ,0)(10τ)

12 g−1
( 1
12 ,0)

(12τ)g( 5
12 ,0)(12τ) θ3(2τ)

θ3(6τ)

Table 2. Generators of K(
X1(N)

)

N Hauptmoduln(unique normalized generators)
2 G2 + 24 = 256

j1,2
+ 24 = 1

qτ
+ 276qτ − 2048q2

τ + 11202q3
τ − 49152q4

τ + 184024q5
τ + · · ·

3 G3 + 12 = 240
j1,3−1

+ 9 = 1
qτ

+ 54qτ − 76q2
τ − 243q3

τ + 1188qτ4 − 1384q5
τ + · · ·

4 G4 − 8 = 16
j1,4

− 8 = 1
qτ

+ 20qτ − 62q3
τ + 216q5

τ − 641q7
τ + 1636q9

τ + · · ·
5 G5 − 5 = − 8

j1,5+44
− 5 = 1

qτ
+ 10qτ + 5q2

τ − 15q3
τ − 24q4

τ + 15q5
τ + · · ·

6 G6 − 3 = 2
j1,6−1

− 1 = 1
qτ

+ 6qτ + 4q2
τ − 3q3

τ − 12q4
τ − 8q5

τ + · · ·
7 G7 − 3 = − 1

j1,7−1
− 3 = 1

qτ
+ 4qτ + 3q2

τ − 5q4
τ − 7q5

τ − 2q6
τ + · · ·

8 G8 − 2 = 2
j1,8−1

− 1 = 1
qτ

+ 3qτ + 2q2
τ + q3

τ − 2q4
τ − 4q5

τ + · · ·
9 G9 − 2 = − 1

j1,9−1
− 2 = 1

qτ
+ 2qτ + 2q2

τ + q3
τ − q4

τ − 2q5
τ + · · ·

10 G10 − 1 = − 1
j1,10−1

− 2 = 1
qτ

+ 2qτ + q2
τ + q3

τ − q5
τ − 2q6

τ + · · ·
12 G12 − 1 = 2

j1,12−1
= 1

qτ
+ qτ + q2

τ + q3
τ − q6

τ − q7
τ + · · ·

Table 3. Hauptmoduln of K(
X1(N)

)

Now, using our algorithm in §3 for integrality over Z[j] we induce the following
results.

Theorem 6.7. (1) For N = 5, 7, 8, 9, 10 and 12, GN are units over Z.
(2) For N = 2, 3, 4, 6, GN are integral over Z[j], but G−1

N are not.

Proof. (1) N = 5, 7, 8, 9. For such N the indices of Siegel functions appearing in
GN have the same primitive denominator N . We shall only prove the case N = 7,
because the other cases are similar. By Lemma 6.1 we get

G7 = g−3
( 1
7 ,0)

(7τ)g2
( 2
7 ,0)(7τ)g( 3

7 ,0)(7τ) .=
6∏

n=0

g−3
( 1
7 , n

7 )
g2
( 2
7 , n

7 )g( 3
7 , n

7 ).
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The action(multiplication) of (Z/7Z)∗ groups the indices in the above product into
{(

1

7
, 0

)
,

(
2

7
, 0

)
,

(
3

7
, 0

)}
,

{(
1

7
,
1

7

)
,

(
2

7
,
2

7

)
,

(
3

7
,
3

7

)}
,

{(
1

7
,
2

7

)(
2

7
,
4

7

)(
3

7
,
6

7

)}

{(
1

7
,
3

7

)
,

(
2

7
,
6

7

)
,

(
3

7
,
2

7

)}
,

{(
1

7
,
4

7

)
,

(
2

7
,
1

7

)
,

(
3

7
,
5

7

)}
,

{(
1

7
,
5

7

)
,

(
2

7
,
3

7

)
,

(
3

7
,
1

7

)}

{(
1

7
,
6

7

)
,

(
2

7
,
5

7

)
,

(
3

7
,
4

7

)}
.

It can then be directly checked that the sum of exponents for each orbit is zero.
Therefore our algorithm claims that G7 is a unit over Z.
N = 10. By Lemma 6.1 we have

G10
.=

9∏
n=0

g−1
( 1
10 , n

10 )
g−1
( 2
10 , n

10 )
g( 3

10 , n
10 )g( 4

10 , n
10 ) = (G10)comp

4∏
n=0

g−1
( 1
5 , n

5 )
g( 2

5 , n
5 ).

From the algorithm it suffices to show that (G10)(5) =
∏4

n=0 g−1
( 1
5 , n

5 )
g( 2

5 , n
5 ) is a unit

over Z. The action of (Z/5Z)∗ groups the indices in (G10)(5) into
{(

1

5
,
1

5

)
,

(
2

5
,
2

5

)}
,

{(
1

5
,
2

5

)
,

(
2

5
,
4

5

)}
,

{(
1

5
,
3

5

)
,

(
2

5
,
1

5

)}
,

{(
1

5
,
4

5

)
,

(
2

5
,
3

5

)}
.

And it can be readily checked that the sum of exponents for each orbit is zero.
Hence G10 is a unit over Z.
N = 12. By Lemma 6.1 we get

G12
.=

11∏
n=0

g−1
( 1
12 , n

12 )
g( 5

12 , n
12 ) = (G12)comp.

And G12 is a unit over Z with no more argument.
(2) N = 2, 3. By Lemma 6.1 we obtain

G2
.= g12

( 1
2 ,0)g

12
( 1
2 , 1

2 )

G3
.= g12

( 1
3 ,0)g

12
( 1
3 , 1

3 )g
12
( 1
3 , 2

3 ).

Since all the exponents are positive, G2 and G3 are obviously integral over Z[j].
But, their inverses G−1

2 and G−1
3 are not.

N = 4. By the proof of Corollary 3.2 and Proposition 2.4(1) and (3) we deduce that

G4
.=

3∏
n=0

g−8
( 1
4 , n

4 )
g8
( 2
4 , n

4 )

.= g8
( 1
4 ,0)g

8
( 1
4 , 1

4 )g
8
( 1
4 , 2

4 )g
8
( 1
4 , 3

4 )g
16
( 2
4 , 1

4 ).

Thus G4 is integral over Z[j], but G−1
4 is not.

N = 6. By Lemma 6.1 we obtain that

G6
.=

5∏
n=0

g−3
( 1
6 , n

6 )
g3
( 3
6 , n

6 ) = (G6)compg3
( 1
2 ,0)g

3
( 1
2 , 1

2 ).

Thereofore G6 is also integral over Z[j], but G−1
6 is not. ¤

7. Application to the Ramanujan’s cubic continued fraction

Next, we shall investigate how to evaluate special values of the Ramanujan’s
cubic continued fraction if we know the singular j-invariants. The Ramanujan’s
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cubic continued fraction([20]) as a holomorphic function on H is defined by

C(τ) =
q

1
3
τ

1 +
qτ + q2

τ

1 +
q2
τ + q4

τ

1 +
q3
τ + q6

τ

1 + · · ·

= q
1
3
τ

∞∏
n=1

(1− q6n−1
τ )(1− q6n−5

τ )
(1− q6n−3

τ )2
.

Since

g( t
N ,0)(Nτ) = −q

N
2 B2(

t
N )

τ

∞∏
n=1

(1− qN(n−1)+t
τ )(1− qNn−t

τ )

from the qτ -expansion formula (2.8), C can be written as

C = g( 1
6 ,0)(6τ)g−1

( 3
6 ,0)

(6τ).

Note that we have C−3 = G6 by the table 2, which implies that C−1 is integral
over Z[j] by Theorem 6.7(2).

We shall first find some relation between j and G3, and then find that of G3 and
G6. From these relations we will be able to estimate the values of C at some points
in H whenever we know the singular j-invariants there. To begin with, observe the
following qτ -expansions

j =
1
qτ

+ 744 + 196884qτ + 21493760q2
τ + 864299970q3

τ + · · ·

G3 =
1
qτ
− 12 + 54qτ − 76q2

τ − 243q3
τ + 1188q4

τ − 1384q5
τ + · · ·

G6 =
1
qτ

+ 3 + 6qτ + 4q2
τ − 3q3

τ − 12q4
τ − 8q5

τ + · · · .

Theorem 7.1.

j =
(G3 + 27)(G3 + 243)3

G3
3

(7.1)

G3 =
(G6 + 1)(G6 − 8)2

G2
6

.(7.2)

Proof. Let us take a complete system of right coset representatives of Γ1/Γ1(3) as
follows:

α1 =
(

1 0
0 1

)
α2 =

(
1 0
1 1

)
α3 =

(
1 0
2 1

)
α4 =

(
0 −1
1 0

)
.

Then the minimal polynomial of G3 over K(X(1)) = C(j) is written as

f(X) =
4∏

n=1

(X −G3 ◦ αn).

Since G3 is a modular unit, each G3 ◦ αn is also a modular unit. Hence each
coefficient of f(X) is holomorphic on H, which yields that it is a polynomial in
j([16] Chapter 5). Now that

G3
.= g12

( 1
3 ,0)g

12
( 1
3 , 1

3 )g
12
( 1
3 , 2

3 ) by Lemma 6.1,
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we derive from Proposition 2.4(2) and (2.9) that

ordqτ
(G3 ◦ α1) = ordqτ

(
g12
( 1
3 ,0)g

12
( 1
3 , 1

3 )g
12
( 1
3 , 2

3 )

)
= −1

ordqτ
(G3 ◦ α2) = ordqτ

(
g12
( 1
3 ,0)g

12
( 2
3 , 1

3 )g
12
(1, 2

3 )

)
=

1
3

ordqτ (G3 ◦ α3) = ordqτ

(
g12
( 1
3 ,0)g

12
(1, 1

3 )g
12
( 5
3 , 2

3 )

)
=

1
3

ordqτ
(G3 ◦ α4) = ordqτ

(
g12
(0,− 1

3 )g
12
( 1
3 ,− 1

3 )g
12
( 2
3 ,− 1

3 )

)
=

1
3
.

This shows that the only nonconstant coefficient of f(X) is that of X3 which is a
linear polynomial in j. Thus we can write

j =
G4

3 + A3G
3
3 + A2G

2
3 + A1G3 + A0

A′3G
3
3

for some A3, A
′
3, A2, A1, A0 ∈ C. Now comparing the qτ -expansions of both sides

we have the formula (7.1).
Observe that the inequivalent cusps of X1(6) are ∞, 0, 1

2 , 1
3 by Theorem 6.4 and

the elements of SL2(Z)

γ0 =
(

0 −1
1 0

)
, γ 1

2
=

(
1 0
2 1

)
, γ 1

3
=

(
1 0
3 1

)

satisfy γ0(∞) = 0, γ 1
2
(∞) = 1

2 and γ 1
3
(∞) = 1

3 . And, again by Proposition 2.4(2)
and (2.9) we have

ordqτ (G3 ◦ γ0) = ordqτ

(
g12
(0,− 1

3 )g
12
( 1
3 ,− 1

3 )g
12
( 2
3 ,− 1

3 )

)
=

1
3

ordqτ (G3 ◦ γ 1
2
) = ordqτ

(
g12
( 1
3 ,0)g

12
(1, 1

3 )g
12
( 5
3 , 2

3 )

)
=

1
3

ordqτ (G3 ◦ γ 1
3
) = ordqτ

(
g12
( 1
3 ,0)g

12
( 4
3 , 1

3 )g
12
( 7
3 , 2

3 )

)
= −1.

Similarly, since

G6 = g−3
( 1
6 ,0)

(6τ)g3
( 3
6 ,0)(6τ) .=

5∏
n=0

g−3
( 1
6 , n

6 )
g3
( 3
6 , n

6 ) by Lemma 6.1,

we deduce by Proposition 2.4(2) and (2.9) that

ordqτ (G6 ◦ γ0) = ordqτ

( 5∏
n=0

g−3
( n

6 ,− 1
6 )

g3
( n

6 ,− 3
6 )

)
= 0

ordqτ (G6 ◦ γ 1
2
) = ordqτ

( 5∏
n=0

g−3

( 1+2n
6 , n

6 )
g3
( 3+2n

6 , n
6 )

)
= 0

ordqτ (G6 ◦ γ 1
3
) = ordqτ

( 5∏
n=0

g−3

( 1+3n
6 , n

6 )
g3
( 3+3n

6 , n
6 )

)
=

1
2
.

Now we consider the function

G = G3G
2
6 − (G6 + 1)(G6 − 8)2.
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Since G3 and G6 are holomorphic on H, so is G. Now that ordqτ is a valuation, for
n = 1, 2, 3 it holds that

ordqτ
(G ◦ γn) ≥ min

{
ordqτ

(G3 ◦ γn) + 2ordqτ
(G6 ◦ γn),

ordqτ
(G6 ◦ γn + 1) + 2ordqτ

(G6 ◦ γn − 8)
}

.

Then from our computation of orders we achieve

ordqτ
(G ◦ γn) ≥ 0

for all n = 1, 2, 3, which means that G is holomorphic on X1(6) except possibly for
the point ∞. And, observe that the qτ -expansion of G is of the form

G = G3G
2
6 − (G6 + 1)(G6 − 8)2

=
(

1
qτ
− 12 + 54qτ − 76q2

τ − 243q3
τ + · · ·

)(
1
qτ

+ 3 + 6qτ + 4q2
τ − 3q3

τ + · · ·
)2

−
(

1
qτ

+ 4 + 6qτ + 4q2
τ − 3q3

τ + · · ·
)(

1
qτ
− 5 + 6qτ + 4q2

τ − 3q3
τ + · · ·

)2

= O(q),

which shows that ordqτ G ≥ 1. Therefore G is holomorphic on the whole X1(6) and
has a zero at ∞, which implies that G = 0 as a function on the Riemann sphere
X1(6). Therefore we obtain the formula (7.2). ¤
Corollary 7.2.

j =
(4C3 + 1)3(4C3 + 6C + 1)3(16C6 − 24C4 + 8C3 + 36C2 − 6C + 1)3

C3(C + 1)3(C2 − C + 1)3(2C − 1)6(4C2 + 2C + 1)6
.

Proof. If we plug (7.2) into (7.1) and replace G6 by C−3, then we get the above
relation between j and C. ¤
Corollary 7.3. If we know the singular value j(τ0) for some τ0 ∈ H, we can express
C(τ0) in terms of radicals. In particular, if τ0 ∈ H is imaginary quadratic, then
C−1(τ0) is an algebraic integer.

Proof. By (7.1) we can express G3(τ0) in terms of radicals. Then by (7.2) we can
also write G6(τ0) in terms of radicals. Since G6 = C−3, we finally evaluate C(τ0)
exactly.

If τ0 ∈ H is imaginary quadratic, j(τ0) becomes an algebraic integer([16], [21]).
And G3 = C−3 is integral over Z[j] by Theorem 6.7(2); hence C−1(τ0) is an alge-
braic integer, too. ¤
Example 7.4. We exhibit several values C(τ0) in the following table. The singular
values j(τ0) are taken from [8] (12.20).
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τ0 j(τ0) C(τ0)
3+
√−3
2 0

3√2− 3√4
2

3+
√−3
6 0 − 1

3√4

i 1728 −1−√3+(7−4
√

3)(
√

1008+582
√

3)
4

3+i
2 1728 1−√3

2√−2 8000 2−3
√

2+
√

6
4√−2

2 8000 −2+
√

6
2√−3 54000 −5(2+2 3√2+ 3√4)+(−56+18 3√2+21 3√4)
√

1641279+1302684 3√2+1033941 3√4
20√−3

3 54000
3
√
−5+3

√
3

2
Table 4. Explicit values of the Ramanujan’s cubic continued fraction

The first six values of C(τ0) can be also found in [2] and [4], which were ob-
tained by theta function identities. Recently, Cho, Koo and Park([6]) pointed
out that C−1 is a generator of the function field K(

X(Γ1(6) ∩ Γ0(3))
)

where
Γ0(3) =

{ (
a b
c d

) ∈ SL2(Z) :
(

a b
c d

) ≡ ( ∗ 0
∗ ∗ ) (mod 3)

}
. Thus the special value

C−1(τ0) for the maximal order [τ0, 1] of an imaginary quadratic field becomes a
ray class invariant of level 6. Further, if we use the Shimura’s reciprocity law and
some numerical approximations, we can come up with the class polynomial for each
C−1(τ0) as in [6].

8. Generators of K(
X1(N)

)
of arbitrary genus

Since the modular curve X1(N) is a compact Riemann surface, the function
field K(

X1(N)
)

can be generated over C by two functions. Unlike Ishida-Ishii’s
result([11]) we will find such two generators of K(

X1(N)
)

of arbitrary genus by
means of Siegel functions when N ≥ 7. As for the cases N = 2, 3, 4, 5 and 6, we
refer to the Section 6.

Let N ≥ 2. By Proposition 2.4 and the discussion following it, we have the
formula

(8.1) g12N
r ◦ α = g12N

rα = g12N
(〈(rα)1〉,〈(rα)2〉)

where r ∈ 1
NZ

2 \Z2, α ∈ SL2(Z) and rα = ((rα)1, (rα)2). For t ∈ Z \NZ we recall
the qτ -expansion formula

(8.2) g( t
N ,0)(Nτ) = −q

N
2 B2(

t
N )

τ

∞∏
n=1

(1− qN(n−1)+t
τ )(1− qNn−t

τ )

whose coefficients are all rational numbers by (2.8). By Lemma 6.1 we have a
distribution relation

(8.3) g12N
( t

N ,0)(Nτ) =
N−1∏
n=0

g12N
( t

N , n
N ).
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Furthermore by Proposition 6.2, g12N
( t

N ,0)
(Nτ) is a modular function for Γ1(N) and

we have the order formula
(8.4)

ordqτ

(
g12N
( t

N ,0)(Nτ)◦α)
= ordqτ

(
g12N
( t

N ,0)(N(α(τ)))
)

= 6 gcd(c,N)2B2

(〈
at

gcd(c,N)

〉)

where α =
(

a b
c d

) ∈ SL2(Z). From (8.2) we can easily verify that

(8.5)
N−1∏
t=1

g12N
( t

N ,0)(Nτ) =
(

∆(τ)
∆(Nτ)

)N

,

which is a modular function for Γ0(N) by (5.1) and Proposition 5.1.

Theorem 8.1. For N ≥ 7 we have

K(
X1(N)

)
= C

(
j, g12N

( 1
N ,0)(Nτ)

)
.

Furthermore, Q
(
j, g12N

( 1
N ,0)

(Nτ)
)

is the field of all modular functions in K(
X1(N)

)

with rational Fourier coefficients.

Proof. It is well-known that

Gal
(K(

X(N)
)
/K(

X1(N)
)) ∼=

{
±

(
1 b
0 1

)
∈ SL2(Z/NZ)/{±12} : b ∈ Z/NZ

}

as a subgroup of Gal
(K(

X(N)
)
/K(

X(1)
)) ∼= SL2(Z/NZ)/{±12} whose action is

given by composition([9]).
Let g = g12N

( 1
N ,0)

(Nτ). Assume that g ◦ α = g for some α =
(

a b
c d

) ∈ SL2(Z), then
ordqτ (g ◦ α) = ordqτ (g). Thus from the order formula (6.1) we derive

6 gcd(c,N)2B2

(〈
a

gcd(c,N)

〉)
= 6N2B2

(
1
N

)
.

The shape of the graph of Y = B2(X) in the interval 0 ≤ X ≤ 1 shows that the
maximum value of B2(X) is 1

6 at X = 0, 1. If gcd(c,N) 6= N , we have the inequality

6− 6N + N2 = 6N2B2

(
1
N

)
= 6 gcd(c, N)2B2

(〈
a

gcd(c,N)

〉)
≤ 6 ·

(
N

2

)2

· 1
6
,

which is impossible for N ≥ 7. Hence gcd(c,N) = N , which yields B2

(〈 a
N 〉

)
=

B2

(
1
N

)
. Furthermore, since α ∈ SL2(Z), we have a 6≡ 0 (mod N) so that a ≡

±1 (mod N) from the shape of the graph B2(X). Lastly, since det(α) = 1, we
obtain a ≡ d ≡ ±1 (mod N). Hence α ≡ ± ( 1 b

0 1 ) (mod N), which implies that
C

(
j, g12N

( 1
N ,0)

(Nτ)
)

is all of K(X1(N)). And, since j and g12N
( 1

N ,0)
(Nτ) have rational

Fourier coefficients, we get the second assertion by Lemma 4.1. ¤
And, in particular, for a prime level p we will present generators in terms of only

Siegel functions.

Proposition 8.2. For an odd prime p all inequivalent cusps of the modular curve
X1(p) are listed as follows:{

1
1 , 1

2 , · · · , 1
(p−1)/2 of width p

1
p , 2

p , · · · , (p−1)/2
p of width 1.

Proof. See [10]. ¤
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Theorem 8.3. For a prime p ≥ 11 we have

K(
X1(p)

)
= C

((
p12 ∆(pτ)

∆(τ)

)5−p

g12p

( 1
p ,0)

(pτ),
(

p12 ∆(pτ)
∆(τ)

)5−p

g12p

( 2
p ,0)

(pτ)
)

.

Hence Q
((

p12 ∆(pτ)
∆(τ)

)5−p
g12p

( 1
p ,0)

(pτ),
(
p12 ∆(pτ)

∆(τ)

)5−p
g12p

( 2
p ,0)

(pτ)
)

is the field of all mod-

ular functions in K(
X1(p)

)
with rational Fourier coefficients by Lemma 4.1.

Proof. For convenience, we set

∆p(τ) = p12 ∆(pτ)
∆(τ)

, Gp,1(τ) = g12p

( 1
p ,0)

(pτ), Gp,2(τ) = g12p

( 2
p ,0)

(pτ).

Then

∆p(τ) =
p−1∏
n=1

g12
(0, n

p )(τ)

as we see in (5.1), which is modular for Γ0(p). Observe the following order table
constructed from the order formula (2.9) for ∆p and (8.4) for Gp,1, Gp,2:

XXXXXXXXXXCusps

Functions
∆p Gp,1 Gp,2

1
1 1− p p p
1
2 1− p p p
· · · · · · · · · · · ·
1

(p−1)/2 1− p p p
1
p p− 1 6p2B2( 1

p ) 6p2B2( 2
p )

2
p p− 1 6p2B2( 2

p ) 6p2B2( 4
p )

· · · · · · · · · · · ·
(p−1)/2

p p− 1 6p2B2(
(p−1)/2

p ) 6p2B2(p−1
p )

Table 5. The orders at the cusps on X1(p)

Let us take a negative integer M satisfying the inequality

6p2B2

(
2
p

)
< (−M) · (p− 1) < 6p2B2

(
1
p

)
.

We take M = 5 − p. From the shape of the graph Y = B2(X) in the interval
0 ≤ X ≤ 1 we see that

M(p− 1) + 6p2B2

(
n

p

)
< 0 < M(p− 1) + 6p2B2

(
1
p

)

M(p− 1) + 6p2B2

(
2m

p

)
< 0 < M(p− 1) + 6p2B2

(
p− 1

p

)

for all n = 2, 3, · · · , p−1
2 and m = 1, 2, · · · , p−3

2 . Now we observe the orders and the
signs of orders of the functions ∆M

p Gp,1 and ∆M
p Gp,2 by Table 5 as follows:



32 JA KYUNG KOO AND DONG HWA SHIN

XXXXXXXXXXCusps

Functions
∆M

p Gp,1 ∆M
p Gp,2

1
1 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0
1
2 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0
· · · + +
1

(p−1)/2 p2 − 5p + 5 > 0 p2 − 5p + 5 > 0
1
p 1 > 0 −(p2 − 6p + 5) + 6p2B2

(
2
p

)
< 0

2
p −(p2 − 6p + 5) + 6p2B2

(
2
p

)
< 0 −(p2 − 6p + 5) + 6p2B2

(
4
p

)
< 0

· · · − −
(p−1)/2

p −(p2 − 6p + 5) + 6p2B2

( (p−1)/2
p

)
< 0 1 > 0

Table 6. The orders and the signs of orders at the cusps on X1(p)

For a function g ∈ K(X1(p)), we denote by deg(g) the total degree of the poles of
g. Note that deg(g) is equal to the total degree of the zeros of g, and the functions
∆M

p Gp,1,∆M
p Gp,2 are modular units. Hence from the Table 6 we get

deg(∆M
p Gp,1) =

p− 1
2

· (p2 − 5p + 5) + 1

deg(∆M
p Gp,2) =

p− 1
2

· (p2 − 5p + 5) + 1.

Let us consider the function (∆M
p Gp,1)−1+q(∆M

p Gp,2)−1 for a suitably large positive
integer q. Again from the Table 6 we obtain the following table:

XXXXXXXXXXCusps

Function
(∆M

p Gp,1)−1 + q(∆M
p Gp,2)−1

1
1 −(p2 − 5p + 5) < 0
1
2 −(p2 − 5p + 5) < 0
· · · −
1

(p−1)/2 −(p2 − 5p + 5) < 0
1
p −1 < 0
2
p min

{
(p2 − 6p + 5)− 6p2B2

(
2
p

)
, (p2 − 6p + 5)− 6p2B2

(
2
p

)}
> 0

· · · +
(p−1)/2

p −1 < 0
Table 7. The orders and the signs of orders at the cusps on X1(p)

Hence we deduce that

deg
(
(∆M

p Gp,1)−1 + q(∆M
p Gp,2)−1

)
=

p− 1
2

· (p2 − 5p + 5) + 2 = deg(∆M
p Gp,1) + 1.

Therefore, gcd
(
deg(∆M

p Gp,1), deg((∆M
p Gp,1)−1 +q(∆M

p Gp,2)−1)
)

= 1, which leads
to the fact that K(

X1(p)
)

= C
(
∆M

p Gp,1, ∆M
p Gp,2

)
, as desired.

¤
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9. Ray class fields of imaginary quadratic fields

Let K 6= Q(
√−1),Q(

√−3) be an imaginary quadratic field with discriminant
dK . We denote by K(1) the Hilbert class field of K and K(N) the ray class field
modulo N of K for an integer N ≥ 2. Let OK = Z[θ] with θ ∈ H be the ring of
algebraic integers in K. By the main theorem of complex multiplication we know
that K(1) = K

(
j(θ)

)
and K(N) = KFN (θ), the field generated over K by all values

h(θ) with h ∈ FN defined and finite at θ. Setting irr(θ,Q) = X2 +BX +C we take
a group

WN,θ =
{(

t−Bs −Cs
s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
.

Then by the Shimura’s reciprocity law we have a surjection with kernel {±12} given
by

WN,θ −→ Gal
(
K(N)/K(1)

)

α 7−→ α =
(
h(θ) 7→ hα(θ)

)

where h ∈ FN is defined and finite at θ([7]).

Lemma 9.1. For N ≥ 2, let A and D be positive integers such that AD = N and
D ≥ 2. Then Nθ and Aθ+B

D are not equivalent under SL2(Z) for any integer B.

Proof. Take an integer B′ such that Re(θ + B′) = 0 or 1
2 . Since

(
1 NB′
0 1

)
(Nθ) =

N(θ + B′) and Aθ+B
D = A(θ+B′)+(B−AB′)

D , we may assume that Re(θ) = 0 or 1
2

in the beginning. Suppose on the contrary that
(

a b
c d

)
(Nθ) = Aθ+B

D for some(
a b
c d

) ∈ SL2(Z) . Then by using the identity in [22] Lemma 1.1 we have

Im
((

a b
c d

)
(Nθ)

)
=

N

|cNθ + d|2 Im(θ) = Im
(

Aθ + B

D

)
=

A

D
Im(θ),

which yields ND = A|cNθ + d|2 = Ac2N2|θ|2 + 2AcdNRe(θ) + Ad2. Replacing N
by AD and dividing the equation by A gives

D2 = A2D2c2|θ|2 + 2ADcdRe(θ) + d2.(9.1)

If Re(θ) = 0, then (9.1) is reduced to D2 = A2D2c2|θ|2 + d2. Hence D divides
d so that putting d = De and dividing both sides by D2 we get 1 = A2c2|θ|2 + e2.
Since |θ|2 ≥ 2, we have c = 0 and e = ±1; hence gcd(c, d) = D ≥ 2. But this
contradicts ad− bc = 1.

If Re(θ) = 1
2 , then (9.1) becomes D2 = A2D2c2|θ|2 +ADcd+d2. Thus D divides

d2, which implies that d 6= ±1 because D ≥ 2. On the other hand, since |θ|2 ≥ 2,
we have D2 ≥ 2A2D2c2 + ADcd + d2 =

(
7A2c2

4

)
D2 +

(
ADc

2 + d
)2. This yields c = 0

so that gcd(c, d) = |d| > 1. But it again contradicts ad− bc = 1.
Therefore Nθ and Aθ+B

D can not be equivalent under SL2(Z). ¤

Lemma 9.2. Let N ≥ 2. If j(Nθ) = j(Nτ) ◦ α(θ)(= j(N(α(θ)))) for some
α = ( x y

z w ) ∈ SL2(Z), then z ≡ 0 (mod N), that is, α ∈ Γ0(N).

Proof. Note that j(Nτ) ◦ α(θ) = j ◦ ( Nx Ny
z w ) (θ). Since ( Nx Ny

z w ) is a primitive
matrix of determinant N , we can decompose it into β ( A B

0 D ) for some β ∈ SL2(Z)
and positive integers A,B, D such that AD = N . Then j(Nθ) = j ◦ ( Nx Ny

z w ) (θ) =
j ◦ β ( A B

0 D ) (θ) = j ◦ ( A B
0 D ) (θ) = j(Aθ+B

D ), which yields that Nθ and Aθ+B
D are
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equivalent under SL2(Z). Now Lemma 9.1 forces us to have D = 1 and A = N ,
from which we achieve z ≡ 0 (mod N) due to the fact ( Nx Ny

z w ) = β ( A B
0 D ). ¤

Lemma 9.3. If N ≥ 4, we have the following inequalities
∣∣g( 1

N ,0)(Nθ)
∣∣ <

∣∣g( x
N ,0)(Nθ)

∣∣

for 1 < x ≤ [
N
2

]
.

Proof. Put A = |qθ| = |e2πiθ| and observe that for 1 < x ≤ [
N
2

]

M =
∣∣∣∣
g( 1

N ,0)(Nθ)

g( x
N ,0)(Nθ)

∣∣∣∣ =
∣∣∣∣
q

N
2 B2(

1
N )

θ

∏∞
n=1(1− q

N(n−1)+1
θ )(1− qNn−1

θ )

q
N
2 B2(

x
N )

θ

∏∞
n=1(1− q

N(n−1)+x
θ )(1− qNn−x

θ )

∣∣∣∣ by (8.2)

≤ A
N
2 (B2(

1
N )−B2(

x
N ))

∏∞
n=1(1 + AN(n−1)+1)(1 + ANn−1)∏∞
n=1(1−AN(n−1)+x)(1−ANn−x)

.

Since A = |e2πiθ| ≤ e−
√

7π < 0.00025, we obviously derive

(9.2)
1

1−AX
< 1 + AX−1 for any X ≥ 1.

Furthermore we have the inequality

(9.3) 1 + X < eX for X > 0.

Hence we get by (9.2) that

M ≤ A
N
2 (B2(

1
N )−B2(

x
N ))

∞∏
n=1

(1 + AN(n−1)+1)(1 + ANn−1)(1 + AN(n−1)+x−1)(1 + ANn−x−1)

≤ A
N
2 (B2(

1
N )−B2(

2
N ))

∞∏
n=1

(1 + AN(n−1)+2−1)4 by the fact A ≤ e−
√

7π

≤ A( 1
2− 3

2N )e
4A

1−AN ≤ A( 1
2− 3

8 )e
4A

1−A4 < 1 by (9.3) and the fact A ≤ e−
√

7π.

This proves the lemma. ¤

Lemma 9.4. Let N ≥ 2 and α = ( x y
z w ) ∈ Γ0(N). Then for t ∈ Z \ NZ we have

the transformation formula

(9.4) g12N
( t

N ,0)(Nτ) ◦ α = g12N
(〈 tx

N 〉,0)(Nτ).

Therefore, for any integer m the functions
∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ) and
∏

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ)

are modular functions for Γ0(N) with rational Fourier coefficients. Furthermore, if∣∣g12N
( 1

N ,0)
(Nτ) ◦ α(θ)

∣∣ =
∣∣g12N

( 1
N ,0)

(Nθ)
∣∣, we get x ≡ w ≡ ±1 (mod N).

Proof. Observe by (8.3), (8.1) and the fact gcd(w, N) = 1 that

g12N
( t

N ,0)(Nτ) ◦ α =
N−1∏
n=0

g12N
( t

N , n
N ) ◦

(
x y
z w

)
=

N−1∏
n=0

g12N
(〈 tx

N 〉,〈 ty+nw
N 〉) = g12N

(〈 tx
N 〉,0)(Nτ).
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Then for any integer m we achieve∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ) ◦ α =
∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
(〈 tx

N 〉,0)(Nτ) =
∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ)

and ∏

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ) ◦ α =
∏

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
(〈 tx

N 〉,0)(Nτ) =
∏

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0) (Nτ)

because x is prime to N . Thus the functions
∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0)
(Nτ) and

∏
1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12Nm
( t

N ,0)
(Nτ) are modular for Γ0(N) and have rational Fourier co-

efficients owing to the fact that each g12Nm
( t

N ,0)
(Nτ) has rational Fourier coefficients.

Suppose
∣∣g12N

( 1
N ,0)

(Nτ) ◦ α(θ)
∣∣ =

∣∣g12N
( 1

N ,0)
(Nθ)

∣∣. Then by previous observation we

have
∣∣g12N

(〈 x
N 〉,0)(Nθ)

∣∣ =
∣∣g12N

( 1
N ,0)

(Nθ)
∣∣. If N = 2 or 3, we automatically get x ≡ ±1

(mod N). If N ≥ 4, by Lemma 9.3 we see that x ≡ ±1 (mod N). Moreover, since
det(α) = 1, we deduce x ≡ w ≡ ±1 (mod N). ¤
Theorem 9.5. For N ≥ 2 we have

K(N) = K
(
j(Nθ), g12N

( 1
N ,0)(Nθ)

)
.

Proof. Let F be the field on the right side. Since the functions j(Nτ) and g12N
( 1

N ,0)
(Nτ)

belong to FN , F is a subfield of K(N). Moreover, since j(Nθ) is a generator of the
ring class field of the order [Nθ, 1], F contains the Hilbert class field K(1).

Let α =
(

a b
c d

) ∈ WN,θ induce α ∈ Gal
(
K(N)/K(1)

)
which is the identity on

F . For the action of α on FN we decompose α into α = ( 1 0
0 u ) ( x y

z w ) for some
u ∈ (Z/NZ)∗ and ( x y

z w ) ∈ SL2(Z)(see Section 4). Since j(Nτ) has rational Fourier
coefficients, we get

j(Nθ) = j(Nθ)α = j(Nτ)α(θ) = j(Nτ) ◦
(

x y
z w

)
(θ).

By Lemma 9.2 we have z ≡ 0 (mod N), which follows that gcd(x,N) = gcd(w, N) =
1 because ( x y

z w ) ∈ SL2(Z). And, the fact that g12N
( 1

N ,0)
(Nτ) has rational Fourier co-

efficients enables us to derive

g12N
( 1

N ,0)(Nθ) =
(
g12N
( 1

N ,0)(Nθ)
)α =

(
g12N
( 1

N ,0)(Nτ)
)α(θ) = g12N

( 1
N ,0)(Nτ) ◦

(
x y
z w

)
(θ).

Then by Lemma 9.4 we obtain x ≡ w ≡ ±1 (mod N); hence α = ± ( 1 0
0 u ) ( 1 ∗

0 1 ) =
± ( 1 ∗

0 u ). On the other hand, since α is of the form
(

t−Bs −Cs
s t

) ∈ WN,θ for some
t, s ∈ Z/NZ, we have s = 0 and t = ±1 in Z/NZ, namely α = ±12 ∈ GL2(Z/NZ).
This shows that the field F is all of K(N). ¤

Corollary 9.6. For N ≥ 2, let F1
N be the field of all modular functions for Γ1(N)

with rational Fourier coefficients. Then we get

K(N) = KF1
N (θ).

Proof. Since the functions j(Nτ) and g12N
( 1

N ,0)
(Nτ) belong to F1

N , we have the in-

clusion K(N) ⊂ KF1
N (θ). However, the fact K(N) = KFN (θ) implies that K(N) =

KF1
N (θ). ¤
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Remark 9.7. Cho and Koo also showed in [7] the above corollary purely by means
of Shimura’s canonical models.

Ramachandra has shown in [19] that ray class fields over imaginary quadratic
fields can be generated by elliptic units. However, the generators constructed by
him involve very complicated products of high powers of singular values of the Klein
form and singular values of the discriminant ∆. From now on unlike Ramachandra’s
invariant we will construct a ray class invariant of K(N) somewhat in a simpler way.

Theorem 9.8. For N ≥ 2, let

TN (τ) =
∑

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g24N
( t

N ,0)(τ).

Then we have
K(N) = K

(
j(Nθ)T−1

N (Nθ)g24N
( 1

N ,0)(Nθ)
)
.

Proof. It follows from Lemma 9.4 that the function TN (Nτ) is a modular function
for Γ0(N) with rational Fourier coefficients. By (8.2) we easily see that g24N

( t
N ,0)

(Nθ)
is a positive real number for any t ∈ Z \NZ, from which we get TN (Nθ) 6= 0.

Let F = K
(
j(Nθ)TN (Nθ)−1g24N

( 1
N ,0)

(Nθ)
)
. Then F is a subfield of the ray class

field K(N) because the function j(Nτ)T−1
N (Nτ)g24N

( 1
N ,0)

(Nτ) belongs to FN . For

1 ≤ m ≤ N − 1 with gcd(m,N) = 1, decompose each ( m 0
0 m ) into

(
1 0
0 m2

) (
m 0
0 m−1

)

in GL2(Z/NZ). Since j(Nτ)T−1
N (Nτ) is a modular function for Γ0(N) with rational

Fourier coefficients, each ( m 0
0 m ) fixes it. Furthermore, since g24N

( 1
N ,0)

(Nτ) has also

rational Fourier coefficients, ( m 0
0 m ) acts as composition of

(
m 0
0 m−1

)
on it. Now

that ( m 0
0 m ) ∈ WN,θ, we derive

(
j(Nθ)T−1

N (Nθ)g24N
( 1

N ,0)(Nθ)
)(m 0

0 m )

=
(
j(Nτ)T−1

N (Nτ)
)(m 0

0 m )(θ)
(
g24N
( 1

N ,0)(Nτ)
)(m 0

0 m )(θ)

= j(Nθ)T−1
N (Nθ)

(
g24N
( 1

N ,0)(Nτ) ◦
(

m 0
0 m−1

)
(θ)

)

= j(Nθ)T−1
N (Nθ)g24N

( m
N ,0)(Nθ) by Lemma 9.4.

On the other hand, since K(N) is an abelian extension of K, the intermediate field
F is also an abelian extension of K. Hence F has the following element∑

1 ≤ m ≤ N − 1
gcd(m, N) = 1

j(Nθ)T−1
N (Nθ)g24N

( m
N ,0)(Nθ) = j(Nθ)T−1

N (Nθ)
∑

1 ≤ m ≤ N − 1
gcd(m, N) = 1

g24N
( m

N ,0)(Nθ) = j(Nθ).

Here we regard F as an intermediate field between K(N) and K(1) because K
(
j(Nθ)

)
contains K(1). Let an element α ∈ WN,θ induce α ∈ Gal

(
K(N)/K(1)

)
which is the

identity on F . Decompose α into α = ( 1 0
0 u ) ( x y

z w ) for some u ∈ (Z/NZ)∗ and
( x y

z w ) ∈ SL2(Z). Owing to the fact that j(Nτ) has rational Fourier coefficients we
deduce

j(Nθ) = j(Nθ)α = j(Nτ)α(θ) = j(Nτ) ◦
(

x y
z w

)
(θ).

Then by Lemma 9.2 we achieve z ≡ 0 (mod N), from which we obtain gcd(N, x) =
gcd(N, w) = 1 because ( x y

z w ) ∈ SL2(Z). Since j(Nτ)T−1
N (Nτ) is a modular
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function for Γ0(N) with rational Fourier coefficients and z ≡ 0 (mod N), it is
fixed by α. Thus α fixes the value j(Nθ)T−1

N (Nθ). Moreover, since α fixes the
value j(Nθ)T−1

N (Nθ)g24N
( 1

N ,0)
(Nθ), α fixes g24N

( 1
N ,0)

(Nθ). Since g24N
( 1

N ,0)
(Nτ) has rational

Fourier coefficient, it follows that

g24N
( 1

N ,0)(Nθ) =
(
g24N
( 1

N ,0)(Nθ)
)α =

(
g24N
( 1

N ,0)(Nτ)
)α(θ) = g24N

( 1
N ,0)(Nτ) ◦

(
x y
z w

)
(θ).

And, by Lemma 9.4 we have x ≡ w ≡ ±1 (mod N) so that α = ± ( 1 0
0 u ) ( 1 ∗

0 1 ) =
± ( 1 ∗

0 u ). On the other hand, since α is of the form
(

t−Bs −Cs
s t

) ∈ WN,θ for some
t, s ∈ Z/NZ, we get s = 0 and t = ±1 in Z/NZ, that is, α = ±12 ∈ GL2(Z/NZ).
This concludes that the field F is equal to K(N). ¤

We will also construct a primitive generator as a ring or ray class invariant from
a different point of view.

Lemma 9.9. Let N ≥ 2. For any nonzero integer m, the value
(
j(Nθ) + 1

3

)m

generates the ring class field of the order [Nθ, 1] over K.

Proof. Let O be the order [Nθ, 1] and KO be the ring class field of the order O with
extension degree hO = [KO : K]. Then KO is generated by an algebraic integer
j(O), and the conjugates of j(O) are of the form j(a1), · · · , j(ahO ) where ak runs
over all representatives in the ideal class group of proper fractional O-ideals.

Let σ be a nontrivial element of Gal(KO/K). Then σ(j(O)) = j(a′) for some
proper fractional O-ideal a′ which is not principal. Suppose that σ induces the
identity on K

(
(j(O) + 1

3 )m
)
. Then σ((j(O) + 1

3 )m) = (j(O) + 1
3 )m = (j(a) + 1

3 )m.
Hence j(O) + 1

3 = ζ(j(a′) + 1
3 ) for some m-th root of unity ζ in KO. If ζ = 1, we

have j(O) = j(a′), which is impossible. If ζ 6= 1, we have j(O) − ζj(a′) = −1+ζ
3 .

Since j(O) − ζj(a′) is an algebraic integer in KO, its norm from KO to Q should
be an integer. Letting Gal(KO/Q) = {σ1, · · · , σ2hO}, we have

0 <

∣∣∣∣NKO/Q

(−1 + ζ

3

)∣∣∣∣ =
∏2hO

k=1

∣∣− 1 + σk(ζ)
∣∣

32hO
≤ 22hO

32hO
< 1,

which contradicts the fact that the norm is an integer. Thus σ could not induce
the identity on K

(
(j(O) + 1

3 )m
)
, which implies that K

(
(j(O) + 1

3 )m
)

is in fact all
of KO. ¤

Theorem 9.10. For N ≥ 2, let

MN (τ) =
∏

1 ≤ t ≤ N − 1
gcd(t, N) = 1

g12N
( t

N ,0)(τ).

Then we have

K(N) = K

((
j(Nθ) +

1
3

)
M−1

N (Nθ)g12Nφ(N)

( 1
N ,0)

(Nθ)
)

.

Proof. We replace the term
∑

1 ≤ m ≤ N − 1
gcd(m, N) = 1

j(Nθ)T−1
N (Nθ)g24N

( m
N ,0)(Nθ)
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which appears in the proof of Theorem 9.8 by

∏

1 ≤ m ≤ N − 1
gcd(m, N) = 1

(
j(Nθ) +

1
3

)
M−1

N (Nθ)g12Nφ(N)
( m

N ,0) (Nθ).

Then the proof is quite similar to that of Theorem 9.8 except for the use of Lemma
9.9. So we omit the remaining part. ¤

Lastly, for a prime p ≥ 11 we also give a ray class invariant which is the singular
value of a product of Siegel functions without using the elliptic modular function j.
When p = 7, Cho-Kim-Koo([5], Corollary 4.7) achieved such an invariant by means
of singular value of a modified theta constant.

Theorem 9.11. For a prime p ≥ 11, let Φp(X,Y ) = 0 be an affine curve such that
Φp(X, Y ) ∈ Q[X, Y ] and Φp

((
p12 ∆(pτ)

∆(τ)

)5−p
g12p

( 1
p ,0)

(pτ),
(
p12 ∆(pτ)

∆(τ)

)5−p
g12p

( 2
p ,0)

(pτ)
)

=

0. Suppose that the point
((

p12 ∆(pθ)
∆(θ)

)5−p
g12p

( 1
p ,0)

(pθ),
(
p12 ∆(pθ)

∆(θ)

)5−p
g12p

( 2
p ,0)

(pθ)
)

on

the curve is nonsingular. Then we obtain

K(p) = K

((
p12 ∆(pθ)

∆(θ)

)5−p

g12p

( 1
p ,0)

(pθ)
)

.

Proof. We shall use the same conventions as in the proof of Theorem 8.3. Since
∆5−p

p Gp,1 and ∆5−p
p Gp,2 are defined and finite on H, the field on the right side is

contained in K(p) = KFp(θ). For any function h ∈ Q(
∆5−p

p Gp,1, ∆5−p
p Gp,2

)
which

is defined and finite at θ there exist f(X,Y ), g(X, Y ) ∈ Q[X,Y ]/
(
Φp(X, Y )

)
such

that h = f(∆5−p
p Gp,1,∆5−p

p Gp,2)

g(∆5−p
p Gp,1,∆5−p

p Gp,2)
and g

(
∆5−p

p (θ)Gp,1(θ), ∆5−p
p (θ)Gp,2(θ)

) 6= 0 because

we are assuming that the point
(
∆5−p

p (θ)Gp,1(θ), ∆5−p
p (θ)Gp,2(θ)

)
of the curve is

nonsingular. Hence h(θ) ∈ Q(
∆5−p

p (θ)Gp,1(θ), ∆5−p
p (θ)Gp,2(θ)

)
, and by Corollary

9.6 we have

K(p) = KF1
p (θ) = K

(
∆5−p

p (θ)Gp,1(θ), ∆5−p
p (θ)Gp,2(θ)

)
.

Decompose ( 2 0
0 2 ) ∈ Wp,θ into ( 2 0

0 2 ) =
(

1 0
0 22

) (
2 0
0 2−1

) ∈ GL2(Z/pZ). Now that
∆5−p

p Gp,1 has rational Fourier coefficients, ( 2 0
0 2 ) acts on the function as composition

with
(

2 0
0 2−1

)
. Moreover, since ∆p is modular for Γ0(p),

(
2 0
0 2−1

)
fixes ∆p. It then

follows that

(
∆5−p

p (θ)Gp,1(θ)
)( 2 0

0 2 ) =
(
∆5−p

p Gp,1

)( 2 0
0 2 )(θ)

=
(
∆5−p

p Gp,1

)(
2 0
0 2−1

)
(θ)

= ∆5−p
p (θ)

(
Gp,1

)(
2 0
0 2−1

)
(θ)

= ∆5−p
p (θ)Gp,2(θ) by Lemma 9.4,

which shows that ∆5−p
p (θ)Gp,1(θ) and ∆5−p

p (θ)Gp,2(θ) are conjugates. Therefore,
K(p) can be generated over K by only one generator ∆5−p

p (θ)Gp,1(θ). ¤
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