REMARKS ON SYZYGIES OF THE SECTION MODULES AND GEOMETRY OF PROJECTIVE VARIETIES

YOUNGOOK CHOI ${ }^{1}$, PYUNG-LYUN KANG, AND SIJONG KWAK ${ }^{3}$

Abstract

Let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)$ be a smooth projective variety embedded by the complete linear system associated to a very ample line bundle \mathcal{L} on X. We call $R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right)$ the section module of \mathcal{L}. It has been known that the syzygies of $R_{\mathcal{L}}$ as $R=\operatorname{Sym}\left(H^{0}(\mathcal{L})\right)$ module play important roles in understanding geometric properties of X ([2], 3], [5], 9], [10) even if X is not projectively normal.

Generalizing the case of $N_{2, p}([2],[10])$, we prove some uniform theorems on higher normality and syzygies of a given linearly normal variety X and general inner projections when $R_{\mathcal{L}}$ satisfies property $N_{3, p}$ (Theorems $1.1,1.2$ and Proposition 3.1. In particular, our uniform bounds are sharp as hyperelliptic curves and elementary transforms of elliptic ruled surfaces show.

Keywords: linear syzygy, Castelnuovo-Mumford regularity, inner projection, property $N_{d, p}$, Eagon-Northcott complex.

Mathematics Subject Classifications (2000): 14Q05;14N05;14E25.

1. Introduction

Let $R=k\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over an algebraically closed field k. Consider a minimal free resolution of a finitely generated graded R-module $M=\bigoplus_{j \geq 0} M_{j}$ as follows;

$$
\begin{equation*}
\cdots \rightarrow L_{i+1} \rightarrow L_{i} \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_{1} \rightarrow L_{0} \rightarrow M \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $L_{i}=\bigoplus_{j} R(-i-j)^{\oplus \beta_{i, j}}$. Then, one can define that M satisfies property $N_{d, p}$ if $\beta_{i, j}=0$ for $0 \leq i \leq p$ and all $j \geq d$ in the minimal free resolution (1.1). In particular, a reduced projective scheme X in \mathbb{P}^{n} satisfies property $N_{d, p}$ ([5]) if the homogeneous coordinate ring R / I_{X} of X satisfies property $N_{d, p}$. This definition coincides with the classical notion N_{p} when $d=2$ and X is projectively normal. Recall that M is d-regular if $\beta_{i, j}=0$ for all $i \geq 0$ and $j \geq d$. Therefore, the regularity $\operatorname{reg}(M)$ of M is defined as the minimum of such d.

On the other hand, for an irreducible projective variety $X \subset \mathbb{P}^{n}=\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ associated to a very ample line bundle \mathcal{L} on X and a smooth point $q \in X$, consider an inner projection $\pi_{q}: X \longrightarrow \mathbb{P}^{n-1}$. This rational map π_{q} can be extended to the blow-up morphism $\sigma: \mathrm{Bl}_{q}(X) \rightarrow X$ with the following diagram;

[^0]

Let $\operatorname{Trisec}(X)$ be the union of all tri-secant lines ℓ or $\ell \subset X$. It is well known that if $q \in X \backslash \operatorname{Trisec}(X)$, then $\widetilde{\pi_{q}}$ given by the linear system $\left|\sigma^{*} \mathcal{L}-E\right|$ is an embedding (see [6], pp. 268 - 269).

However, it is very delicate to say $X \nsubseteq \operatorname{Trisec}(X)$ if codimension of X is small and there are strong obstructions to $X \nsubseteq \operatorname{Trisec}(X)$, see [1]. In the authors' previous paper ([2], Theorem 1.1), it was shown that if a smooth variety X satisfies property N_{p} then an embedding $\widetilde{\pi}_{q}: \mathrm{Bl}_{q}(X) \rightarrow X_{q}=\overline{\pi_{q}(X \backslash\{q\})} \subset \mathbb{P}^{n-1}$ for $q \in X \backslash \operatorname{Trisec}(X)$ satisfies at least property N_{p-1}.

In this paper, first of all, we generalize Theorem 1.1 in [2] to the case of morphism $\widetilde{\pi_{q}}: \mathrm{Bl}_{q}(X) \rightarrow X_{q}=\overline{\pi_{q}(X \backslash\{q\})} \subset \mathbb{P}^{n-1}$ for $q \in L \subset X, L$ is a linear subspace. Even though $\widetilde{\pi_{q}}$ is not an embedding, we have the following main theorem.

Theorem 1.1. Let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)=\mathbb{P}^{n}$ be a smooth variety with property N_{p} for $p \geq 1$. For any $q \in X$ (possibly q is contained in a linear space $L \subset X), \overline{\pi_{q}(X \backslash\{q\})}$ in \mathbb{P}^{n-1} satisfies at least property N_{p-1}.

Main idea in proving Theorem 1.1 is to use Corollary 2.2 and induction arguement from the related commutative diagram in the Main Lemma 3.3. As examples, we can consider property N_{p} for elliptic surface scrolls and their inner projections which are elementary transforms as the center q moves inside X.

Secondly, let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)$ is a projectively normal variety satisfying property $N_{3, p}$. Recently, property $N_{3, p}$ has been focussed on for higher secant varieties for varieties with the condition $N_{2, p}$ ([14], [15]). In this case, it is possible to control the higher normality, degree of defining equations and syzygies of inner projections.

Theorem 1.2. Let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)$ be projectively normal and satisfy property $N_{3, p}, p \geq 2$. Let $\beta_{1,2}$ be the number of cubic generators of I_{X}. Then, for $q \in X$ such that there is no proper trisecant line through q, one has the following for an inner projection X_{q};
(a) $h^{1}\left(\mathcal{J}_{X_{q}}(2)\right) \leq \beta_{1,2}$
(b) X_{q} is m-normal for all $m \geq h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)+2$;
(c) X_{q} is cut out by equations of degree at most $h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)+3$ and further X satisfies property $N_{h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)+3, p-1}$;
(d) $\operatorname{reg}\left(X_{q}\right) \leq \max \left\{\operatorname{reg}(X), h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)+3\right\}$.

Main idea in proving Theorem 1.2 is to use Eagon-Northcott complex arising from the property $N_{3, p}, p \geq 2$ (see Proposition 3.1) and vector bundle techniques used in [8], [10]. Proposition 3.1 is also very important in itself because it generalizes Theorem 1.2 in [10. Note that our uniform bounds are sharp as many examples show.

In Section 2, notations and well-known preliminary results are introduced and in Section 3, we give proofs of main Theorems 1.1,1.2 and Proposition 3.1. Further interesting optimal
examples, i.e. hyperelliptic curves with degree $2 g+1$ and elliptic surface scrolls are also provided.

2. Notations and Preliminaries

For our convenience, we adopt the following notations:

- $R=k\left[x_{0}, \ldots, x_{n}\right]=\operatorname{Sym}(V)$ where $V \subset H^{0}(X, \mathcal{L})$.
- $R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right)$: the graded R-module of twisted sections of \mathcal{L}.
- $\beta_{i, j}:=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}\left(R_{\mathcal{L}}, k\right)_{i+j}$.
- $\tilde{X}=\operatorname{Bl}_{q}(X)$: a blowing up of X at a point q with a morphism $\sigma: \tilde{X} \rightarrow X$.
- E : the exceptional divisor of \tilde{X}.
- $W=H^{0}\left(\tilde{X}, \sigma^{*} \mathcal{L}(-E)\right)=H^{0}(X, \mathcal{L}(-q))$.
- $S_{W}=\operatorname{Sym}(W)$: the homogeneous coordinate ring of $\mathbb{P}(W)=\mathbb{P}^{n-1}$.
- $R^{\prime}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\tilde{X},\left(\sigma^{*} \mathcal{L}-E\right)^{\ell}\right)$: the graded S_{W}-module of twisted sections of $\sigma^{*} \mathcal{L}-E$.
- $\beta_{i, j}^{\prime}:=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{S_{W}}\left(R^{\prime}, k\right)_{i+j}$.
2.1. Criterion for property $N_{d, p}$. Let \mathcal{M} be the tautological rank- n subbundle on $\mathbb{P}^{n}=$ $\mathbb{P}(V)$ which fits into the exact sequence $0 \rightarrow \mathcal{M} \rightarrow V \otimes \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1) \rightarrow 0$. We have also an induced exact sequence for a coherent sheaf \mathcal{F} on \mathbb{P}^{n};

$$
0 \rightarrow \wedge^{i+1} \mathcal{M} \otimes \mathcal{F}(j-1) \xrightarrow{\tau_{i, j}} \wedge^{i+1} V \otimes \mathcal{F}(j-1) \xrightarrow{\varphi_{i, j}} \wedge^{i} \mathcal{M} \otimes \mathcal{F}(j) \rightarrow 0
$$

Then, for the saturated R-module $F=\bigoplus_{n \geq 0} H^{0}(\mathcal{F}(n))$, one has the following useful theorem.

Theorem 2.1. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{n} with the section module $F=\bigoplus_{n \geq 0} H^{0}(\mathcal{F}(n))$. If $j \geq 1$, then there is an exact sequence

$$
0 \rightarrow \operatorname{Tor}_{i}^{R}(F, k)_{i+j} \rightarrow H^{1}\left(\wedge^{i+1} \mathcal{M} \otimes \mathcal{F}(j-1)\right) \xrightarrow{\tau_{i, j}} \wedge^{i+1} V \otimes H^{1}(\mathcal{F}(j-1))
$$

where the map $\tau_{i, j}$ is induced by the inclusion $\mathcal{M} \subset V \otimes \mathcal{O}_{\mathbb{P}^{n}}$.
Proof. see [4], Theorem 5.7.

Therefore, $F=\bigoplus_{n \geq 0} H^{0}(\mathcal{F}(n))$ satisfies property $N_{d, p}$ iff for $0 \leq i \leq p$ and $j \geq d$, the homomorphism

$$
H^{1}\left(\mathbb{P}^{n}, \wedge^{i+1} \mathcal{M} \otimes \mathcal{F}(j-1)\right) \xrightarrow{\tau_{i, j}} \wedge^{i+1} V \otimes H^{1}\left(\mathbb{P}^{n}, \mathcal{F}(j-1)\right)
$$

is injective, equivalently the homomorphism

$$
\wedge^{i+1} V \otimes H^{0}\left(\mathbb{P}^{n}, \mathcal{F}(j-1)\right) \xrightarrow{\varphi_{i, j}} H^{0}\left(\mathbb{P}^{n}, \wedge^{i} \mathcal{M} \otimes \mathcal{F}(j)\right)
$$

is surjective.
On the other hand, for a projective variety $X \subset \mathbb{P}(W), W \subset H^{0}(\mathcal{L})$, we have an exact sequence $0 \rightarrow \mathcal{M}_{W} \rightarrow W \otimes \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1) \simeq \mathcal{L} \rightarrow 0$. Then, $\operatorname{Tor}_{i}^{S_{W}}\left(R_{\mathcal{L}}, k\right)_{i+j}$ fits similarly
into the exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Tor}_{i}^{S_{W}}\left(R_{\mathcal{L}}, k\right)_{i+j} \rightarrow H^{1}\left(X, \wedge^{i+1} \mathcal{M}_{W} \otimes \mathcal{L}^{j-1}\right) \rightarrow \wedge^{i+1} W \otimes H^{1}\left(X, \mathcal{L}^{j-1}\right) \\
& \rightarrow H^{1}\left(X, \wedge^{i} \mathcal{M}_{W} \otimes \mathcal{L}^{j}\right) \rightarrow \cdots
\end{aligned}
$$

and we have the following corollary:
Corollary 2.2. For a projective variety $X \subset \mathbb{P}(W), W \subset H^{0}(X, \mathcal{L})$, let S_{W} be a projective coordinate ring of $\mathbb{P}(W)$. Then the section module $R_{\mathcal{L}}:=\oplus_{n \geq 0} H^{0}\left(\mathcal{L}^{\otimes n}\right)$ satisfies property $N_{d, p}$ as a graded S_{W}-module if and only if the homomorphism $\wedge^{i+1} W \otimes H^{0}\left(X, \mathcal{L}^{j-1}\right) \rightarrow$ $H^{0}\left(X, \wedge^{i} \mathcal{N}_{W} \otimes \mathcal{L}^{j}\right)$ is surjective for $0 \leq i \leq p$ and $j \geq d$, equivalently the homomorphism

$$
H^{1}\left(X, \wedge^{i+1} \mathcal{M}_{W} \otimes \mathcal{L}^{j-1}\right) \rightarrow \wedge^{i+1} W \otimes H^{1}\left(X, \mathcal{L}^{j-1}\right)
$$

is injective for $0 \leq i \leq p$ and $j \geq d$.

3. Proofs of main results and examples

To begin with, let us recall the following known results.
Let $X \subset \mathbb{P}(V)$ be a projective variety with $R_{\mathcal{L}}$ satisfying property $N_{2, p}$ for $p \geq 1$ as a graded R-module where $V \subset H^{0}(\mathcal{L})$.

- If $t=h^{1}\left(\mathcal{J}_{X}(1)\right)=\operatorname{codim}\left(V, H^{0}(\mathcal{L})\right)$, then X is m-normal for all $m \geq t+1$ and cut out by equations of degree at most $t+2$. In addition, I_{X} satisfies property $N_{t+2, p-1}$ and $\operatorname{reg}(X) \leq \max \left\{\operatorname{reg}\left(\mathcal{O}_{X}\right)+1, t+2\right\}$ (10), Theorem 1.2).
- If X is projectively normal, then an inner projection X_{q} from a smooth point $q \in$ $X \backslash \operatorname{Trisec}(X)$ is also projectively normal and further satisfies N_{p-1}. Furthermore, $\operatorname{reg}\left(X_{q}\right)=\operatorname{reg}(X)([2]$, Theorem 1.1).

We proceed with the following proposition which generalizes the first fact.
Proposition 3.1. Let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)=\mathbb{P}^{n}$ be a reduced linearly normal variety. Suppose that the section module $R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right)$ satisfies property $N_{3, p}$ for $p \geq 1$. Then,
(a) X is m-normal for all $m \geq h^{1}\left(\mathcal{J}_{X}(2)\right)+2$;
(b) X is cut out by equations of degree at most $h^{1}\left(\mathcal{J}_{X}(2)\right)+3$ and further, I_{X} satisfies property $N_{h^{1}\left(\mathcal{J}_{X}(2)\right)+3, p}$;
(c) $\operatorname{reg}(X) \leq \max \left\{\operatorname{reg}\left(\mathcal{O}_{X}\right)+1, h^{1}\left(\mathcal{J}_{X}(2)\right)+3\right\}$.

Proof. If $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)$ is quadratically normal, i.e., $h^{1}\left(\mathcal{J}_{X}(2)\right)=0$, it is projectively normal since $R_{\mathcal{L}}$ satisfies property $N_{3, p}$. In this case, the conclusion is trivial. Now, we assume that $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)$ is not quadratically normal, i.e. $h^{1}\left(\mathcal{J}_{X}(2)\right) \neq 0$. Let $R=$ $k\left[x_{0}, x_{1} \ldots, x_{n}\right]$ be the coordinate ring of $\mathbb{P}^{n}=\mathbb{P}\left(H^{0}(\mathcal{L})\right)$. Since X is not projectively normal, we have the following basic sequence;

$$
0 \longrightarrow R / I_{X} \longrightarrow R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right) \longrightarrow H_{*}^{1}\left(\mathcal{J}_{X}\right) \longrightarrow 0
$$

where $H_{*}^{1}\left(\mathcal{J}_{X}\right)=\bigoplus_{\ell \in \mathbb{Z}} H^{1}\left(\mathbb{P}^{n}, \mathcal{J}_{X}(\ell)\right)$ is the Hartshorne-Rao module.

Since X is linearly normal but not quadratically normal, we have $\beta_{0,1}\left(R_{\mathcal{L}}\right)=0$ and $\beta_{0,2}\left(R_{\mathcal{L}}\right)=h^{1}\left(\mathcal{J}_{X}(2)\right)$. The property $N_{3, p}$ of $R_{\mathcal{L}}$ for $p \geq 1$ gives the following minimal free resolution of $R_{\mathcal{L}}$ as a graded R-module:

$$
0 \rightarrow K_{1}=\operatorname{ker}\left(\varphi_{1}\right) \rightarrow R(-3)^{\beta_{1,2}} \oplus R(-2)^{\beta_{1,1}} \xrightarrow{\varphi_{1}} R \oplus R(-2)^{\beta_{0,2}} \xrightarrow{\varphi_{0}} R_{\mathcal{L}} \rightarrow 0 .
$$

Letting $K_{0}=\operatorname{ker}\left(\varphi_{0}\right)$ and by sheafification, we have the following two commutative diagrams (cf. [8, [10]);

	0		0			
	\downarrow		\downarrow			
$0 \rightarrow$	J_{X}	\rightarrow	$\mathcal{O}_{\mathbb{P}^{n}}$	\rightarrow	$\mathcal{O}_{X} \rightarrow 0$	
	\downarrow		\downarrow		\\|	
$0 \rightarrow$	\mathcal{K}_{0}	\rightarrow	$\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-2)^{\beta_{0,2}}$	\rightarrow	$\mathcal{O}_{X} \rightarrow 0$	
	\downarrow		\downarrow			
	$\mathcal{O}_{\mathbb{P}^{n}(-2)^{\beta_{0,2}}}$		$\mathcal{O}_{\mathbb{P}^{n}}(-2)^{\beta_{0,2}}$			
	\downarrow		\downarrow			
	0		0			

and in the first syzygies of $R_{\mathcal{L}}$, we have the following diagram:

Claim 3.2. From the commutative diagrams (3.1) and (3.2),
(a) $H_{*}^{0}\left(\mathcal{K}_{0}\right)=K_{0}=\operatorname{ker}\left(\varphi_{0}\right)$ and $H^{1}\left(\mathcal{K}_{0}(m)\right) \simeq H^{2}\left(\mathcal{K}_{1}(m)\right)=0$ for all $m \in \mathbb{Z}$,
(b) $H_{*}^{0}\left(\mathcal{K}_{1}\right)=K_{1}, H^{1}\left(\mathcal{K}_{1}(m)\right)=0$ for all $m \in \mathbb{Z}$,
(c) $\operatorname{reg}(\mathcal{N}) \leq h^{1}\left(\mathcal{J}_{X}(2)\right)+3$.

Proof. By taking global sections, we have the following sequence:

$$
0 \rightarrow H_{*}^{0}\left(\mathcal{K}_{0}\right) \longrightarrow R \oplus R(-2)^{\beta_{0,2}} \xrightarrow{\varphi_{0}} R_{\mathcal{L}} \longrightarrow H_{*}^{1}\left(\mathcal{K}_{0}\right) \longrightarrow 0 .
$$

Therefore, we get $H_{*}^{0}\left(\mathcal{K}_{0}\right)=K_{0}$ and $H_{*}^{1}\left(\mathcal{K}_{0}\right)=0$. On the other hand, from the following diagram

we have $H_{*}^{0}\left(\mathcal{K}_{1}\right)=K_{1}$ and $H_{*}^{1}\left(\mathcal{K}_{1}\right)=\bigoplus_{m \in \mathbb{Z}} H^{1}\left(\mathcal{K}_{1}(m)\right)=0$. In addition, from the sequence $0 \rightarrow \mathcal{K}_{1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2)^{\beta_{1,1}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-3)^{\beta_{1,2}} \rightarrow \mathcal{K}_{0} \rightarrow 0$, we obtain $H_{*}^{1}\left(\mathcal{K}_{0}\right)=H_{*}^{2}\left(\mathcal{K}_{1}\right)=0$. The Castelnuovo-Mumford regularity of \mathcal{N} in the second row of (3.2).

$$
0 \rightarrow \mathcal{N} \rightarrow O_{\mathbb{P}^{n}}(-2)^{\beta_{1,1}} \oplus O_{\mathbb{P}^{n}}(-3)^{\beta_{1,2}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2)^{\beta_{0,2}} \rightarrow 0
$$

can be controlled from the following diagram :

It is very important to note that in a second row, the restriction of $\widetilde{\varphi_{1}}$ to $\mathcal{O}_{\mathbb{P}^{n}}(-2)^{\beta_{1,1}}$ is a zero map because it is induced by the minimal free resolution of $R_{\mathcal{L}}$.

On the other hand, by using Eagon-Northcott complex associated to the exact sequence in the third row of (3.3) (cf. [8], [10], 11]), we get $\operatorname{reg}\left(\mathcal{N}_{1}\right) \leq \beta_{0,2}+3$ and finally we have

$$
\operatorname{reg}(\mathcal{N}) \leq \beta_{0,2}+3=h^{1}\left(\mathcal{J}_{X}(2)\right)+3
$$

We now return to the proof of Proposition 3.1. From the exact sequence $0 \rightarrow \mathcal{K}_{1} \rightarrow$ $\mathcal{N} \rightarrow \mathcal{J}_{X} \rightarrow 0$, and by Claim 3.2 (a) and (b), we conclude that X is m-normal for all $m \geq h^{1}\left(\mathcal{J}_{X}(2)\right)+2$.

For the syzygies of I_{X}, consider the exact sequence by taking global sections

$$
0 \rightarrow K_{1}=H_{*}^{0}\left(\mathcal{K}_{1}\right) \rightarrow H_{*}^{0}(\mathcal{N}) \rightarrow I_{X} \rightarrow 0=H_{*}^{1}\left(\mathcal{K}_{1}\right) .
$$

Since $K_{1}=H_{*}^{0}\left(\mathcal{K}_{1}\right)$ is the first syzygy module of $R_{\mathcal{L}}$, we have

$$
\begin{equation*}
\operatorname{Tor}_{i}^{R}\left(K_{1}, k\right)_{i+j}=0 \quad \text { for all } 0 \leq i \leq p-2, j \geq 3 . \tag{3.4}
\end{equation*}
$$

Now, consider the long exact sequence:

$$
\begin{aligned}
\operatorname{Tor}_{i}^{R}\left(K_{1}, k\right)_{i+j} \rightarrow \operatorname{Tor}_{i}^{R}\left(H_{*}^{0}(\mathcal{N}), k\right)_{i+j} \rightarrow \operatorname{Tor}_{i}^{R}\left(I_{X}, k\right)_{i+j} \rightarrow \\
\stackrel{\delta}{\longrightarrow} \operatorname{Tor}_{i-1}^{R}\left(K_{1}, k\right)_{i+j} \rightarrow \operatorname{Tor}_{i-1}^{R}\left(H_{*}^{0}(\mathcal{N}), k\right)_{i+j} \rightarrow \operatorname{Tor}_{i-1}^{R}\left(I_{X}, k\right)_{i+j} .
\end{aligned}
$$

Since we have (3.4) and $\operatorname{reg} H_{*}^{0}(\mathcal{N})=\operatorname{reg}(\mathcal{N}) \leq h^{1}\left(\mathcal{J}_{X}(2)\right)+3$, we get $\operatorname{Tor}_{i}^{R}\left(I_{X}, k\right)_{i+j}=$ $\operatorname{Tor}_{i+1}^{R}\left(R / I_{X}, k\right)_{i+j}=0$ for $0 \leq i \leq p-1$ and $j \geq h^{1}\left(\mathcal{J}_{X}(2)\right)+3$. Thus, we conclude that X is generated by equations of degree at most $h^{1}\left(\mathcal{J}_{X}(2)\right)+3$ and further satisfies property $N_{h^{1}\left(\mathcal{J}_{X}(2)\right)+3, p}$.

The following Lemma is a refined version of theorem 4.6 in [2]. It gives a new inequality (Main Lemma 3.3 (b)). It is expected, but somewhat surprising that the syzygies of $R_{\mathcal{L}}$ control those of $R_{\mathcal{L}^{\prime}}$ where $\mathcal{L}^{\prime}=\sigma^{*} \mathcal{L}-E$.

Main Lemma 3.3. Suppose that X is a smooth linearly normal variety in $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ and $R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right)$ satisfies property $N_{d, p}, p \geq 1$. Then, we have the following;
(a) $R^{\prime}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\tilde{X},\left(\sigma^{*} \mathcal{L}-E\right)^{\ell}\right)$ is a finitely generated graded $\operatorname{Sym}\left(H^{0}\left(\sigma^{*} \mathcal{L}-E\right)\right)$ module and satisfies property $N_{d, p-1}$, i.e. $\beta_{i, j}^{\prime}=0$ for $0 \leq i \leq p-1$ and $j \geq d$;
(b) $\beta_{i, d-1}^{\prime} \leq \beta_{i+1, d-1}$ for $0 \leq i \leq p-1$.

Proof. Note that in the case of $d=2$, (a) was already proved in [2]. Without a loss of generality, we prove the case of $d=3$. As in the proof of theorem 4.6 in [2], we have the following complicated but very useful inductive diagrams; let $\sigma: \tilde{X}=\mathrm{Bl}_{q}(X) \rightarrow X$ be the blow-up morphism with $W=H^{0}\left(\sigma^{*} \mathcal{L}(-E)\right)$. Then, we have the following diagrams:

Taking wedge products and tensoring by $\sigma^{*} \mathcal{L}^{j-1}$ in the diagram 3.5, we have the following diagram on cohomology groups in order to prove the case of $p=1$ (even when $p \geq 2$, we
have the same proof):

where coker $\alpha_{1, j}$ in the second column is defined as follows:

$$
0 \longrightarrow \mathcal{M}_{W} \otimes \sigma^{*} \mathcal{L}^{j}(-E) \xrightarrow{\alpha_{1, j}} \sigma^{*} \mathcal{M}_{V} \otimes \sigma^{*} \mathcal{L}^{j} \longrightarrow \text { coker } \alpha_{1, j} \longrightarrow 0
$$

The property $N_{3,1}$ of $R_{\mathcal{L}}$ implies that $\tau_{1, j}$ is always injective for all $j \geq 3$ because $\beta_{1, j}=0$ for $j \geq 3$. Note also that $\mu_{1, j}$ is surjective and $\rho_{1, j}$ is injective for all $j \geq 1$. By the inductive argument from the above diagram (cf. theorem 4.6 [2]), we can show that, for $j \geq 3$,

$$
\delta_{1, j+1} \text { is injective } \Longrightarrow \delta_{1, j} \text { is injective. }
$$

Indeed, $H^{1}\left(\mathcal{M}_{W} \otimes \sigma^{*} \mathcal{L}^{j}(-E)\right)=H^{1}\left(\sigma_{*} \mathcal{M}_{W}(-E) \otimes \mathcal{L}^{j}\right)=0$ for $j \gg 0$ because \mathcal{L} is very ample. So, $\delta_{1, j+1}$ is a zero map for $j \gg 0$. Since our inductive method works for all $j \geq 3$, we obtain

$$
\delta_{1, j} \text { is injective for all } j \geq 3
$$

Now look at the following commutative diagram

For $j \geq 2$, the left column map is always injective by lemma 4.4 in [2] and the right column map is an isomorphism by corollary 2.4 in [2]. Therefore, $\widetilde{\tau_{1, j}}$ is injective for $j \geq 3$ and equivalently, $\beta_{0, j}^{\prime}=0$ for all $j \geq 3$. Therefore $R^{\prime}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\tilde{X},\left(\sigma^{*} \mathcal{L}-E\right)^{\ell}\right)$ satisfies property $N_{3,0}$ as a graded S_{W}-module.

Note that $\nu_{1,2}$ in the diagram (3.6) is surjective because $\delta_{1,3}$ is injective (so, $\omega_{1,2}$ is also injective). From the following commutative diagram for $j=2$

we get Coker $\varphi_{1,2} \simeq \operatorname{Tor}_{1}^{R}\left(R_{\mathcal{L}}, k\right)_{3}$ and by the isomorphism diagram (3.7) for $j=2$, we also have

$$
\text { Coker } \gamma_{1,2} \simeq \operatorname{ker} \delta_{1,2} \simeq \operatorname{ker} \widetilde{\tau_{1,2}} \simeq \operatorname{Tor}_{0}^{S_{W}}\left(R^{\prime}, k\right)_{2}
$$

Therefore, $\beta_{0,2}^{\prime}=\operatorname{dim} \operatorname{Tor}_{0}^{S_{W}}\left(R^{\prime}, k\right)_{2} \leq \operatorname{dim} \operatorname{Tor}_{1}^{R}\left(R_{\mathcal{L}}, k\right)_{3}=\beta_{1,2}$. This completes the Main Lemma for $i=0$. For $i \geq 1$, the same inductive argument can be applied as in ([2]). So we are done.

Note that if X is a projectively normal embedding in $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ with property $N_{3, p}$, then $\beta_{1,2}$ is the number of cubic generators of I_{X} and $\beta_{0,2}^{\prime}=h^{1}\left(\mathcal{J}_{X_{q}}(2)\right) \leq \beta_{1,2}$.

Let us go back to the basic situation again. Let $X \subset \mathbb{P}\left(H^{0}(\mathcal{L})\right)=\mathbb{P}^{n}$ is a smooth projective variety, and L be a linear subspace such that $q \in L \subset X$. Then, $\sigma^{*} \mathcal{L}(-E)$ is not very ample but base-point free so that $\widetilde{\pi_{q}}: \widetilde{X}=\mathrm{Bl}_{q}(X) \rightarrow X_{q}=\overline{\pi_{q}(X \backslash\{q\})} \subset \mathbb{P}(W)=$ \mathbb{P}^{n-1} is a morphism which is not an embedding. However, one can still get some syzygetic information about the section module $R_{q}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X_{q}, \mathcal{O}_{X_{q}}(\ell)\right)$ if X_{q} is a normal variety. In this situation, we proceed to prove Theorem 1.1.

- Proof of Theorem 1.1

Since $X \subset \mathbb{P}^{n}$ satisfies property N_{p}, there is no line $l \subset \mathbb{P}^{n}$ such that $\operatorname{dim}(l \cap X)=0$ and length $(l \cap X) \geq 3$. Then the inverse image ${\widetilde{\pi_{q}}}^{-1}(y)$ is geometrically connected for all $y \in X_{q}$. By Stein factorization, we get $\pi_{*}\left(\mathcal{O}_{\tilde{X}}\right)=\mathcal{O}_{X_{q}}$. Note also that property N_{p-1} of X_{q} is equivalent to the vanishing $\operatorname{Tor}_{i}^{S_{W}}\left(R_{q}, k\right)_{i+j}=0$ for $0 \leq i \leq p-1$ and $j \geq 2$.

On the other hand, from the restricted Euler sequence

$$
0 \rightarrow M_{W} \rightarrow W \otimes \mathcal{O}_{X_{q}} \rightarrow \mathcal{O}_{X_{q}}(1) \rightarrow 0
$$

we have the following commutative diagram by projection formula and $\pi_{*}\left(\mathcal{O}_{\tilde{X}}\right)=\mathcal{O}_{X_{q}}$:

$$
\left.\begin{array}{ccccc}
\wedge^{i+1} W \otimes H^{0}\left(\mathcal{O}_{X_{q}}(j-1)\right) & \xrightarrow{\psi_{i, j}} & H^{0}\left(\wedge^{i} \mathcal{M}_{W} \otimes \mathcal{O}_{X_{q}}(j)\right) & \longrightarrow & \operatorname{Tor}_{i}^{S_{W}}\left(R_{q}, k\right)_{i+j}
\end{array}\right] \quad 0 .
$$

By the Main Lemma 3.3 (a), the morphism $\widetilde{\psi_{i, j}}$ is surjective for $i \leq p-1$ and $j \geq 2$ because $R^{\prime}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\bar{X},\left(\sigma^{*} \mathcal{L}-E\right)^{\ell}\right)$ satisfies property $N_{2, p-1}$. Thus, the morphism $\psi_{i, j}$ is also surjective, and equivalently (see Corollary 2.2) X_{q} satisfies property N_{p-1}.

- Proof of Theorem 1.2

Let $R=k\left[x_{0}, x_{1} \ldots, x_{n}\right]$ be the coordinate ring of $\mathbb{P}^{n}=\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ and $S_{W}=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a coordinate ring of $\mathbb{P}^{n-1}=\mathbb{P}(W)$ as in the Notations. By the same reason as in Theorem 1.1. we know that $\widetilde{\pi}_{q_{*}}\left(\mathcal{O}_{\tilde{X}}\right)=\mathcal{O}_{X_{q}}$ and thus

$$
R^{\prime}:=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\widetilde{X}, \sigma^{*} \mathcal{L}(-E)^{\ell}\right)=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\mathcal{O}_{X_{q}}(\ell)\right):=R_{q} .
$$

Since $R_{\mathcal{L}}$ satisfies property $N_{3, p}$, the section module R^{\prime} also satisfies property $N_{3, p-1}$ for $p \geq 2$ by Main Lemma 3.3 (a), and we have the minimal free resolution of $R^{\prime}=R_{q}$ as a graded S_{W}-module:

$$
0 \rightarrow K_{1}=\operatorname{ker}\left(\varphi_{1}\right) \rightarrow S_{W}(-3)^{\oplus \beta_{1,2}^{\prime}} \xrightarrow{\varphi_{1}} S_{W} \oplus S_{W}(-2)^{\oplus \beta_{0,2}^{\prime}} \xrightarrow{\varphi_{0}} R^{\prime}=R_{q} \rightarrow 0 .
$$

First note that if X_{q} is projectively normal, then $\beta_{0,2}^{\prime}=0$ and our theorem is clearly true by Main Lemma 3.3 (a). Suppose that X_{q} is not projectively normal. Then, X_{q} is not quadratically normal with inequality $0 \neq h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)=\beta_{0,2}^{\prime} \leq \beta_{1,2}$ by Main Lemma 3.3 (b). Therefore, by applying Proposition 3.1 immediately, we are done.

The following Corollary is also a generalization of Theorem 1.2 in [10] and Theorem 2 in [3] to the case of $N_{3, p}$.

Corollary 3.4. Let $X \subset \mathbb{P}(V)=\mathbb{P}^{n}, V \subset H^{0}(\mathcal{L})$ be a projective variety which is not necessary linearly normal. If the section module $R_{\mathcal{L}}=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(X, \mathcal{L}^{\ell}\right)$ satisfies property $N_{3, p}$ for $p \geq 2$, then for $q \in X$ such that there is no proper trisecant line through q, $R_{q}:=\oplus_{\ell \in \mathbb{Z}} H^{0}\left(\mathcal{O}_{X_{q}}(\ell)\right)$ satisfies property $N_{3, p-1}$.

Proof. As in the proof of Theorem 1.2, we have $\widetilde{\pi}_{q_{*}}\left(\mathcal{O}_{\tilde{X}}\right)=\mathcal{O}_{X_{q}}$ by Stein factorization and thus $H^{0}\left(\widetilde{X}, \sigma^{*} \mathcal{L}(-E)^{\ell}\right)=H^{0}\left(\mathcal{O}_{X_{q}}(\ell)\right)$. So by Main Lemma 3.3 (a), we are done.

Example 3.5 (hyperelliptic curves). Let $X \subset \mathbb{P}^{g+1}$ be a hyperelliptic curve of genus $g \geq 3$ and degree $2 g+1$ which is embedded by a complete linear system $\mid(g-2) g_{2}^{1}+p_{1}+$ $p_{2}+p_{3}+p_{4}+q \mid$ where g_{2}^{1} is an unique hyperelliptic involution. Then X is projectively normal but fails to satisfy property N_{1}. However, the homogeneous ideal I_{C} is 3 -regular(i.e. $N_{3, p}$) and in particular generated by quadrics and g-number of cubic hypersurfaces. If $H^{0}\left(p_{1}+p_{2}+p_{3}+p_{4}-g_{2}^{1}\right)=0$, then the projection X_{q} from q is a linearly normal embedding with 4 -secant line because Span $\left\langle p_{1}, p_{2}, p_{3}, p_{4}, q\right\rangle=\mathbb{P}^{2}$. In addition, It can be computed that $h^{1}\left(\mathcal{J}_{X_{q}}(2)\right)=1$ and $h^{1}\left(\mathcal{J}_{X_{q}}(\ell)\right)=0$ for all $\ell \geq 3$. Thus, this is an optimal example which makes our uniform bound sharp in the main Theorem 1.2 (see [13] for details).

Example 3.6 (surface scrolls over an elliptic curve). Let C be a smooth elliptic curve and let \mathcal{E} be a normalized rank 2 vector bundle on C with $\mathbf{e}=\bigwedge^{2} \mathcal{E}$ and $e=-\operatorname{deg}(\mathbf{e})$. Let $X=\mathbb{P}_{C}(\mathcal{E})$ be an associated ruled surface with projection morphism $\pi: X \rightarrow C$. We fix a section C_{0} such that $\mathcal{O}_{X}\left(C_{0}\right)=\mathcal{O}_{\mathbb{P}_{C}(\varepsilon)}(1)$. Then, $C_{0}^{2}=-e$. Denote $\mathbf{b} f$ by the pullback of $\mathbf{b} \in \operatorname{Pic} C$. Consider an elliptic scroll $X \subset \mathbb{P}^{n}$ embedded by a complete linear system $\left|C_{0}+\mathbf{b} f\right|$. First note that by Theorem 1.4 in [12]

$$
\begin{equation*}
X \subset \mathbb{P}^{n} \text { satisfies property } N_{p} \text { if and only if } \operatorname{deg} \mathbf{b} \geq e+3+p \tag{3.9}
\end{equation*}
$$

Now, suppose ($X, C_{0}+\mathbf{b} f$) satisfies property N_{p}. An inner projection X_{q} is an elementary transform $\mathbb{P}_{C}\left(\mathcal{E}^{\prime}\right)$ of $X=\mathbb{P}_{C}(\mathcal{E})$ over C because X has no proper trisecant line through q. By theorem 1.1, X_{q} satisfies at least property N_{p-1}. However, the syzygies of X_{q} depend on the point $q \in X$ as follows ($[7, \S 4$):

- Assume that q is contained in a minimal section D which is not necessary equal to C_{0}. One can easily check that the strict transformation of a minimal section on $\mathbb{P}(\mathcal{E})$ passing through q is again a minimal section D^{\prime} on $X_{q}=\mathbb{P}_{C}\left(\mathcal{E}^{\prime}\right)$ such that $\mathcal{O}_{X_{q}}\left(D^{\prime}\right)=\mathcal{O}_{\mathbb{P}_{C}\left(\varepsilon^{\prime}\right)}(1)$ and $\left(D^{\prime}\right)^{2}=-e-1$. Therefore, we have $-\operatorname{deg}\left(\bigwedge^{2} \mathcal{E}^{\prime}\right)=e+1$ and $X_{q} \subset \mathbb{P}^{n-1}$ is embedded by a complete linear system $\left|D^{\prime}+\mathbf{b}^{\prime} f\right|$ where $\operatorname{deg} \mathbf{b}^{\prime}=b$ because $\operatorname{deg} X_{q}=\operatorname{deg} X-1$. Therefore X_{q} satisfies property N_{p-1} but fails to satisfy N_{p} by (3.9).
- Assume that q is not contained in any minimal section in X. In this case, the strict transformation $C_{0}{ }^{\prime}$ of a minimal section C_{0} on $\mathbb{P}_{C}(\mathcal{E})$ is again a minimal section on $\mathbb{P}\left(\mathcal{E}^{\prime}\right)$ and $\left(C_{0}\right)^{2}=-e+1$. Therefore $-\operatorname{deg}\left(\bigwedge^{2} \mathcal{E}^{\prime}\right)=e-1$ and $X_{q} \subset \mathbb{P}^{n-1}$ is embedded by $\left|C_{0}^{\prime}+\mathbf{b}^{\prime} f\right|$ where $\operatorname{deg} \mathbf{b}^{\prime}=b-1$. Therefore X_{q} satisfies property N_{p}.

Assume that $-\operatorname{deg}\left(\bigwedge^{2} \mathcal{E}\right)=-1$. Then $\mathbb{P}_{C}(\mathcal{E})$ is covered by minimal sections. If not, there exists a point $q \in X$ which is not contained in any minimal section. Then, the projection X_{q} is an elliptic scroll $\mathbb{P}_{C}\left(\mathcal{E}^{\prime}\right)$ over C such that $-\operatorname{deg}\left(\bigwedge^{2} \mathcal{E}^{\prime}\right)<-1$. But there is no such a vector bundle on an elliptic curve by Nagata's theorem.

References

[1] I.Bauer, Inner projections of algebraic surfaces: a finiteness result, J. reine angew. Math. 460, 1-13 (1995).
[2] Y.Choi, P-L. Kang, S. Kwak, Higher linear syzygies of Inner projections, J. Algebra 305 (2006), 859-876.
[3] Y.Choi, S. Kwak, E. Park On syzygies of non-complete embedding of projective varieties, Math. Z. 258 (2008), 463-475.
[4] D. Eisenbud, The Geometry of Syzygies, Springer-Verlag, New York, (2005).
[5] D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restriction linear syzygies: algebra and geometry, Compositio Math. 141 (2005), 1460-1478.
[6] H. Flenner, L. O'Carroll, W. Vogel, Joins and intersections, Springer-Verlag, Berlin, (1999).
[7] L. Fuentes-Garcia, M. Pedreira, The projective theory of ruled surfaces, Note Mat. 24 (2005), no. 1, 25-63.
[8] L.Gruson, R. Lazarsfeld and C.Peskine, On a theorem of Castelnuovo and the equations defining projective varieties, Inv. Math. 72 (1983), 491-506.
[9] M. Green, Koszul cohomology and the geometry of projective variety, J. Differential Geometry 19 (1984) 125-171.
[10] S. Kwak, E. Park, Some effects of property N_{p} on the higher normality and defining equations of nonlinearly normal varieties, J. Reine Angew. Math. 582 (2005), 87-105.
[11] A. Noma, A bound on the Castelnuovo-Mumford regularity for curves, Math.Ann.322, 69-74 (2002).
[12] E. Park, On higher syzygies of ruled surfaces, Trans. Amer. Math. Soc. 358 (2006), 3733-3749.
[13] E. Park, Complete linear series on a hyperelliptic curve, Preprint, arXiv:0808.0113.
[14] J. Sidman and P. Vermeire, Syzygies of the Secant Variety, arXiv:0806.3056
[15] P. Vermeire, Generation and syzygies of the first secant variety, arXiv:0809.4463.
${ }^{1}$ Department of Mathematics Education, Yeungnam University, 214-1 Daedong Gyeongsan, 712-749, Gyeongsangbuk-do, Republic of Korea

E-mail address: ychoi824@ynu.ac.kr
${ }^{2}$ Department of Mathematics, Chungnam National University, 305-764 Daejeon, Republic of Korea

E-mail address: plkang@cnu.ac.kr
${ }^{3}$ Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon

E-mail address: skwak@kaist.ac.kr

[^0]: ${ }^{1}$ The first author was supported by the Yeungnam University research grants in 2007.
 ${ }^{3}$ The third author was supported in part by the SRC Program of Korea Science and Engineering Foundation(KOSEF) No. R11-2007-035-02001-0.

