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Abstract

We show that deformations of a surjective morphism onto a Fano manifold of Picard
number 1 are unobstructed and rigid modulo the automorphisms of the target, if the variety
of minimal rational tangents of the Fano manifold is non-linear or finite. The condition on
the variety of minimal rational tangents holds for practically all known examples of Fano
manifolds of Picard number 1, except the projective space. When the variety of minimal
rational tangents is non-linear, the proof is based on an earlier result of N. Mok and the author
on the birationality of the tangent map. When the varieties of minimal rational tangents of
the Fano manifold is finite, the key idea is to factorize the given surjective morphism, after
some transformation, through a universal morphism associated to the minimal rational curves.
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1 Introduction

We will work over the complex numbers. A variety or (a manifold) will be assumed to be
irreducible except when we say ‘the variety of minimal rational tangents’, which may have finitely
many components. See Section 2 for the definition. For a complex manifold Y , T (Y ) denotes
its tangent bundle and Ty(Y ) denotes the tangent space at a point y ∈ Y . For two projective

varieties X and Y , denote by Homs(Y,X) the space of surjective holomorphic maps Y → X
and by Auto(X) the identity component of the group of biregular automorphisms of X. In
[HM3] and [HM4], the following result was proved. Theorem 1.1 Let X be a Fano manifold of

Picard number 1 whose variety of minimal rational tangents is non-linear or finite. Then for any
projective variety Y , each component of the reduction Homs(Y, X)red is a principal homogeneous
space under the affine algebraic group Auto(X). Theorem 1.1 was first proved for the rational

homogeneous space X = G/P in [HM1]. It was proved when the variety of minimal rational
tangents has non-degenerate Gauss map in [HM2]. This was surpassed by [HM4] which proves
it when the variety of minimal rational tangents is non-linear. The proofs in these three papers
are of the same nature. The proof when the variety of minimal rational tangents is finite is quite
different and appeared in [HM3]. The condition that the variety of minimal rational tangents is

non-linear or finite holds for practically all known examples of Fano manifolds of Picard number 1,
except the projective space. In fact, we have the following non-linearity conjecture: Conjecture

1.2 Let X be a Fano manifold of Picard number 1 whose variety of minimal rational tangents is
linear and of positive dimension. Then X is biregular to the projective space. There are some

1This work was supported by the SRC Program ASARC funded by the Korea government.
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partial results toward Conjecture 1.2. For example, it was proved for Fano manifolds of index
≥ dim X+3

2 in [H1, Corollary 2.3]. For the projective space, the assertion in Theorem 1.1 certainly

does not hold. In this sense, Theorem 1.1 is a reasonably satisfactory result, except that it does
not say whether Homs(Y, X) is reduced. In other words, it does not address the unobstructedness
of infinitesimal deformations. The goal of this paper is precisely to remedy this. Our main result
is the following, which also gives an alternative proof of Theorem 1.1.

Theorem 1.3 Let X be a Fano manifold of Picard number 1 whose variety of minimal rational
tangents is non-linear or finite and let Y be a projective variety. If f : Y → X is a surjective
morphism, then

H0(Y, f∗T (X)) = f∗H0(X,T (X)).

In particular, all deformations of surjective morphisms Y → X are unobstructed and each com-
ponent of Homs(Y, X) is a reduced principal homogeneous space of the affine algebraic group
Auto(X). Note that H0(Y, f∗T (X)) is the Zariski tangent space to Homs(Y, X) at [f ] and

H0(X,T (X)) is the Zariski tangent space to Auto(X) at the identity. Thus the identity

H0(Y, f∗T (X)) = f∗H0(X, T (X))

implies that the natural morphism Auto(X) → Homs(Y,X) sending each g ∈ Auto(X) to g ◦ f ∈
Homs(Y, X) is bijective, implying the last sentence of Theorem 1.3. The proof of Theorem 1.3

when the variety of minimal rational tangents is non-linear is rather simple modulo the main
result of [HM4] on the tangent map. In retrospect, this proof is the culmination of successive
refinements of the arguments in [HM2] and [HM4]. The final formulation is much simpler than
the old proofs and will be given in Section 2. The difficult case is when the variety of minimal
rational tangents is finite. The key idea of the proof in that case is to show that, after a certain
transformation, the morphism f : Y → X can be factorized through the universal morphism for
the family of minimal rational curves. This factorization is established in Section 4. Combining
this with an idea from [H1] on the behavior of minimal rational curves near the branch locus of
f explained in Section 5, the proof is completed in Section 6 by using an argument in [H2].

2 Proof of Theorem 1.3 when the variety of minimal rational
tangents of X is non-linear

Throughout this paper, we will denote by X a Fano manifold of Picard number 1. We refer the
readers to [K] for basics on the space of rational curves on X. An irreducible component K of
the space of rational curves on X is called a minimal component if for a general point x ∈ X,
the subscheme Kx of K consisting of members passing through x is non-empty and complete. In
this case, the subvariety Cx of the projectivized tangent space PTx(X) consisting of the tangent
directions at x of members of Kx is called the variety of minimal rational tangents at x (see
[HM4] for more details). We say that the variety of minimal rational tangents of X is non-linear
if dim Cx > 0 and some component of Cx is not a linear subspace in PTx(X). Otherwise, we
say that the variety of minimal rational tangents is linear. For a general member C of K, the
normalization ν : P1 → C ⊂ X is an immersion and

ν∗T (X) = O(2)⊕O(1)p ⊕Oq
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where p = dim Cx for a general x ∈ X and p+q = dimX−1. Denote by H0(C, T ∗(X)) the vector
space

H0(P1, ν
∗T ∗(X)) = H0(P1,Oq).

For a non-singular point x ∈ C, denote by H0(C, T ∗(X))x ⊂ T ∗x (X) the q-dimensional subspace
of the cotangent space at x given by evaluating the elements of H0(C, T ∗(X)) at the point x.
Proposition 2.1 Let X and K be as above and let x ∈ X be a general point. Let K1 be an

irreducible component of Kx. Suppose that there exists a non-zero vector v ∈ Tx(X) annihilating
H0(C, T ∗(X))x ⊂ T ∗x (X) for any general member C of K1. Then the variety of minimal rational
tangents of X is linear. Proof. From the irreducibility of K, it suffices to show that the component

C1 of Cx corresponding to K1 is a linear subspace. For a general member C of K1, x is a non-
singular point of C. Denote by

PH0(C, T ∗(X))x ⊂ PT ∗x (X)

the projectivization of H0(C, T ∗(X))x. The closure of the union of PH0(C, T ∗(X))x as C varies
over general points of K1, is the dual variety of C1 ⊂ PTx(X) by [HR, Corollary 2.2]. Thus the
existence of v implies that the dual variety of C1 is linearly degenerate in PT ∗x (X), i.e., C1 is a
cone. Thus Proposition 2.1 follows from [HM4, Proposition 13], which says that C1 cannot be a
cone unless it is a linear subspace. 2 The next proposition is [HM2, Lemma 4.2]. Proposition

2.2 Let X and K be as above. Let Y be a projective variety and f : Y → X be a generically
finite morphism of degree > 1. Given a general member C ⊂ X of K, there exists a component
C ′ of f−1(C) such that the restriction f |C′ : C ′ → C is finite of degree > 1. Proposition 2.3

In the situation of Proposition 2.2, let x ∈ C be a non-singular point and let y1, y2 ∈ C ′ be
two distinct points with f(y1) = f(y2) = x. For a given σ ∈ H0(Y, f∗T (X)), regard its value
σyi ∈ (f∗T (X))yi as a vector in Tx(X) for each i = 1, 2. Then σy1 − σy2 ∈ Tx(X) annihilates
H0(C, T ∗(X))x. Proof. Let ν : Ĉ → C be the normalization of C and let ϕ ∈ H0(Ĉ, ν∗T ∗(X))

be a section of the cotangent bundle of X on Ĉ. Let ν ′ : Ĉ ′ → C ′ be the normalization of C ′ and
f̂ : Ĉ ′ → Ĉ be the lifting of f . Let ϕ′ ∈ H0(Ĉ ′, (ν ◦ f̂)∗T ∗(X)) be the section induced by ϕ and
σ̂ ∈ H0(Ĉ ′, (f ◦ ν ′)∗T (X)) be the section induced by σ. Since ν ◦ f̂ = f ◦ ν ′, the pairing ϕ′(σ̂) is a
holomorphic function on Ĉ ′, hence is constant. It follows that ϕ′(σy1) = ϕ′(σy2). Thus σy1 − σy2

is annihilates the evaluation of ϕ at x. 2

Now we can prove Theorem 1.3 when the variety of minimal rational tangents of X is non-
linear. Proposition 2.4 Let X and K be as above. Suppose that there exists a surjective morphism

f : Y → X from a projective variety Y with

H0(Y, f∗T (X)) 6= f∗H0(X,T (X)).

Then the variety of minimal rational tangents of X is linear. Proof. Fix an element σ ∈
H0(Y, f∗T (X))\f∗H0(X, T (X)). For each y ∈ Y , let σy ∈ Tf(y)(X) be the corresponding tangent
vector of X. Associated to σ, we have the projective subvariety Σ ⊂ T (X) defined by

Σ := {σy ∈ Tf(y)(X), y ∈ Y }.
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Since σ 6∈ f∗H0(X,T (X)), the natural projection π : Σ → X is a finite morphism of degree > 1
and σ induces a natural section σ′ of π∗T (X) with σ′ 6∈ π∗H0(X, T (X)). Thus replacing Y by Σ,
we may assume that f : Y → X is a finite morphism and for any x ∈ X,

σy1 6= σy2 as vectors in Tx(X) for each y1 6= y2 ∈ f−1(x).

Let x be a general point of X and K1 be an irreducible component of Kx. By Proposition
2.2, there exist two distinct points y1, y2 ∈ f−1(x) such that for each general member C of K1,
there exists an irreducible component C ′ of f−1(C) with {y1, y2} ⊂ C ′. Then by Proposition 2.3,
H0(C, T ∗(X))x is annihilated by σy1−σy2 for all general members C of K1. Applying Proposition
2.1 with v = σy1 − σy2 , we conclude that the variety of minimal rational tangents of X is linear.
2

3 Free curves with trivial normal bundle

It is convenient to introduce the following notion. Let Y be a projective manifold of dimension
n and C ⊂ Y be an irreducible curve. We say that C is a free curve with trivial normal bundle if
the following holds. (i) Under the normalization ν : Ĉ → C, we have an exact sequence of vector
bundles on Ĉ

0 −→ T (Ĉ) −→ ν∗T (Y ) −→ NC −→ 0

where the second arrow is the differential of ν : Ĉ → Y and NC is a trivial bundle of rank
= (n−1) on Ĉ. (ii) Deformations of C with constant geometric genus cover an open subset of X.
The germ of the space of deformations of C with constant geometric genus must have dimension

≥ n− 1. The Zariski tangent space to this space at the point corresponding to C is H0(Ĉ, NC),
which has dimension n− 1 from the triviality of the normal bundle. Thus the germ of this space
of deformations of C, which we denote by MC , is non-singular. The following is obvious from
the deformation theory of submanifolds. Proposition 3.1 Let C ⊂ Y be a free curve with trivial

normal bundle. Let ϑ be a germ of nowhere-vanishing holomorphic vector fields on MC given by
some element

ϑ[Cs] ∈ H0(Ĉs, NCs) for each [Cs] ∈MC .

Denote by ∆ the complex unit disc. The integral curve of ϑ through [C] defines a deformation
{[Ct] ∈ MC , t ∈ ∆, C = C0} of C. Let x ∈ C be a non-singular point. Suppose there exists a
germ θ of holomorphic vector fields of Y at x such that θ modulo T (Cs) agrees with the germ
of ϑCs at x for each [Cs] ∈ MC . Then the integral curve of θ through x defines a deformation
{xt ∈ Y, t ∈ ∆, x = x0} of x such that xt ∈ Ct for each t, up to reparametrization.

From now throughout the rest of this paper, we will fix a Fano manifold X of Picard number
1 and a minimal component K such that the variety of minimal rational tangents at a general
point is finite. Then a general member C of K is a free curve with trivial normal bundle and the
germ MC can be realized by an open neighborhood of [C] ∈ K. By desingularizing the universal
family over K (see [K, II.2.12] for the definition of the universal family), we have the following.
The proof, which is quite standard, will be omitted.

Proposition 3.2 There exist a projective manifold X ′ with a generically finite morphism
µ : X ′ → X of degree > 1 and a proper surjective morphism ρ : X ′ → Z onto a projective
manifold Z with the following properties. (a) ρ is a P1-bundle over a Zariski open dense subset
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Zo ⊂ Z. (b) µ is unramified on ρ−1(Zo). (c) Each member of Kx for a general x ∈ X is the
image of a fiber of ρ through µ−1(x).

(d) For each ζ ∈ Zo, µ|ρ−1(ζ) is the normalization of Pζ := µ(ρ−1(ζ)). (e) For two distinct
points ζ1 6= ζ2 ∈ Zo, the two curves Pζ1 and Pζ2 are distinct.

Let us denote by T ρ ⊂ T (ρ−1(Zo)) the relative tangent bundle of ρ over ρ−1(Zo). Let C ⊂
PT (X) be the closure of the union of Cx’s for general points x ∈ X. Let Ĉ ⊂ T (X) be the cone
over C. Denote by O ⊂ T (X) the zero section and by π : T (X) → X the natural projection.
The following is immediate. Proposition 3.3 In the setting of Proposition 3.2, there exists a

Zariski open dense subset Xo ⊂ X such that µ−1(Xo) ⊂ ρ−1(Zo) and the restriction of π to
(Ĉ \O)∩π−1(Xo) is a smooth morphism. For each point x ∈ Xo and µ−1(x) = {x1, . . . , xm},m =
degree of µ, we have a disjoint union

π−1(x) ∩ (Ĉ \O) = dµ(T ρ
x1
\ {0}) ∪ · · · ∪ dµ(T ρ

xm
\ {0}).

In particular, we have a natural smooth morphism

χ : (Ĉ \O) ∩ π−1(Xo) −→ µ−1(Xo)

such that π = µ ◦ χ on (Ĉ \O) ∩ π−1(Xo).

Proposition 3.4 Let Y be a projective manifold and f : Y → X be a generically finite
surjective morphism. For a general member C ⊂ X of K, C intersects each component of the
branch divisor of f transversally. Each irreducible component C ′ of f−1(C) is a free curve with
trivial normal bundle and when Ĉ (resp. Ĉ ′) is the normalization of C (resp. C ′) and f̂ : Ĉ ′ → Ĉ
is the morphism induced by f , there are canonical isomorphisms

T[C′](MC′) := H0(Ĉ ′, NC′) ∼= H0(Ĉ ′, f̂∗NC)) ∼= H0(Ĉ, NC) =: T[C](MC)

and a biholomorphic equivalence of germs MC
∼= MC′. Proof. That C intersects the branch

divisor transversally is obvious from Proposition 3.2 (b). The fact that C ′ is a free curve with
trivial normal bundle is precisely [HM3, Proposition 6]. The canonical isomorphisms and the
equivalence of germs are obvious from the isomorphism of two trivial vector bundles NC′ ∼= f̂∗NC

induced by the differential df : T (Y ) → f̂∗T (X). 2

Proposition 3.5 Let Y be a projective variety and f : Y → X be a generically finite surjective
morphism. Let C be a general member of K and let C ′ be a component of f−1(C). Pick a non-
singular point x ∈ C outside the branch loci. Let σ ∈ H0(Y, f∗T (X)). For any two points
y1, y2 ∈ f−1(x) ∩ C ′, regard σy1 and σy2 as vectors in Tx(X). Then σy1 − σy2 ∈ Tx(C). In
particular, σ induces a unique element in H0(Ĉ, NC), up to a choice of C ′. Proof. This is

a consequence of Proposition 2.3. Since C has trivial normal bundle, H0(C, T ∗(X))x is the
conormal space of C at x. Thus σy1 − σy2 ∈ Tx(C). 2

4 Factorization through µ

In the setting of Theorem 1.3, given a section σ ∈ H0(Y, f∗T (X)), the values of σ define a
projective variety in T (X) dominant over X, as explained in the proof of Proposition 2.4. In fact,
Theorem 1.3 is equivalent to the statement that a projective variety in T (X) dominant over X
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must be a section of T (X). In other words, we have to prove that there do not exist projective
varieties of T (X) which have degree > 1 over X. The goal of this section is to show that given
a projective variety Σ ⊂ T (X) of degree > 1 over X, the difference transform of Σ contains
an irreducible component that has very special properties with respect to the morphisms µ, ρ of
Proposition 3.2. It should be mentioned that all the propositions proved from now on, except
Proposition 5.1, are under the assumption of the existence of Σ of degree > 1, which will lead
eventually to contradiction. In this sense all these propositions are of hypothetical nature.

Proposition 4.1 Suppose there exists a projective variety Σ ⊂ T (X) which is dominant
over X of degree > 1. Let T (X) ×X T (X) be the fiber product of two copies of the projection
π : T (X) → X and let

Σ×X Σ ⊂ T (X)×X T (X)

be the fiber product of two copies of π|Σ : Σ → X. Then there exists an irreducible component Σ]

of Σ ×X Σ with the following property: for a general ζ ∈ Zo and a general point x ∈ Pζ , there
exists an irreducible component P ′

ζ of π−1(Pζ) ∩Σ and two distinct points a1 6= a2 ∈ P ′
ζ ∩ π−1(x)

such that Σ], regarded as a subvariety of Σ×Σ, contains the point (a1, a2). Proof. For a general

ζ ∈ Zo, there exists an irreducible component P ′
ζ of π−1(Pζ)∩Σ such that the projection P ′

ζ → Pζ

is finite of degree > 1 by Proposition 2.2. Thus we can choose two a1 6= a2 on P ′
ζ over x ∈ Pζ .

The point (a1, a2) ∈ Σ × Σ lies in Σ ×X Σ. From the generality of the choice of ζ and x, there
is a unique component Σ] containing (a1, a2). Certainly, Σ] satisfies the required property from
the irreducibility of Zo. 2

Proposition 4.2 In the situation of Proposition 4.1, let δ : T (X) ×X T (X) → T (X) be the
difference morphism defined by

δ(v1, v2) := v1 − v2 for v1, v2 ∈ Tx(X) for x ∈ X.

Then in the notation of Proposition 3.3,

δ(Σ]) ⊂ Ĉ, δ(Σ]) 6⊂ O,

and the dominant rational map χ] : δ(Σ]) −→ X ′, induced by the morphism χ, is generically
finite.

Proof. We will apply Proposition 3.5 with Y = Σ, f = π|Σ and C = Pζ . There is a tautological
section σ ∈ H0(Y, f∗T (X)) defined by

σa = a ∈ Tx(X) for each a ∈ Σ ∩ Tx(X).

By Proposition 3.5,
a1 − a2 ∈ Tx(Pζ) ⊂ Ĉ.

As ζ varies over general points of Zo, the element a1 − a2 varies over an open subset in the
irreducible δ(Σ]). It follows that δ(Σ]) ⊂ Ĉ. Since a1 6= a2, δ(Σ]) is not contained in the zero
section O. The dominant rational map χ] is certainly generically finite. 2 Proposition 4.3 In

the situation of Proposition 4.2, there exists a projective manifold Σ̃, a generically finite morphism
g : Σ̃ → X ′ and a section θ ∈ H0(Σ̃, (µ◦g)∗T (X)) with the following properties. (1) For a general
point x ∈ X and any two distinct y1, y2 ∈ (µ ◦ g)−1(x), θy1 6= θy2 as vectors in Tx(X), (2) For a
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general point x ∈ X and any y ∈ (µ◦g)−1(x), θy regarded as a vector in Tg(y)(X ′) = Tx(X), belongs
to T ρ

g(y) where T ρ is as in Proposition 3.3. Proof. Choose a desingularization α : Σ̃ → δ(Σ]) which

eliminates the indeterminacy of the generically finite rational map χ] such that χ] ◦ α defines a
generically finite morphism g : Σ̃ → X ′. Denote by τ the natural projection δ(Σ]) → X. Then
τ ◦ α = µ ◦ g. Since δ(Σ]) ⊂ T (X), there exists a tautological section κ ∈ H0(δ(Σ]), τ∗T (X))
defined by κ(a) = a ∈ Tτ(a)(X) for each a ∈ δ(Σ]). Let

θ ∈ H0(Σ̃, (µ ◦ g)∗T (X)) = H0(Σ̃, (τ ◦ α)∗T (X))

be the pull-back of κ by α. Then θ satisfies property (1), because α is birational and the tauto-
logical section κ satisfies an analog of (1). It satisfies property (2) from δ(Σ]) ⊂ Ĉ. 2

5 Univalence of K on the branch divisor of µ

In the setting of Proposition 3.2, we say that K is univalent on an irreducible hypersurface B ⊂ X
if (i) there exists only one irreducible component E of µ−1(B) that is dominant over both Z and
B, and (ii) the morphism µ|E : E → B is birational. This is equivalent to saying that at a general
point z ∈ B, there exists exactly one member C of K passing through z with C 6⊂ B and C is
non-singular at z. The following is essentially the same as [H1, Proposition 3.2]. Proposition

5.1 In the setting of Proposition 3.2, suppose that there exists an irreducible hypersurface B ⊂ X,
such that K is not univalent on B. Then given a general point x ∈ B and an open neighborhood
W ⊂ X of x, there exists a point y ∈ W and two distinct points ζ1, ζ2 ∈ Zo with y ∈ Pζ1 ∩Pζ2 and
Ty(Pζ1) 6= Ty(Pζ2) such that irreducible components of W ∩ Pζ1 and W ∩ Pζ2 through y intersect
B transversally at some point of B ∩ W . Proof. By assumption, there exist a union D of

components of µ−1(B) each of which is dominant over Z and B, and the morphism µ|D : D → B
has degree > 1. Let y1, y2 be two distinct points of µ−1(x) ∩ D. Since x is general, both ρ(y1)
and ρ(y2) lie in Zo. There exist open neighborhoods W1 ⊂ ρ−1(Zo) of y1, W2 ⊂ ρ−1(Zo) of y2

and W0 ⊂ W of x with the following properties (1) µ(W1) = µ(W2) = W0, (2) µ|W1 and µ|W2

are biholomorphic, (3) W1 ∩ D and W2 ∩ D are non-singular and transversal to the fibers of ρ.
There exist open neighborhood W ′

1 ⊂ W1 of y1 and W ′
2 ⊂ W2 of y2 such that for any y ∈ W ′

1

(resp. y ∈ W ′
2) ρ−1(ρ(y)) ∩W ′

1 (resp. ρ−1(ρ(y)) ∩W ′
2) is connected. Let y be a general point in

µ(W ′
1) ∩ µ(W ′

2). Let y′1 = W ′
1 ∩ µ−1(y) and y′2 = W ′

2 ∩ µ−1(y). Then ζ1 := ρ(y′1) and ζ2 := ρ(y′2)
give the desired two distinct points. 2 The idea of the proof of the following proposition is the

same as that of [H1, Proposition 3.3]. Proposition 5.2 In the setting of Proposition 4.3, K is

univalent on each component B of the branch divisor of µ. Proof. Suppose that K is not univalent

on some component B. Set Y := Σ̃ and f = µ ◦ g. Then B is a component of the branch divisor
of f : Y → X. Let R ⊂ Y be an irreducible component of the ramification divisor of f such that
B = f(R). Let z ∈ R be a general point and let r be the local sheeting number of f at z. We can
choose a holomorphic coordinate neighborhood V of z with coordinates (w1, . . . , wn) at z and a
holomorphic coordinate neighborhood W of f(z) with coordinates (z1, . . . , zn) such that B ∩W
is defined by zn = 0 and f is given by

z1 = w1, . . . , zn−1 = wn−1, zn = wr
n.
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Let x ∈ W \ B and ζ1, ζ2 ∈ Zo be as in Proposition 5.1. Setting C1 = Pζ1 (resp. C2 = Pζ2), an
easy coordinate computation in the above coordinate systems (see e.g. [HM3, p.636, Lemma1])
shows that there exists a unique irreducible component C ′

1 (resp. C ′
2) of f−1(C1) (resp. f−1(C2))

intersecting V such that an irreducible component of C ′
1 ∩V (resp. C ′

2 ∩V ) contains f−1(x)∩V .
In particular, C ′

1 ∩ C ′
2 contains the r distinct points f−1(x) ∩ V . Let y1 6= y2 be two distinct

points in f−1(x) ∩ V ∩ C ′
1 ∩ C ′

2. Applying Proposition 3.5 to C ′
1 and C1,

θy1 − θy2 ∈ Txo(C1).

Applying Proposition 3.5 to C ′
2 and C2,

θy1 − θy2 ∈ Txo(C2).

Since Txo(C1) ∩ Txo(C2) = 0, we get θy1 = θy2 , a contradiction to Proposition 4.3 (1). 2

Proposition 5.3 In the setting of Proposition 5.2, let B ⊂ X be a component of the branch

divisor of µ and let D be the unique irreducible component of µ−1(B) which is dominant over Z
and B. Then for a general member C of K, any component C ′ of µ−1(C) which is finite over C
of degree > 1 is disjoint from D. Proof. Suppose not. Since C ′ is a free curve with trivial normal

bundle by Proposition 3.4, we may assume that C ′ intersects D at a general point x′ of D. Then
through a general point x′ of D, we have two distinct curves, C ′ and a fiber of ρ, neither of which
are contained in D. Since µ is unramified at x′ by Proposition 3.2 (b), the images of these curves
under µ are of the form Pζ1 , Pζ2 with ζ1 6= ζ2. Since these two curves pass through x = µ(x′),
which is a general point of B, K is not univalent on B, a contradiction to Proposition 5.2. 2

6 Completion of the proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3. The strategy is to establish some
analogs of [H2, Section 5]. Proposition 6.1 In the setting of Proposition 4.3, let C ⊂ X be

a general member of K. By Proposition 2.2, there exists a component C ′ of µ−1(C) such that
µ|C′ : C ′ → C is finite of degree > 1, and C ′ is a free curve with trivial normal bundle by
Proposition 3.4. Fix a choice of a component C[ of g−1(C ′). Then θ modulo T (Ĉ ′) defines
a non-zero element ϑC′ ∈ H0(Ĉ ′, NC′). Proof. By Proposition 3.5, C[ determines a unique

element in H0(Ĉ, NC). By the isomorphism in Proposition 3.4, this determines an element
ϑC′ ∈ H0(Ĉ ′, NC′). It cannot be zero because of Proposition 4.3 (2) and the generality of C.
2 The next proposition is an analog of [H2, Lemma 5.5], although their proofs are of different

nature. Proposition 6.2 In the setting of Proposition 6.1, denoting by ∆ the complex unit disc,

there exist a family of members of K

{Ct, t ∈ ∆, C = C0}

and the associated deformation
{C ′

t, t ∈ ∆, C ′ = C ′
0}

such that for each t ∈ ∆, (i) C ′
t is a component of µ−1(Ct); (ii) µ|C′t : C ′

t → Ct is finite
of degree > 1; (iii) ρ(C ′

t) = ρ(C ′). Proof. For a deformation [C ′
s] ∈ MC′ of C ′, we get a
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deformation [C[
s] ∈ MC[ with C[

s ⊂ g−1(C ′
s). By applying Proposition 6.1 to C[

s, we get an
element ϑC′s ∈ H0(C ′

s, NC′s). Thus the choice of C[ determines a germ of holomorphic vector
fields ϑ on MC′ . By Proposition 4.3 (2), this is a germ of non-vanishing vector fields. Let

{C ′
t, t ∈ ∆, C ′ = C ′

0} = {[C ′
t] ∈MC′ , t ∈ ∆}

be a local analytic arc integrating the vector field ϑ. (i) and (ii) are obvious from the local
equivalence MC

∼= MC′ in Proposition 3.4. It suffices to check (iii). Let x ∈ C ′ be a general
point and y ∈ C[ be the point over x. Then the germ of holomorphic vector fields defined by θ
at y induces a germ θ′ of holomorphic vector fields in a neighborhood of x. Applying 3.1, we see
that the integral curve of θ′ through x, {xt ∈ X ′, t ∈ ∆} with x = x0, satisfies xt ∈ C ′

t up to
reparametrization. Since θ′ is a section of T ρ by Proposition 4.3 (2), xt ∈ ρ−1(ρ(x)). It follows
that

ρ−1(z) ∩ C ′
t 6= ∅ for general z ∈ ρ(C ′) and each t ∈ ∆.

This implies (iii). 2

The proof of the next proposition is, modulo Proposition 5.3 and Proposition 6.2, almost
verbatim that of [H2, Proposition 5.3]. Since the terms and the notation are slightly different, we
reproduce the proof for the reader’s convenience. Proposition 6.3 Let us assume the situation

of Proposition 6.1. Given C and C ′ as in Proposition 6.1, let

h : Ĉ ′ −→ ̂ρ(C ′)

be the lift of
ρ|C′ : C ′ −→ ρ(C ′)

to the normalizations of C ′ and ρ(C ′). Then h has a ramification point z ∈ Ĉ ′ such that the
image of h(z) in ρ(C ′) lies in Zo.

Proof. Suppose not. Then h is unramified over ρ(C ′) ∩ Zo. Let us use the deformation Ct

constructed in Proposition 6.2. By the generality of C, we may assume that for each t ∈ ∆ the
holomorphic map

ht : Ĉ ′
t → ̂ρ(C ′

t) = ̂ρ(C ′), h0 = h,

which is the lift of ρ|C′t to the normalization, is unramified over ρ(C ′) ∩ Zo. Since ht is a con-

tinuous family of coverings of the Riemann surface ̂ρ(C ′) with fixed branch locus, we can find a
biholomorphic map

(♣) ψt : Ĉ ′ → Ĉ ′
t, ψ0 = IdĈ′ with h = ht ◦ ψt,

which depends holomorphically on t (e.g. [S, p. 32, Corollary 1].). By Proposition 6.2 (ii), there
are at least two distinct points in Ĉt, say at 6= bt ∈ Ĉt, such that the corresponding points in Ct

lie in the branch divisor of µ in X. Let {0,∞} ⊂ P1 be two distinct points on the projective line.
We can choose a family of biholomorphic maps {σt : Ĉt → P1, t ∈ ∆} such that σt(at) = 0 and
σt(bt) = ∞ for each t ∈ ∆. Denote by µt : Ĉ ′

t → Ĉt the lift of µ|C′t to the normalization. Then

{ϕt : Ĉ ′ −→ P1, ϕt := σt ◦ µt ◦ ψt, t ∈ ∆}

is a family of meromorphic functions on the compact Riemann surface Ĉ ′. By Proposition 5.3, for
each component E of the branch divisor of µ, the intersection of C ′

t with µ−1(E) has a fixed image
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in ρ(C ′) = ρ(C ′
t), independent of t ∈ ∆. This implies that there is a finite subset Q ⊂ ̂ρ(C ′),

independent of t, such that
µ−1

t (at) ∪ µ−1
t (bt) ⊂ h−1

t (Q)

for any t ∈ ∆. Then

ϕ−1
t (0) = ψ−1

t ◦ µ−1
t ◦ σ−1

t (0) = ψ−1
t (µ−1

t (at)) ⊂ ψ−1
t (h−1

t (Q))

for all t ∈ ∆. Since ψ−1
t (h−1

t (Q)) = h−1(Q) by the choice of ψt in (♣), ϕ−1
t (0) ⊂ h−1(Q)

for any t ∈ ∆. Consequently, ϕ−1
t (0) = ϕ−1

0 (0) for all t ∈ ∆. By the same argument we get
ϕ−1

t (∞) = ϕ−1
0 (∞) for all t ∈ ∆. In other words, the family of meromorphic functions ϕt have

the same zeroes and the same poles on the Riemann surface Ĉ ′. This implies that for any z ∈ P1

and t ∈ ∆, ϕ−1
t (z) = ϕ−1

0 (z). It follows that for any w1, w2 ∈ Ĉ ′ and any t ∈ ∆,

(♦) ϕt(w1) = ϕt(w2) if and only if ϕ0(w1) = ϕ0(w2).

Since µ|C′ is finite of degree > 1 by our assumption, we can choose two points α 6= β ∈ Ĉ ′

such that ϕ0(α) = ϕ0(β). Furthermore, denoting by ᾱ ∈ ρ(C ′) (resp. β̄ ∈ ρ(C ′)) the point
corresponding to h0(α) ∈ ̂ρ(C ′) (resp. h0(β) ∈ ̂ρ(C ′)) under the normalization, we may assume
that

(♥) ᾱ and β̄ are two distinct points in Zo.

From (♦), we have ϕt(α) = ϕt(β) for all t ∈ ∆. Since ϕt = σt ◦ µt ◦ ψt and σt is biholomorphic,
we see that

(♠) µt ◦ ψt(α) = µt ◦ ψt(β) for all t ∈ ∆.

Denote by
αt ∈ C ′

t ⊂ X ′ (resp. βt ∈ C ′
t ⊂ X ′)

the point corresponding to ψt(α) ∈ Ĉ ′
t (resp. ψt(β) ∈ Ĉ ′

t) under the normalization. Then the
locus

A := {αt ∈ X ′, t ∈ ∆} (resp. B := {βt ∈ X ′, t ∈ ∆})
covers a non-empty open subset in the fibre ρ−1(ᾱ) (resp. ρ−1(β̄)). Thus µ(A) (resp. µ(B))
covers a non-empty open subset in

Pᾱ := µ(ρ−1(ᾱ)) (resp. Pβ̄ := µ(ρ−1(β̄))).

Since µ(A) (resp. µ(B)) is the locus of points corresponding to µt ◦ ψt(α) (resp. µt ◦ ψt(β)) by
the normalization Ĉt → Ct, the equality (♠) above implies that µ(A) = µ(B). Consequently,

Pᾱ = Pβ̄,

a contradiction to Proposition 3.2 via (♥). 2 Now we are ready to finish the proof of Theorem

1.3 as follows. End of the proof of Theorem 1.3. As explained at the beginning of Section 4, we

may assume the situation of Proposition 4.3 and get a contradiction. From Proposition 6.3, let
z ∈ C ′ be the image of a ramification point of h such that ρ(z) ∈ Zo. Then a component of the
germ of C ′ at z must be tangent to T ρ

z . Choose C[ as in Proposition 6.1. The value of θ at a point
of C[ over z determines θz ∈ Tz(X ′) which is in T ρ

z by Proposition 4.3 (2). Thus θz is tangent to
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a component of the germ of C ′ at z. This means that the non-zero element ϑC′ ∈ H0(Ĉ ′, NC′) in
Proposition 6.1 vanishes at z, a contradiction to the triviality of NC′ . 2
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