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Abstract

Let K be an imaginary quadratic field other than Q(
√−1) and Q(

√−3) with discriminant
dK . We first construct primitive generators of the ring class fields over K of the orders
of certain bounded conductors depending on dK by making use of the singular values
of Siegel functions unlike the classical cases. Next, denoting by K(N) the ray class field
modulo N of K for an integer N > 2 we consider the field extension K(p2m)/K(pm) for a
prime p > 5 and an integer m > 1 relatively prime to p and then find normal bases of all
intermediate fields over K(pm) also via the singular values of Siegel functions as algebraic
integers. Furthermore, we investigate certain Galois module structure of the field extension
K(pnm)/K(p`m) with n > 2`, which would be an extension of Komatsu’s work([Kom94]).

1. Introduction

Let K be an imaginary quadratic field and HO be the ring class field of the order O of conductor
N > 2 in K. In number theory the ring class fields over imaginary quadratic fields play an important
role in the study of certain quadratic Diophantine equations. For example, let n be a positive integer
and HO be the ring class field of the order O = Z[

√−n] in K = Q(
√−n). If p is an odd prime not

dividing n, then we have the following assertions:

p = x2 + ny2 is solvable for some integers x and y

⇐⇒ p splits completely in HO

⇐⇒
{

the Legendre symbol
(−n

p

)
= 1 and

fn(X) ≡ 0 (mod p) has an integer solution

where fn(X) is the minimal polynomial of a real algebraic integer α for which HO = K(α)([Cox89]).
Given an imaginary quadratic field K, it is a classical result by the main theorem of complex

multiplication that for any proper fractional O-ideal a, the j-invariant j(a) is an algebraic integer
and generates HO over K([Lan87] or [Shi71]). Unlike the classical case, however, Chen-Yui([CY96])
constructed a generator of the ring class field of certain conductor in terms of the singular value of
the Thompson series which is a Hauptmodul for Γ0(N) or Γ0(N)†. Here, Γ0(N) =

{
γ ∈ SL2(Z) :

γ ≡ ( ∗ ∗0 ∗ ) (mod N)
}

and Γ†0(N) is the subgroup of SL2(R) generated by Γ0(N) and
(

0 −1/
√

N√
N 0

)
.

Similarly, Cox-Mckay-Stevenhagen([CMS04]) showed that certain singular value of a Hauptmodul
for Γ0(N) or Γ0(N)† with rational Fourier coefficients generates HO over K. Furthermore, Cho-
Koo([CK]) recently revisited and extended their results by using the theory of Shimura’s canonical
models and his reciprocity law. On the other hand, as we see in the above example, it is essen-
tial to find the minimal polynomial of j(O) over K, namely, the class equation of O in order to
solve such quadratic equations. Although there are several known algorithms for finding the class
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equations([CY96], [Cox89], [KY91], [Mor88]), these seem to be more or less complicated to calculate
or inconvenient in practical use.

In this paper we shall first construct a ring class invariant of HO over K under the condition

dK 6 −43 and 2 6 N 6 −√3π

ln
(
1− 2.16e−

π
√−dK

24

)

in terms of the singular values of Siegel functions and also systematically find its minimal polyno-
mial(Theorem 4.5, Remark 4.7, Theorem 3.5 and Remark 4.8) by adopting Gee’s idea([Gee99]).

Next, as for normal bases, after Okada([Oka80]) had constructed normal bases of the ray class
fields over the Gaussian field Q(

√−1), several other people treated the problem of generating normal
bases of abelian extensions of other imaginary quadratic fields by special values of elliptic functions
or elliptic modular functions([Cha87], [Kom94], [Sch91], [Tay85]). And, Jung-Koo-Shin([JKS]) re-
cently found normal bases of the ray class fields over any imaginary quadratic field with discriminant
6 −7 by utilizing Siegel functions. We shall consider in this paper the extension K(p2m)/K(pm) for
a prime p > 5 and an integer m > 1 relatively prime to p and construct a normal basis of F
over K(pm) for each intermediate field F via the singular values of Siegel functions as algebraic
integers(Theorem 5.7 and Theorem 5.8). And, we shall further discuss in Section 6 certain Galois
module structure of the ring of p-integers of K(pnm) over that of K(p`m) where n and ` are positive
integers with n > 2`, which is motivated by a relation between the existence of normal basis in
Zp-extension and Greenberg’s conjecture([FN91], [FK91]).

2. Field of modular functions

In this section we briefly review some necessary arithmetic properties of Siegel functions as modular
functions.

For a positive integer N , let ζN = e
2πi
N and FN be the field of modular functions of level N whose

Fourier coefficients with respect to e
2πiτ

N (τ ∈ H = {τ ∈ C : Im(τ) > 0}) belong to Q(ζN ). Then
FN is a Galois extension of F1 = Q(j(τ))(j=the elliptic modular function) whose Galois group is
isomorphic to GL2(Z/NZ)/

{ ± ( 1 0
0 1 )

}
. In order to describe the Galois action on the field FN we

consider the decomposition of the group

GL2(Z/NZ)/
{± ( 1 0

0 1 )
}

=
{ (

1 0
0 d

)
: d ∈ (Z/NZ)∗

} · SL2(Z/NZ)/
{± ( 1 0

0 1 )
}
.

Here, the matrix
(

1 0
0 d

)
acts on

∑∞
n=−∞ cne

2πinτ
N ∈ FN by

∞∑
n=−∞

cne
2πinτ

N 7→
∞∑

n=−∞
cσd
n e

2πinτ
N (2.1)

where σd is the automorphism ofQ(ζN ) induced by ζN 7→ ζd
N . And, for an element γ ∈ SL2(Z/NZ)/

{±
( 1 0

0 1 )
}

let γ′ ∈ SL2(Z) be a preimage of γ via the natural surjection SL2(Z) → SL2(Z/NZ)
{±( 1 0

0 1 )
}
.

Then γ acts on h ∈ FN by composition
h 7→ h ◦ γ′ (2.2)

as linear fractional transformation([Lan87] or [Shi71]).
For any pair (r1, r2) ∈ Q2\Z2 we define a Siegel function g(r1,r2)(τ) on H by the following Fourier

expansion

g(r1,r2)(τ) = −q
1
2
B2(r1)

τ eπir2(r1−1)(1− qz)
∞∏

n=1

(1− qn
τ qz)(1− qn

τ q−1
z ) (2.3)

where B2(X) = X2 − X + 1
6 is the second Bernoulli polynomial, qτ = e2πiτ and qz = e2πiz with
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z = r1τ + r2. Then it is a modular unit which has no zeros and poles on H([KL81]). For later use
we introduce some arithmetic properties and a modularity condition of Siegel functions:

Proposition 2.1. Let r = (r1, r2) ∈ Q2 \ Z2. Then

(i) gr(τ) is integral over Z[j(τ)].
(ii) Let N be the smallest positive integer with Nr ∈ Z2. If N has at least two prime factors,

then 1/gr(τ) is integral over Z[j(τ)]. If N = ps is a prime power, then 1/gr(τ) is integral over
Z[1p ][j(τ)].

(iii) For γ ∈ SL2(Z) we get

g12
r (τ) ◦ γ = g12

rγ(τ).
(iv) For s = (s1, s2) ∈ Z2 we have

gr+s(τ) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1)gr(τ).

Proof. See [KS] Section 3 and Proposition 2.4.

Proposition 2.2. Let N > 2. Let {m(r)}r∈ 1
N
Z2\Z2 be a family of integers such that m(r) = 0

except finitely many r. Then a product of Siegel functions
∏

r∈ 1
N
Z2\Z2

gm(r)
r (τ)

belongs to FN , if {m(r)} satisfies
∑

r m(r)(Nr1)2 ≡
∑

r m(r)(Nr2)2 ≡ 0 (mod gcd(2, N) ·N)
∑

r m(r)(Nr1)(Nr2) ≡ 0 (mod N)

gcd(12, N) ·∑r m(r) ≡ 0 (mod 12).

Proof. See [KL81] Chapter 3 Theorem 5.2 and 5.3.

Corollary 2.3. Let N > 2. For r = (r1, r2) ∈ 1
NZ

2 \ Z2 the function g
12N

gcd(6,N)
r (τ) satisfies

g
12N

gcd(6,N)

(r1,r2) (τ) = g
12N

gcd(6,N)

(−r1,−r2)(τ) = g
12N

gcd(6,N)

(〈r1〉,〈r2〉)(τ)

where 〈X〉 is the fractional part of X ∈ R so that 0 6 〈X〉 < 1. It belongs to FN and γ in
GL2(Z/NZ)/

{± ( 1 0
0 1 )

} ∼= Gal(FN/F1) acts on the function by

(
g

12N
gcd(6,N)
r (τ)

)γ = g
12N

gcd(6,N)
rγ (τ).

Proof. It is a direct consequence of Proposition 2.1, Proposition 2.2 and definition (2.3).

3. Action of Galois groups

We shall investigate an algorithm for finding all conjugates of the singular value of a modular func-
tion, from which we can determine the conjugates of the singular values of certain Siegel functions.

Let K(6= Q(
√−1),Q(

√−3)) be an imaginary quadratic field of discriminant dK and define

θ =

{ √
dK
2 for dK ≡ 0 (mod 4)

−1+
√

dK
2 for dK ≡ 1 (mod 4)

(3.1)

which is a generator of the ring of integers OK of K, that is, OK = Z[θ]. We denote by H the
Hilbert class field. Utilizing the Shimura’s reciprocity law Gee([Gee99]) described the actions of
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Gal(K(N)/H) and Gal(H/K) explicitly. By extending her idea we shall examine Gal(HO/K) for
the order O of conductor N .

Under the properly equivalent relation primitive positive definite quadratic forms aX2 + bXY +
cY 2 of discriminant dK determine a group C(dK), called the form class group of discriminant dK .
We identify C(dK) with the set of all reduced primitive positive definite quadratic forms, which are
characterized by the conditions

−a < b 6 a < c or 0 6 b 6 a = c (3.2)

together with the discriminant relation

b2 − 4ac = dK . (3.3)

Then from the above two conditions for reduced quadratic forms one can deduce

1 6 a 6
√

−dK
3 . (3.4)

And, for a reduced quadratic form Q = aX2 + bXY + cY 2 ∈ C(dK) we define a CM-point by

θQ =
−b +

√
dK

2a
. (3.5)

Furthermore, we define βQ = (βp)p ∈
∏

p : prime GL2(Zp) as

βp =





(
a b

2
0 1

)
if p - a(

− b
2
−c

1 0

)
if p | a and p - c(

− b
2
−a − b

2
−c

1 −1

)
if p | a and p | c

for dK ≡ 0 (mod 4) (3.6)

and

βp =





(
a b−1

2
0 1

)
if p - a( −b−1

2
−c

1 0

)
if p | a and p - c( −b−1

2
−a 1−b

2
−c

1 −1

)
if p | a and p | c

for dK ≡ 1 (mod 4). (3.7)

It is then well-known that C(dK) is isomorphic to Gal(H/K) and the action of Q on H can be
extended to that on K(N) as

Gal(H/K) ∼= C(dK) ↪→ Gal(K(N)/K) (3.8)

Q 7→ (
h(θ) 7→ hβQ(θQ)

)

where h is an element of FN , defined and finite at θ. Here we observe that

K(N) = K
(
h(θ) : h ∈ FN is defined and finite at θ

)
(3.9)

by the main theorem of complex multiplication([Lan87] or [Shi71]) and there exists β ∈ GL+
2 (Q) ∩

M2(Z) such that β ≡ βp (mod NZp) for all primes p dividing N by the Chinese remainder theorem.
Thus the action of βQ on FN is understood as that of β which is an element of GL2(Z/NZ)/

{ ±
( 1 0

0 1 )
}
([Shi71] or [Gee99]).

Let

irr(θ, K) = X2 + BθX + Cθ =
{

X2 − dK
4 for dK ≡ 0 (mod 4)

X2 + X + 1−dK
4 for dK ≡ 1 (mod 4).

By the Shimura’s reciprocity law we have an isomorphism

WN,θ/
{± ( 1 0

0 1 )
} ∼−→ Gal(K(N)/H) (3.10)
γ 7→ (

h(θ) 7→ hγ(θ)
)
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where h ∈ FN is defined and finite at θ, and WN,θ =
{ (

t−Bθs −Cθs
s t

) ∈ GL2(Z/NZ)
}
/
{±( 1 0

0 1 )
}
([Shi71]

or [Gee99]).
The following two lemmas were originally studied in [KS], but we give their proofs for complete-

ness of arguments.

Lemma 3.1. For N > 2, let A and D be positive integers such that AD = N and D > 2. Then Nθ
and Aθ+B

D are not equivalent under SL2(Z) for any integer B.

Proof. Suppose on the contrary that
(

a b
c d

)
(Nθ) = Aθ+B

D for some
(

a b
c d

) ∈ SL2(Z) . Then by using
the identity in [Sil94] Lemma 1.1 we have

Im
( (

a b
c d

)
(Nθ)

)
= N

|cNθ+d|2 Im(θ) = Im
(

Aθ+B
D

)
= A

D Im(θ),

which yields ND = A|cNθ + d|2 = Ac2N2|θ|2 + 2AcdNRe(θ) + Ad2. Replacing N by AD and
dividing the equation by A we derive

D2 = A2D2c2|θ|2 + 2ADcdRe(θ) + d2. (3.11)

On the other hand, we have Re(θ) = 0, −1
2 by the definition (3.1), and |θ|2 > 2 from the fact

K 6= Q(
√−1), Q(

√−3).
If Re(θ) = 0, then (3.11) is reduced to D2 = A2D2c2|θ|2 + d2. Thus D divides d so that putting

d = De and dividing both sides by D2 we get 1 = A2c2|θ|2 + e2. Since |θ|2 > 2, we have c = 0 and
e = ±1; hence gcd(c, d) = D > 2. But this contradicts the fact ad− bc = 1.

If Re(θ) = −1
2 , then (3.11) becomes D2 = A2D2c2|θ|2 − ADcd + d2. And D divides d2, which

implies d 6= ±1 because D > 2. On the other hand, since |θ|2 > 2, we get D2 > 2A2D2c2 −ADcd +
d2 =

(
7A2c2

4

)
D2 +

(
ADc

2 − d
)2. This yields c = 0 so that gcd(c, d) = |d| > 1. However, it again

contradicts ad− bc = 1. Therefore Nθ and Aθ+B
D can not be equivalent under SL2(Z).

Lemma 3.2. Let N > 2. If the function j(Nτ) satisfies j(Nθ) = j(Nτ) ◦α(θ) for some α = ( x y
z w ) ∈

SL2(Z), then z ≡ 0 (mod N), that is, α ∈ Γ0(N).

Proof. Note that j(Nτ)◦α(θ) = j ◦( Nx Ny
z w ) (θ). Since ( Nx Ny

z w ) is a primitive matrix of determinant
N , we can decompose it into β

(
A B
0 D

)
for some β ∈ SL2(Z) and positive integers A, B,D such that

AD = N . Then j(Nθ) = j ◦ ( Nx Ny
z w ) (θ) = j ◦ β

(
A B
0 D

)
(θ) = j ◦ (

A B
0 D

)
(θ) = j(Aθ+B

D ), which yields
that Nθ and Aθ+B

D are equivalent under SL2(Z). Now Lemma 3.1 forces us to have D = 1 and
A = N , from which we achieve z ≡ 0 (mod N) due to the fact ( Nx Ny

z w ) = β
(

A B
0 D

)
.

Theorem 3.3. Let O be the order of conductor N > 2 in K. Then we obtain

Gal(HO/H) ∼= WN,θ/
{

( t 0
0 t ) : t ∈ (Z/NZ)∗

}
.

Proof. As is well-known, HO = K
(
j(Nθ)

)
([Lan87] or [Shi71]). Let γ be an element of WN,θ which is

of the form ( t 0
0 t ) for some t ∈ (Z/NZ)∗. If we decompose γ into

(
1 0
0 d

)
β for some d ∈ (Z/NZ)∗ and

β ∈ SL2(Z), then we obviously achieve β ∈ Γ0(N). Since the function j(Nτ) is a modular function
for Γ0(N) with rational Fourier coefficients, we deduce by (3.10) that

j(Nθ)γ = j(Nτ)γ(θ) = j(Nτ)β(θ) = j(Nτ) ◦ β(θ) = j(Nθ).

Conversely, assume that an element γ =
(

t−Bθs −Cθs
s t

)
in WN,θ fixes j(Nθ). Decompose γ into(

1 0
0 d

)
β for some d ∈ (Z/NZ)∗ and β ∈ SL2(Z). By the same reasoning as above we derive j(Nθ)γ =

j(Nτ) ◦ β(θ). On the other hand, we know β ∈ Γ0(N) by Lemma 3.2, and so s ≡ 0 (mod N).
Therefore γ = ( t 0

0 t ). This proves the theorem.

Remark 3.4. We have the degree formula

[K(N) : H] =
φ(NOK)w(NOK)

wK
(3.12)

5



Ho Yun Jung, Ja Kyung Koo and Dong Hwa Shin

where φ is the Euler function for ideals, namely

φ(pn) = (NK/Qp− 1)NK/Qpn−1

for a power of prime ideal p, w(NOK) is the number of roots of unity in K which are ≡ 1
(mod NOK) and wK is the number of roots of unity in K([KL81]). And, for the orderO of conductor
N we know the formula

[HO : H] =
N

[O∗K : O∗]
∏

p|N

(
1−

(
dK

p

)
1
p

)

where
(

dK
p

)
is the Legendre symbol for an odd prime p and

(
dK
2

)
is the Kronecker symbol([Cox89]).

Thus the second part of the proof depending on Lemma 3.2 can be also established by showing that

[K(N) : HO] =
[K(N) : H]
[HO : H]

=
∣∣{ ( t 0

0 t ) : t ∈ (Z/NZ)∗
}
/
{± ( 1 0

0 1 )
}∣∣.

Theorem 3.5. Let O be the order of conductor N > 2 in K and f be an element of FN such that
f(θ) ∈ HO. Then

{
fγ·βQ(θQ) : γ ∈ WN,θ/

{
( t 0

0 t ) : t ∈ (Z/NZ)∗
}

and Q ∈ C(dK)
}

is the set of all conjugates of f(θ) under the action of Gal(HO/K).

Proof. The assertion follows from the following diagram:

K

H

HO
Fields Galois groups

........

........

........

........

........

........

........

.......
)

Gal(H/K) =
{(

h(θ) 7→ hβQ(θQ)
)∣∣

H
: Q ∈ C(dK)

}
by (3.8)

........

........

........

........

........

........

........

.......
)

Gal(HO/H) ∼= WN,θ/
{

( t 0
0 t ) : t ∈ (Z/NZ)∗

}
by Theorem 3.3

where h is an element of FN , defined and finite at θ.

Remark 3.6. Theorem 3.5 and the transformation formulas in Corollary 2.3 enable us to find all

conjugates of the singular value
∏

16w6 N
2

gcd(w,N)=1

g
12N

gcd(6,N)

(0, w
N

) (θ), which will be used to prove our first main

theorem.

4. Primitive generators of the ring class fields

Let K 6= Q(
√−1), Q(

√−3) be an imaginary quadratic field with dK 6 −7 and let θ be defined as
in (3.1) and N > 2. If we put

D =
√

−dK
3 and A = |e2πiθ| = e−π

√−dK ,

then A
1
D = e−

√
3π which is independent of K.

Lemma 4.1. We have the following inequalities:

(i)
∣∣ 1−ζN

1−A
1

DN

∣∣ > 1.

(ii) 1

1−A
X
D

< 1 + A
X

1.03D for all X > 1
2 .
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(iii) 1
1−AX < 1 + A

X
1.03 for all X > 1

2 .

(iv) 1 + X < eX for all X > 0.

Proof. See [JKS2] Lemma 4.1.

Lemma 4.2. Assume the condition

dK 6 −43 and 2 6 N 6 −√3π

ln
(
1− 2.16e−

π
√−dK

24

) . (4.1)

Let Q = aX2 + bXY + cY 2 be a reduced primitive positive definite quadratic form of discriminant
dK and θQ be as in (3.5). If a > 2, then the inequality

∣∣∣∣
g(0, w

N
)

(
θ
)

g( s
N

, t
N

)(θQ)

∣∣∣∣ < 1

holds for w ∈ Z \NZ and (s, t) ∈ Z2 \NZ2.

Proof. We may assume 0 6 s 6 N
2 by Corollary 2.3. And, we have 2 6 a 6 D by (3.4) because Q

is a reduced primitive positive definite quadratic form. From the definition (2.3) we obtain that
∣∣∣∣

g(0, w
N

)

(
θ
)

g( s
N

, t
N

)(θQ)

∣∣∣∣ 6 A
1
2
(B2(0)− 1

a
B2( s

N
))

∣∣∣∣
1− ζw

N

1− e2πi( s
N
·−b+

√
dK

2a + t
N

)

∣∣∣∣
∞∏

n=1

(1 + An)2

(1−A
1
a
(n+ s

N
))(1−A

1
a
(n− s

N
))

.

Now we see from the fact a 6 D and Lemma 4.1(i) that
∣∣1− ζw

N

∣∣ < 2 and

∣∣1− e2πi( s
N
·−b+

√
dK

2a + t
N

)
∣∣ >

{ ∣∣1− ζt
N

∣∣ >
∣∣1− ζN

∣∣ if s = 0∣∣1−A
s

Na

∣∣ >
∣∣1−A

1
ND

∣∣ if s 6= 0

> 1−A
1

ND .

Therefore we achieve that
∣∣∣∣

g(0, w
N

)

(
θ
)

g( s
N

, t
N

)(θQ)

∣∣∣∣ <
2A

1
2
(B2(0)− 1

2
B2(0))

1−A
1

ND

∞∏

n=1

(1 + An)2

(1−A
n
D )(1−A

1
D

(n− 1
2
))

by the facts 2 6 a 6 D, 0 6 s 6 N
2

<
2A

1
24

1−A
1

ND

∞∏

n=1

(1 + An)2(1 + A
n

1.03D )(1 + A
1

1.03D
(n− 1

2
)) by Lemma 4.1(ii)

<
2A

1
24

1−A
1

ND

∞∏

n=1

e2An+A
n

1.03D +A
1

1.03D
(n− 1

2 )

by Lemma 4.1(iv)

=
2A

1
24

1−A
1

ND

e

2A
1−A

+A
1

1.03D +A
1

2.06D

1−A
1

1.03D 6 2e−
π
√−dK

24

1− e−
√

3π
N

e

2e−
√

43π

1−e−
√

43π
+ e

−
√

3π
1.03 +e

−
√

3π
2.06

1−e
−
√

3π
1.03 by the fact dK 6 −43

<
2.16e−

π
√−dK

24

1− e−
√

3π
N

< 1 by the condition (4.1).

This proves the lemma.

Lemma 4.3. Assume the condition

dK 6 −43 and 2 6 N 6
√
−dK . (4.2)

Let Q = X2 + bXY + cY 2 be a reduced primitive positive definite quadratic form of discriminant

7
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dK . Then we get the inequality ∣∣∣∣
g(0, w

N
)(θ)

g( s
N

, t
N

)(θQ)

∣∣∣∣ < 1

for w ∈ Z \NZ and (s, t) ∈ Z2 \NZ2 with s 6≡ 0 (mod N).

Proof. We may assume 1 6 s 6 N
2 by Corollary 2.3. Then we establish that

∣∣∣∣
g(0, w

N
)(θ)

g( s
N

, t
N

)(θQ)

∣∣∣∣ < A
1
2
(B2(0)−B2( s

N
))

∣∣∣∣
1− ζw

N

1−A
s
N

∣∣∣∣
∞∏

n=1

(1 + An)2

(1−An+ s
N )(1−An− s

N )
by (2.3)

< A
1
2
(B2(0)−B2( 1

N
)) 2

1−A
1
N

∞∏

n=1

(1 + An)2

(1−An)(1−An− 1
2 )

by 1 6 s 6 N
2

<
2A

1
2
( 1

N
− 1

N2 )

1−A
1
N

∞∏

n=1

(1 + An)2(1 + A
n

1.03 )(1 + A
1

1.03
(n− 1

2
)) by Lemma 4.1(iii)

<
2A

1
4N

1−A
1
N

∞∏

n=1

e2An+A
n

1.03 +A
1

1.03 (n− 1
2 )

by the fact N > 2 and Lemma 4.1(iv)

=
2A

1
4N

1−A
1
N

e
2A

1−A
+A

1
1.03 +A

1
2.06

1−A
1

1.03 6 2e−
π
√−dK
4N

1− e
−π
√−dK
N

e

2e−
√

43π

1−e−
√

43π
+ e

−
√

43π
1.03 +e

−
√

43π
2.06

1−e
−
√

43π
1.03 by the fact dK 6 −43

<
2.0001e−

π
√−dK
4N

1− e
−π
√−dK
N

6 2.0001e−
π
4

1− e−π
< 1 by the fact N 6

√
−dK ,

which proves the lemma.

Remark 4.4. Observe that the condition (4.1) is stronger than (4.2), namely

−√3π

ln
(
1− 2.16e−

π
√−dK

24

) <
√
−dK .

Now we are ready to prove our main theorem about primitive generators of the ring class fields
over K.

Theorem 4.5. Assume the condition (4.1) and let O be the order of conductor N in K. Then the
singular value

∏

16w6 N
2

gcd(w,N)=1

g
12N

gcd(6,N)

(0, w
N

) (θ) (4.3)

generates HO over K. It is a real algebraic integer and its minimal polynomial has integer coefficients.
In particular, if the conductor N has at least two prime factors, then it is a unit.

Proof. Let g(τ) =
∏

16w6 N
2

gcd(w,N)=1

g
12N

gcd(6,N)

(0, w
N

) (τ). By (3.10) and Theorem 3.3 we have Gal(K(N)/HO) ∼=
{

( t 0
0 t ) : t ∈ (Z/NZ)∗

}
/
{± ( 1 0

0 1 )
}
, and hence

g(θ) =
∏
w

g
12N

gcd(6,N)

(0, 1
N

)
(τ)(

w 0
0 w )(θ) =

∏
w

g
12N

gcd(6,N)

(0, 1
N

)
(θ)(

w 0
0 w ) = NK(N)/HO

(
g

12N
gcd 6,N

(0, 1
N

)
(θ)

)

by Corollary 2.3 and (3.10). Thus g(θ) belongs to HO. Now, if we show that the element of
Gal(HO/K) fixing the value g(θ) is only the identity, then we can conclude by Galois theory that
it generates HO over K.
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It follows from Theorem 3.5 that any conjugate of g(θ) is of the form

gγ·βQ(θQ)

for some γ =
(

t−Bθs −Cθs
s t

) ∈ WN,θ and Q = aX2+bXY +cY 2 ∈ C(dK). Assuming g(θ) = gγ·βQ(θQ)
we derive

∏
w

g
12N

gcd(6,N)

(0, w
N

) (θ) =
∏
w

g
12N

gcd(6,N)

(0, w
N

)γβQ
(θQ)

by Corollary 2.3. Since |g(θ)| = |gγ·βQ(θQ)|, Lemma 4.2 leads us to have a = 1. This yields

Q = id =
{

X2 − dK
4 Y 2 for dK ≡ 0 (mod 4)

X2 + XY + 1−dK
4 Y 2 for dK ≡ 1 (mod 4)

from the condition (3.2) and the relation (3.3); hence βQ = ( 1 0
0 1 ) as an element of GL2(Z/NZ) by

definitions (3.6) and (3.7) and θQ = θ by definition (3.5). And we see from Corollary 2.3 that

g(θ) = gγ·βQ(θQ) =
∏
w

g
12N

gcd(6,N)

(0, w
N

)γβQ
(θQ) =

∏
w

g
12N

gcd(6,N)

(ws
N

, wt
N

)
(θ)

from which we get s ≡ 0 (mod N) by Lemma 4.3. Therefore the pair of γ = ( t 0
0 t ) and Q = id

represents the identity on HO(see the tower in the proof of Theorem 3.5), and hence g(θ) actually
generates HO over K.

On the other hand, we derive from the definition (2.3)

g(θ) =
∏
w

{
q

1
12
θ (1− ζw

N )
∞∏

n=1

(1− qn
θ ζw

N )(1− qn
θ ζ−w

N )
} 12N

gcd(6,N)

=
∏
w

{
q

N
gcd(6,N)

θ

(
2 sin wπ

N

) 12N
gcd(6,N)

∞∏

n=1

(
1− 2 cos 2wπ

N qn
θ + q2n

θ

) 12N
gcd(6,N)

}
,

and this claims that g(θ) is a real number. Furthermore, we see from Proposition 2.1(i) that the
function g(τ) is integral over Z[j(τ)]. Since j(θ) is a real algebraic integer([Lan87] or [Shi71]), so is
the value g(θ). And its minimal polynomial over K has integer coefficients. In particular, if N has
at least two prime factors, the function 1/g(τ) is also integral over Z[j(τ)] by Proposition 2.1(ii);
hence g(θ) becomes a unit.

Remark 4.6. Since the proof of Theorem 4.5 depends only on Lemma 4.2 and 4.3 which do not
include any power of singular values, any nonzero power of the value in (4.3) can be also a generator
of HO over K.

Remark 4.7. If N is an odd prime p, by the definition (2.3) and the identity

1−Xp

1−X
= (1− ζpX)(1− ζ2

pX) · · · (1− ζp−1
p X)

we have
( ∏

16w6 p
2

gcd(w,p)=1

g
12p

gcd(6,p)

(0, w
p

) (θ)
)2 gcd(6,p)

=
∏

16w6p−1

g24p
(0, w

p
)(θ) =

(
p24 ∆(pθ)

∆(θ)

)p

where ∆ is the discriminant function. Since it is well-known that the value ∆(pθ)
∆(θ) lies in the ring

class field of the order of conductor p([Lan87] Chapter 12), it becomes a ring class invariant too
under the condition (4.1).

Remark 4.8. Before we close this section, we would like to present an example which cannot be
covered by our method due to violation of the condition (4.1).

9
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Let K = Q(
√−5) and N = 12(= 22 · 3). Then dK = −20, θ =

√−5 and

C(dK) =
{
Q1 = X2 + 5Y 2, Q2 = 2X2 + 2XY + 3Y 2

}

θQ1 =
√−5, θQ2 = −1+

√−5
2

βQ1 = ( 1 0
0 1 ) , βQ2 = ( 1 5

3 2 )
WN,θ/

{
( t 0

0 t ) : t ∈ (Z/NZ)∗
}

=
{

( 1 0
0 1 ) , ( 1 6

6 1 ) , ( 2 9
3 2 ) , ( 3 2

2 3 ) , ( 3 4
4 3 ) , ( 4 9

3 4 ) , ( 6 7
1 6 ) , ( 0 7

1 0 )
}
.

Now, the conjugates of

x =
∏

16w6 N
2

gcd(w,N)=1

g
12N

gcd(6,N)

(0, w
N

) (θ) = g24
(0, 1

12
)
(
√−5)g24

(0, 5
12

)
(
√−5)

are as follows:
x1 = g24

(0, 1
12

)
(
√−5)g24

(0, 5
12

)
(
√−5), x2 = g24

( 6
12

, 1
12

)
(
√−5)g24

( 6
12

, 5
12

)
(
√−5)

x3 = g24
( 3
12

, 2
12

)
(
√−5)g24

( 3
12

, 10
12

)
(
√−5), x4 = g24

( 2
12

, 3
12

)
(
√−5)g24

( 10
12

, 3
12

)
(
√−5)

x5 = g24
( 4
12

, 3
12

)
(
√−5)g24

( 8
12

, 3
12

)
(
√−5), x6 = g24

( 3
12

, 4
12

)
(
√−5)g24

( 3
12

, 8
12

)
(
√−5)

x7 = g24
( 1
12

, 6
12

)
(
√−5)g24

( 5
12

, 6
12

)
(
√−5), x8 = g24

( 1
12

,0)
(
√−5)g24

( 5
12

,0)
(
√−5)

x9 = g24
( 3
12

, 2
12

)
(−1+

√−5
2 )g24

( 3
12

, 10
12

)
(−1+

√−5
2 ), x10 = g24

( 9
12

, 8
12

)
(−1+

√−5
2 )g24

( 9
12

, 4
12

)
(−1+

√−5
2 )

x11 = g24
( 9
12

, 7
12

)
(−1+

√−5
2 )g24

( 9
12

, 11
12

)
(−1+

√−5
2 ), x12 = g24

( 11
12

, 4
12

)
(−1+

√−5
2 )g24

( 7
12

, 8
12

)
(−1+

√−5
2 )

x13 = g24
( 1
12

, 2
12

)
(−1+

√−5
2 )g24

( 5
12

, 10
12

)
(−1+

√−5
2 ), x14 = g24

( 3
12

, 11
12

)
(−1+

√−5
2 )g24

( 3
12

, 7
12

)
(−1+

√−5
2 )

x15 = g24
( 7
12

, 5
12

)
(−1+

√−5
2 )g24

( 11
12

, 1
12

)
(−1+

√−5
2 ), x16 = g24

( 1
12

, 5
12

)
(−1+

√−5
2 )g24

( 5
12

, 1
12

)
(−1+

√−5
2 )

possibly with multiplicity by Theorem 3.5 and Corollary 2.3. Hence the minimal polynomial of x
over K would be

(X − x1) · · · (X − x16)
= X16 − 1597283771136X15 + 218685334974106886200X14 − 989798760399582851353280X13

+1635793922011311753339695900X12 − 1478170408753689677872738383488X11

+813690304957218006590231416378248X10 − 464728779160514526974626326247201600X9

+167117715935951295057696524156063178310X8 − 9155763998650223557795196487031471321600X7

−17410059883612682120508988571419246981752X6 − 31984181681760551803330979365226550023488X5

+5677583625730635496464554293769775900X4 − 2249102100642965467076167124913280X3

+238110589893565910129238086200X2 − 2550974942476760820051136X + 1.

And this polynomial is irreducible over K, so x is indeed a primitive generator of the ring class
field of the order of conductor 12 in Q(

√−5). Moreover, x is a unit because the constant term is 1.
Therefore, it would be worthwhile to check how much further one can release the condition (4.1).

5. Construction of normal bases

Given an imaginary quadratic field K(6= Q(
√−1), Q(

√−3)) we consider the extension K(p2m)/K(pm)

for a prime p > 5 and an integer m > 1 relatively prime to p. In this section we shall construct a
normal basis of each intermediate field F over K(pm).

First we explicitly determine all intermediate fields F between K(p2m) and K(pm). Let θ be as in
(3.1) and set irr(θ, K) = X2 + BθX + Cθ. Then one can identify Γ = Gal(K(p2m)/K(pm)) with

{
γ =

(
t−Bθs −Cθs

s t

) ∈ GL2(Z/p2mZ) : γ ≡ ( 1 0
0 1 ) (mod pm)

}
/
{± ( 1 0

0 1 )
}

10
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by (3.10). Since [K(p2m) : K(pm)] = p2 by the formula (3.12), we readily know by inspection that

Γ =
〈 (

1+pm 0
0 1+pm

) 〉× 〈 (
1−Bθpm −Cθpm

pm 1

) 〉
,

which shows that Γ ∼= (Z/pZ)2. Hence an element of Γ is of the form
(

1+pm 0
0 1+pm

)k (
1−Bθpm −Cθpm

pm 1

)`
=

(
1+(k−Bθ`)pm −Cθ`pm

`pm 1+kpm

)
for 0 6 k, ` 6 p− 1.

Set

Γ(k,`) =
〈
γ(k,`)

〉
=

〈 (
1+(k−Bθ`)pm −Cθ`pm

`pm 1+kpm

) 〉
for (k, `) ∈ {

(0, 1), (1, 0), (1, 1), · · · , (1, p− 1)
}
,

which represents all subgroups of Γ of order p. And, let F(k,`) be its corresponding fixed field of
Γ(k,`), namely

F(k,`) = K
Γ(k,`)

(p2m)
for (k, `) ∈ {

(0, 1), (1, 0), (1, 1), · · · , (1, p− 1)
}
.

Then we have the field tower:

K(pm)

F(0,1) F(1,0) F(1,1) · · · F(1,p−1)

K(p2m)

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
..

........

........

........

........

........

........

........

........

........

........

........

........

.....

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..........

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

......

..........................................................................................................................................................................................................................................................

..........................................................................................................................................

.....................................................................................................

.....................................................................................................................................................

...............................................................................................................................................................................................................................................

Lemma 5.1. ζp, g12pm

(0, 1
pm

)
(θ) ∈ K(pm) and ζp2 , g12m

(0, 1
pm

)
(θ) ∈ K(p2m).

Proof. One can check by Proposition 2.2 that g12pm

(0, 1
pm

)
(τ) ∈ Fpm and g12m

(0, 1
pm

)
(τ) ∈ Fp2m. Hence we

get the assertion by (3.9).

Let us investigate the action of γ(k,`) on ζp2 and g12m
(0, 1

pm
)
(θ). To this end we decompose γ(k,`) into

γ(k,`) = α(k,`) · β(k,`) =
(

1 0
0 1+(2k−Bθ`)pm

)(
1+(k−Bθ`)pm −Cθ`pm

`pm 1+(Bθ`−k)pm

)

∈ { (
1 0
0 d

)
: d ∈ (Z/p2mZ)∗

} · SL2(Z/p2mZ)/
{± ( 1 0

0 1 )
}
.

We see directly from (2.3) that the function g12m
(0, 1

pm
)
(τ) has Fourier coefficients in Q(ζpm). Thus the

action of α(k,`) is described by (3.10) and (2.1) as

ζp2 7→ ζ
1+(2k−Bθ`)pm
p2

g12m
(0, 1

pm
)
(θ) 7→ g12m

(0, 1
pm

)
(θ).

For some integers A, B, C, D let

β′(k,`) =
(

1+(k−Bθ`)pm+p2mA −Cθ`pm+p2mB

`pm+p2mC 1+(Bθ`−k)pm+p2mD

)

be a preimage of β(k,`) via the natural surjection SL2(Z) → SL2(Z/p2mZ)/
{ ± ( 1 0

0 1 )
}
. Then by

11
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(3.10) and (2.2) we derive that the action of β(k,`) is given by

ζp2 7→ ζp2

g12m
(0, 1

pm
)
(θ) 7→ g12m

(0, 1
pm

)
(τ) ◦ β′(k,`)(θ) = g12m

(0, 1
pm

)β′
(k,`)

(θ) by Proposition 2.1(iii)

= g12m
(`+pC, 1

pm
+Bθ`−k+pD)

(θ) = ζ−6p`
p2 g12m

(0, 1
pm

)
(θ) by Proposition 2.1(iv).

Hence γ(k,`) maps

ζp2 7→ ζ
1+(2k−Bθ`)pm
p2 (5.1)

g12m
(0, 1

pm
)
(θ) 7→ ζ−6p`

p2 g12m
(0, 1

pm
)
(θ). (5.2)

Lemma 5.2. Let (k, `) ∈ {
(0, 1), (1, 0), (1, 1), · · · , (1, p− 1)

}
. Then Γ(k,`) fixes ζx

p2g
12my

(0, 1
pm

)
(θ) for some

x, y ∈ Z if and only if x and y satisfy




−Bθmx ≡ 6y (mod p) if (k, `) = (0, 1)
x ≡ 0 (mod p) if (k, `) = (1, 0)

(2−Bθ`)mx ≡ 6`y (mod p) otherwise.
(5.3)

Proof. It follows from (5.1) and (5.2) that
(
ζx
p2g

12my

(0, 1
pm

)
(θ)

)γ(k,`) = ζ
(1+(2k−Bθ`)pm)x−6p`y
p2 g12my

(0, 1
pm

)
(θ).

Then this value is equal to ζx
p2g

12my

(0, 1
pm

)
(θ) if and only if

(1 + (2k −Bθ`)pm)x− 6p`y ≡ x (mod p2),

which reduces to (5.3). And, this proves the lemma.

Lemma 5.3. K(p2m) = K(pm)

(
ζp2 , g12m

(0, 1
pm

)
(θ)

)
.

Proof. Since g12m
(0, 1

pm
)
(θ) 6∈ F(0,1) and g12m

(0, 1
pm

)
(θ) ∈ F(1,0) by (5.2), we claim that g12m

(0, 1
pm

)
(θ) 6∈ K(pm)

and F(1,0) = K(pm)

(
g12m
(0, 1

pm
)
(θ)

)
owing to the fact [F(1,0) : K(pm)] = p. Furthermore, since ζp2 6∈ F(1,0)

by (5.1), we achieve by the fact [K(p2m) : F(1,0)] = p that

K(p2m) = F(1,0)

(
ζp2

)
= K(pm)

(
ζp2 , g12m

(0, 1
pm

)
(θ)

)
.

Theorem 5.4. Let (k, `) ∈ {
(0, 1), (1, 0), (1, 1), · · · , (1, p − 1)

}
and y′ be the integer such that

y · y′ ≡ 1 (mod p) and 0 < y′ < p for an integer y 6≡ 0 (mod p). Then we have

F(k,`) =





K(pm)

(
ζp2g

12m26′(p−Bθ)

(0, 1
pm

)
(θ)

)
if (k, `) = (0, 1)

K(pm)

(
g12m
(0, 1

pm
)
(θ)

)
if (k, `) = (1, 0)

K(pm)

(
ζp2g

12m2(6`)′(2+p−Bθ`)

(0, 1
pm

)
(θ)

)
otherwise.

Proof. Take a solution of (5.3) as

(x, y) =





(1,m6′(p−Bθ)) if (k, `) = (0, 1)
(0, 1) if (k, `) = (1, 0)
(1,m(6`)′(2 + p−Bθ`)) otherwise

(5.4)

which consists of nonnegative integers. We can then readily check that a solution (x, y) in (5.4)
does not satisfy two congruence equations in (5.3) simultaneously. This shows that for each (x, y),

12
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ζx
p2g

12my

(0, 1
pm

)
(θ) belongs to a unique F(k,`); hence in particular, it is not in K(pm). Since [F(k,`) : K(pm)] =

p, we get the conclusion.

To accomplish our goal we are in need of the following two lemmas:

Lemma 5.5. Let L be a number field containing ζn and F be a cyclic extension over L of degree
n. Then there exists an element ξ of L such that F = L( n

√
ξ). And, the conjugates of

∑n−1
s=0 ( n

√
ξ)s

over L form a normal basis of F over L.

Proof. See [Kaw84] p. 223.

Lemma 5.6. Let L be a number field. Let F1 and F2 be finite Galois extensions of L with F1∩F2 = L.
If the conjugates of ξs ∈ Fs over L form a normal basis of Fs over L for s = 1, 2, then the conjugates
of ξ1ξ2 over L form a normal basis of F1F2 over L.

Proof. See [Kaw84] p. 227.

Now we are ready to prove our main theorem about normal bases.

Theorem 5.7. Let (k, `) and y′ be as in Theorem 5.4. Then the conjugates of




∑p−1
s=0

(
ζp2g

12m26′(p−Bθ)

(0, 1
pm

)
(θ)

)s
if (k, `) = (0, 1)

∑p−1
s=0 g12ms

(0, 1
pm

)
(θ) if (k, `) = (1, 0)

∑p−1
s=0

(
ζp2g

12m2(6`)′(2+p−Bθ`)

(0, 1
pm

)
(θ)

)s
otherwise

(5.5)

over K(pm) form a normal basis of F(k,`) over K(pm). Moreover, the values in (5.5) are algebraic
integers.

Proof. Since the function g(0, 1
pm

)(τ) is integral over Z[j(τ)] by Proposition 2.1(i) and j(θ) is an

algebraic integer([Lan87] or [Shi71]), the values in (5.5) are all algebraic integers. Thus the theorem
follows by applying Lemma 5.5 with the aid of Lemma 5.1 and Theorem 5.4.

Theorem 5.8. The conjugates of the algebraic integer

( p−1∑

s=0

ζs
p2

)( p−1∑

s=0

g12ms
(0, 1

pm
)
(θ)

)

over K(pm) form a normal basis of K(p2m) over K(pm).

Proof. If F1 = K(pm)

(
ζp2

)
and F2 = K(pm)

(
g12m
(0, 1

pm
)
(θ)

)
, then [Fs : K(pm)] 6 p for s = 1, 2 by Lemma

5.1. On the other hand, Lemma 5.3 shows F1F2 = K(p2m), from which we get F1 ∩ F2 = K(pm) and
[Fs : K(pm)] = p for s = 1, 2. Hence the conjugates of

∑p−1
s=0 ζs

p2 and
∑p−1

s=0 g12ms
(0, 1

pm
)
(θ) over K(pm)

form normal bases of F1 and F2, respectively, by Lemma 5.5 and Lemma 5.1. And, the theorem
follows from Lemma 5.6.

6. Galois module structure

Let L be a number field and p be an odd prime. We say that an extension L∞/L is a Zp-extension
of L if there exists a sequence of cyclic extensions of L

L = L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ · · · ⊂ L∞ = ∪∞n=0Ln

13
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with Gal(Ln/L) ∼= Z/pnZ. Then it is well-known that L∞/L is unramified outside p([Was96] Propo-
sition 13.2). And, Greenberg([Gre76]) has conjectured that if L is totally real, then the Iwasawa
λ-invariant of L∞/L vanishes.

Denoting the ring of p-integers of L by OL[1p ] we say that a finite Galois extension F of L has a
normal p-integral basis over L if OF [1p ] is a free OL[1p ]Gal(F/L)-module of rank one. We then say
that a Zp-extension L∞ of L has a normal basis over L if each Ln has a normal p-integral basis over
L.

On the other hand, we see from [Kom94] that there is a negative data for Greenberg’s conjecture.
For instance, for a positive square free integer d with (−d

3 ) = −1, let L = Q(
√

3d) and L′ = Q(
√−d).

It was shown in [FN91] and [FK91] that if 3 divides the class number of L and if every Z3-extension
of L′ has a normal basis, then the λ-invariant of the cyclotomic Z3-extension of L does not vanish.
This suggests a relation between the existence of normal basis in Zp-extension and Greenberg’s
conjecture, which motivates this section.

Now, let K( 6= Q(
√−1), Q(

√−3)) be an imaginary quadratic field, p > 5 be a prime and m > 1
be an integer relatively prime to p. And, let n and ` be positive integers with n > 2`. Observe
that the extension K(pnm)/K(p`m) is unramified outside p and ζpn ∈ K(pnm), ζp` ∈ K(p`m) but
ζpn+1 6∈ K(pnm), ζp`+1 6∈ K(p`m)([KL81] Chapter 9 Lemma 4.3). We shall prove in this section that
K(pnm) has a normal p-integral basis over K(p`m). The special case for ` = 1 and m = 1 has been
done by Komatsu([Kom94]). However, we shall develop it in more comprehensive way by utilizing
(3.10) and Proposition 2.1 as in the previous section unlike Komatsu’s method via class field theory.
As a corollary we shall determine the existence of normal basis of the Zp-extension K∞K(p`)/K(p`)

for ` > 1 where K∞/K is a Zp-extension of K.
Let θ be as in (3.1) and set irr(θ, K) = X2 + BθX + Cθ. Then we can identify the Galois group

Γ = Gal(K(p2(n−`)m)/K(p`m)) with the group
{
γ =

(
t−Bθs −Cθs

s t

) ∈ GL2(Z/p2(n−`)mZ) : γ ≡ ( 1 0
0 1 ) (mod p`m)

}
/
{± ( 1 0

0 1 )
}

by (3.10) and #Γ = [K(p2(n−`)m) : K(p`m)] = p2(2(n−`)−`) by the formula (3.12).

Lemma 6.1. There exists an element β0 of SL2(Z) satisfying the property

βpk

0 =
( ∗ ∗

p`+kmqk ∗
) ≡ ( 1 0

0 1 ) (mod p`+km) (0 6 k 6 2(n− `)− `) (6.1)

for some integers qk 6≡ 0 (mod p).

Proof. Consider an integral matrix β =
(

1+p`mx−Bθp`m −Cθp`m

p`m 1+p`mx

)
for an undetermined integer x.

Then the condition det(β) ≡ 1 (mod p2(n−`)m) is equivalent to

f(x) = p`m2x2 + (2m−Bθp
`m2)x + Cθp

`m2 −Bθm ≡ 0 (mod p2(n−`)−`). (6.2)

Since 2m − Bθp
`m2 6≡ 0 (mod p), the equation f(x) ≡ 0 (mod p) has a solution. Furthermore,

since the derivative f ′(x) = 2m− Bθp
`m2 6≡ 0 (mod p), we have an integer solution x = x0 of the

congruence equation (6.2) by Hensel’s lemma. Let β0 be a preimage of
(

1+p`mx0−Bθp`m −Cθp`m

p`m 1+p`mx0

)

via the natural surjection SL2(Z) → SL2(Z/p2(n−`)mZ). Then it is routine to check that β0 satisfies
the property (6.1).

Set α =
(

1+p`m 0

0 1+p`m

)
and β = β0 in Lemma 6.1. Now that they have the order p2(n−`)−` in Γ

and #Γ = p2(2(n−`)−`), we derive

Γ = 〈α〉 × 〈β〉.
14
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as a direct product. And, we get

Gal(K(p2(n−`)m)/K(pnm)) = 〈αpn−`〉 × 〈βpn−`〉 (6.3)

by (3.10). Let us define a function

g(τ) =
pn−2`−1∏

s=0

g12m
(0, 1

pn−`m
)βs(τ).

Since each factor g12m
(0, 1

pn−`m
)βs(τ) lies in Fp2(n−`)m by Proposition 2.2, the singular value g(θ) belongs

to K(p2(n−`)m) by (3.9).

Lemma 6.2. K(pnm) = K(p`m)(ζpn , g(θ))

Proof. By the property (6.1) of β, βpn−2`
is of the form

(
1+pn−`mA pn−`mB

pn−`mC 1+pn−`mD

)
for some integers

A,B, C,D with C 6≡ 0 (mod p). We then deduce by (3.10) and (2.2) that

g(θ)β =
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)βs(θ)

)β

=
pn−2`−1∏

s=0

g12m
(0, 1

pn−`m
)βsβ

(θ) by Proposition 2.1(iii) (6.4)

=
g12m
(0, 1

pn−`m
)βpn−2` (θ)

g12m
(0, 1

pn−`m
)
(θ)

g(θ) =
g12m
(C, 1

pn−`m
+D)

(θ)

g12m
(0, 1

pn−`m
)
(θ)

g(θ) = ζ−6C
pn−`g(θ) by Proposition 2.1(iv).

In particular, g(θ)pn−`
is fixed by β and g(θ) is fixed by βpn−`

because β fixes ζpn−` by (3.10) and

(2.2). Note that αpn−2`
=

(
1+pn−`mE 0

0 1+pn−`mE

)
for some integer E. As an element of Γ we can

decompose αpn−2`
into

αpn−2`
= α1 · α2 =

(
1 0
0 (1+pn−`mE)2

)(
1+pn−`mE+p2(n−`)mA′ p2(n−`)mB′

p2(n−`)mC′ E′+p2(n−`)mD′

)

for some integer A′, B′, C ′, D′, E′ such that (1 + pn−`mE)E′ ≡ 1 (mod p2(n−`)m) and α2 ∈ SL2(Z).
Hence, we get by (3.10), (2.1), (2.2) and Proposition 2.1(iii) that

g(θ)αpn−2`

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)βs(θ)

)αpn−2`

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)
(θ)

)βsαpn−2`

(6.5)

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)
(θ)

)αpn−2`
βs

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)
(θ)

)α1α2βs

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)
(θ)

)α2βs

because g12m
(0, 1

pn−`m
)
(τ) has Fourier coefficients in Q(ζpn−`m)

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)α2

(θ)
)βs

=
pn−2`−1∏

s=0

(
g12m

(pn−`C′, E′
pn−`m

+pn−`D′)
(θ)

)βs

=
pn−2`−1∏

s=0

(
g12m
(0, 1

pn−`m
)
(θ)

)βs

by the fact E′ ≡ 1 (mod pn−`m) and Proposition 2.1(iv)

=
pn−2`−1∏

s=0

g12m
(0, 1

pn−`m
)βs(θ) = g(θ).
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Observe that in particular, g(θ) is fixed by αpn−`
and hence by 〈αpn−`〉× 〈βpn−`〉. Thus g(θ) belongs

to K(pnm) by (6.3).
On the other hand, we see from (3.10) that Gal(K(pnm)/K(p`m)) = 〈α〉×〈β〉 in GL2(Z/pnmZ)/

{±
( 1 0

0 1 )
}

with α and β of order pn−`. Suppose that αAβB fixes both ζpn and g(θ) for some 0 6 A, B <

pn−`. Since (ζpn)αAβB
= (ζpn)det(αA) = ζ

(1+p`m)A

pn by (3.10), (2.1) and (2.2), we have A = 0. It
then follows B = 0 from (6.4). Therefore we conclude that K(pnm) = K(p`m)(ζpn , g(θ)) by Galois
theory.

Now we are in the following situation:

K(p`m)

K(p`m)(ζpn) K(p`m)(g(θ))

K(pnm) = K(p`m)(ζpn , g(θ))

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..........

cyclic of degree pn−`

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.....

cyclic of degree pn−`

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
........

cyclic of degree pn−`

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

.....

cyclic of degree pn−`

Here we see K(p`m)(ζpn) ∩K(p`m)(g(θ)) = K(p`m) by analyzing the actions of α and β in the proof
of Lemma 6.2. Then we are ready to attain our aim by means of the following two lemmas:

Lemma 6.3. Let L be a number field and F/L be a cyclic extension of a prime power degree n = ps

which is unramified outside p.

(i) When ζn ∈ L, F has a normal p-integral basis over L if and only if F = L( n
√

ξ) for some
ξ ∈ OL[1p ]∗.

(ii) When ζn 6∈ L, F has a normal p-integral basis over L if and only if F (ζn) has a normal p-integral
basis over L(ζn).

Proof. See [Gre92] Chapter 0 Proposition 6.5 and Chapter I Theorem 2.1.

Lemma 6.4. Let L be a number field and Fs/L be a cyclic extension which is unramfied outside p
for s = 1, 2. If Fs has a normal p-integral basis over L for s = 1, 2 and F1 ∩ F2 = L, then F1F2 has
a normal p-integral basis over L.

Proof. See [Kaw84] p. 227.

Theorem 6.5. Let K(6= Q(
√−1), Q(

√−3)) be an imaginary quadratic field, p > 5 be a prime and
m > 1 be an integer relatively prime to p. And, let n and ` be positive integers with n > 2`. Then
K(pnm) has a normal p-integral basis over K(p`m).

Proof. The extension K(p`m)(ζpn)/K(p`m) is cyclic of degree pn−` and is unramified outside p. We
consider the extension K(p`m)(ζpn)/K(p`m)(ζpn−`). It is also a cyclic extension of degree p` unram-
ified outside p by considering the action of α on ζpn . Since K(p`m)(ζpn) = K(p`m)(ζpn−`)( pl√ζpn−`),
K(p`m)(ζpn) has a normal p-integral basis over K(p`m)(ζpn−`) by Lemma 6.3(i). If n = 2`, then
ζpn−` = ζp` and K(p`m) = K(p`m)(ζpn−`). If n > 2`, then ζpn−` 6∈ K(p`m) and hence K(p`m)(ζpn) has
a normal p-integral basis over K(p`m) by Lemma 6.3(ii).

Next we look into the cyclic extension K(p`m)(g(θ))/K(p`m) of degree pn−` unramified outside p.
Let us examine the extension K(p`m)(ζpn−` , g(θ))/K(p`m)(ζpn−`). Then we see that it is also a cyclic
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extension of degree pn−` unramified outside p by considering the action of β on g(θ). Note that we

can rewrite it as K(p`m)(ζpn−` , g(θ)) = K(p`m)(ζpn−`)( pn−
√̀

g(θ)pn−`). On the other hand, we know

by (3.10), (2.1) and (2.2) that Gal(K(p2(n−`)m)/K(p`m)(ζpn−`)) = 〈αpn−2`〉 × 〈β〉. So g(θ)pn−`
belongs

to K(p`m)(ζpn−`) by (6.4) and (6.5). Moreover, it belongs to OK
(p`m)

(ζ
pn−` )[1p ]∗ by Proposition 2.1(i)

and (ii). Hence K(p`m)(ζpn−` , g(θ)) has a normal p-integral basis over K(p`m)(ζpn−`) by Lemma 6.3(i).
If n = 2`, then K(p`m) = K(p`m)(ζpn−`). If n > 2`, then ζpn−` 6∈ K(p`m) and hence K(p`m)(g(θ)) has
a normal p-integral basis over K(p`m) by Lemma 6.3(ii).

Therefore the theorem follows from Lemma 6.4 because K(p`m)(ζpn)∩K(p`m)(g(θ)) = K(p`m).

Corollary 6.6. Let K(6= Q(
√−1), Q(

√−3)) be an imaginary quadratic field and p > 5 be a
prime. Let K∞ be any Zp-extension of K. Then the Zp-extension K∞K(p`)/K(p`) has a normal
basis over K(p`) for ` > 1.

Proof. It is a direct consequence of Theorem 6.5 by the well-known fact that if an extension F/L
of number fields has a normal p-integral basis over L, then so does F ′/L for each intermediate field
F ′.
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