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Abstract. We propose some problems on the classification of toric manifolds

from the viewpoint of topology and survey related results.

1. Toric manifold and fan

A toric variety X of dimension n is a normal complex algebraic variety with an
action of an n-dimensional algebraic torus (C∗)n having a dense orbit. Let X′ be
another toric variety of complex dimension n′ with an action of an n′-dimensional
algebraic torus (C∗)n′

. A map from X to X′ is a morphism f : X → X′ together
with a homomorphism ρ : (C∗)n → (C∗)n′

such that f(tx) = ρ(t)f(x) for any
t ∈ (C∗)n and x ∈ X. Among toric varieties, compact smooth toric varieties, which
we call toric manifolds, are well studied. In this article, we propose some problems
on the classification of toric manifolds from the viewpoint of topology and survey
related results.

A rational convex polyhedral cone in Rn is a cone spanned by a finitely many
vectors in Zn, and it is called strong if the origin is the apex. A fan in Rn is a non-
empty collection ∆ of rational strongly convex polyhedral cones in Rn satisfying
the following conditions:

(1) Each face of a cone in ∆ is a also a cone in ∆.
(2) The intersection of two cones in ∆ is a face of each.

A fan ∆ is called complete if the union of cones in ∆ covers the entire space Rn,
and non-singular if every cone of dimension k in ∆ is spanned by k integral vectors
which form a part of a basis of Zn. Let ∆′ be another fan in Rn′

. A map from ∆
to ∆′ is a linear map from Rn to Rn′

which maps Zn into Zn′
and a cone in ∆ into

a cone in ∆′.
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A fundamental result in the theory of toric varieties says that the category
of toric varieties is equivalent to the category of fans (see [31, Theorem 1.5 and
Theorem 1.13], also [30, Theorem 4.1]). A toric variety X is compact if and only
if the fan ∆X of X is complete, and smooth if and only if ∆X is non-singular.
Therefore, a toric variety X is a toric manifold if and only if ∆X is complete and
non-singular.

The complex projective space CP n with a linear action of (C∗)n is a toric
manifold. A product of finitely many toric manifolds is again a toric manifold with
the product action, so a product of finitely many complex projective spaces is a
toric manifold. Here is a bit more non-trivial example of toric manifolds.

Example 1.1. Let B be a toric manifold of complex dimension k. Let γi → B
(i = 1, . . . , �) be (C∗)k-equivariant line bundles over B. Each γi has a C∗-action
defined by scalar multiplication so that the sum ⊕�

i=1γi has an action of (C∗)k+�.
Let C be a trivial line bundle over B with fiber C on which the (C∗)k-action is
trivial. Then the projectivization of C ⊕�

i=1 γi has an induced action of (C∗)k+�

and is again a toric manifold.
Starting with B as a point and repeating the above construction, say n times,

we obtain a sequence of toric manifolds:

Bn
pn−→ Bn−1

pn−1−→ · · · p2−→ B1
p1−→ B0 = {a point}(1.1)

where the fiber of pj : Bj → Bj−1 for j = 1, . . . , n is a complex projective space.
We call the above sequence (or often the top manifold Bn) an n-stage generalized
Bott tower, and especially call it an n-stage Bott tower when each fiber is CP 1.
Note that a Hirzebruch surface is a 2-stage Bott tower. The name of Bott tower
was introduced and its study was initiated by Grossberg-Karshon [17]. See [8], [9]
and [25] for further study on Bott towers.

2. Equivariant cohomology of a toric manifold

Equivariant cohomology fits very well to the study of toric manifolds, which we
shall explain in this section. We refer the reader to [18], [23] and [29] for details.

We set T = (C∗)n and let X be a toric manifold of complex dimension n with
an action of T . Associated with the universal principal T -bundle ET → BT , we
obtain a fibration

X
ι−→ ET ×T X

π−→ BT(2.1)

where ET ×T X is the orbit space of ET × X by the diagonal T -action. The
equivariant cohomology of a toric manifold X is the ordinary cohomology of the
total space of the above fibration, that is,

H∗
T (X) := H∗(ET ×T X)

Let Xi (i = 1, . . . , m) be invariant divisors of X. Since Xi and X are complex
manifolds, they have canonical orientations. Let τi be the image of the unit ele-
ment in H0

T (Xi) by the equivariant Gysin homomorphism from H0
T (Xi) to H2

T (X)
induced by the inclusion map from Xi to X. We may think of τi as the Poincaré
dual of the cycle Xi in equivariant cohomology. The invariant divisors Xi intersect
transversally. Therefore, for each subset I of {1, . . . , m} the Poincaré dual of an
intersection ∩i∈IXi is a cup product

∏
i∈I τi, so that the product

∏
i∈I τi vanishes
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if the intersection ∩i∈IXi is empty. It turns out that

H∗
T (X) = Z[τ1, . . . , τm]/(

∏

i∈I

τi | ∩i∈IXi = ∅).(2.2)

Since the underlying simplicial complex ΣX of the fan ∆X of X is given by

ΣX = {I ⊂ {1, . . . , m} | ∩i∈IXi �= ∅},(2.3)

the fact (2.2) shows that H∗
T (X) is the face ring (or Stanley-Reisner ring) of the

simplicial complex ΣX , in particular determined by ΣX . Conversely, H∗
T (X) as

a graded ring determines the underlying simplicial complex, that is, if H∗
T (X) ∼=

H∗
T (Y ) as graded rings, then the underlying simplicial complexes ΣX and ΣY are

isomorphic (see [3] or [37, Problem 31 in p.141]).
We note that H∗

T (X) is not only a graded ring but also a graded algebra
over H∗(BT ) through π∗ : H∗(BT ) → H∗

T (X) where π is the projection in (2.1).
Since H∗(BT ) is a polynomial ring generated by H2(BT ) and H2

T (X) is additively
generated by τi’s, the algebra structure can be detected once we know how π∗(u)
is described as a linear combination of τi’s for u ∈ H2(BT ). The coefficient of τi

in the linear expression of π∗(u) is a linear function of u, so that there is a unique
element vi ∈ H2(BT ) for each i such that

π∗(u) =
m∑

i=1

〈u, vi〉τi(2.4)

where 〈 , 〉 denotes the natural pairing between cohomology and homology. There-
fore, the simplicial complex ΣX together with the elements vi’s determines the
algebra structure of H∗

T (X) over H∗(BT ).
Since T = (C∗)n, there are natural identifications

Z
n = H2(BT ) = Hom(C∗, T )

where the last one denotes the group of homomorphism from C
∗ to T . We denote

by λv the element in Hom(C∗, T ) corresponding to v ∈ H2(BT ). It turns out that
λvi(C∗) is the C∗-subgroup of T which fixes the invariant divisor Xi pointwise. For
each member I of ΣX we form a cone in H2(BT ) ⊗Z R = Rn spanned by vectors
vi’s for i ∈ I. The collection of those cones (and the cone consisting of only the
origin) agrees with the fan ∆X of X. Therefore, the data of ΣX together with the
set of vectors {vi} is equivalent to the data of the fan ∆X .

The restriction map ι∗ : H∗
T (X) → H∗(X) is surjective and its kernel is gener-

ated by π∗(H2(BT )). We set µi = ι∗(τi) ∈ H2(X). It is the (ordinary) Poincaré
dual of the cycle Xi in X. Then we obtain the following well-known result from
(2.2), (2.3) and (2.4):

H∗(X) = Z[µ1, . . . , µm]/I(2.5)

where I is the ideal generated by the following two types of elements:

(1)
∏

i∈I µi for I /∈ ΣX ,
(2)

∑m
i=1〈u, vi〉µi for u ∈ H2(BT ),

see [16, p.106] and [31, p.134].
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3. Classification of toric manifolds as varieties

Before we discuss topological classification of toric manifolds, we shall recall
some known results on the classification of toric manifolds as varieties. The follow-
ing is fundamental.

Proposition 3.1. For toric manifolds X and Y of complex dimension n, the
following are equivalent.

(V1) X and Y are non-equivariantly isomorphic as varieties.
(V2) X and Y are weakly equivariantly isomorphic as varieties, i.e., there is an

isomorphism f : X → Y together with an automorphism ρ of T = (C∗)n

such that f(tx) = ρ(t)f(x) for any t ∈ T and x ∈ X.
(V3) The fans ∆X and ∆Y of X and Y are isomorphic (or unimodularly equiv-

alent), i.e., there is a unimodular automorphism of Rn which maps cones
in ∆X to cones in ∆Y bijectively.

Proof. The implication from (V2) to (V1) is trivial, and the equivalence of
(V2) and (V3) follows from the fundamental result in the theory of toric varieties
mentioned in Section 1. So, it suffices to prove the implication from (V1) to (V2).
Suppose that there is an isomorphism f : X → Y . Then it induces a group isomor-
phism f∗ : Aut(X) → Aut(Y ) between the automorphism groups of X and Y . In
fact, f∗(g) for g ∈ Aut(X) is given by fgf−1 . It is known that the automorphism
group of a toric manifold is a linear algebraic group with the acting torus as a max-
imal algebraic torus ([31, Section 3.4]) and that maximal algebraic tori in a linear
algebraic group are all conjugate ([20, Corollary A in p.135]). Let TX (resp. TY )
be the maximal torus of Aut(X) (resp. Aut(Y )) determined by the torus acting on
X (resp. Y ). Since f∗ is an isomorphism, f∗(TX) is a maximal algebraic torus of
Aut(Y ), so that there is an element h ∈ Aut(Y ) such that f∗(TX) = h−1TY h. Then
the composition hf : X → Y induces an isomorphism (hf)∗ : Aut(X) → Aut(Y )
mapping TX to TY . This implies that the isomorphism hf is weakly equivariant.

Because of the equivalence between (V1) and (V3) above, the classification
problem of toric manifolds as varieties reduces to the combinatorial problem of
classifying fans up to isomorphism. Based on this fact, the classification of toric
manifolds of dimension n as varieties has been completed in several cases. For
instance,

(1) n = 2 ([31, Theorem 1.28]), or n = 3 and the 2nd Betti number (or Picard
number) is five or less ([31, Theorem 1.34]).

(2) Smooth toric Fano varieties (i.e. toric manifolds with an ample anticanoni-
cal divisor) of dimension n ≤ 4 ([31, Proposition 2.21] for n = 2, [31, p.90]
for n = 3, [1] and [35] for n = 4).

(3) 2-stage generalized Bott towers ([22]).
See [13], [36] and their references for further classification results.

If two toric manifolds X and Y are (weakly equivariantly) isomorphic as vari-
eties, then their equivariant cohomology algebras are weakly isomorphic, i.e., there
is a graded ring isomorphism Φ: H∗

T (Y ) → H∗
T (X) together with an automorphism

ρ of T such that Φ(uω) = ρ∗(u)Φ(ω) for any u ∈ H∗(BT ) and ω ∈ H∗
T (Y ), where

ρ∗ is the automorphism of H∗(BT ) induced by ρ. It turns out that the converse
holds ([24]), so we have the following another equivalent statement to (V1) above:

(V4) H∗
T (X) and H∗

T (Y ) are weakly isomorphic as algebras.
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4. Topological classification of toric manifolds

We shall consider the topological classification of toric manifolds. If two toric
manifolds are isomorphic as varieties, then they are homeomorphic, but the converse
does not hold in general. Here is a well-known simple example.

Example 4.1. For an integer a, we denote by γa the a fold tensor product of
the canonical line bundle γ over CP 1. Let C be the trivial line bundle over CP 1.
Then P (C⊕ γa) is a Hirzebruch surface (i.e., 2-stage Bott tower). It is well known
that P (C ⊕ γa) and P (C ⊕ γb) are isomorphic as varieties if and only if |a| = |b|
(see [31, Theorem 1.28 (3)]), while they are homeomorphic if and only if a ≡ b
(mod 2).

Here is a proof of the homeomorphism classification above. The “only if” part
follows from the fact that P (C ⊕ γa) is spin if and only if a is even. One can
also check that if H∗(P (C ⊕ γa)) is isomorphic to H∗(P (C ⊕ γb)) as graded rings,
then a ≡ b (mod 2). The proof of the “if” part is as follows. Note that P (E) is
homeomorphic to P (E ⊗ η) for any complex vector bundle E and any complex line
bundle η. Suppose a ≡ b (mod 2). Then b − a = 2� for some � ∈ Z and we have
homeomorphisms

P (C ⊕ γa) ∼= P ((C ⊕ γa) ⊗ γ�) = P (γ� ⊕ γa+�).

Since both γ� ⊕ γa+� and C⊕ γb are over CP 1 and have the same first Chern class,
they are isomorphic. Hence the last space above is P (C⊕γb), proving the “if” part.

In fact, P (C ⊕ γa) is homeomorphic to CP 1 × CP 1 (resp. CP 2#CP 2)) when
a is even (resp. odd), where CP 2 denotes CP 2 with reversed orientation.

As remarked at the end of Section 3, equivariant cohomology determines the
isomorphism type of toric manifolds as varieties. This leads us to ask how much
information ordinary cohomology has for toric manifolds, and the example above
shows that ordinary cohomology ring distinguishes the homeomorphism types of
Hirzebruch surfaces. We ask

Problem 1. Are toric manifolds X and Y homeomorphic if H∗(X) ∼= H∗(Y )
as graded rings (or if X and Y are homotopy equivalent)?

There are infinitely many closed smooth manifolds which are homotopy equiv-
alent to CP n but not homeomorphic to each other for n ≥ 3 ([19], [28]). More
generally, surgery theory would imply a similar result for many toric manifolds dif-
ferent from CP n. So, Problem 1 might be bold but we have a feeling that most of
manifolds do not have large symmetry and we do not know any counterexample to
Problem 1.

We shall give some evidence supporting Problem 1.

Proposition 4.2. Problem 1 has an affirmative solution for toric manifolds
of complex dimension one and two.

Proof. A toric manifold of complex dimension one is CP 1, so the proposition
is trivial in dimension one. Simply connected real 4-dimensional closed smooth man-
ifolds are classified up to homeomorphism by isomorphism classes of the bilinear
forms defined by the intersection paring of real 2-cyclyes ([15]), so the homeomor-
phism types of those manifolds are distinguished by their cohomology rings. This
together with the fact that any toric manifold is smooth and simply connected ([16,
Section 3.2]) implies the proposition in dimension two.
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Remark. Any toric manifold of complex dimension two is obtained by blowing
up CP 2 or a Hirzebruch surface finitely many times ([31, Theorem 1.28]). As
remarked before, any Hirzebruch surface is homeomorphic to either CP 1 × CP 1

or CP 2#CP 2. Although CP 1 × CP 1 and CP 2#CP 2 are not homeomorphic, they
become homeomorphic after blowing up (in other words, after taking the connected
sum with CP 2). Thus, a toric manifold of complex dimension two is homeomorphic
(even diffeomorphic) to CP 2, CP 1×CP 1 or the connected sum of CP 2 with a finite
number of copies of CP 2 ([14]).

Besides the proposition above, there are some partial affirmative solutions to
Problem 1. For instance,

(1) X = (CP 1)n and Y is an arbitrary toric manifold ([26]).
(2) X is a product of complex projective spaces and Y is an arbitrary general-

ized Bott tower ([6]).
(3) X and Y are both 2-stage generalized Bott towers ([6]).

The reader can find more partial affirmative solutions to Problem 1 in [6].

The simplicial complex ΣX associated with a toric manifold X is determined
by the equivariant cohomology of X as explained in Section 2. As for ordinary
cohomology, the number fi of i-simplices in ΣX is determined by H∗(X). In fact,
since H∗

T (X) is the face ring of the simplicial complex ΣX , we have
∞∑

i=0

rank H2i
T (X)ti = 1 +

n−1∑

i=0

fit
i+1

(1 − t)i+1

(see [37, Theorem 1.4 in p.54]) while since H∗
T (X) is isomorphic to H∗(BT )⊗H∗(X)

as graded modules, the left hand side above is equal to

1
(1 − t)n

n∑

k=0

rank H2k(X)tk .

Equating the above two and replacing t by (s + 1)−1, we see that fi agrees with
the coefficient of sn−i−1 in

∑n
k=0 rank H2k(X)(s + 1)n−k.

Although H∗(X) contains some information on ΣX as observed above, it is not
true in general that ΣX is determined by H∗(X) as is seen in the following example.

Example 4.3. We use the fact that a maximal simplex in ΣX corresponds to
a fixed point in X and blowing up X at a fixed point equivariantly corresponds to
applying a stellar subdivision ([13, p.70]) to the simplex corresponding to the fixed
point ([16, Section 2.6]).

We start with CP 2 × CP 1 with a standard action of (C∗)3. The simplicial
complex associated with it is the suspension of the boundary complex of a triangle.
Let Y be a toric manifold obtained by blowing up CP 2 × CP 1 at a fixed point
equivariantly. Although there are six fixed points in CP 2 × CP 1, the simplicial
complex associated with Y does not depend on the fixed point chosen for blowing
up. Then we blow up Y at a fixed point equivariantly. In this case the simplicial
complex associated with the resulting toric manifold X does depend on the fixed
point chosen for blowing up. In fact, we obtain three different underlying simplicial
complexes shown as the first three in the second line in p.192 of [31]. However, X
is homeomorphic to the connected sum of CP 2×CP 1 with two copies of CP 3 (with
reversed orientation) regardless of the chosen fixed point. Therefore this gives a
desired example.
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On the contrary, ΣX is sometimes determined by H∗(X). For instance, this is
the case when ΣX is the boundary complex of a crosspolytope ([26]). Motivated
by this, we say that the simplicial complex ΣX associated with a toric manifold X
is rigid if ΣX

∼= ΣY whenever H∗(X) ∼= H∗(Y ) as graded rings. The boundary
complex ∂∆n of a simplex ∆n of dimension n is rigid because a toric manifold
with ∂∆n as the associated simplicial complex is only CP n. Moreover, the result
mentioned above asserts that a join ∂∆0 ∗ · · · ∗ ∂∆0, which is isomorphic to the
boundary complex of a crosspolytope, is rigid. We ask

Problem 2. Which simplicial complex is rigid or not rigid? In particular, is a
join ∂∆n1 ∗ · · · ∗ ∂∆nk rigid for any value of ni’s and any k?

As an intermediate step to Problem 1, we may ask

Problem 3. Are toric manifolds X and Y homeomorphic if H∗(X) ∼= H∗(Y )
as graded rings and ΣX is rigid, or more generally, if H∗(X) ∼= H∗(Y ) as graded
rings and ΣX

∼= ΣY ?

Although Problems 1 and 3 are stated in the topological category, affirmative
results known so far to those problems actually hold in the smooth category. Quite
generally, we may ask

Problem 4. Are two toric manifolds diffeomorphic if they are homeomorphic?

5. Pontrjagin class of a toric manifold

A homeomorphism between closed manifolds preserves their rational Pontrjagin
classes as is well known. Since the cohomology group of a toric manifold has
no torsion, any homeomorphism between toric manifolds preserves their integral
Pontrjagin classes. Therefore, as a step toward Problem 1 we may ask

Problem 5. If two toric manifolds have isomorphic cohomology rings, then is
there an isomorphism between their cohomology rings which preserves their Pontr-
jagin classes?

We have an explicit description (2.5) of H∗(X) for a toric manifold X, and it
is known that the Chern class of X is given by

∏m
i=1(1+µi) (see [31, Theorem 3.12

in p.131]), so the Pontrjagin class p(X) of X is given by

p(X) =
m∏

i=1

(1 + µ2
i ).(5.1)

Therefore Problem 5 is purely algebraic.
The affirmative solution to Problem 1 implies the affirmative solution to Prob-

lem 5 as remarked at the beginning of this section, but the results of [38] and [21]
show that the converse implication also holds in complex dimension three.

Problem 1 asks whether there is a homeomorphism between toric manifolds if
there is an isomorphism between their cohomology rings. More strongly we may
ask

Problem 6. Is any isomorphism between cohomology rings of toric manifolds
induced by a homeomorphism between the manifolds? In particular, does any
isomorphism between cohomology rings of toric manifolds preserve the Pontrjagin
classes of the manifolds?
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Some partial affirmative solution to the latter part of Problem 6 could be found
in [6].

Problem 5 or the latter part of Problem 6 reminds us of a conjecture by
Petrie [33], which says that if M is a closed smooth manifold homotopy equiv-
alent to CP n and M admits a non-trivial smooth action of S1 , then any ho-
motopy equivalence between M and CP n preserves their Pontrjagin classes, i.e.,
p(M) = (1 + x2)n+1 for a generator x ∈ H2(M). No counterexample is known and
there are some partial affirmative solutions to the conjecture. Among them, it is
proved in [34] that p(M) is of the above form if M supports an effective smooth
action of (S1)n. See [11] for related results.

6. Quasitoric manifolds

The theory of toric manifolds can be developed in the topological category to
some extent. The pioneering work in this direction was done by Davis-Januszkiewicz
in [10]. They introduced the notion of what is now called a quasitoric manifold
as a topological counterpart to a toric manifold in algebraic geometry, and showed
that an analogous theory can be developed for quasitoric manifolds in the topolog-
ical category. We refer the reader to a book [4] by Buchstaber-Panov for further
development.

A quasitoric manifold is a closed smooth manifold M of real dimension 2n with
a smooth action of (S1)n such that

(1) the action is locally standard (that is, the action is locally same as a faithful
real 2n-dimensional representation of (S1)n in the smooth category), and

(2) the orbit space M/(S1)n is a simple convex polytope.
The restricted action of (S1)n on a toric manifold X is locally standard and the
orbit space X/(S1)n is a manifold with corners whose faces (even X/(S1)n itself)
are all contractible and any multiple intersection of faces is connected whenever it
is non-empty. When X is projective, there is a moment map whose image identifies
X/(S1)n with a simple convex polytope. Therefore, a projective toric manifold
provides an example of a quasitoric manifold. Even if a toric manifold is not
projective, it often provides an example of a quasitoric manifold. For example, there
are non-projective toric manifolds of complex dimension three (see [31, Section
2.3]), but any toric manifold of complex dimension three with the restricted action
of (S1)3 is a quasitoric manifold, which follows from a famous theorem of Steinitz
(see [39, Theorem 4.1]). However, a toric manifold may fail to be a quasitoric
manifold in higher dimensions.

On the other hand, it is easy to find a quasitoric but not toric manifold. For
instance, CP 2#CP 2 is a quasitoric manifold with an appropriate action of (S1)2

but not a toric manifold because it does not allow a complex structure (even an
almost complex structure). See [23, Section 5] for examples of quasitoric manifolds
which are not toric but allow an almost complex structure invariant under the torus
action.

Let M be a quasitoric manifold of dimension 2n with a simple convex polytope
P of dimension n as the orbit space and let

q : M → P = M/(S1)n

be the quotient map. Let Mi (i = 1, . . . , m) be a closed smooth codimension two
submanifold of M fixed pointwise under some S1-subgroup of (S1)n. We call Mi’s
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characteristic submanifolds of M . When M is a toric manifold, Mi’s are invariant
divisors. Note that q(Mi) is a facet (i.e. codimension one face) of P and the map
q gives a one-to-one correspondence between the characteristic submanifolds of M
and the facets of P .

The group Hom(S1 , (S1)n) of homomorphisms from S1 to (S1)n can naturally
be identified with Zn, and we denote by λv the element in Hom(S1 , (S1)n) corre-
sponding to v ∈ Zn. Let vi be a primitive element in Zn such that λvi(S1) fixes
Mi pointwise. Note that there are two choices of vi and the other one is −vi. We
need an orientation data (called an omniorientation in [4]) on M and Mi to make
the choice of vi unique. When M is a toric manifold, both M and Mi are complex
manifolds and have canonical orientations, so that vi’s are uniquely determined and
vi agrees with the edge vector corresponding to Mi in the fan.

Let Pi (i = 1, . . . , m) be the facets of P such that Pi = q(Mi). The vectors vi’s
are assembled to define what is called the characteristic function of M :

ΛM : {P1, . . . , Pm} → Z
n.

When M is a toric manifold with P as the orbit space by the restricted action
of (S1)n, the simplicial complex ΣM associated with M agrees with the boundary
complex of the dual of P and vi’s are the edge vectors of the fan of M ; so the
characteristic function ΛM together with (the combinatorial type of) P has an
equivalent data to the fan of M .

The map ΛM above has the property that whenever n facets of P meet at a ver-
tex of P , their images by ΛM form a basis of Zn. A map from the set {P1, . . . , Pm}
to Zn possessing this property is called a characteristic function on P . It is known
that any characteristic function on P can be realized as the characteristic function
of some quasitoric manifold over P (see [5, Section 3]1).

Let M and M ′ be quasitoric manifolds over P . Then ΛM = ΛM ′ if and only if
there is an equivariant homeomorphism between M and M ′ covering the identity
on P ([10]). However an equivariant homeomorphism between them does not nec-
essarily cover the identity on P . In general, it covers a self-homeomorphism of P
preserving the face structure of P . The group Aut(P ) of self-homeomorphisms of
P preserving the face structure acts on the set cf(P ) of characteristic functions on
P through the natural action on the set {P1, . . . , Pm}. One sees that M and M ′

are equivariantly homeomorphic if and only if ΛM and ΛM ′ are in the same orbit
of Aut(P ) in cf(P ).

Dobrinskaya [12] discusses the classification of characteristic functions over a
given polytope P . In particular, she gives a criterion of when a quasitoric manifold
over a product of simplices is a toric manifold (that is, a generalized Bott tower in
this case), see also [7] and [26].

It is proved in [10] that (2.5) and (5.1) hold even for any quasitoric manifold,
so one may ask the problems in Sections 4 and 5 for quasitoric manifolds. A partial
affirmative solution to Problem 1 for quasitoric manifolds is given in [7] and [26].

7. Torus manifolds

The family of quasitoric manifolds may not contain the family of toric manifolds
entirely but an analogous theory to the toric theory can be developed for quasitoric

1Such a quasitoric manifold is constructed in [10, Section 1.5] but it is not obvious how to

give a smooth structure on the manifold.
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manifolds. This implies that the theory can further be extended to a certain family
of manifolds containing both toric manifolds and quasitoric manifolds.

A torus manifold M introduced in [18] is a closed smooth orientable manifold
of dimension 2n with a smooth effective action of (S1)n having a fixed point. Obvi-
ously both toric manifolds and quasitoric manifolds are torus manifolds. A simple
example of a torus manifold which is neither toric nor quasitoric is as follows.

Example 7.1. Let S2n be the 2n-dimensional sphere identified with the fol-
lowing subset of Cn × R:

{
(z1, . . . , zn, y) ∈ C

n × R | |z1|2 + · · ·+ |zn|2 + y2 = 1
}
,

and define an action of (S1)n on S2n by

(t1, . . . , tn) · (z1, . . . , zn, y) = (t1z1, . . . , tnzn, y).

A map

(z1, . . . , zn, y) → (|z1|, . . . , |zn|, y)

induces a homeomorphism from the orbit space S2n/(S1)n onto the following subset
of the n-sphere:

{(x1, . . . , xn, y) ∈ R
n+1 | x2

1 + · · ·+ x2
n + y2 = 1, x1 ≥ 0, . . . , xn ≥ 0}.

The orbit space S2n/(S1)n is a manifold with corners and every face of the
orbit space (even the orbit space itself) is contractible. The facets are images of
real codimension two submanifolds {zi = 0} of S2n (i = 1, . . . , n) under the quotient
map above and the intersection of the n facets consists of two points (0, . . . , 0,±1)
when n ≥ 2. Therefore S2n with the above action is a torus manifold which is
neither toric nor quasitoric when n ≥ 2.

A simplicial poset P is a finite poset with a smallest element 0̂ such that every
interval [0̂, y] for y ∈ P, that is a subposet of P consisting of all elements between
0̂ and y, is isomorphic to the set of all subsets of a finite set, ordered by inclusion.
The set of all faces of a (finite) simplicial complex with empty set added forms a
simplicial poset ordered by inclusion, where the empty set is the smallest element.
Such a simplicial poset is called the face poset of a simplicial complex, and two
simplicial complexes are isomorphic if and only if their face posets are isomorphic.
Therefore, a simplicial poset can be thought of as a generalization of a simplicial
complex.

Although a simplicial poset P is not necessarily the face poset of a simplicial
complex, it is always the face poset of a finite CW complex Γ(P). In fact, to each
y ∈ P\{0̂}, we assign a (geometrical) simplex whose face poset is [0̂, y] and glue
those geometrical simplices according to the order relation in P. Then we get the
CW complex Γ(P) such that all the cells are simplices and all the attaching maps
are inclusions. A finite CW complex like Γ(P) is called a simplicial cell complex.
We may say that the notion of simplicial poset is equivalent to that of simplicial
cell complex.

The face poset of the orbit space S2n/(S1)n in Example 7.1 (with reversed
order by inclusion) is not the face poset of a simplicial complex when n ≥ 2. But
it is the face poset of a simplicial cell complex formed from two (n − 1)-simplices
by gluing their boundaries via the identity map. It can be thought of as the dual
of the boundary of the orbit space S2n/(S1)n.
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The orbit space of a toric or quasitoric manifold is topologically trivial. This
is also the case for the torus manifold in Example 7.1 but not always the case for
an arbitrary torus manifold as the following example shows.

Example 7.2. Take a torus manifold M of dimension 2n and a closed smooth
manifold manifold N of dimension n, and consider the free action of (S1)n on
the product N × (S1)n given by multiplication on the second factor. We choose
a free orbit for each of M and N × (S1)n, remove their invariant open tubular
neighborhoods and glue the resulting manifolds along their boundaries to get a new
torus manifold M ′. The orbit space M ′/(S1)n is the connected sum of M/(S1)n

and N at interior points. Since N can be arbitrary, the orbit space of a torus
manifold is not necessarily topologically trivial unlike toric or quasitoric manifolds.

For a torus manifold M , characteristic submanifolds Mi’s can be defined sim-
ilarly to the quasitoric case and they play the role of the invariant divisors Xi for
a toric manifold X. Similarly to the toric case, we get a simplicial complex ΣM

and vectors vi’s from the characteristic submanifolds Mi’s. Using these data, one
can associate with M a combinatorial object ∆M called the multi-fan of M in a
similar fashion to the toric case ([18], [23]). Precisely speaking, we assign ori-
entations on M and Mi’s (i.e. an omniorientation) which make the choice of vi’s
unique as remarked in Section 6 and moreover we attach an integer to each cone
of maximum dimension n. Such a cone corresponds to n characteristic submani-
folds in M and the integer attached to the cone counts the number of points (with
sign determined by the omniorientation) in the intersection of the n characteristic
submanifolds. When M is a toric manifold, the attached integers are all one (so
that we may neglect them) and the multi-fan ∆M is an ordinary fan, but unless
M is a toric manifold, the attached integers are not necessarily one and cones in
∆M may overlap. Although ∆M contains a lot of geometrical information on M , it
does not determine M in general. For instance, the torus manifolds M and M ′ in
Example 7.2 are not equivariantly homeomorphic in general, but their mutli-fans
are same because a mulit-fan is defined using only characteristic submanifolds and
the characteristic submanifolds of M and M ′ are same.

If the action on a torus manifold of dimension 2n is locally standard, then its
orbit space is a compact nice manifold of dimension n with corners, where “nice”
means that there are exactly n codimension-one faces meeting at each vertex. A
teardrop (of dimension two) is a manifold with corners but not nice. In order to
define a good family of torus manifolds, we shall introduce some terminology for a
compact nice manifold with corners.

Let Q be a compact nice manifold with corners. Faces of Q can naturally be
defined and we understand that Q itself is a face. We say that Q is a homology cell
if all faces of Q are acyclic, and a homology polytope if it is a homology cell and
any multiple intersection of faces is connected whenever it is non-empty. We also
say that Q is a homotopy cell (resp. homotopy polytope) if it is a homology cell
(resp. homology polytope) and all faces are simply connected so that all faces are
contractible. A simple convex polytope is a homotopy polytope and the orbit space
S2n/(S1)n in Example 7.1 is a homotopy cell but not a homotopy polytope when
n ≥ 2. The face poset of Q (with reversed order by inclusion) is a simplicial poset
and is the face poset of a simplicial complex if any multiple intersection of faces
of Q is connected whenever it is non-empty. The following question asks whether
homotopy cells or homotopy polytopes can be determined combinatorially.
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Problem 7. Are homotopy cells (or homotopy polytopes) homeomorphic as
manifold with corners if their face posets are isomorphic?

It is shown in [25] that if Hodd(M) = 0 for a torus manifold M , then the torus
action on M is locally standard, and moreover shown that the orbit space of a
locally standard torus manifold M is a homology cell (resp. homology polytope) if
and only if Hodd(M) = 0 (resp. H∗(M) is generated by H2(M) as a ring). However,
the orbit space itself or its faces may have a non-trivial fundamental group. Since
a torus group is connected, simply connectedness of a space with torus action is
inherited to its orbit space ([2, Corollary 6.3 in p.91]). Therefore, if a torus manifold
M satisfies the following two conditions:

(1) Hodd(M) = 0 (resp. H∗(X) is generated by H2(M) as ring),
(2) M , Mi’s and connected components of any multiple intersection of Mi’s

are all simply connected,
then the orbits space M/(S1)n is a homotopy cell (resp. homotopy polytope).
We believe that torus manifolds satisfying the two conditions above will constitute
a good family of manifolds for which the toric theory can be developed in the
topological category in a nice way. Toric or quasitoric manifolds are contained in
this family.

As pointed out in Section 2, the data of the fan of a toric manifold X is
equivalent to the data of the simplicial complex ΣX together with the set of vectors
{vi}. For a torus manifold M , we still have the vectors {vi} and the face poset
of M/(S1)n takes the place of the simplicial complex ΣX . The same argument as
in [10] will show that the homeomorphism type of a torus manifold M satisfying
the two conditions above will be determined by the face poset of M/(S1)n together
with the set of vectors {vi} if Problem 7 is affirmatively answered. We may ask the
problems in Sections 4 and 5 even for those torus manifolds. The reader can find
related study in dimension 4 ([32]) and in dimension 6 ([27]).
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