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Abstract. For some infinite families of modular forms we provide the explicit formulas for
their Fourier coefficients by using the theory of basic hypergeometric series (Proposition 1).
By means of these modular forms we find the bases of the vector spaces of modular forms
for some levels.

1. Introduction

Modular forms appear in many areas of number theory. In particular their Fourier coef-
ficients provide us with many number theoretical properties such as the partition function,
the number of representations of integers by quadratic forms, the number of points of an
elliptic curve over a finite field, Fermat last theorem and so on. In this paper we investigate
certain infinite families of modular forms whose Fourier coefficients are expressed in terms
of divisor functions.

In the theory of basic hypergeometric series there are many useful identities between the
q-products and the q-series. We first notice that most of the q-products under consideration
are indeed modular forms up to trivial factors, and hence the identities can be restated
as the formulas for the Fourier coefficients of such modular forms. In this way we get
infinite families of modular forms whose Fourier coefficients are given by finite sums of
divisor functions (Theorem 2). This result seems to be interesting in itself because these
modular forms are holomorphic whose zeros are supported only at the cusps. In addition
we can find by utilizing those modular forms the bases of the vector spaces of holomorphic
modular forms for some small levels (Proposition 5) and its applications.

2. Preliminaries

Let H = {τ ∈ C | Im τ > 0} be the complex upper half plane, and H∗ = H ∪ Q
∪ {∞}. Then GL+

2 (Q) acts on H∗ by linear fractional transformation α(τ) = aτ+b
cτ+d

for

α = (a b
c d) ∈ GL+

2 (Q).
For a positive integer N we define the principal congruence subgroup Γ(N) of level N by

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N},

and any subgroup of SL2(Z) containing some principal congruence subgroup is called a
congruence subgroup. We usually use the congruence subgroups Γ0(N), Γ0(N), Γ1(N) and
Γ1(N) defined as follows: Γ0(N) (respectively, Γ0(N)) consists of all (a b

c d) ∈ SL2(Z) such that
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c ≡ 0 mod N (respectively, b ≡ 0 mod N), and Γ1(N) (respectively, Γ1(N)) consists of all
(a b
c d) ∈ SL2(Z) such that a ≡ d ≡ 1 mod N and c ≡ 0 mod N (respectively, a ≡ d ≡ 1 mod N

and b ≡ 0 mod N).
Let k be an integer and α = (a b

c d) ∈ GL+
2 (Q). For a meromorphic function f on H, we

define a meromorphic function f |kα on H by

(f |kα)(τ) = (detα)
k
2 (cτ + d)−kf(α(τ)).

Now for a congruence subgroup Γ and an integer k, a meromorphic function f on H is
called a modular form of weight k for Γ if the following two conditions hold:

(1) f |kγ = f for all γ ∈ Γ.
(2) f is meromorphic at all cusps of Γ.
The C-vector space of holomorphic modular forms (respectively, cusp forms) of weight

k for Γ is denoted by Mk(Γ) (respectively, Sk(Γ)). Throughout this paper we also use the
standard notations q = e2πiτ , qN = e2πiτ/N and ζN = e2πi/N for a positive integer N .

We first briefly recall the Klein forms which will be mainly used in this article. We refer to
[2] for more details. For any lattice L ⊂ C and z ∈ C, we define the Weierstrass σ-function
by

σ(z;L) = z
∏

ω∈L−{0}

(1− z

ω
)e

z
ω

+ 1
2
( z

ω
)2

which is holomorphic with only simple zeros at all points z ∈ L. We further define the
Weierstrass ζ-function by logarithmic derivative of the Weierstrass σ-function, i.e.,

ζ(z;L) =
σ′(z;L)

σ(z;L)
=

1

z
+

∑
ω∈L−{0}

(
1

z − ω
+

1

ω
+

z

ω2
)

which is meromorphic with only simple poles at all points z ∈ L. It is easy to see that the
Weierstrass σ-function (respectively, the Weierstrass ζ-function) is homogeneous of degree 1
(respectively, −1), that is, σ(λz;λL) = λσ(z;L) (respectively, ζ(λz;λL) = λ−1ζ(z;L)) for
any λ ∈ C×. Note that ζ ′(z;L) = −℘(z;L) where

℘(z;L) =
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2
)

is the Weierstrass ℘-function. Since the Weierstrass ℘-function is an elliptic function, namely
℘(z+ω;L) = ℘(z;L) for ω ∈ L, we derive that d

dz
(ζ(z+ω;L)− ζ(z;L)) = 0 for ω ∈ L. This

means that ζ(z + ω;L)− ζ(z;L) depends only on ω ∈ L, not on z ∈ C. Thus we may define
η(ω;L) = ζ(z + ω;L)− ζ(z;L) for all ω ∈ L. Let L = Zω1 + Zω2. For z = a1ω1 + a2ω2 with
a1, a2 ∈ R we define the Weierstrass η-function by

η(z;L) = a1η(ω1;L) + a2η(ω2;L).

Then it is easy to see that the Weierstrass η-function η(z;L) is well-defined, in other words
it does not depend on the choice of the basis {ω1, ω2} of L, and η(z;L) is R-linear so that
η(rz;L) = rη(z;L) for r ∈ R. Note that since the Weierstrass ζ-function is homogeneous of
degree −1, so is the Weierstrass η-function. We now define the Klein form by

K(z;L) = e−η(z;L)z/2σ(z;L).
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Let a = (a1 a2) ∈ R2 and τ ∈ H. We further define Ka(τ) = K(a1τ + a2; Zτ + Z) which
is also called the Klein form by abuse of terminology. Obviously Ka(τ) for a ∈ Z2 is the
constant function 0, thus we assume hereafter that a ∈ R2 − Z2 while considering the Klein
forms. We also see that Ka(τ) for a ∈ R2 − Z2 is holomorphic and nonvanishing on H and
the Klein form is homogeneous of degree 1, i.e., K(λz;λL) = λK(z;L).

Let γ = (a b
c d) ∈ SL2(Z) and a = (a1 a2) ∈ R2 − Z2. Then the Klein form satisfies the

following well-known properties (see [2]).

(K0) K−a(τ) = −Ka(τ).

(K1) (Ka|−1γ)(τ) = Kaγ(τ).

(K2) For b = (b1 b2) ∈ Z2 we have

Ka+b(τ) = ε(a, b)Ka(τ),

where ε(a, b) = (−1)b1b2+b1+b2eπi(b2a1−b1a2).

(K3) For a = ( r
N

s
N

) ∈ 1
N

Z2 − Z2 and γ ∈ Γ(N) with N > 1, we have

(Ka|−1γ)(τ) = εa(γ)Ka(τ),

where εa(γ) = −(−1)(a−1
N

r+ c
N
s+1)( b

N
r+ d−1

N
s+1)eπi(br

2+(d−a)rs−cs2)/N2
.

(K4) For z = a1τ + a2 with a = (a1 a2) ∈ Q2 − Z2, we let q = e2πiτ and qz = e2πiz =
e2πia2e2πia1τ . Then we have

Ka(τ) = − 1

2πi
eπia2(a1−1)q

1
2
a1(a1−1)(1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2

and ordqKa(τ) = 1
2
〈a1〉(〈a1〉 − 1), where 〈a1〉 denotes the rational number such that 0 ≤

〈a1〉 < 1 and a1 − 〈a1〉 ∈ Z.

(K5) Let f(τ) =
∏

aK
m(a)
a (τ) be a finite quotient of Klein forms with a = ( r

N
s
N

) ∈
1
N

Z2 − Z2 for N > 1, and let k = −
∑

am(a). Then f(τ) is a modular form of weight k for
Γ(N) if and only if{ ∑

am(a)r2 ≡
∑

am(a)s2 ≡
∑

am(a)rs ≡ 0 mod N if N is odd∑
am(a)r2 ≡

∑
am(a)s2 ≡ 0 mod 2N,

∑
am(a)rs ≡ 0 mod N if N is even.

3. Explicit formulas for the Fourier coefficients

For nonzero integers n, m, r, r1, · · · , rl, we define

Er(n;m) =
∑

d|n, d>0
d≡r mod m

1−
∑

d|n, d>0
d≡−r mod m

1,

Er1,··· ,rl(n;m) =
l∑

i=1

Eri(n;m).

First we recall the following necessary identities which can be derived by using the theory
of basic hypergeometric series ([1]).
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Proposition 1. (1) For p > 1, 0 < r < p with (r, 2p) = 1, we have

∞∏
n=1

(1− qpn)2

(1− qpn−r)(1− qpn−p+r)
=
∞∑
n=0

Er(2pn+ r(p− r); 2p)qn.

(2) For p > 2, r > 0, s > 0 with r + s < p, (r, p) = 1, and for α = e2πia/k with k > 0,
(a, k) = 1, we have

∞∏
n=1

(1− qpn)2(1− α−1qpn−(r+s))(1− αqpn−(p−r−s))

(1− qpn−r)(1− qpn−p+r)(1− α−1qpn−s)(1− αqpn−p+s)

=
∞∑
N=0

(
k−1∑
m=0

αmEmp+r(pN + rs; kp)

)
qN .

(3) For p > 1, r > 0 with r < p, (r, p) = 1, and for α = e2πia/k with k > 0, (a, k) = 1, we
have

∞∏
n=1

(1− qpn)2(1− α−1qpn−r)(1− αqpn−p+r)
(1− qpn−r)(1− qpn−p+r)(1− α−1qpn)(1− αqpn)

= 1 + (1− α)
∞∑
N=1

(
k−1∑
m=0

αmEmp+r(N ; kp)

)
qN .

(4) For p > 1, r > 0 with r < p, (r, p) = 1, we have

∞∏
n=1

(1− qpn)2(1− qpn−r)(1− qpn−p+r)
(1 + qpn)2(1 + qpn−r)(1 + qpn−p+r)

= 1− 2
∞∑
N=1

(
Er,p−r(N ; 2p)− 2Er,p−r(

N

2
; 2p)

)
qN .

(5) For p > 1, r > 0 with r < p, (r, p) = 1, we have

∞∏
n=1

(1− qpn)(1− q2pn)(1− q4pn−p−2r)(1− q4pn−3p+2r)

(1− qpn−r)(1− qpn−p+r)

= 1 +
∞∑
N=1

Er,p−r,p+r,2p−r(N ; 4p)qN .

(6) For p > 2, r > 0 with r < p, (r, p) = 1, we have

qr
∞∏
n=1

(1− qpn)(1− q2pn)(1− q4pn−p+2r)(1− q4pn−3p−2r)

(1− qpn−r)(1− qpn−p+r)

=
∞∑
N=1

Er,2p−r,3p−r,3p+r(N ; 4p)qN .
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(7) For p > 3, ω = e2πi/p and a /≡ ±s mod p, we have
∞∏
n=1

(1− qn)4(1− ωa+sqn)(1− ω−a−sqn)(1− ωa−sqn)(1− ωs−aqn)

(1− ωaqn)2(1− ω−aqn)2(1− ωsqn)2(1− ω−sqn)2

= 1 + 2ω−s
(1− ωs)2(1− ωa)2

(1− ωa+s)(1− ωa−s)

∞∑
n=1

(
cos

2πsn

p
− cos

2πan

p

)
nqn

1− qn
.

(8) For p > 1, r > 0 with r < p, (r, p) = 1, we have

qr

(
∞∏
n=1

(1− qpn)2

(1− qpn−r)(1− qpn−p+r)

)2

=
1

p

∞∑
N=1

 ∑
d|pN−r2, d>0

d≡r mod p

(
d+

pN − r2

d

) qN .

(9) For p > 2, ω = e2πi/p, 2a /≡ 0 mod p, we have
∞∏
n=1

(1− qn)6(1− ω2aqn)(1− ω−2aqn)

(1− ωaqn)4(1− ω−aqn)4

= 1 + 2iω−a
(1− ωa)4

(1− ω2a)

∞∑
n=1

(
sin

2πan

p

)
n2qn

1− qn
.

Proof. We refer to [1, (10.6), (19.4), (19.5), (31.15), (32.48), (32.49), (18.85), (31.5) and
(18.87)] respectively. �

Now we restate the above identities in terms of Klein forms. For example, the q-product
in Proposition 1 (1) is, up to a trivial factor, equal to 1/K( r

p
0)(pτ) by (K4). Hence the

corresponding identity between a q-product and a q-series can be readily interpreted as an
explicit formula for the Fourier coefficients of the modular form 1/K( r

p
0)(τ) of weight 1 for

some sufficiently large level.

Theorem 2. (1) For N > 1, let 0 < r < N satisfy (r, 2N) = 1. Then we have

K−1
( r

N
0)(τ) = −2πi

∑
n≥r(N−r)

n≡r(N−r) mod 2N

Er(n; 2N)qn2N2 .

Furthermore, K−1
( r

N
0)(τ) is a holomorphic modular form of weight 1 for Γ1(2N) ∩ Γ0(2N2)

if N is even, and for Γ1(N) ∩ Γ0(N2) if N is odd.
(2) For N > 2, let r1 > 0, r2 > 0 satisfy N

(N,r1)
> 2, r1 + r2 < N , (N, r1)|r2. Then we have

K
(

r1+r2
N

s
N

)
(τ)

K(
r1
N

0)(τ)K(
r2
N

s
N

)(τ)
= −2πieπir1s/N

2 ·

∑
n≥ r1r2

(N,r1)2

n≡ r1r2
(N,r1)2

mod N
(N,r1)


N

(N,s)
−1∑

m=0

e2πims/NEmN+r1
(N,r1)

(n;
N2

(N, r1)(N, s)
)

 qn N2

(N,r1)2

.
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And, if we let α =

(
N2

(N,r1)(N,r2)
0

0 1

)
and Γ = Γ1(

N2

(N,r1)(N,s)
) ∩ Γ0(

N3

(N,r1)(N,r2)(N,s)
), then

K
(

r1+r2
N

s
N

)
(τ)

K
(

r1
N

0)
(τ)K

(
r2
N

s
N

)
(τ)

is a holomorphic modular form of weight 1 for αΓα−1.

(3) Let N > 1, 0 < r < N and s /≡ 0 mod N . Then we have

K( r
N

s
N

)(τ)

K( r
N

0)(τ)K(0 s
N

)(τ)
= −2πieπirs/N

2·

 1

1− e2πis/N
+
∞∑
n=1


N

(N,s)
−1∑

m=0

e2πims/NEmN+r
(N,r)

(n;
N2

(N, r)(N, s)
)

 qnN
(N,r)

 .

If we let α =

(
N

(N,r)
0

0 1

)
, then

K( r
N

s
N

)(τ)

K( r
N

0)(τ)K(0 s
N

)(τ)
is a holomorphic modular form of weight 1

for αΓ1(
N2

(N,r)(N,s)
)α−1.

(4) For N > 1, let 0 < r < N satisfy (N, r) = 1. Then we have

K( r
N

0)(τ)

K(0 1
2
)(τ)K( r

N
1
2
)(τ)

= −2πie−πir/(2N)

(
−1

2
+
∞∑
n=1

(
Er,N−r(n; 2N)− 2Er,N−r(

n

2
; 2N)

)
qnN

)
.

Moreover, if we let α =

(
N 0
0 1

)
and Γ = Γ1(2N) ∩ Γ0(4N), then

K( r
N

0)(τ)

K
(0 1

2 )
(τ)K

( r
N

1
2 )

(τ)
is a

holomorphic modular form of weight 1 for αΓα−1.
(5) For N > 1, let 0 < r < N satisfy (N, r) = 1. Then we have

K( 1
4
+ r

2N
0)(4τ)

K( 1
4

0)(4τ)K( r
N

0)(τ)
= −2πi

(
1 +

∞∑
n=1

Er,N−r,N+r,2N−r(n; 4N)qnN

)
.

If we let α =

(
N 0
0 1

)
, then

K
( 1
4+ r

2N
0)

(4τ)

K
( 1
4 0)

(4τ)K( r
N

0)(τ)
is a holomorphic modular form of weight 1

for αΓ1(4N)α−1.
(6) For N > 2, let 0 < r < N satisfy (N, r) = 1. Then we have

K( 1
4
− r

2N
0)(4τ)

K( 1
4

0)(4τ)K( r
N

0)(τ)
= −2πi

∞∑
n=1

Er,2N−r,3N−r,3N+r(n; 4N)qnN .

And, if we let α =

(
N 0
0 1

)
, then

K
( 1
4−

r
2N

0)
(4τ)

K
( 1
4 0)

(4τ)K( r
N

0)(τ)
is a holomorphic modular form of weight

1 for αΓ1(4N)α−1.
(7) Let N > 3, s1 /≡ 0 mod N , s2 /≡ 0 mod N and s1 /≡ ±s2 mod N . Then we have

K
(0

s1+s2
N

)
(τ)K

(0
s1−s2

N
)
(τ)

K2
(0

s1
N

)
(τ)K2

(0
s2
N

)
(τ)

= (−2πi)2·
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(1− e2πis1/N)2(1− e2πis2/N)2
+ 2

∞∑
n=1

 ∑
d|n, d>0

(
cos

2πs2d

N
− cos

2πs1d

N

)
d

 qn

 .

Furthermore,
K

(0
s1+s2

N
)
(τ)K

(0
s1−s2

N
)
(τ)

K2

(0
s1
N

)
(τ)K2

(0
s2
N

)
(τ)

is a holomorphic modular form of weight 2 for Γ1(N).

(8) For N > 1, let 0 < r < N satisfy (N, r) = 1. Then we have

K−2
( r

N
0)(τ) = (−2πi)2 1

N

∑
n≥N−r2

n≡−r2 mod N

 ∑
d|n, d>0

d≡r mod N

(
d+

n

d

) qnN2 .

And, K−2
( r

N
0)(τ) is a holomorphic modular form of weight 2 for Γ1(N) ∩ Γ0(N2).

(9) Let N > 2 and 2s /≡ 0 mod N . Then we have

K(0 2s
N

)(τ)

K4
(0 s

N
)(τ)

= (−2πi)3

e2πis/N (1− e4πis/N)

(1− e2πis/N)4
+ 2i

∞∑
n=1

 ∑
d|n, d>0

d2 sin
2πsd

N

 qn

 .

Furthermore,
K

(0 2s
N

)
(τ)

K4
(0 s

N
)
(τ)

is a holomorphic modular form of weight 3 for Γ1(N).

Proof. All the identities in the theorem can be obtained by Proposition 1 and (K4). So it is
enough to prove whether the left hand sides are indeed modular forms.

(1) We restrict ourselves to the case when N is odd, because the proofs are similar. If we

let γ =

(
1 + aN bN2

c 1 + dN

)
∈ Γ1(N) ∩ Γ0(N2), then by (K1) and (K2) we have

(K−1
( r

N
0)|1γ)(τ) = K−1

( r
N

+ar brN)(τ) = (−1)abr
2N+ar+brN+br2K−1

( r
N

0)(τ) = K−1
( r

N
0)(τ).

Since K−1
( r

N
0)(τ) is holomorphic at all cusps by (K4), we achieve the assertion.

(2) For convenience, set f(τ) =
K

(
r1+r2

N
s
N

)
(τ)

K
(

r1
N

0)
(τ)K

(
r2
N

s
N

)
(τ)

. Let γ =

(
1 + a′ b′

c′ 1 + d′

)
∈ αΓα−1.

Then a′ ≡ d′ ≡ 0 mod N2

(N,r1)(N,s)
, b′ ≡ 0 mod N2

(N,r1)(N,r2)
, c′ ≡ 0 mod N

(N,s)
and a′ + d′ + a′d′ −

b′c′ = 0. By (K1) and (K2) we derive

(f |1γ)(τ) = e2πi(
r1r2
N2 b′(a′+1)+

r1s

N2 (b′c′−a′))f(τ) = f(τ).

Now let ρ = (a b
c d) ∈ SL2(Z). Then we establish by (K1) and (K4)

ordq(f |1ρ)(τ) =

{
〈 r1
N
a〉〈 r2

N
a+ s

N
c〉 , if 〈 r1

N
a〉+ 〈 r2

N
a+ s

N
c〉 < 1

(1− 〈 r1
N
a〉)(1− 〈 r2

N
a+ s

N
c〉) , otherwise.

Therefore f(τ) is holomorphic at all cusps.
(3) The statement concerning holomorphic modular form can be deduced from the ar-

gument as in (2) by taking r2 = 0, because the condition r2 > 0 is not necessary for the
proof.
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(4) For convenience, put f(τ) =
K( r

N
0)(τ)

K
(0 1

2 )
(τ)K

( r
N

1
2 )

(τ)
. And, let γ =

(
1 + a′ b′

c′ 1 + d′

)
∈ αΓα−1.

Then a′ ≡ d′ ≡ 0 mod 2N , b′ ≡ 0 mod N , c′ ≡ 0 mod 4 and a′+d′+a′d′− b′c′ = 0. By (K2)
we get

(f |1γ)(τ) = eπi(
r
N

(b′c′−d′)+ c′
2

)f(τ) = f(τ).

Now let ρ = (a b
c d) ∈ SL2(Z). Then it follows from (K1) and (K4) that

ordq(f |1ρ)(τ) =

{
〈 c

2
〉(1− 〈 r

N
a〉 − 〈 c

2
〉) , if 〈 r

N
a〉+ 〈 c

2
〉 < 1

(1− 〈 c
2
〉)(〈 r

N
a〉+ 〈 c

2
〉 − 1) , otherwise.

Thus f(τ) is holomorphic at all cusps.

(5) Let f(τ) =
K

( 1
4+ r

2N
0)

(4τ)

K
( 1
4 0)

(4τ)K( r
N

0)(τ)
and γ =

(
1 + a′ b′

4c′ 1 + d′

)
∈ αΓ1(4N)α−1. Then a′ ≡

d′ ≡ 0 mod 4N , b′ ≡ 0 mod N . We see from (K2) that

(f |1γ)(τ) = (−1)−
r
N
b′eπi

r
N
b′f(τ) = f(τ).

Now let ρ = (a b
c d) ∈ SL2(Z), and let y′, w ∈ Z satisfy c

(c,4)
y′ + 4

(c,4)
w = d. Furthermore we

let y = (c, 4)b− ay′. Then we deduce(
4 0
0 1

)(
a b
c d

)(
(c, 4) y′

0 4
(c,4)

)−1

=

( 4
(c,4)

a y
c

(c,4)
w

)
∈ SL2(Z).

Since (f |1ρ)(τ) =
K

( a
(c,4)

+ 2
(c,4)

r
N

a ∗)(
(c,4)2

4
τ+

(c,4)
4
y′)

K( a
(c,4)

∗)(
(c,4)2

4
τ+

(c,4)
4
y′)K( r

N
a ∗)(τ)

, we have

ordq(f |1ρ)(τ) = 1
2

(
(c,4)2

4

(
〈 a

(c,4)
+ 2

(c,4)
r
N
a〉2 − 〈 a

(c,4)
+ 2

(c,4)
r
N
a〉 − 〈 a

(c,4)
〉2 + 〈 a

(c,4)
〉
)

−〈 r
N
a〉2 + 〈 r

N
a〉
)
.

Thus we obtain

ordq(f |1ρ)(τ) =



1
4
〈 r
N
a〉 , if (c, 4) = 1 and 〈 r

N
a〉 < 1

2
1
4
(1− 〈 r

N
a〉) , if (c, 4) = 1 and 〈 r

N
a〉 ≥ 1

2
1
2
〈 r
N
a〉 , if (c, 4) = 2 and 〈 r

N
a〉 < 1

2
1
2
(1− 〈 r

N
a〉) , if (c, 4) = 2 and 〈 r

N
a〉 ≥ 1

2
1
2
〈 r
N
a〉(4〈 a

(c,4)
〉 − 1) , if (c, 4) = 4 and 〈 a

(c,4)
〉+ 1

2
〈 r
N
a〉 < 1

1− 〈 r
N
a〉 , if (c, 4) = 4 and 〈 a

(c,4)
〉+ 1

2
〈 r
N
a〉 ≥ 1.

Hence f(τ) is holomorphic at all cusps.
(6) The assertion concerning holomorphic modularity can be obtained from the argument

of (5) by using (K0), because the condition r > 0 is not necessary for the proof.

(7) For convenience, we let f(τ) =
K

(0
s1+s2

N
)
(τ)K

(0
s1−s2

N
)
(τ)

K2

(0
s1
N

)
(τ)K2

(0
s2
N

)
(τ)

. By (K5) we see that f(τ) is

a modular form of weight 2 for Γ(N). And by (K1) we get f |2(1 1
0 1) = f . Hence f(τ) is a
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modular form of weight 2 for Γ1(N), because Γ1(N) = 〈Γ(N), (1 1
0 1)〉. Now let ρ = (a b

c d) ∈

SL2(Z). Since (f |2ρ)(τ) =
K

(
s1+s2

N
c ∗)

(τ)K
(

s1−s2
N

c ∗)
(τ)

K2

(
s1
N

c ∗)
(τ)K2

(
s2
N

c ∗)
(τ)

, we have by (K4)

ordq(f |2ρ)(τ) =

{
min{〈 s1

N
c〉, 〈 s2

N
c〉} , if 〈 s1

N
c〉+ 〈 s2

N
c〉 < 1

1−max{〈 s1
N
c〉, 〈 s2

N
c〉} , otherwise.

Therefore, f(τ) is holomorphic at all cusps.

(8) Let γ =

(
1 + aN bN2

c 1 + dN

)
∈ Γ1(N) ∩ Γ0(N2). Then by (K1) and (K2) we derive

(K−2
( r

N
0)|2γ)(τ) = K−2

( r
N

+ar brN)(τ) = e−2πibrN · r
NK−2

( r
N

0)(τ) = K−2
( r

N
0)(τ).

Thus we obtain the conclusion.

(9) For convenience, we let f(τ) =
K

(0 2s
N

)
(τ)

K4
(0 s

N
)
(τ)

. We see by (K5) that f(τ) is a modular form

of weight 3 for Γ(N). And by (K1) we have f |3(1 1
0 1) = f . Hence f(τ) is a modular form

of weight 3 for Γ1(N), because Γ1(N) = 〈Γ(N), (1 1
0 1)〉. Now let ρ = (a b

c d) ∈ SL2(Z). Since

(f |3ρ)(τ) =
K

( 2s
N

c ∗)(τ)

K4
( s

N
c ∗)(τ)

, we establish by (K4)

ordq(f |3ρ)(τ) =

{
〈 s
N
c〉 , if 〈 s

N
c〉 < 1

2
1− 〈 s

N
c〉 , otherwise.

Hence we deduce the assertion. �

Here we remark that in the theory of elliptic functions Silverman ([5]) introduced certain
generalizations of Theorem 2 (7), (9) as follows.

Theorem 3. (1) Let (r1 s1), (r2 s2) ∈ Z2−NZ2 satisfy (r1 s1)± (r2 s2) ∈ Z2−NZ2. Then
we have

K
(

r1+r2
N

s2+s2
N

)
(τ)K

(
r1−r2

N
s2−s2

N
)
(τ)

K2
(

r1
N

s1
N

)
(τ)K2

(
r2
N

s2
N

)
(τ)

= (−2πi)2

(∑
n∈Z

ζs2N q
r2+Nn
N

(1− ζs2N q
r2+Nn
N )2

−
∑
n∈Z

ζs1N q
r1+Nn
N

(1− ζs1N q
r1+Nn
N )2

)
.

(2) Let (r s) ∈ Z2 satisfy (2r 2s) ∈ Z2 −NZ2. Then we have

K( 2r
N

2s
N

)(τ)

K4
( r

N
s
N

)(τ)
= (−2πi)3

∑
n∈Z

ζsNq
r+Nn
N (1 + ζsNq

r+Nn
N )

(1− ζsNq
r+Nn
N )3

.

Proof. These are restatements of [5, Corollary 5.6 and Theorem 6.2 in Chapter I]. �

The modular forms described in Theorem 2 can be used when we construct a basis of
Mk(Γ1(N)) for some level N . To this end we first recall the dimension formulas of Mk(Γ1(N))
for k = 1, 2.

Lemma 4. Let N > 2 be an integer. Then we have the following dimension formulas.
(1) If 12

∑
d|N, d>0 φ(d)φ(N

d
) > φ(N)N

∏
p|N(1 + 1

p
), then we obtain

dimM1(Γ1(N)) =

{
1 , if N = 4
1
4

∑
d|N, d>0 φ(d)φ(N

d
) , otherwise.
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(2)

dimM2(Γ1(N)) =


1 , if N = 3
2 , if N = 4
1
4

∑
d|N, d>0 φ(d)φ(N

d
) + φ(N)N

24

∏
p|N(1 + 1

p
) , if N ≥ 5.

Proof. See [4, §2.6]. �

Proposition 5. (1) Let (p, q) ∈ {(3, 2), (5, 2), (7, 2), (11, 2), (13, 2)}. Then M1(Γ1(pq)) has

a basis {f (r,s)
pq (τ), g

(r,s)
pq (τ) | 1 ≤ r ≤ p−1

2
, 1 ≤ s ≤ q − 1}, where

f (r,s)
pq (τ) = 1 + (1− e2πis/q)

∞∑
n=1

(
q−1∑
m=0

e2πims/qEmp+r(n; pq)

)
qn

g(r,s)
pq (τ) = 1 + (1− e2πir/p)

∞∑
n=1

(
p−1∑
m=0

e2πimr/pEmq+s(n; pq)

)
qn.

(2) M1(Γ1(3)) has a basis {f3,1(τ)}, where

f3,1(τ) = 1 + 6
∞∑
n=1

E1(n; 3)qn.

(3) M1(Γ1(4)) has a basis {f4,1(τ)}, where

f4,1(τ) = 1 + 4
∞∑
n=1

E1(n; 4)qn.

(4) M1(Γ1(8)) has a basis {f8,1(τ), f8,2(τ), f8,3(τ)}, where

f8,1(τ) = 1 + 4
∞∑
n=1

E1(n; 4)qn

f8,2(τ) =
∑
n≥1

n≡1 mod 4

E1(n; 4)qn

f8,3(τ) = 1 + 2
∞∑
n=1

E1,3(n; 8)qn.
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(5) M1(Γ1(9)) has a basis {f9,1(τ), f9,2(τ), f9,3(τ), f9,4(τ)}, where

f9,1(τ) = 1 + 6
∞∑
n=1

E1(n; 3)qn

f9,2(τ) =
∑
n≥1

n≡1 mod 3

E1(2n; 6)qn

f9,3(τ) = 1 + (1− e2πi/3)
∞∑
n=1

(
E1(n; 9) + e2πi/3E4(n; 9) + e4πi/3E7(n; 9)

)
qn

f9,4(τ) = 1 + (1− e4πi/3)
∞∑
n=1

(
E1(n; 9) + e4πi/3E4(n; 9) + e2πi/3E7(n; 9)

)
qn.

(6) M1(Γ1(12)) has a basis {f12,1(τ), f12,2(τ), f12,3(τ), f12,4(τ), f12,5(τ)}, where

f12,1(τ) = 1 + 4
∞∑
n=1

E1(n; 4)qn

f12,2(τ) = 1 + 2
∞∑
n=1

E1,2(n; 6)qn

f12,3(τ) = 1 + 3
∞∑
n=1

E1(n; 6)qn

f12,4(τ) = 1 +
∞∑
n=1

E1,2,4,5(n; 12)qn

f12,5(τ) =
∞∑
n=1

E1,5,8,10(n; 12)qn.

(7) M2(Γ1(4)) has a basis {f(τ), g(τ)}, where

f(τ) =
∑
n≥1

n≡1 mod 2

 ∑
d|n, d>0

d

 qn

g(τ) = 1 + 8
∞∑
n=1

 ∑
d|n, d>0

(
cosπd− cos

πd

2

)
d

 qn.

Proof. By Theorem 2 (3) we have
K

( 1
2

1
2 )

(2τ)

K
( 1
2 0)

(2τ)K
(0 1

2 )
(2τ)

= −2πieπi/4(1
2

+ 2
∑∞

n=1E1(n; 4)qn) ∈
M1(Γ1(4)). And it follows from Lemma 4 (1) that dimM1(Γ1(4)) = 1, which immediately
implies the assertion (3).
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We see that f4,1(τ) ∈ M1(Γ1(4)) ⊂ M1(Γ1(8)), and we have two more modular forms in
M1(Γ1(8)) by Theorem 2 (1) and (3) such as

K−1
( 1
2

0)
(8τ) = −2πi

∑
n≥1

n≡1 mod 4

E1(n; 4)qn

= −2πi(q + 2q5 + · · · )
K( 1

2
1
4
)(2τ)

K( 1
2

0)(2τ)K(0 1
4
)(2τ)

= −2πi(1 + i)eπi/8

(
1

2
+
∞∑
n=1

(
E1(n; 8) + E3(n; 8)

)
qn

)
= −2πi(1 + i)eπi/8(

1

2
+ q + q2 + 2q3 + · · · ).

By inspecting their Fourier coefficients we are sure that these three modular forms are linearly
independent over C. Since dimM1(Γ1(8)) = 3 by Lemma 4 (1), we obtain the assertion (4).

For two primes p, q with p > q, and 1 ≤ r ≤ p−1
2

, 1 ≤ s ≤ q− 1, we get by Theorem 2 (3)
that

K( r
p

s
q
)(pτ)

K( r
p

0)(pτ)K(0 s
q
)(pτ)

= −2πieπirs/(pq)

(
1

1− e2πis/q
+
∞∑
n=1

(
q−1∑
m=0

e2πims/qEmp+r(n; pq)

)
qn

)
K( s

q
r
p
)(qτ)

K( s
q

0)(qτ)K(0 r
p
)(qτ)

= −2πieπirs/(pq)

(
1

1− e2πir/p
+
∞∑
n=1

(
p−1∑
m=0

e2πimr/pEmq+s(n; pq)

)
qn

)

are holomorphic modular forms of weight 1 for Γ1(pq). For (p, q) = (3, 2), (5, 2), (7, 2), (11, 2)
and (13, 2), we can verify with the aid of computer that the above (p − 1)(q − 1) modular
forms are linearly independent over C. Thus for those (p, q) we have dimM1(Γ1(pq)) =
(p− 1)(q − 1) by Lemma 4 (1), and hence we achieve the assertion (1).

For those (p, 2) in the hypothesis of (1), we might explicitly find a basis of M1(Γ1(p)) by
means of a basis of M1(Γ1(2p)) together with the observation that M1(Γ1(p)) ⊂ M1(Γ1(2p))

and Γ1(p) = 〈 Γ1(2p),

(
1 + p 1
p 1

)
,

(
1 1
p 1 + p

)
,

(
1 + p −p
p 1− p

)
〉. Indeed, for p = 3 we

have a basis {f (1,1)
6 (τ), g

(1,1)
6 (τ)} of M1(Γ1(6)), which are given by

f
(1,1)
6 (τ) = 1 + 2

∞∑
n=1

(E1(n; 6)− E4(n; 6))qn

= 1 + 2q + 4q2 + 2q3 + · · ·

g
(1,1)
6 (τ) = 1 + 3

∞∑
n=1

E1(n; 6)qn

= 1 + 3q + 3q2 + 3q3 + · · · .

Since M1(Γ1(3)) ⊂ M1(Γ1(6)) and dimM1(Γ1(3)) = 1, it can be checked out that M1(Γ1(3))

= Cf(τ) where f(τ) = −3f
(1,1)
6 (τ) + 4g

(1,1)
6 (τ). So we get the assertion (2).
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We know that f3,1(τ) ∈ M1(Γ1(3)) ⊂ M1(Γ1(9)), and we have three more modular forms
in M1(Γ1(9)) by Theorem 2 (1) and (3) which are

K−1
( 1
3

0)
(9τ) = −2πi

∑
n≥1

n≡1 mod 3

E1(2n; 6)qn

= −2πi(q + q4 + · · · )
K( 1

3
1
3
)(3τ)

K( 1
3

0)(3τ)K(0 1
3
)(3τ)

= −2πieπi/9

(
1

1− e2πi/3
+
∞∑
n=1

(
2∑

m=0

e2πim/3E3m+1(n; 9)

)
qn

)

= −2πieπi/9
(

1

1− e2πi/3
+ q + (1− e4πi/3)q2 + q3 + · · ·

)
K( 1

3
2
3
)(3τ)

K( 1
3

0)(3τ)K(0 2
3
)(3τ)

= −2πie2πi/9

(
1

1− e4πi/3
+
∞∑
n=1

(
2∑

m=0

e4πim/3E3m+1(n; 9)

)
qn

)

= −2πie2πi/9
(

1

1− e4πi/3
+ q + (1− e2πi/3)q2 + q3 + · · ·

)
.

Since these four modular forms are linearly independent over C by checking their Fourier
coefficients and dimM1(Γ1(9)) = 4 by Lemma 4 (1), we conclude the assertion (5).

We have f4,1(τ) ∈M1(Γ1(4))⊂M1(Γ1(12)), and f
(1,1)
6 (τ), g

(1,1)
6 (τ) ∈M1(Γ1(6))⊂M1(Γ1(12)),

and further we have two modular forms in M1(Γ1(12)) by Theorem 2 (5) and (6), which are

K( 5
12

0)(12τ)

K( 1
4

0)(12τ)K( 1
3

0)(3τ)
= −2πi

(
1 +

∞∑
n=1

E1,2,4,5(n; 12)qn

)
K( 1

12
0)(12τ)

K( 1
4

0)(12τ)K( 1
3

0)(3τ)
= −2πi

∞∑
n=1

E1,5,8,10(n; 12)qn.

These five modular forms are also linearly independent over C by investigating their Fourier
coefficients, and so they form a basis of M1(Γ1(12)) because dimM1(Γ1(12)) = 5. Therefore
we have the assertion (6).

Note that we have two modular forms in M2(Γ1(4)) by Theorem 2 (8) and (7), which are

K−2
( 1
2

0)
(4τ) = (−2πi)2 1

2

∑
n≥1

n≡1 mod 2

 ∑
d|n, d>0

(d+
n

d
)

 qn

K(0 3
4
)(τ)K(0 1

4
)(τ)

K2
(0 2

4
)
(τ)K2

(0 1
4
)
(τ)

= (−2πi)2

−1

4
+ 2

∞∑
n=1

 ∑
d|n, d>0

(
cos

πd

2
− cos πd

)
d

 qn

 .

Since these are linearly independent over C again by inspecting their Fourier coefficients and
dimM2(Γ1(4)) = 2 by Lemma 4 (2), we derive the conclusion (7). �
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4. Some applications

Even though all the results in this section are well-known by means of either class field
theory or standard approach via local density, we revisit the numbers of representations by
quadratic forms as applications of Proposition 5.

We first briefly review theta functions. Let A ∈ Mr(Z) be a positive definite symmetric
matrix of size r over Z with even diagonal and Q be a quadratic form associated with A,
namely

Q(x) =
1

2
txAx

for a column vector x = t(x1 · · · xr) ∈ Zr of size r.
We then define the theta function θQ(τ) associated with Q by

θQ(τ) =
∑
m∈Zr

e2πiQ(m)τ =
∞∑
n=0

rQ(n)qn,

where rQ(n) is the number of representations of a nonnegative integer n by a quadratic form
Q, namely

rQ(n) = |{m ∈ Zr | Q(m) = n}|.
Here we take a positive integer N satisfying NA−1 ∈ Mr(Z).

Lemma 6. With the notation as above, we further assume that r is even. If all the diagonal
entries of NA−1 are even, then θQ(τ) is a holomorphic modular form of weight r

2
for Γ1(N).

In particular, θQ(τ) is a holomorphic modular form of weight r
2

for Γ1(2N).

Proof. We refer the reader to [3, Corollary 4.9.5]. �

If Q(x) = x2
1 + x1x2 + x2

2, then θQ(τ) ∈ M1(Γ1(3)) by Lemma 6. Since we know a basis of
M1(Γ1(3)) by Proposition 5 (2), we conclude that

rQ(n) = 6E1(n; 3) (n > 0).

In particular for a prime p, we deduce

p = x2
1 + x1x2 + x2

2 ⇐⇒ p = 3 or p ≡ 1 mod 3.

Since 1
6
rQ(n) = E1(n; 3) =

∑
d|n, d>0

(
d
3

)
is multiplicative, we also have a different simple

expression of rQ(n) as follows. Let n = 3t
∏a

i=1 p
ri
i

∏b
j=1 q

sj

j be the prime factorization of n
with pi ≡ 1 mod 3, qj ≡ 2 mod 3 for all i, j. Then we have

rQ(n) = 6
a∏
i=1

(ri + 1)
b∏

j=1

1 + (−1)sj

2
(n > 0).

Similarly as for Q(x) = x2
1 + x2

2 we have θQ(τ) ∈ M1(Γ1(4)); hence we obtain

rQ(n) = 4E1(n; 4) (n > 0).



MODULAR FORMS ARISING FROM DIVISOR FUNCTIONS 15

And, for Q(x) = x2
1 + 2x2

2 we see that θQ(τ) = af8,1(τ) + bf8,2(τ) + cf8,3(τ) ∈ M1(Γ1(8))
with some constants a, b, c. Since rQ(0) = 1 and rQ(1) = rQ(2) = 2, we get that a = b = 0
and c = 1, and hence we derive

rQ(n) = 2E1,3(n; 8) (n > 0).

In like manner, if Q(x) = x2
1 +3x2

2, then we have θQ(τ) = −2f12,2(τ)+2f12,3(τ)+f12,4(τ)−
f12,5(τ) ∈ M1(Γ1(12)); hence we get

rQ(n) = 2E1(n; 3) + 4E1(
n

4
; 3) (n > 0).

Next, if Q(x) = x2
1 + x1x2 + 2x2

2, we have θQ(τ) ∈ M1(Γ1(7)). Since we have a ba-
sis of M1(Γ1(14)) by Proposition 5 (1), we can express θQ(τ) as a linear combination of

f
(1,1)
14 (τ), · · · , g(3,1)

14 (τ). Indeed, we achieve by routine computation that θQ(τ) = −f (1,1)
14 (τ) +

f
(2,1)
14 (τ)+f

(3,1)
14 (τ)−8

7
(cos π

7
+cos 2π

7
)g

(1,1)
14 (τ)+8

7
(cos 2π

7
+cos 3π

7
)g

(2,1)
14 (τ)+8

7
(cos π

7
−cos 3π

7
)g

(3,1)
14 (τ).

Thus we deduce

rQ(n) = 2E1,2,4(n; 7) (n > 0).

In particular for a prime p, we have

p = x2
1 + x1x2 + 2x2

2 ⇐⇒ p = 7 or p ≡ 1, 2, 4 mod 7.

Since 1
2
rQ(n) = E1,2,4(n; 7) =

∑
d|n, d>0

(
d
7

)
is multiplicative, we can deduce other simple

expression of rQ(n) as follows. Let n = 7t
∏a

i=1 p
ri
i

∏b
j=1 q

sj

j be the prime factorization of n
with pi ≡ 1, 2, 4 mod 7, qj ≡ 3, 5, 6 mod 7 for all i, j. Then we have

rQ(n) = 2
a∏
i=1

(ri + 1)
b∏

j=1

1 + (−1)sj

2
(n > 0).

As for Q(x) = x2
1 + x1x2 + 3x2

2 we have θQ(τ) ∈ M1(Γ1(11)) by Lemma 6. Since we have

a basis of M1(Γ1(22)), we can express θQ(τ) as a linear combination of f
(1,1)
22 , · · · , g(5,1)

22 in
Proposition 5. With the help of computer we can see that there exist somewhat complicated
constants a1, · · · , a5 such that

θQ(τ) = −f (1,1)
22 (τ)− f (2,1)

22 (τ)− f (3,1)
22 (τ) + f

(4,1)
22 (τ)− f (5,1)

22 (τ) +
5∑
r=1

arg
(r,1)
22 (τ)

= 1 + 2
∞∑
n=1

E1,3,4,5,9(n; 11)qn.

In particular for a prime p, we have

p = x2
1 + x1x2 + 3x2

2 ⇐⇒ p = 11 or p ≡ 1, 3, 4, 5, 9 mod 11.

Since 1
2
rQ(n) = E1,3,4,5,9(n; 11) =

∑
d|n, d>0

(
d
11

)
is multiplicative, we also have simple expres-

sion of rQ(n) as follows. Let n = 11t
∏a

i=1 p
ri
i

∏b
j=1 q

sj

j be the prime factorization of n with
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pi ≡ 1, 3, 4, 5, 9 mod 11, qj ≡ 2, 6, 7, 8, 10 mod 11 for all i, j. Then we have

rQ(n) = 2
a∏
i=1

(ri + 1)
b∏

j=1

1 + (−1)sj

2
(n > 0).

Lastly, since θQ(τ) ∈ M2(Γ1(4)) for Q(x) = x2
1 + x2

2 + x2
3 + x2

4, we see from Proposition 5
(7) that θQ(τ) = 16f(τ) + g(τ). Therefore we rediscover that for n ∈ Z>0

rQ(n) =

{
8
∑

d|n, d>0 d if n is odd

8
∑

d|n,d>0(cos πd− cos πd
2

)d if n is even.
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