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Abstract. Let K be an imaginary quadratic field different from Q(
√−1), Q(

√−3) and let OK =
[θ, 1] be its ring of integers with Im(θ) > 0. By HO we mean the ring class field of the order
O = [p`θ, 1] for a prime p and an integer ` ≥ 1. We show that if p is inert or ramified in K/Q, then

the real algebraic integer p12 ∆(p`θ)

∆(p`−1θ)
generates HO over K where ∆ is the discriminant function.

1. Introduction

Given an imaginary quadratic field K with discriminant dK and OK = [θ, 1], let O = [Nθ, 1]
be the order of conductor N(≥ 1) in K. Then it is a classical result by the main theorem of
complex multiplication of elliptic curves that for any proper fractional O-ideal a, the j-invariant
j(a) generates the ring class field HO over K as an algebraic integer([9]). Those ring class fields
over imaginary quadratic fields play an important role in number theory, in particular in the study
of certain quadratic Diophantine equations (refer to [3]).

Unlike the classical case, however, Chen-Yui([1]) constructed a generator of the ring class field
of certain conductor in terms of the singular value of the Thompson series which is a Haupt-
modul for Γ0(N) or Γ†0(N), where Γ0(N) = {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗0 ∗ ) (mod N)} and Γ†0(N) =

〈Γ0(N),
(

0 −1/
√

N√
N 0

)
〉 in SL2(R). In like manner, Cox-Mckay-Stevenhagen([4]) showed that cer-

tain sigular value of a Hauptmodul for Γ0(N) or Γ†0(N) with rational Fourier coefficients generates
HO over K. And, Cho-Koo([2]) recently revisited and further extended their results by using the
theory of Shimura’s canonical models and his reciprocity law.

On the other hand, Jung-Koo-Shin([7]) tried to construct better invariants for practical use in
terms of the singular values of Siegel functions under some conditions on discriminant and conductor
and presented a systematic way of finding their minimal polynomials. More precisely, for any pair
(r1, r2) ∈ Q2 \ Z2 we define a Siegel function g(r1,r2)(τ) by the following Fourier expansion

g(r1,r2)(τ) = −q
1
2
B2(r1)

τ eπir2(r1−1)(1− qz)
∞∏

n=1

(1− qn
τ qz)(1− qn

τ q−1
z ) (τ ∈ H)(1.1)

where B2(X) = X2 − X + 1
6 is the second Bernoulli polynomial, qτ = e2πiτ and qz = e2πiz with

z = r1τ + r2. Then it is a modular unit which has no zeros and poles on H([8]). Jung et al. showed
in [7] that the singular value

(1.2)
∏

1≤w≤N
2

gcd(w,N)=1

g12N
(0, w

N
)(θ)
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as a real algebraic integer generates HO over K under the condition

dK ≤ −43 and 2 ≤ N ≤ −√3π

log
(
1− 2.16e−

π
√−dK

24

) .(1.3)

In this paper, however, we will prove that when N = p`(` ≥ 1) for a prime p which is inert or
ramified in K/Q, the singular value in (1.2) generates HO over K(6= Q(

√−1), Q(
√−3)) without

the condition (1.3). Thus by squaring and then taking N -th root (or, just taking square root if
N = 2) of the value in (1.2) we will get the following ring class invariant

(1.4) p12 ∆(p`θ)
∆(p`−1θ)

where

(1.5) ∆(τ) = (2πi)12qτ

∞∏

n=1

(1− qn
τ )24 (τ ∈ H)

is the discriminant function(Theorem 2.6).

2. Generators of class fields with conductors of prime power

In what follows we let K be an imaginary quadratic field with discriminant dK and OK = [θ, 1]
be its ring of integers with θ ∈ H. For a nonzero integral ideal f of K we denote by Cl(f) the ray
class group of conductor f and write C0 for its unit class. If f 6= OK and C ∈ Cl(f), then we take an
integral ideal c in C so that fc−1 = [z1, z2] with z = z1

z2
∈ H. Now we define the Siegel-Ramachandra

invariant by
gf(C) = g12N

( a
N

, b
N

)
(z)

where N is the smallest positive integer in f and a, b ∈ Z such that 1 = a
N z1 + b

N z2. This value
depends only on the class C and belongs to the ray class field Kf modulo f of K. Furthermore, we
have a well-known transformation formula

(2.1) gf(C1)σ(C2) = gf(C1C2)

for C1, C2 ∈ Cl(f) where σ is the Artin map([8] §11.1).
Let χ be a character of Cl(f). We then denote by fχ the conductor of χ and let χ0 be the proper

character of Cl(fχ) corresponding to χ. For a nontrivial character χ of Cl(f) with f 6= OK we define

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C)| and Lf(s, χ) =
∑

a6=0:integral ideals
gcd(a,f)=OK

χ(a)
NK/Q(a)s

(s ∈ C).

If fχ 6= OK , then we see from the second Kronecker limit formula that

Lfχ(1, χ0) = T0Sfχ(χ̄0, gfχ)

where T0 is a nonzero constant depending on χ0([9] §22.2 Theorem 2). Here we observe that the
value Lfχ(1, χ0) is nonzero([5] IV Proposition 5.7). Moreover, multiplying the above relation by
the Euler factors we derive the identity

(2.2)
∏

p|f, p-fχ
(1− χ̄0(p))Lfχ(1, χ0) = TSf(χ̄, gf)

where T is a nonzero constant depending on f and χ([8] p. 244).
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Theorem 2.1. Let L be an abelian extension of K with [L : K] > 2hK where hK is the absolute
class number of K. Assume that the conductor of the extension L/K is a power of prime ideal,
namely f = pn(n ≥ 1). Then the value

ε = NKf/L(gf(C0))

generates L over K.

Proof. We identify Gal(Kf/K) with Cl(f) via the Artin map. Letting F = K(ε) we deduce

(2.3) #{characters χ of Cl(f) : χ|Gal(Kf/L) = 1 and χ|Gal(Kf/F ) 6= 1} = [L : K]− [F : K].

Furthermore, if we let H be the Hilbert class field of K, then we have

(2.4) #{characters χ of Cl(f) : fχ = OK} = #{χ : χ|Gal(Kf/H) = 1} = hK .

Suppose that F is properly contained in L. Then we deduce

[L : K]− [F : K] = [L : K]
(

1− 1
[L : F ]

)
> 2hK

(
1− 1

2

)
= hK

by the hypothesis [L : K] > 2hK . Thus there exists a character ψ of Cl(f) such that

ψ|Gal(Kf/L) = 1, ψ|Gal(Kf/F ) 6= 1 and fψ 6= OK

by (2.3) and (2.4). Moreover, since f = pn, we get fψ = pm for some 1 ≤ m ≤ n. Hence we obtain
by (2.2) that

0 6= Lfψ(1, ψ0) = TSf(ψ̄, gf)

for a nonzero constant T and the proper character ψ0 of Cl(fψ) corresponding to ψ. On the other
hand, we get that

Sf(ψ̄, gf) =
∑

C∈Cl(f)

ψ̄(C) log |gf(C)|

=
∑

C1∈Cl(f)
C1 (mod Gal(Kf/F ))

∑

C2∈Gal(Kf/F )

C2 (mod Gal(Kf/L))

∑

C3∈Gal(Kf/L)

ψ̄(C1C2C3) log |gf(C1C2C3)|

=
∑

C1

ψ̄(C1)
∑

C2

ψ̄(C2) log |εσ(C1C2)| by the fact ψ|Gal(Kf/L) = 1 and (2.1)

=
∑

C1

ψ̄(C1)
(∑

C2

ψ̄(C2)
)

log |εσ(C1)| by the fact ε ∈ F

= 0 by the fact ψ|Gal(Kf/F ) 6= 1,

which is a contradiction. Therefore L = F as desired. ¤

Remark 2.2. Schertz achieved in [10] a similar result for generators of the ray class fields. However,
there seems to be some defect in his argument. For instance, in the proof of [10] Lemma1 he
claimed that the conductor of a nontrivial character of Cl(pn) is nontrivial. But one can see that
his argument could be false if hK ≥ 2 because in this case the conductor of a character of Cl(pn)
induced from one of Cl(OK) is obviously trivial.

We apply this theorem to obtain the ring class invariants described in (1.4). To this end we are
in need of certain efficient and explicit transformation formula besides the one in (2.1).
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Lemma 2.3. Let K be an imaginary quadratic field other than Q(
√−1) and Q(

√−3). For N ≥ 2,
let f = NOK and O = [Nθ, 1]. Then the value gf(C0) = g12N

(0, 1
N

)
(θ) which is a real algebraic integer

(and a unit if N has at least two prime factors) generates Kf over K. Furthermore, we have an
isomorphism

Gal(Kf/HO) ∼=
{

( w 0
0 w ) : w ∈ (Z/NZ)∗

}
/
{± ( 1 0

0 1 )
}

whose action is given by

g12N
(0, 1

N
)
(θ)(

w 0
0 w ) = g12N

(0, w
N

)(θ).

Proof. See [6] Theorem 4.5, Remark 4.6 and [7] Remark 3.4. ¤
Remark 2.4. Note that

g12N
(0, w

N
)(θ) = g12N

(0, N−w
N

)
(θ)

for w ∈ Z \NZ.

Lemma 2.5. Let N ≥ 1. Then we have the relation
N−1∏

w=1

g12
(0, w

N
)(τ) = N12 ∆(Nτ)

∆(τ)

where the left hand side is understood to be 1 when N = 1.

Proof. Note the identity

(2.5)
1−XN

1−X
= 1 + X + · · ·+ XN−1 =

N−1∏

w=1

(1− e
2πiw

N X).

We then derive for N ≥ 2 that
N−1∏

w=1

g12
(0, w

N
)(τ) =

N−1∏

w=1

(
q

1
12
τ e−

πiw
N (1− e

2πiw
N )

∞∏

n=1

(1− qn
τ e

2πiw
N )(1− qn

τ e−
2πiw

N )
)12

by (1.1)

= qN−1
τ N12

∞∏

n=1

(
1− qNn

τ

1− qn
τ

)24

by the identity (2.5)

= N12 ∆(Nτ)
∆(τ)

by (1.5).

¤
Now we are ready to prove our main theorem about ring class invariants.

Theorem 2.6. Let K be an imaginary quadratic field other than Q(
√−1) and Q(

√−3). For a
prime p which is inert or ramified in K/Q, let O = [p`θ, 1](` ≥ 1). Then the real algebraic integer

p12 ∆(p`θ)
∆(p`−1θ)

generates HO over K.

Proof. Let f = p`OK . Then the conductor of the extension HO/K is f (for instance, see [3] Exercises
9.20-9.23) and

[HO : K] =
{

p`−1(p + 1)hK if p is inert in K/Q
p`hK if p is ramified in K/Q
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by the class number formula([3] Theorem 7.24).
If p = 2 and ` = 1, then Kf = HO by Lemma 2.3 and hence the real algebraic integer g24

(0, 1
2
)
(θ)

generates HO over K. And, g24
(0, 1

2
)
(θ) = (212 ∆(2θ)

∆(θ) )2 by Lemma 2.5.

As for the other cases, since f is a prime power and [HO : K] > 2hK , the value NKf/HO(gf(C0))
generates HO over K by Theorem 2.1. And we have

NKf/HO(gf(C0))2 =
∏

1≤w≤p`−1
gcd(w,p)=1

g12p`

(0, w

p` )(θ) by Lemma 2.3

=
p`−1∏

w=1

g12p`

(0, w

p` )(θ)
/ p`−1−1∏

w=1

g12p`

(0, pw

p` )
(θ)

=
(

p12` ∆(p`θ)
∆(θ)

/
p12(`−1) ∆(p`−1θ)

∆(θ)

)p`

by Lemma 2.5

=
(

p12 ∆(p`θ)
∆(p`−1θ)

)p`

.

On the other hand, since both ∆(p`−1θ)
∆(θ) and ∆(p`θ)

∆(θ) are real algebraic integers which belong to
HO([9] §12.1 Corollary to Theorem 1), we get the assertion. ¤
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