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Skipping, Cascade, and Combined Chain Schemes
for Broadcast Encryption

Jung Hee Cheon, Nam-Su Jho, Myung-Hwan Kim and Eun Sun Yoo

Abstract— We develop a couple of new methods to reduce
transmission overheads in broadcast encryption. The methods are
based on the idea of assigningone key per each partition using one-
way key chainsafter partitioning the users. One method adopts
skipping chainson partitions containing up to p revoked users
and the other adopts cascade chainson partitions with layer
structure. The scheme using the former has the transmission
overhead r

p+1
+ N−r

c
, which is less thanr/p if r > p2N/c. The

scheme using the latter keeps the same transmission overhead
with the Subset Difference (SD) scheme whenr approaches 0,
where r is the number of revoked users. Combining the two
schemes, we propose a new broadcast encryption scheme whose
transmission overhead is the same with that of the SD scheme
for small r and becomes smaller than that of the SD asr grows.
The scheme using skipping chains possesses an advantage that
any number of new users can join any time at no cost for
current users. Finally, we show that the proposed key assignment
scheme satisfieskey-indistinguishabilityassuming pseudo-random
generators.

Index Terms— Broadcast encryption, Cascade chain, Com-
bined chain, One-way key chain, Revocation, Skipping chain.

I. I NTRODUCTION

BROADCAST encryption (BE) is a cryptographic method
for a center to broadcast digital contents efficiently to

a large number of users so that only non-revoked users can
decrypt the contents. BE has a wide range of applications such
as the internet or mobile broadcast of movies, news or games,
pay TV, CD, and DVD, to name a few.

In broadcast encryption, the center distributes to each user
u the set K(u) of keys, called theuser-keyof u, in the
setup stage. We assume that the user-keys are not updated
afterwards, that is, user-keys arestateless. A sessionis a
time interval during which only one encrypted message (digital
contents) is broadcasted. Thesession-key, say SK, is the
key used to encrypt the message of the session. In order
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to broadcast a messageM , the center encryptsM using
the session-keySK and broadcasts the encrypted message
together with aheader, which contains encryptions ofSK
and the information for non-revoked users to decryptSK. In
other words, the center broadcasts

⟨header; ESK(M) ⟩,

whereE is any preset symmetric encryption algorithm. Then,
every non-revoked useru computesF(K(u), header) = SK
and with this decryptsESK(M), where F is a predefined
algorithm. For any revoked userv, however,F(K(v), header)
should not renderSK. Furthermore, there should be no
polynomial time algorithm that outputsSK even with all the
revoked user-keys and the header as input.

The header size, the computing time ofF and the size of
K(u) are called thetransmission overhead(TO), thecompu-
tation cost(CC) and thestorage size(SS), respectively. One
of the main issues of broadcast encryption is to minimize
the transmission overhead with practical computation cost and
storage size.

The notion of broadcast encryption was first introduced by
Berkovits [1] in 1991 using polynomial interpolation and vec-
tor based secret sharing. Fiat and Naor [3] in 1993 suggested
a formal definition of broadcast encryption and proposed a
systematic method of broadcast encryption. The polynomial
interpolation method was improved by Naor and Pinkas [12]
in 2000 to allow multiple usage and by the authors [13] in
2004 to allow a large number of users. The first broadcast
encryption scheme that achievedO(r) transmission overhead
was proposed in 2001 by Naor, Naor and Lotspiech [10],
called theSubset Difference(SD) method. This was improved
by Halevi and Shamir [5] in 2002 by adopting the notion of
layers and thereby their scheme is called theLayered Subset
Difference(LSD) method. Both SD and LSD are based on
tree structures and they have been the best known broadcast
schemes up to now. To be more precise, letN be the total
number of users andr be the number of revoked users. The SD
scheme requires2r− 1 transmission overhead andO(log2 N)
storage size for each user. The computation cost is only
O(log N) computations of one-way permutations. The LSD
scheme reduces the storage size toO(log3/2 N) while keeping
the computation cost same. But the transmission overhead
increases to4r−2 in LSD. For other interesting recent articles
on broadcast encryption, we refer the readers [4], [2].

In this paper, we develop a couple of methods to reduce
transmission overhead in broadcast encryption based on the
idea of one key per each partition using one-way key chains
after partitioning the users. More precisely, we put all users
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on a straight line and partition the line into intervals to each of
which the center assigns just one key. The key can be derived
by only those non-revoked users in the interval and will be
used in decrypting the session-key.

The first method adoptsskipping chainson partitions con-
taining up top revoked users. It has been a general belief
that at least one key per each revoked user should be included
in the overhead and hencer seems to be the lower bound of
the transmission overhead in any broadcast encryption scheme
with reasonable computation cost and storage size.

In the scheme using skipping chains, however, the transmis-
sion overhead is aboutrp+1 + N−r

c , wherec is a predetermined
constant. TO becomes less thanr/p if r > p2N/c andp ≥ 1,
which breaks the barrier ofr for the first time under our
knowledge. For example, if we takec = 100 and p = 1,
then p2N/c = 0.01N and TO< r. We remark that TO can
be greater thanr/p if r < p2N/c in which case SD has
smaller TO. The computation cost is very cheap with only
c computations of a pseudo-random sequence generator. The
storage size isO(cp+1). Our scheme is very flexible with two
parametersp andc. If a user device allows a large key storage
like set-top boxes and DVD players, then we may takec and
p as large as possible to reduce the transmission overhead. If
a user device has limited storage and computing power like
smart cards and sensors, then we may setp andc as small as
possible. Another advantage of this scheme is that any number
of new users can join any time easily. In order to add new users
to the system, the center just places them at the end of the line,
computes and sends the corresponding user-keys to them. This
process requires neither interaction nor refreshment of current
user-keys. (See [7] and [6] for the broadcast encryption scheme
π, which is the previous version of the skipping chain scheme.)

Whenr is very small, the skipping chain scheme larger TO
than that of the SD scheme. This is an intrinsic attribute of
linear structures. As a complement, we adopt a concept of tree
to a linear structure to introduce layer structure andcascade
chainson it. In cascade chain schemes, we assign a key to each
interval which starts from or ends at some special node so that
every interval between two revoked users can be covered by at
most two keys. This enables us to have2r as the transmission
overhead for very smallr, which is comparable to the SD
scheme. Ifr grows, however, this scheme has smaller TO
than the SD scheme. That is, ifr > N/αC, the transmission
overhead of the cascade chain scheme is about(1+α)r, which
is smaller than that of the SD scheme for0 < α < 1. Cascade
structure also enables us to reduce the size of a user-key so
that the storage size of the scheme is comparable to most
practical schemes. Without cascade structure, the storage size
could increase exponentially as we introduce layers and special
nodes.

Combining the two schemes, we propose a new broadcast
encryption scheme with very small transmission overhead
for all r. The transmission overhead of the combined chain
scheme is the same as those of the cascade chain scheme and
the SD scheme asr approaches to 0, the same as that of the
skipping chain scheme asr grows bigger, and even better for
some values ofr in between. User addition, however, is not
available because of left cascade key chains in the combined

chain scheme as well as in the cascade chain scheme. But
if we use only right cascade key chains, then user addition
without updating the user-keys of current users is still feasible
in both schemes.

The notion of therevocation-scheme securitywas intro-
duced in [11]. It captures the concept of semantic security
against chosen message attacks in broadcast encryption. In the
subset-cover framework, it was proved that a broadcast encryp-
tion scheme satisfies the revocation-scheme security if its key-
assignment scheme satisfieskey-indistinguishabilityand the
underlying encryption function is secure [11]. We show that
our key assignment schemes satisfy key-indistinguishability.

Roughly speaking, the revocation-scheme security assumes
that any adversary, who may pool the secret information of a
set of users (corrupted users), may have some influence on the
choice of messages encrypted in the scheme, and may create
bogus messages and see how non-revoked users react, can not
learn any information about the messageM

This paper is organized as follows : In Section 2, we
introduce the basic chain scheme. In Section 3 and Section 4,
we develop the skipping chain scheme and the cascade chain
scheme, respectively. We combine the two schemes in Section
5. Security proof of our schemes is given in Section 6. We
compare our schemes with SD and LSD and discuss some
practical issues in Section 7, and then briefly summarize our
results in Section 8.

II. L INEAR STRUCTURE

I N this section, we introduce the basic chain scheme, where
users are regarded as dots lined up in order. Although this

scheme cuts the transmission overhead down tor, the scheme
requires a large storage for each user. The basic chain scheme,
however, is the building ground for our skipping chain scheme
and cascade chain scheme. We also introduce a variant of the
basic chain scheme, called theC-basic chain scheme, which
improves the storage size at the cost of transmission overhead
for small r.

A. Framework

We adopt the subset-cover framework of [11]. LetL be a
straight line withN dots (users) on it, whereN is the number
of total users. In our schemes, each user is indexed by an
integerk ∈ [0, N−1] and he/she is represented by thek-th dot,
denoted byuk, in the lineL. The center first assigns the user-
key K(uk) to each useruk. ConsiderL as the set ofN users
and defineS(scheme) to be the set of all subsets ofL satisfying
certain conditions of the scheme under discussion. The center
assigns each subsetS ∈ S(scheme) a keyK, called thesubset-
key of the subsetS that can be derived by each non-revoked
user ofS using his/her user-key. For each session, the center
finds the disjoint subsetsS1, S2, . . . , Sm in S(scheme), whose
union covers all non-revoked users, under a predetermined
rule, keepingm as small as possible. And then the center
encrypts the session-keySK with the subset-key ofSµ for
eachµ = 1, 2, . . . ,m. Thesem encryptions ofSK together
with information onSµ’s form the header. The numberm is
usually defined to be the transmission overhead.
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1) Encryption: In each session, the center finds disjoint
subsetsS1, S2, . . . , Sm in S(scheme), whose union is the set
of all non-revoked users, and their subset-keysK1,K2, . . . ,
Km. The center then encrypts the session-keySK with Kµ

for eachµ = 1, 2, . . . ,m, respectively, and a messageM with
SK, and then broadcasts

⟨ info1, info2, . . . , infom ;

EK1(SK), EK2(SK), . . . , EKm(SK) ; E ′
SK(M) ⟩,

where infoµ is the information of the subsetSµ andE andE ′

are preset symmetric encryption algorithms.
2) Decryption: Receiving the encrypted message

⟨ info1, info2, . . . , infom ; C1, C2, . . . , Cm ; M ′ ⟩,

each non-revoked useru first finds the subsetSµ where
he/she belongs and its subset-keyKµ. With this, u computes
DKµ

(Cµ) = SK andD′
SK(M ′) = M in order, whereD and

D′ are the decryption algorithm corresponding toE andE ′.
3) Security: The notion of therevocation-scheme security

introduced in [11] captures the concept of semantic secu-
rity against chosen message attacks in broadcast encryption.
Roughly speaking, the revocation-scheme security assumes
that any adversary, who may pool the secret information of
a set of users (corrupted users), may have some influence on
the choice of messages encrypted in the scheme, and may
create bogus messages and see how non-revoked users react,
can not learn any information about the messageM from the
broadcasted message

⟨ info1, info2, . . . , infom ;

EK1(SK), EK2(SK), . . . , EKm(SK) ; E ′
SK(M) ⟩

if all the corrupted users are revoked. For more details, refer
to [11, Section 6].

Moreover, it was proved that a scheme in the subset-
cover framework satisfies revocation-scheme security ifE is a
pseudo-random permutation (block-ciphers in practice),E ′ is a
pseudo-random generators (stream-ciphers in practice), and the
key assignment algorithm satisfies thekey-indistinguishability,
which is the property that for every subsetS its subset-
key K is indistinguishable from a random keygiven all the
information of all users not inS. We will show that our key
assignment algorithms satisfy the key-indistinguishability in
Section 6.1.

4) Performance:In this framework, the TO is the header
size m and the SS is the maximum size ofK(u). We count
only the number of encryptions for TO, since the information
on the subset identifier can be encoded by much less bits
than the encryptions. Since the subset key can be computed
by applying a pseudo-random sequence generators (PRG)
repeatedly, the CC counts the number of applications of PRGs.

B. Basic Chain Scheme

Let u0, u1, . . . , uN−1 denote the users, whereN is the total
number of users, and letr be the number of revoked ones. We
denote the interval starting fromui and ending atuj by Ii,j .
In the basic chain scheme,S(basic) is the set of all theseIi,j ’s

for i, j satisfying0 ≤ i ≤ j ≤ N − 1. For each intervalIi,j ,
we assign theinterval-keyKi,j that will be used to encrypt
and decrypt the session-key for the users inIi,j . Then the
number of user-keys for each useruk is (k + 1)(N − k) for
k = 0, 1, . . . , N − 1 and hence the average number of user-
keys per user is(N+1)(N+2)

6 , which is too big. We introduce
key chains using one-way permutation to reduce the user-key
size.

1) Key Assignment:In order to reduce the size of each
user-key, we give some relations among the interval-keys. Let

H : {0, 1}ℓ → {0, 1}2ℓ

be a pseudo-random sequence generator such that no
polynomial-time adversary can distinguish the output ofH
on a randomly chosen seed from a truly random string. We
will denote byh(x) and h′(x) the right and the left half of
H(x) for any x ∈ {0, 1}ℓ, respectively. ChooseN keysK0,0,
K1,1, . . . , KN−1,N−1, randomly. Construct a key chain from
eachKi,i as follows:

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h(Ki,i+1) = h2(Ki,i),

. . . , Ki,N−1 = hN−1−i(Ki,i).

We assign the user-key

K(uk) = {K0,k, K1,k, . . . , Kk,k }

to uk for eachk = 0, 1, . . . , N − 1. Note that the interval-key
Ki,j can only be computed byuk ’s for i ≤ k ≤ j and that
it is not possible for other users to computeKi,j even if they
all collude.

2) Encryption: For each session, the center marks the
revoked users on the lineL and removes the marked users
from the line to obtain disjoint intervals, sayIi1,j1 , . . . , Iim,jm

consisting of non-revoked users as illustrated in Figure 1,
whose union covers all non-revoked users. Then the center
broadcasts:

⟨(ii, j1), . . . , (im, jm) ;

Eh′(Ki1,j1 )(SK), . . . , Eh′(Kim,jm )(SK) ; E ′
SK(M)⟩.

e e e e e e e e e e e e e e e e e e e e e

?

Mark revoked users

L

◦ and× denote a non-revoked
and a revoked user, resp.e e e e e e e e e e e e e e e e e e e e e¡@ ¡@¡@ ¡@ ¡@

?

Make intervals by removing the revoked

e e e e e e e e e e e e e e e e
Figure 1. Making the intervals
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3) Decryption: Receiving the encrypted message, each
non-revoked useruk first locates the intervalIi,j where he/she
belongs, that is, findsi, j such thati ≤ k ≤ j, and computes

Ki,j = hj−k(Ki,k)

from the key Ki,k he/she owns. And thenuk decrypts
Eh′(Ki,j)(SK) andE ′

SK(M) to obtain the session-keySK and
the messageM , respectively, in order. Note that a revoked user
cannot compute the session-key since he/she does not belong
to any interval listed in the header (see§2.4).

4) Performance: When r users are revoked in the basic
chain scheme, the maximum possible number of disjoint
intervals inS(basic) to cover all non-revoked users isr + 1.
So, the transmission overhead is

TO(basic) = r + 1.

Each useruk needs to keep(k+1) user-keys. So, the storage
size for each user isN+1

2 in the average and

SS(basic) = N

in the worst case. Note that the center needs to keep onlyN
keys

K0,0, K1,1, . . . , KN−1,N−1.

Finally, the computation cost is at mostN computations ofh
or h′, i.e.,

CC(basic) = N.

5) Remark:One may consider a circular structure by gluing
two ends of the line and providing more key chains traversing
the two ends. In a circular structure, TO is reduced by 1 and
every member has the same size of user-key,N , but it is not
easy to add new users to the structure later.

C. C-Basic Chain Scheme

Although the basic chain scheme reduces the transmission
overhead down tor, the storage size of each user is still too
big to be practical. We can reduce the storage size by bounding
the interval length, i.e., the number of users in the interval.

Let C be a predetermined positive integer. LetS(C-basic)

be the set of all intervals of the formIi,j ∈ S(basic) satisfying
j − i + 1 ≤ C, wherej − i + 1 is the length ofIi,j . We call
such intervalsC-intervals.

1) Key Assignment:Key generation of theC-basic chain
scheme is exactly same as that of the basic chain scheme
except the maximal length of key chains isC, i.e., the center
constructs the key chain

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h2(Ki,i), . . . ,

Ki,i+C−1 = hC−1(Ki,i)

for each0 ≤ i ≤ N − C and

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h2(Ki,i), . . . ,

Ki,N−1 = hN−1−i(Ki,i)

for eachN−C+1 ≤ i ≤ N−1, and then assigns the user-key

K(uk) =
{

{Kk−C+1,k, Kk−C+2,k, . . . ,Kk,k } if k ≥ C
{K1,k, K2,k, . . . ,Kk,k } otherwise

to uk for eachk = 0, 1, . . . , N − 1.

2) Encryption and Decryption:For each session, the center
finds disjoint intervals as in the basic chain scheme. If all
the intervals are of length≤ C, then it uses the intervals for
encryption. If there are intervals of length> C, then the center
partitions those intervals further as follows : Partition everyIi,j

with j − i + 1 > C into subintervals

Ii,i+C−1, Ii+C,i+2C−1, . . . , Ii+(q−1)C,i+qC−1, Ii+qC,j ,

whereq = ⌊ j−i+1
C ⌋ and the last subintervalIi+qC,j should be

excluded ifq = j−i+1
C . In other words, the center partitions

Ii,j into q subintervals of lengthC starting fromui and the
(q + 1)st subinterval consisting of the remaining users if any.
This process is illustrated in Figure 2.

Once the center obtains theC-intervals

Ii1,j1 , Ii2,j2 , . . . , Iim,jm ∈ S(C-basic),

whose union covers all non-revoked users, encryption and
decryption are identical with those of the basic chain scheme.
Those who are not belong to anyC-interval are the revoked
ones and they can never access to the session-key (see§2.4).e e e e e e e e e e e e e e e e e e e e e

?

Mark revoked users

L

e e e e e e e e e e e e e e e e e e e e e¡@ ¡@¡@ ¡@ ¡@ ¡@

?

Make intervals with removing the revoked

e e e e e e e e e e e e e e e e

?

Divide a long interval
into C-intervals (eg.C=5)

e e e e e e e e e e e e e e e e
Figure 2. Making theC-intervals

3) Performance:In theC-basic scheme, each useruk needs
to keep at mostC keys and hence

SS(C-basic) = C.

Note that it is still enough for the center to keep onlyN keys

K0,0, K1,1, . . . , KN−1,N−1,

whereN is the total number of users. The computation cost
amounts toC computations ofh or h′, i.e.,

CC(C-basic) = C.

Finally, the transmission overhead in theC-basic chain scheme
can be computed rather easily as follows :

Proposition1: For N as above and the numberr of all
revoked users,

TO(C-basic) = r +
⌈

N − 2r

C

⌉
.
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Proof: The maximum possible number of disjointC-
intervals inS(C-basic) to cover all non-revoked users isr +
⌈N−2r

C ⌉. This happens whenu1, u3, . . . , u2r−1 are revoked.
So, the proposition follows.

Let r > N+C
αC+2 for someα, 0 < α < 1. Then⌈

N − 2r

C

⌉
<

N − 2r

C
+ 1 < αr

and hence
TO(C-basic) < r(1 + α) < 2r.

For example, if we setC = 1000 andα = 0.1, then we have

TO(C-basic) < 1.1r

provided that the revoked ratiorN is bigger than0.01. The
C-basic chain scheme, however, has bigger TO than SD when
r
N is very small. Even if there is no revoked user, the TO of
this scheme is⌈N−2r

C ⌉ while that of SD is just1.

III. SKIPPING CHAIN AND PUNCTURED INTERVALS

I N this section, we propose the skipping chain scheme that
reduces the transmission overhead further down by intro-

ducing skipping chains on punctured intervals. For example,
using skipping chains onp-punctured intervals, we can achieve
transmission overhead less thanr

p if r > p2N/c, wherep is a
positive integer. The skipping chain scheme is based on theC-
basic chain scheme. In order to make the numberm of disjoint
intervals I1, I2, . . . , Im, whose union covers all non-revoked
users, as small as possible, we have to enlargeS(C-basic). This
is the main reason for introducing the notion of punctured
intervals and skipping chains on them.

A. Punctured Intervals

Let p, c and C = ℓc be positive integers, whereℓ is also
an integer, and fix them. Here,C is the constant introduced
in the C-basic chain scheme. By ap-puncturedc-interval we
mean a subset ofc or less consecutive users starting from and
ending at non-revoked users and containingp or less revoked
users. LetS(c,p -skip) be the set of allp-puncturedc-intervals.
Define

S(C; c,p -skip) := S(C-basic) ∪ S(c,p -skip).

In each session, the disjoint intervals inS(C; c,p -skip),
which covers all non-revoked users, are determined under the
following rule :
• The first interval starts from the leftmost non-revoked

user.
• Each interval starts and ends with non-revoked users.
• An interval with no revoked user may contain as many

asC users.
• An interval with at least one revoked user may contain

at mostc users including up top revoked ones.
• Each interval contains the maximal possible number of

users possibly including revoked ones.
Figure 3 illustrates how to makep-puncturedc-intervals

with an example whenp = 1, c = 6 :

c c c c c c c c c c c c c c c c c c c c×× × × × ª  ª  ªª
Figure 3. 1-punctured6-intervals

The interval inS(C; c,p -skip) starting fromui and ending at
uj with ux1 , . . . , uxq revoked users is denoted byIi,j ; x1,...,xq

or Ii,j ; X in short forX = {x1, . . . , xq}, where{
1 ≤ j − i + 1 ≤ C if X = ∅, or equivalentlyq = 0
1 ≤ j − i + 1 ≤ c otherwise,

0 ≤ q ≤ p andi < x1 < · · · < xq < j if q ̸= 0. WhenX = ∅,
we simply writeIi,j .

B. Skipping Chain Scheme

In this subsection, we propose the skipping chain scheme
with parametersC, c and p (an improved version ofπ-
scheme [7]) for broadcast encryption, which is denoted by
(C; c, p-skip). In the skipping chain scheme, we assign only
one key to each interval inS(C; c,p -skip), which can be
derived exclusively by all non-revoked users in that interval.
To accomplish this, we construct key chains skipping revoked
users.

1) Key Assignment:Let H : {0, 1}ℓ → {0, 1}(p+2)ℓ be a
pseudo-random sequence generator. For eachi = 0, 1, . . . , p,
let hi(x) be theℓ-bit sequence from(iℓ+1)-th bit to (iℓ+ ℓ)-
th bit of H(x), andh′(x) be the rightmostℓ-bit sequence of
H(x). To assign one key to each interval inS(C; c,p -skip),
chooseN keys K1,1, K2,2, . . . , KN,N , randomly, to be
given to u1, . . . , uN , respectively. From eachKi,i, construct
skipping key chains for all possible intervals inS(C; c,p -skip)

starting fromui. Let I ∈ S(C; c,p -skip) be such an interval.
Then the skipping key chain forI is constructed inductively
under the following rule :

• The chain starts fromKi,i.
• For any non-revoked useruk ∈ I, if the next useruk+1 ∈

I is also non-revoked, then just applyh0 to the key of
uk to obtain the key ofuk+1.

• If the next t users are revoked and the useruk+t+1 ∈ I
is non-revoked, then skip those revoked users and apply
ht to the key ofuk to obtain the key ofuk+t+1, where
1 ≤ t ≤ p.

Figure 4 illustrates how to construct the key chain of a given
punctured interval (withp = 10, c = 20) :

c c c c c c c c c c c c c c c c c c c c××× ×× × ××××ª
h0

 ª
h3

 ª
h2

§ ¦
h0

§ ¦
h0

 ª
h1

 ª
h4

§ ¦
h0

§ ¦
h0

Figure 4. The key chain of a10-punctured20-interval

In the key chain forI = Ii,j ; x1,...,xq , the key of a non-
revoked useruk ∈ I is denoted byKi,k ; x1,...,xt , wherei <
x1 < · · · < xt < k < xt+1 < · · · < xq and 0 ≤ t ≤ q ≤ p.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , JANUARY 2008 6

When t = 0, we simply writeKi,k. For examples,

K5,11 = h6
0(K5,5) ; K5,11 ; 7 = h3

0h1h0(K5,5) ;
K4,11 ; 5,6,7,9,10 = h2h3(K4,4) ; K3,11 ; 4,5,7,8 = h2

0h
2
2(K3,3) ;

K3,11 ; 4,5,6,7,9 = h0h1h4(K3,3) ; . . . .

The center assigns these keys to users so that the useruk

receives his/her user-keyK(uk) consisting of all possible
Ki,k ; x1,...,xt ’s, where

i < x1 < x2 < · · · < xt < k and 3 ≤ k − i + 1 ≤ c
if 0 < t ≤ p

i ≤ k and 1 ≤ k − i + 1 ≤ C
if t = 0.

Figure 5 illustrates the key assignment tou5 in the skipping
chain scheme withp = 3 andc = C = 5 :

2) Encryption: For each session, the center dividesL into
disjoint intervalsI1, I2, . . . , Im ∈ S(C; c,p -skip), whose union
covers all the non-revoked users, under the rule described in
§3.1. Let I = Ii,j ; x1,...,xq be one ofIµ’s. Then the last key
Ki,j ; x1,...,xq of the key chain forI is the interval-key ofI.
For convenience, let’s denote the interval-key ofIµ by Kµ for
eachµ = 1, 2 . . . ,m. Then the center broadcasts :

⟨ info1, info2, . . . , infom ;

Eh′(K1)(SK), Eh′(K2)(SK), . . . , Eh′(Km)(SK) ; E ′
SK(M) ⟩,

where infoµ is information onIµ. The info ofI = Ii,j ; x1,...,xq

consists of
i, γ0, γ1, . . . , γq,

whereγ0 = j − i+1 andγt = xt − i for eacht = 1, 2, . . . , q.
The starting positioni can be represented bylog N bits and
the γ’s by at most log C bits. So the size of all infoµ’s
is m(log N + (p + 1) log C), which will be ignored when
computing the transmission overhead because it is negligible
compared to the size of allEh(Kµ)(SK)’s.

3) Decryption: Receiving the encrypted message, each
non-revoked useruk first locates the interval where he/she
belongs using the info’s in the header. Let the interval be
Ii,j ; x1,...,xq ∈ S(C; c,p -skip), where i ≤ k ≤ j, k ̸=
x1, . . . , xq. Thenuk can findKi,j ; x1,...,xq as follows:

• Find t for which xt < k < xt+1, where0 ≤ t ≤ q. Here,
t = 0 or t = q means that there is no revoked user before
or afteruk, respectively.

• ChooseKi,k ; x1,...,xt from the assigned user-key.
• Starting fromKi,k ; x1,...,xt , apply one-way permutation

hi’s under the rule described in Key Assignment until
the second subscript reaches toj.

• The resulting key is thenKi,j ; x1,...,xq .

With this, uk decryptsEh′(Ki,j;x1,...,xq )(SK) andESK(M) to
obtain the session-keySK and the messageM , respectively,
in order.

C. Performance

In this subsection, we analyze efficiency - the transmission
overhead, the computation cost and the storage size - of the
skipping chain scheme(C; c, p-skip), whereC = ℓc, ℓ ≥ 2
andc ≥ 4.

Let p = 1. For convenience, we regard any nonempty
interval consisting of less thanc consecutive non-revoked users
and one revoked user at the end also as a 1-punctured interval
in S(C;c,1-skip). In order to compute the transmission overhead
in the worst case, we are going to introduce blocks. In general,
a block of typeB(a, b) is an intervalIα,β starting from a
non-revoked useruα and ending with a non-revoked user
uβ , containing exactlya revoked users and being covered by
b subintervals inS(C;c,1-skip). In a block, we do not allow
revoked users between the neighboring subintervals in the
block but allow at most one revoked user at the end. The
main purpose to introduce the notion of blocks is to count
the maximum number of disjoint subintervals inS(C;c,1-skip)

necessary to cover all non-revoked users as a function ofr,
the number of revoked users given.

In any given session of the skipping chain scheme
(C; c, 1-skip), we can partition the setL of all users into
disjoint blocks of typeB(2, 1), B(1, 1) and B(0, 1), and re-
voked users in between. The worst case transmission overhead
is attained when each block is shortest of its type and there
are no revoked users between blocks.

Except the last block, whose length may be smaller than
the others of the same type, any block of typeB(2, 1) is of
length at least3, which is the length of the interval of the form
◦××, any block of typeB(1, 1) is of length at leastc, which
is the length of a 1-puncturedc-interval, and finally any block
of type B(0, 1) is of length at leastC, which is the length of
a C-interval.

Let x, y and z be the number of blocks of types
B(2, 1), B(1, 1) andB(0, 1), respectively. Then we obtain :

2x + y = r, N ≥ 3x + cy + Cz and TO= x + y + z,

wherer is the number of revoked users. To maximize TO, we
need to reducex as small as possible. When0 ≤ r ≤ N

c , the
worst case occurs whenx = 0. In this case, we havey = r
and therefore we may put

TO ≤ r +
N − cr

C
=

(
1 − c

C

)
r +

N

C
.

As a function ofr, the right hand side of the above inequality
represents the line connecting(0, N

C ) and (N
c , N

c ).
If N

c ≤ r ≤ 2N
3 , x cannot be zero. But we may assume

z = 0 in the worst case becausex, y andz, whenz ̸= 0, can
be replaced byx−1, y +2, z−1 while maintaining the same
TO. Sincex = r−y

2 , y ≤ 2N−3r
2c−3 and therefore

TO =
r + y

2
≤ r

2
+

2N − 3r

2(2c − 3)
=

(
1
2
− 3

2(2c − 3)

)
r+

N

2c − 3
.

The right hand side of the above inequality is the line
connecting(N

c , N
c ) and ( 2N

3 , N
3 ).

Proposition2: In the skipping chain scheme(C; c, 1-skip)
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Figure 5. One-way key chains starting fromK1,1, wherep = 3, c = C = 5

with C = ℓc, ℓ ≥ 2 andc ≥ 4,

TO(C; c,1-skip) =



(
1 − c

C

)
r +

N

C

if 0 ≤ r ≤ N

c(
1
2
− 1 · 3

2(2c − 3)

)
r +

1 · 2
2(2c − 3)

N

if
N

c
≤ r ≤ 2N

3
.

In general,

TO(C; c,p -skip) =



(
1 − c

C

)
r +

N

C

if 0 ≤ r ≤ N

c(
1

p + 1
− p(p + 2)

Dp

)
r +

p(p + 1)
Dp

N

if
N

c
≤ r ≤ (p + 1)N

p + 2
,

whereDp = (p + 1)2c − (p + 1)(p + 2).
Proof: For the scheme(C; c, p-skip), we replace◦××

in the scheme(C; c, 1-skip) by◦××· · ·× of lengthp+2. Let
x, y andz be the number of blocks of typesB(p, 1), B(1, 1)
andB(0, 1), respectively. Then each type of blocks has length
at least(p+1), c andC, respectively. So we obtain the system
of equations

(p+1)x+y = r, N ≥ (p+2)x+cy+Cz and TO= x+y+z.

By solving the system, we obtain the formula TO(C; c,p -skip).

If c ≥ p + 2, the proposition 2 tells us that

TO(C; c,p -skip) ≤
r

p + 1
+

N − r

c
.

Moreover, ifr > p2N
c , then TO(C; c,p -skip) < r

p . For example,

if c = 100, p2

c is 0.01, 0.04 and 0.09 forp = 1, 2 and 3,
respectively.

It is trivial that the computation cost is at mostC compu-
tations ofhi or h′, that is,

CC(C; c,p -skip) = C,

which is independent ofN andr.
Proposition3: The storage size of each user in the scheme

(C; c, p-skip) is

SS(C; c,p -skip) =
p∑

k=1

(
c − 1
k + 1

)
+ C,

which is independent ofN andr.
Proof: We count the number of keys of the formKi,k;X

for the useruk. Let νs denote the number of keys of the form
Ki,k;X with |X| = s. It is obvious thatν0 = C. For ν1,
it suffices to count the number of keys from 1-skipping key
chains of lengthc, which is c − 2, the number of keys from
1-skipping key chains of lengthc − 1, which is c − 3, . . . ,
the number of keys from 1-skipping key chains of length 3,
which is 1. That is,

ν1 = (c−2)+(c−3)+ · · ·+1 =
(c − 1)(c − 2)

2
=

(
c − 1

2

)
.

Similarly, we obtain

ν2 =
(

c − 2
2

)
+

(
c − 3

2

)
+ · · ·+

(
2
2

)
=

(c − 1)(c − 2)(c − 3)
6

=
(

c − 1
3

)
,

and in general

νp =
(

c − 2
p

)
+

(
c − 3

p

)
+ · · ·+

(
p

p

)
=

1
(p + 1)!

p+1∏
t=1

(c− t) =
(

c − 1
p + 1

)
.

Therefore the storage size of the scheme(C; c, p-skip) is

SS(C; c,p -skip) =
p∑

k=0

νk =
p∑

k=1

(
c − 1
k + 1

)
+ C.

In other words, we have SS(C; c,p -skip) = O(cp+1).
This scheme can be fit in with various broadcast environ-

ments by adjusting the parametersC, c andp. If a user device
has limited storage and computing power like smart cards and
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sensors, then we may setp and c as small as possible. If a
user device allows a large key storage like set-top boxes and
DVD players, then we may takep andC as large as possible
to reduce the transmission overhead, which is much more
expensive in some applications. For example, letc = 256,
C = 1000 andp = 3. Then forr ≥ 0.035N

TO(1000 ; 100,3 -skip) ≤
r

3
.

This is good but we have to pay the price : the storage size
increases exponentially withp. In the above example, it is
about232.

User addition is also almost free in the skipping chain
scheme. Finally, note that ifp = 0, then we don’t need the
parameterc and the scheme(C; c, p-skip) becomes theC-
basic chain scheme.

IV. CASCADE CHAIN AND LAYERS

A LTHOUGH the skipping chain scheme performs mar-
vellous (in terms of transmission overhead) whenr is

not too small, the scheme has a shortcoming in that the
transmission overhead is larger than that of SD whenr is
very small. This is mainly because long intervals (of length
bigger thanC) consisting of only non-revoked users require
several intervals inS(C; c,p -skip) to cover them while covering
no revoked users at all. In fact, theC-basic chain scheme
shares the same problem. In this section, we propose another
scheme, called thecascade chain scheme, that resolves this
problem by introducing layer structure and cascade key chains
flowing along the layers. The cascade chain scheme is also
based onC-basic chain scheme and successfully reduces the
transmission overhead whenr is very small.

A. Layers and Special Nodes

The key idea is to restrict the starting points or the ending
points of long intervals to bespecial nodes(users) on top of
the C-basic chain scheme.

1) Layer Structure:Let c be a positive integer satisfying
C = ℓc for some positive integerℓ, as in the the skipping chain
scheme. The special nodes are defined as follows : Starting
from the leftmost useru0, the user set

R1 := {u0, uc, u2c, u3c, u4c, . . . }

is called thefirst right layerand the users in the set are called
the first right layer nodesand

L1 := {uc−1, u2c−1, u3c−1, . . . }

is called thefirst left layerand the users in the set are called
the first left layer nodes. Inductively for positive integert ≤
⌈logc N⌉ − 1, the user set

Rt := {u0, uct , u2ct , u3ct , u4ct , . . . }

is called thet-th right layer and the users in the set are called
the t-th right layer nodesand

Lt := {uct−1, u2ct−1, u3ct−1, . . . }

is called thet-th left layerand the users in the set are called
the t-th left layer nodes. By the t-th layer, denoted byU t, we
mean

U t := Lt ∪ Rt.

Note that
R1 ⊃ R2 ⊃ · · · ⊃ Rt ⊃ · · ·

and L1 ⊃ L2 ⊃ · · · ⊃ Lt ⊃ · · · .

For convenience, we call the base lineL, which is the set of
all users, theground layer, denoted byU 0. We call an interval
Iα,β starting from at-th right layer node at-th right cascade
interval and an interval ending at at-th left layer node at-th
left cascade interval. A t-th right (or left) cascade interval can
cover at mostct+1 nodes.

Let S(c -casc) be the set of all intervals of the following
types :

• t-th right cascade intervalsIρ,β with max{C, ct} < β −
ρ + 1 ≤ ct+1 for all t = 1, 2 . . . , d.

• t-th left cascade intervalsIα,λ with max{C, ct} < λ −
α + 1 ≤ ct+1 for all t = 1, 2 . . . , d.

Defines

S(C; c -casc) := S(C-basic) ∪ S(c -casc).

2) Partitioning Algorithm: Using the layer structure, we
can cover any set of consecutive non-revoked users by one or
two intervals. As before, letN be the total number of users
lined up on the ground layerL. For convenience, we assume
that N = cd+1 for some positive integerd. For each useru,
we define theheightof u, denoted by ht(u), by the indext for
which u ∈ U t but u /∈ U t+1. For an integere, 0 ≤ e ≤ N−1,
let

e = e0 + e1c + · · · + ed−1c
d−1 + edc

d =: [e0, e1, · · · , ed]

be thec-ary expansion ofe, where0 ≤ et < c for all t =
0, 1, . . . , d. Then right layer nodes and left layer nodes can be
described as follows : thee-th node inL is a t-th right layer
node if and only if

e0 = e1 = · · · = et−1 = 0,

and at-th left layer node if and only if

e0 = e1 = · · · = et−1 = c − 1.

Now we describe the partitioning algorithm by which each
interval consisting of consecutive non-revoked users can be
partitioned into at most two subintervals. Recall that the
interval Iα,β starts fromuα and ends atuβ . Let ω = ht(uα).
We first compare the length of the intervalβ − α + 1 with
C. If the length is shorter than or equal toC, then we don’t
partition the interval. Otherwise, we find the highest right layer
Rt containing at least two nodes in the interval. Ift > ω, then
partition the interval into one left cascade interval of maximal
possible length starting fromuα and the rest, if any, which
make one right cascade interval. Ift = ω, then partition the
interval into one or two right cascade intervals according to its
length. If t < ω, then we don’t partition the interval because
the interval itself is a right cascade interval.
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To be more precise, letα = [α0, α1, · · · , αd] and β =
[β0, β1, · · · , βd]. Let ω be the smallest integer satisfyingαω ̸=
0, i.e.,ω = ht(uα). If there is no suchω, that is, ifα = 0, then
we setω = d. Let j be the largest integer satisfyingαj ̸= βj ,
i.e.,β−α+1 ≤ cj+1. Then we partitionIα,β in the following
order :

• Step 1: If β −α+1 ≤ C, i.e., Iα,β is aC-interval, then
do not partition the interval becauseIα,β ∈ S(C-basic). If
β − α + 1 > C, then go to Step 2.

• Step 2: Find the largest integert > ω, if exists, such
that

j∑
i=t

βic
i−t >

j∑
i=t

αic
i−t + 1.

Let α′ :=
∑j

i=t αic
i−t and β′ :=

∑j
i=t βic

i−t. Then,
partition Iα,β into Iα,λ andIλ+1,β if λ ̸= β, and do not
partition the interval otherwise, where

λ :=


d∑

i=t

βic
i − 1 if α′ + 2 ≤ β′ < α′ + c

d∑
i=t

αic
i + ct+1 − 1 if α′ + c ≤ β′ < α′ + 2c.

Note that Iα,λ is a t-th left cascade interval and that
Iλ+1,β is a t-th right cascade interval. So, both are in
S(c -casc). If there is no sucht, then go to Step 3.

• Step 3: Find the largestt such that1 ≤ t ≤ ω and

j∑
i=t

βic
i−t >

j∑
i=t

αic
i−t + 1.

Becauseβ − α + 1 > C = ℓc, sucht should exist. Let
α′′ :=

∑j
i=ω αic

i−ω and β′′ :=
∑j

i=ω βic
i−ω. If t = ω

and α′′ + c ≤ β′′ < α′′ + 2c, then partitionIα,β into
Iα,ρ−1 and Iρ,β if ρ ̸= β + 1, and do not partition the
interval otherwise, where

ρ :=
d∑

i=ω

αic
i + cω+1.

Note that bothIα,ρ−1 and Iρ,β are t-th right cascade
intervals and hence inS(c -casc). If t = ω andα′′ + 1 ≤
β′′ < α′′ + c, or if 1 ≤ t < ω, then do not partition the
interval becauseIα,β as at-th right cascade interval and
henceIα,β ∈ S(c -casc).

B. Cascade Chain Scheme

In this subsection, we propose the cascade chain scheme
with parametersC and c, denoted by(C; c-casc), based on
the C-basic chain scheme. The scheme reduces transmission
overhead whenr is very small by adopting right and left
cascade-keys which are the corresponding left and right cas-
cade interval-keys, respectively.

1) Key Assignment:In this scheme, the center assigns each
user all possibleright section-keysand left section-keysin
addition to his/her user-key of theC-basic chain scheme.

For each t, 0 < t ≤ d and for each ρ =
[ρ0, ρ1, . . . , ρd−1, ρd] satisfying

ρ0 = ρ1 = · · · = ρt−1 = 0,

we defineRI
(t)
ρ by the set of consecutivect users starting from

uρ ∈ Rt, that isRI
(t)
ρ = Iρ,ρ+ct−1, and call such an interval a

right section. For convenience, we setRI
(0)
ρ = {uρ}. Let G :

{0, 1}ℓ → {0, 1}dℓ be a pseudo-random sequence generator.
For eacht = 1, 2, . . . , d, let gt(x) be theℓ-bit sequence from
((t − 1)ℓ + 1)-th bit to ((t − 1)ℓ + ℓ)-th bit of G(x). For
convenience, we letg0 = h0, whereh0 is the leftmostℓ-bit
sequence ofH defined in Section 3.2.

Choose a random keyRK
(t)
ρ to RI

(t)
ρ for eachρ and t.

First, the center constructs thet-th right cascade key chain
from RK

(t)
ρ of lengthc as follows :

g0
t (RK(t)

ρ ) := RK(t)
ρ , g1

t (RK(t)
ρ ),

g2
t (RK(t)

ρ ), . . . , gc−1
t (RK(t)

ρ ),

and assigns

gj
t (RK(t)

ρ ) to all users of RI
(t)
ρ+jct

for eachj = 0, 1, . . . , c − 1. Next, for eachj the center con-
structs the(t− 1)-th right cascade key chain fromgj

t (RK
(t)
ρ )

of lengthc as follows:

g1
t−1(g

j
t (RK(t)

ρ )), g2
t−1(g

j
t (RK(t)

ρ )), . . . , gc
t−1(g

j
t (RK(t)

ρ )),

and assigns

gi
t−1(g

j
t (RK(t)

ρ )) to all users of RI
(t−1)
ρ+jct+(i−1)ct−1

for eachi = 1, 2, . . . , c.
The(t−2)-th right cascade key chains are constructed from

each key (except the last) in thet-th and(t−1)-th right cascade
key chains. For eachj andk, 0 ≤ j ≤ c−2 and0 ≤ k ≤ c−1,
the center constructs the(t−2)-th right cascade key chain from
gk

t−1(g
j
t (RK

(t)
ρ )) of lengthc as follows:

g1
t−2(g

k
t−1(g

j
t (RK(t)

ρ ))), g2
t−2(g

k
t−1(g

j
t (RK(t)

ρ ))),

. . . , gc
t−2(g

k
t−1(g

j
t (RK(t)

ρ ))),

and assigns gi
t−2(g

k
t−1(g

j
t (RK

(t)
ρ ))) to all users of

RI
(t−2)
ρ+jct+kct−1+(i−1)ct−2 for eachi = 1, 2, . . . , c.
This process ends when it hits the ground layer. These keys

to be assigned to a right sectionRI
(t)
ρ are called theright

section-keysof RK
(t)
ρ .

Let Iρ,β be a right cascade interval andct < β − ρ +
1 ≤ ct+1. Then we define theright cascade-keyRK

(t)
ρ,β

corresponding toIρ,β as follows :

RK
(t)
ρ,β = ge0

0 ge1
1 · · · get−1

t (RK(t)
ρ ),

whereβ − ρ+1− ct = [e0, e1, . . . , et]. The right cascade key
RK

(t)
ρ,β is the induced key from a right section key ofRK

(t)
ρ .
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Each useruκ receivesRK
(t)
ρ,κ’s for all possibleρ’s and t’s.

Moreover, for eachs with 1 ≤ s ≤ t, all possibleRK
(t)
ρ,κs ’s

are also assigned touκ, whereκs = ⌊ κ
cs +1⌋cs−1. Therefore,

each useruκ eventually receives all the keys corresponding to
all RI

(t)
ρ ’s containinguκ. These are the right section-keys.

From these keys, each non-revoked user inIρ,β can compute
RK

(t)
ρ,β .

Left cascade-keys are constructed in a similar process. For
eacht, 0 < t ≤ d and for eachλ = [λ 0, λ 1, . . . , λ d−1, λ d]
satisfying

λ 0 = λ 1 = · · · = λ t−1 = c − 1,

we defineLI
(t)
λ by the set of consecutivect users ending at

uλ ∈ Lt, that is,LI
(t)
λ = Iλ−ct+1,λ, and call such an interval

a left section. For convenience, we setLI
(0)
λ = {uλ}.

Choose a random keyLK
(t)
λ to LI

(t)
λ for eachλ and t.

First, the center constructs thet-th left cascade key chain from
LK

(t)
λ of lengthc as follows :

g0
t (LK

(t)
λ ) := LK

(t)
λ , g1

t (LK
(t)
λ ), g2

t (LK
(t)
λ ),

. . . , gc−1
t (LK

(t)
λ ),

and assigns

gj
t (LK

(t)
λ ) to all users of LI

(t)
λ−jct

for each j = 0, 1, . . . , c − 1. Next, for eachj the center
constructs the(t−1)-th left cascade key chain fromgj

t (LK
(t)
λ )

of lengthc as follows:

g1
t−1(g

j
t (LK

(t)
λ )), g2

t−1(g
j
t (LK

(t)
λ )), . . . , gc

t−1(g
j
t (LK

(t)
λ )),

and assigns

gi
t−1(g

j
t (LK

(t)
λ )) to all users of LI

(t−1)
λ−jct−(i−1)ct−1

for eachi = 1, 2, . . . , c. This process ends when it hits the
ground layer. These keys to be assigned to a left sectionLI

(t)
λ

are called theleft section-keysof LK
(t)
λ .

Let Iα,λ be a left cascade interval andct < λ−α+1 ≤ ct+1.
Then we define theleft cascade-keyLK

(t)
α,λ corresponding to

Iα,λ as follows :

LK
(t)
α,λ = ge0

0 ge1
1 · · · get−1

t (LK
(t)
λ ),

whereλ − α + 1 − ct = [e0, e1, . . . , et].
Each useruκ receivesLK

(t)
κ,λ’s for all possibleλ’s and t’s.

Moreover, for eachs with 1 ≤ s ≤ t, all possibleLK
(t)
κs,λ’s

are also assigned touκ, whereκs = ⌊ κ
cs +1⌋cs−1. Therefore,

each useruκ eventually receives all the keys corresponding to
all LI

(t)
λ ’s containinguκ. These are the left section-keys.

Altogether, each user is assigned at most

2
d∑

t=1

{(c − 1)(t + 1)} + C = d(d + 3)(c − 1) + C

keys. The detail is discussed in§4.3.

2) Encryption and Decryption:Encryption and decryption
are basically the same as in theC-basic chain scheme except
that right and left cascade-keys are introduced. In each session,
the disjoint intervals inS(C; c -casc), which covers all non-
revoked users, are determined under the following rule :
• Starting from the leftmost non-revoked user, find all

disjoint intervals as in the basic scheme.
• To each such interval we apply the partitioning algorithm

above to obtain at most two intervals inS(C; c -casc).
The center then encrypts the session-key for each interval

obtained in this way. In encryption, the interval-keys, same as
in the C-basic chain scheme, are used forC-intervals, while
the cascade-keys are used for cascade intervals.

If user uκ belongs to aC-interval, thenuκ can decrypt the
session key and the message as in theC-basic chain scheme.
Let uκ belong to at-th right cascade intervalIρ,β , whereβ−
ρ + 1− ct = [e0, e1, . . . , et]. Recall that the right cascade-key
corresponding toIρ,β is RK

(t)
ρ,β = ge0

0 ge1
1 · · · get−1

t (RK
(t)
ρ ). If

κ − ρ + 1 < ct, thenuk knowsRK
(t)
ρ from his/her user-key.

So uk can compute the right cascade-keyRK
(t)
ρ,β . Otherwise,

let κ−ρ+1−ct = [a0, a1, . . . , at]. Thenuκ finds the largests
for which as < es and takesgas

s g
es+1
s+1 · · · get−1

t (RK
(t)
ρ ) from

his/her user-key. Applyingge0
0 ge1

1 · · · ges−as
s to this key, uκ

obtains
ge0
0 ge1

1 · · · ges
s · · · get−1

t (RK(t)
ρ ),

which is the valid cascade-keyRK
(t)
ρ,β . Finally, let uκ belong

to a t-th left cascade intervalIα,λ, whereλ − α + 1 − ct =
[e0, e1, . . . , et]. Recall that the left cascade-key corresponding
to Iα,λ is LK

(t)
α,λ = ge0

0 ge1
1 · · · get−1

t (LK
(t)
λ ). If λ − κ + 1 <

ct, then uk knows LK
(t)
λ from his/her user-key. Souk can

compute the left cascade-keyLK
(t)
α,λ. Otherwise, letλ − κ +

1− ct = [b0, b1, . . . , bt]. Thenuκ finds the largests for which
bs < es and takesgbs

s g
es+1
s+1 · · · get−1

t (LK
(t)
λ ) from his/her

user-key. Applyingge0
0 ge1

1 · · · ges−bs
s to this key,uκ obtains

ge0
0 ge1

1 · · · ges
s · · · get−1

t (LK
(t)
λ ),

which is the valid cascade-keyLK
(t)
α,λ.

C. Performance

In this subsection, we analyze efficiency - the transmission
overhead, the computation cost and the storage size - of the
cascade chain scheme with parametersc andC = ℓc.

1) Transmission Overhead:We can easily bound the trans-
mission overhead by2r since each interval between two
revoked users can be covered by at most two disjoint subin-
tervals inS(C; c -casc). But we can do better.

It is clear that in any given session of the cascade chain
scheme(C; c-casc), we can partition the setL of all users
into disjoint blocks of typesB(1, 1) and B(1, 2), whose
minimum lengths are2 and C + 2, respectively, the last
interval of the non-revoked users possibly remained in the
end, and revoked users in between. Here,B(1, 1) is a block
consisting of a subintervals inS(C; c -casc) and a revoked user
following immediately, andB(1, 2) is a block consisting of
two subintervals inS(C; c -casc) and a revoked user following
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immediately. The minimum length ofB(1, 1) is attained by
the block◦× and the minimum length ofB(1, 2) is attained
by the block consisting of aC-interval followed by◦×, where
the first non-revoked user of the block is not inR1 and the
last non-revoked user of the block is not inL1. Because
we are considering the worst case, we may assume that no
revoked users are consecutive, that is, there are no revoked
users between blocks. We may further assume that the first
and the last users are non-revoked.

Let x andy be the numbers of blocks of typesB(1, 1) and
B(1, 2), respectively. Then we have

x + y = r and N ≥ 2x + (C + 2)y + 1 = 2r + Cy + 1,

which implies TO= x+2y+1 = r+y+1 ≤ r+ N−2r−1
C +1 ≤

(1− 2
C )r+N

C +1. Hence, ifr = s1 := N
C+2 , then TO= 2s1+1.

But this is an upper bound and the real TO should be2s1. If
r = s2 := N

2 , then TO= s2 + 1. So we may put

TO(C; c -casc) =



2s1 − 1
s1

r + 1

if 0 ≤ r ≤ s1

s2 − 2s1 + 1
s2 − s1

r +
s1(s2 − 1)
s2 − s1

if s1 ≤ r ≤ s2.

The graph is piecewise linear and consists of two line seg-
ments. One is the line connecting(0, 1) and (s1, 2s1) whose
slope is close to 2, and the other is the line connecting(s1, 2s1)
and (s2, s2 + 1) whose slope is close to 1. Consequently,
TO is bounded by2r for all r, and further by(1 + α)r if
r > N/(αC).

2) Storage Size:To compute the storage size of the cascade
chain scheme is rather complicated. But we can do it by
counting the right section-keys for each user.

Proposition4:

SS(C; c -casc) = 2
d∑

t=1

(t+1)(c−1)+C = d(d+3)(c−1)+C.

Proof: Let κ = [κ0, κ1, . . . , κd], where 0 ≤ κi < c.
Then the useruκ receives every right section-key assigned to
the right sections

RI
(d)

κdcd , RI
(d−1)

κdcd+κd−1cd−1 , . . . ,

RI
(1)

κdcd+···κ1c
, RI

(0)

κdcd+···κ1c+κ0
.

At most c− 1 right section-keys fromd-th layer are assigned
to the sectionRI

(d)

κdcd . To RI
(d−1)

κdcd+κd−1cd−1 , two kinds right
section-keys are assigned : at mostc − 1 right section-keys
cascading fromd-th layer right section-keys and at mostc−1
right section-keys from(d− 1)-th layer. So, at most2(c− 1)
right section-keys are assigned to the sectionRI

(d−1)

κdcd+κd−1cd−1 .
In general, at most(d − t + 1)(c − 1) right section-keys are
assigned to the sectionRI

(t)

κdcd+···κtct unlesst = 0, in which
case the maximum number of right section-keys assigned is
d(c − 1). So altogether,

d−1∑
t=0

(t + 1)(c − 1) + d =
d∑

t=1

(t + 1)(c − 1)

right section-keys are assigned touκ. Since the same number
of left section-keys are also assigned, we have the formula in
the proposition, whereC is the number ofC-interval keys on
the ground layer coming from theC-basic chain scheme.

If we take c = 100, C = 1000 andd = 4 (so ℓ = 10, N =
cd+1 = 10 billion), then the storage size is mere3.8C.

3) Computation Cost:For aC-interval, at mostC compu-
tations ofh0 or h′ are required, whereh′ is the rightmostℓ-bit
sequence ofH defined in Section 3.2. For at-th right cascade
interval,(t+1)(c−1)+1 computations ofgt, gt−1, . . . , g0, h

′

are required. The same holds for at-th left cascade interval.
So,

CC(C; c -casc) = max{ dc + c − d,C }.

Sinceℓ > d+1 in most cases, the computation cost is bounded
by C.

D. Remark

If we adopt left cascade key chains, then user addition is
not easy because new left cascade keys from the newly added
users should be assigned to the current users. However, if we
use only right cascade key chains, then user addition as in
the previous schemes is available. In this case, the storage
overhead is reduced tod(d + 3)(c − 1)/2 + C and the com-
putational cost remains the same. The transmission overhead
also remains unchanged whenr > s1, but it increases when
r ≤ s1. More precisely, the graph of the transmission overhead
is piecewise linear passing through(ct +ct−1, (d−t+2)r+1)
for t = 1, 2, . . . , d − 1 and (s1, 2r + 1).

V. SKIPPING AND CASCADE COMBINED

I N this section, we combine the skipping chain scheme
and the cascade chain scheme. The skipping chain scheme

reduces the transmission overhead remarkably whenr is
not very small while the cascade chain scheme performs
comparable to SD (in the transmission overhead) whenr
is very small. Combining the two schemes, we reduce the
transmission overhead even further down for very smallr.

A. Combined Chain Scheme

The combined chain scheme adopts punctured intervals and
skipping chains on top of the cascade chain scheme. To be
more precise, letC, c andp be the parameters introduced in the
skipping chain scheme as well as in the cascade chain scheme.
For the combined chain scheme with these parameters, denoted
by (C; c, p-comb), we enlargeS(C; c -casc) to

S(C; c,p -comb) := S(C; c -casc) ∪ S(C; c,p -skip) =

S(C-basic)∪S(c -casc)∪S(c,p -skip).

SinceS(C; c -casc) ⊂ S(C; c,p -comb), one can make the number
of disjoint subintervals inS(C; c,p -comb), whose union cov-
ers all non-revoked users, not bigger than that of disjoint
subintervals inS(C; c -casc), whose union also covers all non-
revoked users, in any given session. Thus, it is obvious that the
transmission overhead of the combined chain scheme is less
than or equal to that of the cascade chain scheme. In order to
avoid unnecessary complication, we describe the scheme for
p = 1 only.
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1) Partitioning Algorithm: The partitioning algorithm of
intervals in the combined chain scheme is basically the same
as that in the cascade chain scheme. But additional steps
are necessary to take care of punctured intervals. Note that
(1−)puncturedc-intervals are included inS(C; c,1 -comb). This
partitioning algorithm can cover a set of consecutive users
including at most one revoked user with at most 4 subintervals
in S(C; c,1 -comb).

Starting from the leftmost non-revoked user, we find two
revoked usersuγ anduβ+1. If γ = β or γ ≥ α+C+c, partition
Iα,γ−1 according to the partitioning algorithm of the cascade
scheme in§3.3, respectively. Ifβ > γ and γ < α + C + c,
then we apply the following algorithm toIα,β;γ to find the
left most interval inS(C; c,1 -comb). Then we resetα, γ, and
β + 1, and repeat the process. In the following algorithm, we
denote byα0 andγ0 the first digits ofα andγ in their c-ary
representation, respectively.
• Step 1: If β −α+1 ≤ c, do not partition the interval as

Iα,β ; γ ∈ S(c,1 -skip). If β − α + 1 > c, then go to Step
2.

• Step 2: If γ < α + c − 1 then take

Iα,α−α0+c−1 ; γ if γ < α − α0 + c − 1
and β ≥ α + 2c

Iα,γ−1 if γ = α − α0 + c − 1
and β ≥ α + 2c

Iα,α+c−1 ; γ if γ > α − α0 + c − 1
or β < α + 2c

as one partition. Note thatIα,α−α0+c−1;γ , Iα,α+c−1;γ ∈
S(c,1 -skip) and Iα,γ−1 ∈ S(C-basic). If γ ≥ α + c − 1,
then go to Step 3.

• Step 3: If α + c − 1 ≤ γ < α + C + c, then take
Iα,α−α0+C+c−1 ; γ if γ < α − α0 + C + c − 1

andγ ≥ α + C
Iα,γ−1 if α0 = 0, γ0 = 0

or γ ≤ α + C
Iα,α+C−1 ; γ otherwise

as one partition.
In the above algorithm, at each step, we take the interval

in S(C; c,1 -comb) of maximum possible length except for the
following case:

γ < α − α0 + c − 1 andβ ≥ α + 2c,

in which case we takeIα,α−α0+c−1;γ instead ofIα,α+c−1;γ

to use a right cascade interval next time.
Under this algorithm, it is clear thatIα,β+1 ; γ can parti-

tioned into at most four subintervals.
2) Key Assignment: Each user is assigned all keys

from key chains of three types :C-basic chains, skip-
ping chains of length at mostc and right/left cas-
cade chains. LetF : {0, 1}ℓ → {0, 1}(p+2+d)ℓ be a
pseudo-random sequence generator and denoteF (x) =
h0(x)||h1(x)|| · · · ||hp(x)||g1(x)|| · · · ||gd(x)||h′(x) for x ∈
{0, 1}ℓ, wherehi(x)’s, gt(x)’s andh′(x) areℓ-bit sequences.
Letting g0 = h0, the key generation for the three types of
key chains are exactly the same as described in§2.3, §3.2 and
§4.2, respectively.

3) Encryption and Decryption :Encryption and decryption
are basically the same as in the cascade chain scheme except
that 1-punctured interval-keys are introduced. In each session,
the disjoint intervals inS(C; c,1 -comb), which covers all non-
revoked users, are determined under the following rule :

• The first interval starts from the leftmost non-revoked
user and each of the following intervals start from the
first non-revoked user, sayuα, after the previous interval.

• If the first revoked useruγ afteruα is followed by another
revoked useruγ+1, then partitionIα,γ−1 into at most two
subintervals inS(c -casc) ⊂ S(C; c,1 -comb).

• If the first revoked useruγ afteruα is followed by a non-
revoked user, then take the subinterval inS(C; c,1 -comb)

from Iα,β ; γ as described in the above algorithm, where
uβ+1 is the next revoked user afteruγ .

Once the center determines these disjoint intervals, the rest
of encryption and decryption process is just the combination
of those of the cascade chain scheme and the skipping chain
scheme.

B. Performance

In this subsection, we analyze efficiency - the transmission
overhead, the computation cost and the storage size - of the
combined chain scheme(C; c, 1-comb), whereC = ℓc.

1) Transmission Overhead:It is clear that the transmission
overhead of the combined chain scheme is bounded above by
2r, which is an upper bound of the transmission overhead
of the cascade chain scheme, whenr > 0. We prove that
the transmission overhead reduces to roughly3r

2 , to r, and
then eventually tor

2 asr grows, which is an upper bound of
the transmission overhead of the skipping chain scheme with
p = 1. (For generalp, the transmission overhead reduces to

r
p+1 asr grows.) In order to prove this, we introduce several
types of blocks. In the following, we regard, for convenience,
any interval consisting of less thanc consecutive non-revoked
users and one revoked user at the end also as a 1-punctured
interval and include such intervals inS(C; c,1 -comb) as we did
in §3.3. A block of typeB(a, b) in the combined chain scheme
(C; c, 1-comb) consists ofb intervals in S(C; c,1 -comb) and
possibly a revoked user at the end, containinga revoked users
altogether.

• B(2, 4) : a block consisting of 4 intervals inS(C; c,1 -comb)

containing 2 revoked users.
• B(2, 3) : a block consisting of 3 intervals inS(C; c,1 -comb)

containing 2 revoked users.
• B(1, 1) : a block consisting of a 1-punctured inter-

val in S(C; c,1 -comb) or a non-punctured interval in
S(C; c,1 -comb) followed by a revoked user.

• B(2, 1) : a block consisting of a 1-punctured interval in
S(C; c,1 -comb) and another revoked user at the end.

• B(3, 4) : a block consisting of 4 intervals inS(C; c,1 -comb)

containing 2 revoked users and one more at the end.
• B(3, 3) : a block consisting of 3 intervals inS(C; c,1 -comb)

containing 2 revoked users and one more at the end.
• B(2, 2) : a block consisting of 2 intervals inS(C; c,1 -comb)

containing a revoked users and one more at the end.
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In any given session, we can partition the setL of all users
into disjoint blocks of the above types and possibly another
block of typeB(0, 1), B(1, 2) or B(1, 3) in the end, together
with those revoked users located between the blocks. Since our
purpose is to compute the transmission overhead in the worst
case, we may assume that there are no revoked users between
the blocks. One may wonder why we allowB(0, 1), B(1, 2)
andB(1, 3) to appear only in the end. The reason is simple.
For example, the minimum length ofB(1, 2) is C + 2, which
is attained by aC-interval followed by◦×. This yields the
transmission overhead2r for 0 < r ≤ N

C+2 . But this type of
blocks cannot be neighbors as we can see later. So if we look at
B(2, 4) instead of twoB(1, 2), then we can improve the bound
of the transmission overhead because the minimum length of
B(2, 4) is c2 +C +c+2, which is much longer than2(C +2).
In this way, we can prove that the transmission overhead is2r
for 0 < r ≤ 2N

c2+C+c+2 and 3r
2 for 2N

c2+C+c+2 < r ≤ 2N
C+2c .

The disjoint blocks can be determined uniquely according
the following algorithm :

• Step 1: Using the partitioning algorithm described
in the previous subsection, find disjoint subintervals
I ′1, I

′
2, . . . , I

′
m ∈ S(C; c,1 -comb) whose union covers all

non-revoked users. Note that we enlargedS(C; c,1 -comb)

by inserting all those intervals each of which consists
of less thanc consecutive non-revoked users and one
revoked user at the end. For eachI ′j , we defineIj by
including the first revoked user immediately following, if
exists.

• Step 2: Set µ = 0, b1 = b2 = · · · =
b7 = 0, where b1, b2, . . . , b7 denote the numbers
of B(2, 4), B(2, 3), B(1, 1), B(2, 1), B(3, 4), B(3, 3) and
B(2, 2), respectively. Hereµ represents the index of the
disjoint subintervalsI1, I2, . . . , Im.

• Step 3: Setr = 0, I = ∅ andi = 0. Herer is the number
of revoked users andi is the number of subintervals in
current blockI.

• Step 4: µ ← µ+1. If µ ≤ m, thenI ← I∪Iµ, i ← i+1
and compute the numberr of the revoked users inI.
Otherwise goto Step 6

• Step 5:
Case 1:i = 1

If r = 0 then goto Step 4.
If r = 1 thenb3 = b3 + 1 and goto Step 3.
If r = 2 thenb4 = b4 + 1 and goto Step 3.

Case 2:i = 2 (in this caser ̸= 0 becauseB(0, 2)
cannot exist.)

If r = 1 then goto Step 4.
If r = 2 thenb7 = b7 + 1 and goto Step 3.

Case 3:i = 3
If r = 1 then goto Step 4.
If r = 2 thenb2 = b2 + 1 and goto Step 3.
If r = 3 thenb6 = b6 + 1 and goto Step 3.

Case 4:i = 4 (in this caser ̸= 1 because B(1,4)
cannot exist.)

If r = 2 thenb1 = b1 + 1 and goto Step 3.
If r = 3 thenb5 = b5 + 1 and goto Step 3.

• Step 6:
If r = 0 thenB(0, 1) is left.
If r = 1 and i = 2 thenB(1, 2) is left.
If r = 1 and i = 3 thenB(1, 3) is left.

Note that above algorithm covers all possible cases because
each subinterval has 0,1, or 2 revoked users. Roughly speak-
ing, the algorithm first checks whether a given intervalI = I1

is a block of the above types. If yes, then the algorithm resets
I ← I2 ; and if not, then it resetsI ← I ∪ I2. The algorithm
then checks the same for the newI. If yes, then the algorithm
resetsI ← I3 ; and if not, then it resetsI ← I ∪ I3. The
algorithm then checks the same for the newI, and so on.

In the following, we determine the shortest length for each
type of the blocks described above. To this end, we first
introduce two types of intervals, namedT1 andT2.

• T1 : Iα,β ; γ with uα /∈ U1 such thatC + 2 ≤ |Iα,β ; γ | ≤
C + c and

α + C < γ ≤ λ ≤ β < α + C + c,

whereλ := α + C + c− α0 − 1 andα0 is the firstc-ary
digit of α. SoT1 consists of aC-interval followed by a
1-punctured interval. Note thatuλ ∈ L1 anduλ+1 ∈ R1.

• T2 : Iρ,σ ; δ with uρ ∈ R1 andc2 +2 ≤ |Iρ,σ ; δ| ≤ c2 + c
such that

ρ + c2 < δ ≤ σ < ρ + c2 + c.

So,T2 consists of a long intervalIρ,ρ+c2−1 of lengthc2

followed by a 1-punctured interval.

ConsiderT1 ∪ T2, whereT1 = Iα,β ; γ and T2 = Iρ,σ ; δ

with ρ = λ + 1. Then we need exactly four subintervals in
S(C; c,1 -comb) to coverIα,σ ; γ,δ. The four subintervals are :

Iα,α+C−1, Iα+C,λ ; γ , Iρ,ρ+c2−1, Iρ+c2,σ ; δ.

We now considerT1 ∪ T1, which is another candidate for
B(2, 4). More precisely, letIα,β ; γ , is followed by Iα′,β′ ; γ′

with α′ = β+1. Then we can coverIα,γ′−1 ; γ by exactly three
subintervals inS(C; c,1 -comb). The three subintervals are :

Iα,α+C−1, Iα+C,λ ; γ , Iλ+1,γ′−1.

So, countinguγ′ at the end, this is aB(2, 3) block of minimal
possible length2C +4. In this way, one can easily check that
no B(2, 4) block can be shorter than those intervals of the
form T1 ∪ T2. So, min|B(2, 4)| = c2 + C + c + 2.

Next, let aT1, sayIα,β ; γ of lengthC+c, be followed by a
1-punctured intervalIα′,β′; γ′ of lengthc with α′ = β+1. Such
an interval requires exactly three subintervals inS(C; c,1 -comb)

to be covered. This is clearly the shortest among B(2,3) blocks
B(2, 3) and hence min|B(2, 3)| = C + 2c.

Any 1-puncturedc-interval is a block of typeB(1, 1) with
minimal lengthc while◦×× is the block of typeB(2, 1) with
minimal length3.

The minimum length ofB(3, 4) blocks is min|B(3, 4)| =
c2 + C + 5 and this occurs when aT1 of length C + 2 is
followed by aT2 of lengthc2 +2 and then by a revoked user
at the end. In other words, This is the case when aC-interval
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is followed by◦×, a long interval of lengthc2, and◦×× in
order.

The minimum lengths ofB(3, 3) blocks andB(2, 2) blocks
are min|B(3, 3)| = C +c+3 and min|B(2, 2)| = C +3. They
occur when aT1 of lengthC + c is followed by◦×× and a
C-interval followed by◦××, respectively.

Summarizing the above, we obtain :

min |B(2, 4)| = c2 + C + c + 2
min |B(2, 3)| = C + 2c
min |B(1, 1)| = c
min |B(2, 1)| = 3
min |B(3, 4)| = c2 + C + 5
min |B(3, 3)| = C + c + 3
min |B(2, 2)| = C + 3.

Figure 6 illustratesB(2, 4), B(3, 4), B(2, 3), andB(3, 3) with
minimal length.

c cc c cc c× ×
66¾ - ¾ - ¾-

C = ℓc c2 c

• • • •

 ª ª
B(2, 4) :

T1 T2

c cc c cc× ××
66 666¾ - ¾ -

C = ℓc c2

• • • •

 ª ª
B(3, 4) :

T1 T2

c cc cc c c cc cc× × × ××
666¾ - ¾- ¾- ¾ - ¾-

C = ℓc c c C = ℓc c

• •

 ª  ª
B(2, 3) :

T1

B(3, 3) :

T1

Figure 6. Blocks of typesB(2, 4), B(2, 3), B(3, 4)
andB(3, 3) with minimal length

Note that the minimal length of the block of typeB(ϵ, δ)
can be written as

|B(ϵ, δ)| = ϵC + ϵ(δ − 2)(c − 1) + ϵ + 1,

where (ϵ, δ) = (0, 1), (1, 2) or (1, 3). A singleton consisting
of one non-revoked user is of typeB(0, 1) with the minimal
length 1. A block consisting of aC-interval followed by◦×
is of type B(1, 2) with the minimal lengthC + 2. A block
obtained fromB(3, 3) by removing the last two×’s is of type
B(1, 3) with the minimal lengthC + c + 1.

We now compute the transmission overhead in the worst
case for eachr. As a matter of fact, we are going to compute
a close upper bound of it and take that upper bound as
TO(r) = TO(C; c,1 -comb). It is clear that the worst case occurs
when all the blocks are of minimal lengths. Furthermore, we
may assume that there are only four types of blocks, namely
B(2, 4), B(2, 3), B(1, 1), andB(2, 1) (and possibly one block
of type B(ϵ, δ) in the end) by replacingB(3, 4) by a B(2, 3)

and aB(1, 1), B(3, 3) by threeB(1, 1)’s, andB(2, 2) by two
B(1, 1)’s. We can do this because in each replacement the sum
of the minimal lengths of the replacing blocks is smaller than
the minimal length of the replaced block.

Let’s denote the numbers ofB(2, 4), B(2, 3), B(1, 1),
B(2, 1) and the last block byx, y, z, w and ν, respectively,
whereν = 0 or 1. Let a = c2 + C + c + 2 and b = C + 2c.
Then :  r = 2x + 2y + z + 2w + ϵν

N ≥ ax + by + cz + 3w + χν
TO = 4x + 3y + z + w + δν,

whereχ = |B(ϵ, δ)|. We set

r1 :=
2N

a
, r2 :=

2N

b
, r3 :=

N

c
and r4 :=

2N

3
.

Case 1) r ≤ r1 :

The worst case occurs when all blocks are of typeB(2, 4).
So y = z = w = 0 and hence

TO = 4x + δν = 2r − 2ϵν + δν ≤ 2r + 1.

We ignore the constant term1 in the right hand side and take

TO(r) := 2r for 0 ≤ r ≤ r1.

Case 2) r1 < r ≤ r2 :

The worst case occurs when all blocks are of typeB(2, 4)
or B(2, 3). So z = w = 0 and hence

TO = 4x + 3y + δν = 3(x + y) + x + δν

≤ 3(r − ϵν)
2

+
1

a − b

(
N − b(r − ϵν)

2
− χν

)
+ δν

≤
(

3
2
− b

2(a − b)

)
r +

N

a − b
+ 2.

Again we ignore the constant term 2 in the last quantity and
take

TO(r) :=
(

3
2
− b

2(a − b)

)
r +

N

a − b
for r1 ≤ r ≤ r2.

This is the line connecting(r1, 2r1) and(r2,
3
2r2) whose slope

is about 3
2 .

Case 3) r2 < r ≤ r3 :

The worst case occurs when all blocks are of type
B(2, 4), B(2, 3) or B(1, 1). So w = 0. Supposex ̸= 0. Then
by replacingx by x′ = x − 1, y by y′ = y + 3 and z by
z′ = z − 4, we can construct a session that requires larger
transmission overhead with the samer. So we may conclude
that x is also 0 in the worst case and hence

TO = 3y + z + δν = 2y + z + y + δν

≤ (r − ϵν) +
N − c(r − ϵν) − χν

b − 2c
+ δν

≤
(

1 − c

b − 2c

)
r +

N

b − 2c
+ 1.

So, we may take

TO(r) :=
(

1 − c

b − 2c

)
r +

N

b − 2c
for r2 ≤ r ≤ r3.
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This is the line connecting(r2,
3
2r2) and(r3, r3) whose slope

is about 1.

Case 4) r3 < r ≤ r4 :

Similarly to the previous case, we havex = y = 0 in the
worst case. Hence

TO = z + w + δν =
z + 2w

2
+

z

2
+ δν

≤ r − ϵν

2
+

1
2c − 3

(
N − 3(r − ϵν)

2
− χν

)
+ δν

≤
(

1
2
− 3

4c − 6

)
r +

N

2c − 3
+ 1.

So, we take

TO(r) :=
(

1
2
− 3

4c − 6

)
r +

N

2c − 3
for r3 ≤ r ≤ r4.

This is the line connecting(r3, r3) and(r4,
1
2r4) whose slope

is about 1
2 .

Combining the four cases above, we obtain :
Proposition5: In the combined chain scheme

(C; c, 1-comb) with C = ℓc, ℓ ≥ 2 andc ≥ 4,

TO(C; c,1 -comb) =



2r
if 0 ≤ r ≤ r1

3r2 − 4r1

2(r2 − r1)
r +

r1r2

2(r2 − r1)
if r1 ≤ r ≤ r2

2r3 − 3r2

2(r3 − r2)
r +

r2r3

2(r3 − r2)
if r2 ≤ r ≤ r3

r4 − 2r3

2(r4 − r3)
r +

r3r4

2(r4 − r3)
if r3 ≤ r ≤ r4,

where

r1 =
2N

c2 + C + c + 2
, r2 =

2N

C + 2c
, r3 =

N

c

and r4 =
2N

3
.

With c = 100, C = 10c = 1000 andN = c4 = 100000000,
the transmission overhead is approximately :

TO(1000; 100,1 -comb) =



2 r
if 0 ≤ r ≤ 18000

1.44 r + 10000
if 18000 ≤ r ≤ 167000

0.90 r + 100000
if 167000 ≤ r ≤ 1000000

0.49 r + 500000
if 1000000 ≤ r ≤ 66667000.

In most known schemes, it is better to give the decryption
key for each non-revoked user once the number of revoked
users exceedsN2 . However, in our scheme above, we can use
the scheme until the number of revoked users reaches2N

3 .

2) Storage Size and Computation Cost:The storage size of
the combined chain scheme is the sum of those of the skipping
chain scheme and the cascade chain scheme, that is,

SS(C; c,1 -comb) =
(c − 1)(c − 2)

2
+ d(d + 3)(c − 1) + C.

The computation cost is the larger than those of the two
schemes. Hence

CC(C; c,1 -comb) = max{C, dc + c − d},

which is C in most cases sinceℓ > d + 1.

VI. SECURITY PROOF

As explained in Section 2.1, to achieve the revocation-
scheme security, it is enough to show that our key assignment
scheme satisfies thekey-indistinguishability: Let B be an
adversary that selects a subsetS of the set of all users and
obtainsK(u) for eachu ̸∈ S. We say the key-assignment
algorithm iskey-indistinguishableif the probability that given
old information of all users which are not inS, B distinguishes
the subset-keyK of S from a random keyRK of similar length
is negligible.

First, we consider the skipping chain scheme. We assume
that the function

H : {0, 1}ℓ → {0, 1}(p+2)ℓ

in the scheme is a pseudo-random sequence generator such
that the probability that any probabilistic polynomial time
algorithm to distinguish an output ofH from a random string
of similar length is negligible. Letϵ be the

ϵ := AdvH = max
∣∣∣∣ Pr[A(H(r)) = 1] − Pr[A(r′) = 1]

∣∣∣∣,
where the probability is over the random coins ofA and the
random choices ofr ← {0, 1}ℓ, r′ ← {0, 1}(p+2)ℓ.

The adversaryB against the key-indistinguishability needs
to distinguishh′(K) for the subset-keyK of S from a random
key RK of similar length. Then there existsr ∈ {0, 1}ℓ

such thatK = hat · · ·ha1(r), 1 ≤ t < max{C, c}, and
0 ≤ a1, . . . , at ≤ p. We denote byH(i)(r′) the value
obtained by removing the leftmost(i+1)-th ℓ bits fromH(r′)
for r′ ∈ {0, 1}ℓ and Hj(r) := H(aj)(haj−1 · · ·ha1(r)) for
j = 1, . . . , t and H ′

t+1(r) := H(p+1)(hat · · ·ha1(r)). Note
that all the keys that the adversaryB receives are information-
theoretically independent fromK or can be computed from
Hj(r) for j = 1, . . . , t. Then the advantage ofB is

AdvB :=
∣∣ Pr[B(H1(r), . . . ,Ht+1(r), h′hat · · ·ha1(r)) = 1]

−Pr[B(H1(r), . . . ,Ht+1(r), r′) = 1]
∣∣,

where the probability is over the random coins ofB and the
random choices ofr, r′ from {0, 1}ℓ.

Now we estimate the advantage ofB. By the pseudo-
randomness ofH, we can see that

ϵ1 =
∣∣ Pr[B(H1(r), ha1(r)) = 1] − Pr[B(r1, r

′
1) = 1]

∣∣ ≤ ϵ,

where the probability is over the random coins ofB and over
the random choices ofr, r1, r

′
1 from {0, 1}ℓ, {0, 1}(p+1)ℓ, and
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{0, 1}ℓ, respectively. Next, by applyingH to the second input
of B, we have

ϵ2 =
˛

˛ Pr[B(H1(r), H2(r), ha2ha1(r)) = 1]

−Pr[B(r1, r2, r
′
2) = 1]

˛

˛ ≤ 2ϵ,

wherer ← {0, 1}ℓ, r1, r2 ← {0, 1}(p+1)ℓ, andr′2 ← {0, 1}ℓ.
By induction, we can see

ϵt+1 =
∣∣ Pr[B(H1(r), . . . ,Ht+1(r), h′hat · · ·ha1(r)) = 1]

−Pr[B(r1, . . . , rt+1, r
′
t+1) = 1]

∣∣ ≤ (t + 1)ϵ,

where r ← {0, 1}ℓ, r1, . . . , rt+1 ← {0, 1}(p+1)ℓ, and r′ ←
{0, 1}ℓ. That implies also

ϵ′t+1 =
∣∣ Pr[B(H1(r), . . . ,Ht+1(r), r′) = 1]

−Pr[B(r1, . . . , rt+1, r
′
t+1) = 1]

∣∣ ≤ ϵt+1,

where r, r′ ← {0, 1}ℓ, r1, . . . , rt+1 ← {0, 1}(p+1)ℓ, and
r′t+1 ← {0, 1}ℓ. By a hybrid argument, we haveAdvB ≤
ϵt+1 + ϵ′t+1 ≤ 2(t + 1)ϵ ≤ 2max{C, c}ϵ.

In the combined scheme, we consider a pseudo-random
generator

H : {0, 1}ℓ → {0, 1}(p+d+2)ℓ

with the distinguish probabilityϵ. Since there are at most
max{dc + c − d,C} applications of one-way permutations,
all the keys thatB receives are information-theoretically inde-
pendent fromK or can be computed from at mostmax{dc+
c−d,C} subset-keys generated byH from the same seed. By
the hybrid argument similar to the skipping chain schemes,
the advantage ofB is bounded by2 max{dc+c−d,C}ϵ. The
cascade chain scheme is similar except the output size ofH.

VII. D ISCUSSION

I N this section, we compare the efficiency of our schemes
with that of SD and discuss some practical issues.

A. Comparison

We present a comparison of our proposed schemes with the
best known scheme - SD. Table I compares the transmission
overheads in the worst case, the storage sizes and the computa-
tion costs of our schemes and SD whenN = 108. We assume
that every key in a user-key set is 128 bits. In each column, the
minimum values are written in italic. From the table, we can
see that the cascade chain scheme(1000; 100-cascade) and
SD have the smallest TO whenr′ approaches to 0, and the
skipping chain scheme(1000; 100, 1-skip) has the smallest
TO when r′ increases, wherer′ = 100r

N (%). However, the
combined scheme(1000; 100, 1-comb) has the least TO all
the time.

Figures 7 and 8 compare the transmission overheads of our
schemes (1000;100,1-skip), (1000;100,2-skip), (1000;100-
casc) and (1000;100,1-comb) with that of SD, in the worst
case and the average case, respectively. Note that the data in
the worst case are the theoretical upper bounds of TO. The
data of the average case were obtained by simulating with
randomly chosen revoked users. The small box in Figure 7 is
enlarged in Figure 9 to compare TO’s for smallr′. The graph
of TO(1000;100,1-comb) follows the graph of TO(1000;100-casc)

for r′ ≤ r′1 ≈ 0.018 and the graph of TO(1000;100,1-skip) for
r′ ≥ r′2 ≈ 0.167 while beats both forr′1 ≤ r′ ≤ r′2. Note that
TO(1000;100,2-skip) is the best forr′ ≥ r′3 = 1.

To make more precise comparison, we calculated more
precise bound for the transmission overhead of SD scheme.
We choose meaningful points withr = N/2, N/4, . . . , N/2i

and compute bounds of the transmission overhead for chosen
points. The result is TO(SD) ≤ 2i−1

2i−1 r when r = N
2i , for

1 ≤ i ≤ log N
2 .

- 100r

N
%

6
TO

-

-1
2 ·106

-

-1·106

-

-3
2 ·106

-

-2·106

-

-

-

-

5
2 ·106

3·106

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

¢
¢
¢¢

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
SD(≈ 2r − 1)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

casc

¡
¡

¡
¡

¡
©©©©©©©©©

1-skip,

1-comb

³³³³³³³³³2-skip

- Fig.9

Figure 7. TO for N = 108 in the worst case

- 100r

N
%

6
TO

-

-1
2 ·106

-

-1·106

-

-3
2 ·106

-

-2·106

-

-

-

-

5
2 ·106

3·106

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

SD (≈1.25r)

´́
,,

½½
´́

©©©!!!!!!!!!

1-skip,
1-comb

´́
##

´́
©©³³³»»»ÃÃÃÃÃÃ

2-skip

¡¡
¡¡

¡¡
¡¡

¡¡¡
¡¡¡

¡¡¡
¡¡¡ casc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rr

r

0.42θ

0.55θ

0.97θ

A
AU

θ

Figure 8. TO for N = 108 in average case

B. Practical Remarks

1) User Addition:The skipping chain scheme possesses an
advantage that user addition is possible at any time almost free.
In SD or LSD, once the system has launched and saturated,
no user can be added without introducing a new tree. On the
other hand, the skipping chain scheme(C; c, p-skip) allows
any number of user additions without changing the keys of
the current users. To add one new user to the system, the
center places him/her at the end of the line, computes the
corresponding user-key and sends it to the new user. This
process requires neither interaction nor key update of the
current users. Note that the cascade chain scheme does not
possess this property and hence the combined chain scheme
does not, neither. Observe that, however, user addition is still
feasible unless left cascade key chains are introduced.
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TABLE I

PERFORMANCE COMPARISON WHENN = 108 , WHERE r′ = 100r
N

(%). (IN EACH COLUMN, THE MINIMUM VALUES ARE WRITTEN IN ITALIC )

TO (Mbits) for r′(%) SS CCScheme
0.001% 0.01% 0.1% 1% 5% 10% 20% (KBytes) (Hashes)

(1000-basic) 12.9 14.1 25.6 141 652 1290 2570 1.60 999
(1000; 100, 1-skip) 12.9 14.0 24.3 128 380 695 1330 93.6 999
(1000; 100-cascade) 0.256 2.56 25.6 141 652 1290 2570 44.5 999
(1000; 100, 1-comb) 0.256 2.56 19.7 128 380 695 1330 122 999

SD 0.256 2.56 25.6 253 1210 2280 4000 11.7 27
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∗ 2-skip : C → D → E → G

∗ casc : O → A → B → F

∗ 1-comb : O → A → D → E → H

Figure 9. The graph of TO(r) - an approximation,
wherer′ = 100r

N

2) User Replacement:User replacement is a much more
complicated problem than user addition. User replacement is to
remove revoked users permanently, and add new users at their
positions. In general, user replacement is not possible without
user-key update, which is not allowed in many schemes.
When user-key update is allowed, the skipping chain scheme
(C; c, p-skip) performs user replacement at reasonably small
cost : one user replacement requires user-key update of at most
2C − 1 users.

3) Flexibility: Our schemes possess flexibility with system
parametersC, c andp, which is a quite different feature from
the tree based schemes. We can choose system parameters in
such a way that the transmission overhead is very small or
in another way that the storage size and the computation cost
are very small. If the user device provides limited storage like
smart cards for example, then we may use theC-basic chain
scheme with smallC which requires each user to store only
C keys. The computation cost is at mostC − 1 computations
of one-way permutations. For example, if we takeC = 20,
then the storage size is only 20 keys for each user and the
computation cost is 9.5 computations of one-way permutations
on average (at most 19) while the transmission overhead is
9
10r + N

20 . In fact, our schemes without punctured intervals

can fit in as good as any other schemes tolog key restriction,
which was introduced in [4]. On the other hand, if the user
device provides large storage like set-top boxes, PC’s and CD
or DVD players, and the transmission is expensive, then one
can use(C; c, p-skip) or (C; c, p-comb) with largec, in which
the transmission overhead becomes less thanr

p asr ≥ p2N/c.

VIII. C ONCLUSION

I N this paper, we proposed broadcast encryption schemes
based on the idea ‘one key per each partition’ after

partitioning the users. They are the skipping chain scheme
(C; c, p-skip), the cascade chain scheme(C; c-casc), and
the combined chain scheme(C; c, p-comb). The scheme
(C; c, p-skip) has very small TO ifr is not very small. The
scheme(C; c-casc) has the same TO with the SD whenr
is very small. Combining the two scheme, we achieved the
smallest TO for allr.

Moreover, our schemes may fit in to various broadcast
environment by varying system parameters. That is, we can
optimize the transmission overhead, the computation cost or
the storage size by adjustingC, c andp suitably.

Acknowledgement: The authors would like to thank the
reviewers for their valuable comments. The first author was
partially supported by the SRC Program of KOSEF (R11-
2007-035-01002-0). The second, the third, and the fouth
authors were partially supported by KRF (2005-070-C00004).

REFERENCES

[1] S. Berkovits, How to Broadcast a secret, Advances in Cryptology -
Eurocrypt’91, Lecture Notes in Computer Science 547, pp.536-541, 1991.

[2] D. Boneh and A. Silverberg,Applications of Multilinear Forms to
Cryptography, Contemporary Mathematics 324, American Mathematical
Society, pp.71-90, 2002.

[3] A. Fiat and M. Naor,Broadcast Encryption, Advances in Cryptology -
Crypto’93, Lecture Notes in Computer Science 773, pp.480-491, 1993.

[4] M.T. Goodrich, J.Z. Sun and R. Tamassia,Efficient Tree-Based Revocation
in Groups of Low-State Devices, Advances in Cryptology - Crypto’04,
Lecture Notes in Computer Science 3152, pp.511-527, 2004.

[5] D. Halevi and A. Shamir,The LSD Broadcast Encryption Scheme,
Advances in Crytology - Crypto’02, Lecture Notes in Computer Science
2442, pp.47-60, 2002.

[6] N.-S. Jho, J.H. Cheon, M.-H. Kim, and E.S. Yoo,Broadcast Encrytion
π, http://eprint.iacr.org /2005/073, 2005.

[7] N.-S. Jho, J.Y. Hwang, J.H. Cheon, M.-H. Kim, D.H. Lee and E.S. Yoo,
One-way Chain Based Broadcast Encryption Schemes, To appear in Proc.
of Eurocrypt’05.

[8] R. Kumar, S. Rajagopalan and A. Sahai,Coding Constructions for
blacklisting problems without Computational Assumptions, Advances in
Cryptology - Crypto’99, Lecture Notes in Computer Science 1666,
pp.609-623, 1999.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , JANUARY 2008 18

[9] M. Luby and J. Staddon,Combinatorial Bounds for Broadcast Encryp-
tion, Advances in Cryptology - Eurocrypt’98, Lecture Notes in Computer
Science 1403, pp.512-526, 1998.

[10] D. Naor, M. Naor and J. Lotspiech,Revocation and Tracing Schemes for
Stateless Receivers, Advances in Cryptology - Crypto’01, Lecture Notes
in Computer Science 2139, pp.41-62, 2001. The extended abstract of [11].

[11] D. Naor, M. Naor and J. Lotspiech,Revocation and Tracing Schemes for
Stateless Receivers, Electronic Colloquium on Computational Complexity
(ECCC), Vol. 43, 2002. The full version of [10].

[12] M. Naor and B. Pinkas,Efficient Trace and Revoke Schemes, Financial
Cryptography’00, Lecture Notes in Computer Science 1962, pp.1-20,
2000.

[13] E.S. Yoo, N.-S. Jho, J.H. Cheon and M.-H. Kim,Efficient Broadcast
Encryption using Multiple Interpolation Methods, Proc. of ICISC’04,
Lecture Notes in Computer Science 3506, pp.87-104, 2005.


