DIVISIBILITY OF IDEAL CLASS GROUPS OF NON-NORMAL TOTALLY REAL CUBIC NUMBER FIELDS

JUNGYUN LEE

1. Introduction

Louboutin in [2] studied the class group of a family of non-normal totally real cubic fields $\left\{K_{m}\right\}_{m \geq 4}$ associated with the \mathbb{Q}-irreducible cubic polynomials

$$
P_{m}(x)=x^{3}-m x^{2}-(m+1) x-1, \quad(m \geq 4) .
$$

He determine K_{m} 's with ideal class group of small class number or small exponent.

In this paper, we study the divisibility of the class number of a family $\left\{K_{m}\right\}_{m \geq 4}$ for any given integer n. In 1922, Nagell[3] prove that there exist infinitely many imaginary quadratic fields with class number divisible by for any given integer n. Later Yamamoto[7] and Weinberger [6] extend this result to real quadratic field. And Nakano [5] proved in 1985 that there exists infinitely many totally real number fields with the class number divisible by any given integer n.

The aim of this paper is to restrict the totally real cubic number field case in Nakano's theorem [5] to non-normal totally real cubic number field case by constructing infinitely many K_{m} with class number divisible by for any given integer n.

2. Main Theorem

Theorem 2.1. There exists infinitely many non-nomal totally real cubic number fields whose class number is divisible by any given integer n.

Notations.

(1) $n:$ an integer
(2) n_{0} : the product of all prime factors of n
(3) $L(n)$: the set of all prime divisors l of n

[^0](4) $f(x) \in \mathbb{Z}[x]$: a monic irreducible polynomial
(5) θ : a root of $f(x)$
(6) $K=\mathbb{Q}(\theta)$
(7) r : free rank of the unit group of K
(8) w_{K} : the number of root of unities in K.
(9) $F^{* l}=\left\{\alpha^{l} \mid \alpha \in F^{*}\right\}$

We will consider the following lemmas to prove the theorem.
Lemma 2.2 (Nakano). Suppose there exist primes p_{1}, \cdots, p_{s} which are 1 modulo $w_{K} n_{0}$ and rational integers t, A_{1}, \cdots, A_{s} and C_{1}, \cdots, C_{s} such that
(1) $f\left(A_{i}\right)= \pm C_{i}^{n},(1 \leq i \leq s)$,
(2) $\left(f^{\prime}\left(A_{i}\right), C_{i}\right)=1,(1 \leq i \leq s)$,
(3) $f(t)=0, f^{\prime}(t) \neq 0\left(\bmod p_{i}\right),(1 \leq i \leq s)$
(4) $\left(\frac{t-A_{j}}{p_{i}}\right)_{l}=1,\left(\frac{t-A_{i}}{p_{i}}\right)_{l} \neq 1,(1 \leq j<i \leq s, l \in L(n))$,
where $f^{\prime}(x)$ is the derivative of $f(x)$. Then the ideal class group of K contains a subgroup isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{s-r}$

Lemma 2.3 (Erdös). Let $P(x) \in \mathbb{Z}[x]$ be a polynomial with degree ≤ 3. If the greatest common divisor of $P(a)(a \in \mathbb{Z})$ is 1 , then there are infinitely many integers n for which $P(a)$ is square free.

Lemma 2.4. Let $A_{1}=-1, A_{2}=0, A_{3}=1$. Then there exist an integer t and infinitely many distinct primes p_{1}, p_{2} and p_{3} which are 1 modulo $2 n_{0}$ such that

$$
\left(\frac{t-A_{j}}{p_{i}}\right)_{l}=1 \text { and }\left(\frac{t-A_{i}}{p_{i}}\right)_{l} \neq 1
$$

for $l \in L(n), i \neq j$ in $\{1,2,3\}$ and

$$
\left(\frac{\frac{(1-t)\left(2 t^{2}+3 t+2\right)}{t(t+1)}}{p_{i}}\right)_{n}=1
$$

Proof: Let $F=\mathbb{Q}\left(\zeta_{2 n_{0}}\right)$, where $\zeta_{2 n_{0}}$ is $2 n_{0}$-th root of unity. From Lemma 2.3, we find that there are infinitely many rational integers a such that $2 a^{2}+3 a+2$ is square free. Since only finitely many primes dividing $2 n_{0}$ are ramified in F over \mathbb{Q}, we can take an integer B and a rational prime q such that $2 B^{2}+3 B+2$ is square free and

$$
\begin{gathered}
q \mid 2 B^{2}+3 B+2, \\
q \nmid 2 n_{0} .
\end{gathered}
$$

Then for a prime ideal $\mathbf{q} \in F$ lying over q, we have

$$
\begin{equation*}
\operatorname{ord}_{\mathbf{q}}\left(2 B^{2}+3 B+2\right)=1 \tag{1}
\end{equation*}
$$

Next, we take three distinct prime ideals $\mathbf{q}_{i}(\neq \mathbf{q}) \in F(i=1,2,3)$ which are relatively prime to $14 n_{0}$. And take rational integers $B_{i}(i=1,2,3)$ for which

$$
\begin{equation*}
\operatorname{ord}_{\mathbf{q}_{i}}\left(B_{i}\right)=1 \quad \text { for } 1 \leq i \leq 3 \tag{2}
\end{equation*}
$$

By Chinese remainder theorm, we can find a nonzero element $T \in O_{F}$ such that

$$
\begin{align*}
T & \equiv B \quad\left(\bmod \mathbf{q}^{2}\right) \tag{3}\\
T-A_{i} & \equiv B_{i} \quad\left(\bmod \mathbf{q}_{i}{ }^{2}\right) \quad \text { for } i=1,2,3
\end{align*}
$$

Since $T \equiv A_{i}\left(\bmod \mathbf{q}_{i}\right)$ we have

$$
\begin{equation*}
2 T^{2}+3 T+2 \equiv 2 A_{i}^{2}+3 A_{i}+2 \quad\left(\bmod \mathbf{q}_{i}\right) \quad \text { for } i=1,2,3 \tag{4}
\end{equation*}
$$

Since $\mathbf{q}_{i}(i=1,2,3)$ are relatively prime to 14 , form (4) we have

$$
\begin{equation*}
\operatorname{ord}_{\mathbf{q}_{i}}\left(2 T^{2}+3 T+2\right)=0 \tag{5}
\end{equation*}
$$

And form (2) and (3), we have

$$
\begin{equation*}
\operatorname{ord}_{\mathbf{q}_{i}}\left(T-A_{i}\right)=1 \quad \text { for } 1 \leq i \leq 3 \tag{6}
\end{equation*}
$$

Since $\mathbf{q}_{i}(i=1,2,3)$ are relatively prime to 2 ,

$$
\operatorname{ord}_{\mathbf{q}_{i}}\left(T-A_{j}\right)=0 \quad \text { for } 1 \leq i \neq j \leq 3
$$

Let

$$
\beta:=\left(2 T^{2}+3 T+2\right)^{a}\left(T-A_{i}\right)^{a_{1}}\left(T-A_{2}\right)^{a_{2}}\left(T-A_{3}\right)^{a_{3}}
$$

then

$$
\begin{aligned}
\operatorname{ord}_{\mathbf{q}}(\beta) & =a \\
\operatorname{ord}_{\mathbf{q}_{i}}(\beta) & =a_{i} \quad \text { for } \mathrm{i}=1,2,3 .
\end{aligned}
$$

Thus if $\beta \in F^{* l}$, then we have

$$
\begin{aligned}
a & =0 \quad(\bmod l) \\
a_{i} & =0 \quad(\bmod l) \quad \text { for } \mathrm{i}=1,2,3
\end{aligned}
$$

It implies that $2 T^{2}+3 T+2, T-A_{i}, T-A_{2}$ and $T-A_{3}$ are independent in $F^{*} / F^{* l}$. So

$$
F\left(\sqrt[n_{0}]{T-A_{i}}\right) \cap E_{i}=F \quad(i=1,2,3)
$$

where

$$
E_{i}=\prod_{i \neq j} F\left(\sqrt[n_{0}]{T-A_{j}}\right) F\left(\sqrt[n]{\frac{(1-T)\left(2 T^{2}+3 T+2\right)}{T(T+1)}}\right) \quad(i=1,2,3)
$$

By Frobenious density theorem, we know that there exists infinitely many primes \mathbf{p}_{i} in F which completely split over \mathbb{Q} and inert in $F\left(\sqrt[n]{T-A_{i}}\right)$ and completely split in E_{i} for $i=1,2,3$. Since the prime ideals \mathbf{p}_{i} $(i=1,2,3)$ have inertia degree 1 over \mathbb{Q}, we can take a rational integer t in $T+\mathbf{p}_{i}$ and we have

$$
\left(\frac{T-A_{j}}{\mathbf{p}_{i}}\right)_{l}=\left(\frac{t-A_{j}}{p_{i}}\right)_{l} \quad \text { for } i, j=1,2,3
$$

and

$$
\left(\frac{\frac{(1-T)\left(2 T^{2}+3 T+2\right)}{T(T+1)}}{\mathbf{p}_{i}}\right)_{n}=\left(\frac{\frac{(1-t)\left(2 t^{2}+3 t+2\right)}{t(t+1)}}{p_{i}}\right)_{n}
$$

Since the prime ideals \mathbf{p}_{i} inert in $F\left(\sqrt[n_{0}]{T-A_{i}}\right)$ and are completely split in E_{i} for $i=1,2,3$, we have

$$
\left(\frac{T-A_{j}}{\mathbf{p}_{i}}\right)_{l}=1
$$

if and only if $i \neq j$ and

$$
\left(\frac{\frac{(1-T)\left(2 T^{2}+3 T+2\right)}{T(T+1)}}{\mathbf{p}_{i}}\right)_{n}=1 .
$$

This complete the proof.
Let K_{m} be a field associated with the irreducible polynomials $P_{m}=$ $x^{3}-m x^{2}-(m+1) x-1(m \geq 4)$. Then it is well known that $K_{m}(m \geq 4)$ are non-nomal totally real cubic number fields with discriminent

$$
\begin{equation*}
D_{m}=\left(m^{2}+m-3\right)^{2}-32 . \tag{7}
\end{equation*}
$$

Since K_{m} is real number fields, the number $w_{K_{m}}$ of root of unity of K_{m} is 2 . To prove the theorem, we consider the family $\left\{K_{m}\right\}_{m \geq 4}$ of non-nomal cubic number fields. And we find infinitely many m such that the ideal class group of K_{m} contains a subgroup isomorphic to $\mathbb{Z} / n \mathbb{Z}$.

Now, we prove Theorm 1.1.
Proof of Theorem 1.1: Let a be a rational integer such that

$$
\begin{equation*}
(a, 14)=1 \tag{8}
\end{equation*}
$$

Put

$$
m=\frac{-1-a^{n}}{2}
$$

Then

$$
\begin{equation*}
P_{m}(-1)=-1 . \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
P_{m}(0)=-1 . \tag{10}\\
P_{m}(1)=-1-2 m=a^{n} . \tag{11}
\end{gather*}
$$

and from (8), we have

$$
\begin{equation*}
\left(P_{m}^{\prime}(1), a\right)=\left(\frac{7+3 a^{n}}{2}, a\right)=1 \tag{12}
\end{equation*}
$$

Let us consider $P_{m}(x)$ to $f(x)$ and $A_{1}=1, A_{2}=0, A_{3}=1$. Then from (9) - (12), we satisfy the conditions (1) and (2) in Lemma 2.2.

We take rational primes p_{1}, p_{2} and $p_{3}(>7)$ and rational integer t satisfying the conditions of Lemma 2.4 and

$$
\begin{equation*}
p_{i} X\left(\left(t^{3}-t-1\right)\left(t^{3}+t^{2}-1\right)-3(t(t+1))^{2}-3(t(t+1))^{2}\right)^{2}-32(t(t+1))^{4} \tag{13}
\end{equation*}
$$

Then from

$$
\left(\frac{\frac{(1-t)\left(2 t^{2}+3 t+2\right)}{t(t+1)}}{p_{i}}\right)_{n}=1
$$

we can find an integer a such that

$$
\begin{equation*}
a^{n}=\frac{(1-t)\left(2 t^{2}+3 t+2\right)}{t(t+1)} \quad\left(\bmod p_{i}\right) \quad \text { for } \mathrm{i}=1,2,3 \tag{14}
\end{equation*}
$$

Then for a satisfing (14), we have

$$
\begin{equation*}
P_{m}(t)=0 \quad\left(\bmod p_{i}\right) \quad \text { for } \mathrm{i}=1,2,3 \tag{15}
\end{equation*}
$$

And if $P_{m}^{\prime}(t) \equiv 0\left(\bmod p_{i}\right)$ then t is a multiple root of $P_{m}(x)\left(\bmod p_{i}\right)$. Therefore p_{i} divide the discriminant of $P_{m}(x)$. So we have

$$
\begin{equation*}
\left(m^{2}+m-3\right)^{2}-32=0 \quad\left(\bmod p_{i}\right) \quad \text { for } \mathrm{i}=1,2,3 \tag{16}
\end{equation*}
$$

And (11) implies that

$$
\begin{equation*}
m \equiv \frac{t^{3}-t-1}{t(t+1)} \quad\left(\bmod p_{i}\right) \quad \text { for } \mathrm{i}=1,2,3 \tag{17}
\end{equation*}
$$

So for $i=1,2,3$ form (16), (17) we have

$$
\left(\left(t^{3}-t-1\right)\left(t^{3}+t^{2}-1\right)-3(t(t+1))^{2}-3(t(t+1))^{2}\right)^{2}-32(t(t+1))^{4} \equiv 0 \quad\left(\bmod p_{i}\right)
$$

This contracidt to our hypothesis. Hence

$$
P_{m}^{\prime}(t) \not \equiv 0 \quad\left(\bmod p_{i}\right) \quad \text { for } \mathrm{i}=1,2,3
$$

Finally, We find the rational integers $A_{i}, C_{i}(i=1,2,3)$ and t and primes $p_{i}(\mathrm{i}=1,2,3)$ satisfying all conditions of Lemma 2.2. As K_{m} 's are totally real number fields, the rank r of unit group of K_{m} is 2 . So we know that the class number of the fields $K_{\frac{-1-a^{n}}{2}}$ have the subgroup isomorphic to $\mathbb{Z} / n \mathbb{Z}$, for the integers a satisfyins (14), (8). Since there
are infinitely many a satisfying (14), (8), we complete the proof of theorem.

References

[1] P. Erdös, Some problems and results in elementary number theory, Publ. Math. Dedrecen2 (1951),103-109.
[2] S. Louboutin, Class number and class group problems for some non-normal totally real cubic number fields, Manuscripta Math106 (2001) no 4, 411427.
[3] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. math. Sem. Univ. Hamburg 1 (1922), 140-150.
[4] S. Nakano, Ideal class groups of cubic fields, Acta arithmetica (1986), 297300.
[5] S. Nakano, On ideal class groups of algebraic number fields, J. Reine Angew. Math 358 (1985), 61-75.
[6] P.J. Weinberger Real quadratic fields with class numbers divisible by n, J. Number theory 5 (1973), 237-241.
[7] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math 7 (1970), 57-76.
E-mail address: lee9311@snu.ac.kr
Department of Mathematics. Korea Advanced Institute of Science and Technology

[^0]: ${ }^{1 "}$ This work was supported by the SRC Program of Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MEST) R11-2007-035-01001-0."

