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SYZYGY STRUCTURES OF INNER PROJECTIONS

KANGJIN HAN AND SIJONG KWAK

Abstract. Let X ⊂ Pn be a projective reduced scheme. If the truncated
ideal (IX)≥d has only the simplest linear syzygies up to p-th step, then we

say that X satisfies property Nd,p. When d = 2, p = 2, IX is generated by
quadrics and there are only linear relations on quadrics. So, property N2,p can
be regarded as a generalization of property Np due to Green-Lazarsfeld.

In this paper, we obtain some results on syzygy structures and geometric
properties of inner projections by using the extended mapping cone construc-
tion for not finitely generated graded modules and the partial elimination ideal
theory. In particular, for a reduced scheme X with the condition N2,p, the in-
ner projections from any smooth point of X satisfies at least property N2,p−1.
This uniform behavior looks unusual in a sense that linear syzygies of outer
projections heavily depend on moving the center of projection in an ambi-
ent space [4],[14], [16]. Note that the syzygies of projected varieties from the
singular point is more complicated.
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1. Introduction

Let X be a non-degenerate reduced closed subscheme in a projective space Pn =
P(V ) defined over an algebraically closed field k and R = k[x0, . . . , xn] be the
coordinate ring of P(V ). For the homogeneous coordinate ring R/IX of X , we have
the unique minimal free resolution of R/IX as R-modules as follows;

(1.1) · · · → Li → Li−1 → · · · → L1 → R → R/IX → 0

where Li =
⊕

j R(−i− j)⊕βi,j . The distribution of zeroes of graded Betti numbers
βi,j in the Betti table gives the significant geometric information on X and many
long standing conjectures on the vanishing of Koszul cohomology groups deeply
link between the geometry and syzygies of a projective variety X . One of the
interesting natural questions is to compare the syzygies of X and its projections as
we move the center of the projection. This kind of question is closely related to the
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Eisenbud-Goto conjecture on Castelnuovo-Mumford regularity and some topics in
classical algebraic geometry.

First of all, let us recall the definitions and known results. One can define that
X(or R/IX) satisfies property Nd,p (cf. [8]) if one of the following conditions holds:

(a) βi,j = 0 for 1 ≤ i ≤ p and all j ≥ d in the minimal free resolution (1.1);
(b) the minimal free resolution of (IX)≥d is linear until p-th step, namely,

· · · → R(−d − p + 1)
⊕βp,d−1 → · · · → R(−d)⊕β1,d−1 → R → R/(IX)≥d → 0.

The case of d = 2 has been of particular interest. For d = 2, p = 1, IX is generated
by quadrics and N2,2 means that IX is generated by quadrics and there are only
linear relations on quadrics. Note that property N2,p is the same as property Np

(defined by Green-Lazarsfeld) if the given variety is projectively normal.
Our main purpose is to study the homological, cohomological and geometric

properties of projected varieties according to moving the center of projections. In
paper [1], they studied outer projections of a given variety X ⊂ P

n and their
syzygetic and geometric properties as we move the center of projections in an am-
bient space Pn \ X . In this case, higher secant varieties of X play an important
role to control the syzygies of outer projections.

In the present paper, we are mainly interested in the inner projections with the
center in X . For an inner projection of X from the center q = (1, 0, . . . , 0) ∈ X ,

letting Y = πq(X) ⊂ P
n−1 be the Zariski-closure of πq(X) in P

n−1 where S =
k[x1, . . . , xn] is the projective coordinate ring of Pn−1. However, R/IX is not a
finitely generated S-module.

For a complete embedding X ⊂ P(H0(L)) = Pn with the condition Np embedded
by complete linear system of a very ample line bundle L on X , the inner projection
πq(X) for a point q ∈ X is embedded in P(W ) where W = H0(L(−q)). Let S be
the coordinate ring of P(W ). Note that the inner projection πq : X 99K Pn−1 is a
rational map which is well-defined outside q. Let σ : Blq(X) → X be a blowing
up of X at q. Then one has the regular morphism π̃q : Blq(X) → Pn−1 with the
following diagram;

X̃ = Blq(X)

π̃q

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

σ

��

X ⊂ Pr
πq

// X ′ = πq(X \ {q}) ⊂ Pn−1

If π̃q : Blq(X) → Pr−1 is an embedding, then the exceptional divisor E is linearly
embedded via π̃q in Pn−1, i.e. π̃q(E) = Pℓ−1 ⊂ Pn−1, ℓ = dim(X).

In a paper [4], They showed by using vector bundle techniques and Koszul coho-
mology methods, that if X ⊂ P(H0(L)) be a smooth irreducible variety with prop-

erty Np, p ≥ 1, then for any q ∈ X\Trisec(X), π̃q(Blq(X)) = πq(X \ {q}) in P(W ) is
smooth and satisfies property Np−1, i.e. property Np−1 holds for (Blq(X), σ∗

L−E).
In this paper, we would like to extend this theorem to the general case, i.e.

projective reduced irreducible varieties with the condition N2,p. So, we need to
construct the extended mapping cone construction for infinitely generated graded
modules and to understand their syzygy structures.

Finally, we obtain some results on syzygy structures and geometric properties of
inner projections by using the extended mapping cone construction and the partial
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elimination ideal theory. In particular, for a reduced scheme X with the condition
N2,p, the inner projections from any smooth point of X satisfies at least property
N2,p−1. This uniform behavior looks unusual in a sense that linear syzygies of outer
projections heavily depend on moving the center of projection in an ambient space
[4],[14], [16]. Note that the syzygies of a projected variety from the singular point
look more complicated.

Acknowledgements The second author would like to thank Korea Institute of
Advanced Study(KIAS) for supports and hospitality during his stay for a sabbatical
year.

2. Extended mapping cone construction for infinitely generated

modules

Generally, the mapping cone construction of the chain map between two com-
plexes is a kind of extension of complexes respecting the given chain map. J. Ahn
and S. Kwak pointed out some mapping cone constructions related to projections
very useful to understand algebraic and geometric structures of projections [1] and
using this, they showed some relations of geometric and cohomological properties
between an original variety and a projected variety in outer projections. We can
exploit this construction to study an inner projection and establish a general frame-
work to explore every projection from this construction. Let us briefly review the
mapping cone construction.

Mapping cone for projections 2.1.

• Let W = k〈x1, · · · , xn〉 ⊂ V = k〈x0, · · · , xn〉 be vector spaces over k
and S = Sym(W ) = k[x1, . . . , xn] ⊂ R = Sym(V ) = k[x0, . . . , xn] be
polynomial rings.

• Let M be a graded R-module (which is also a graded S-module) and KS
∗ (M)

be the graded Koszul complex of M as follows:

0 → ∧nW ⊗ M → · · · → ∧2W ⊗ M → W ⊗ M → M → 0

whose graded components are KS
i (M)i+j = ∧iW ⊗ Mj.

• Let F∗, G∗ be the Koszul complexes KS
∗ (M(−1)), KS

∗ (M). Consider the

chain map µ : F∗ → G∗ induced by the multiplicative map M(−1)
·x0−→ M ,

i.e. µ : F∗ = KS
∗ (M(−1))

·x0−→ G∗ = KS
∗ (M).

Then, we construct the mapping cone (Cone∗(µ), dµ) such that:

(2.1) 0 −→ G∗ −→ Cone∗(µ) −→ F∗[−1] −→ 0.

,where Cone∗(µ) = G∗

⊕
F∗[−1], each grade part Cone∗(µ)∗+j is [G∗]∗+j

⊕
[F∗−1]∗+j =

∧∗W ⊗ Mj ⊕ ∧∗−1W ⊗ M(−1)j+1 = ∧∗W ⊗ Mj ⊕ ∧∗−1W ⊗ Mj . the differential
dµ is given by

dµ =

(
∂G µ
0 −∂F

)
,

where ∂ is the differential of Koszul complex.

From the exact sequence (2.1), we have a natural long exact sequence of Koszul
homology and the following lemma:
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Lemma 2.2. Let M be a graded R-module. Then there exist a natural sequence

→ TorS
i (M, k)i+j → Hi(Cone∗(µ))i+j →

TorS
i−1(M, k)i+j−1

δ
→ TorS

i−1(M, k)i+j →

and the connecting homomorphism δ is induced by the multiplication by x0. And
we have the following natural isomorphism:

TorR
i (M, k)i+j ≃ Hi(Cone∗(µ))i+j .

Proof. Since G∗(F∗ also.) is the Koszul complex of M , their homology Hi(G∗)i+j

is TorS
i (M, k)i+j . And from (2.1), we get the long exact sequence as above. Let

KR
∗ (M) be the Koszul complex of a graded R-module M . Then the graded com-

ponent in degree i + j of KR
i (M) is KR

i (M)i+j = ∧iV ⊗ Mj. Note that ∧iV ∼=
[x0 ∧ (∧i−1W )] ⊕ ∧iW . Hence we see that the Koszul complex KR

i (M) has the
following canonical decomposition in each graded component:

(2.2)

∧iW ⊗ Mj

KR
i (M)i+j

∼=
⊕

∼= Conei(µ)i+j .

[x0 ∧ (∧i−1W )] ⊗ Mj

Using the decomposition (2.2), we can verify that the following diagram is commu-
tative:

(2.3)

KR
i (M)i+j

∼=
−→ Conei(µ)i+j

y∂

ydµ

KR
i−1(M)i+j

∼=
−→ Conei−1(µ)i+j

Therefore, we have a natural isomorphism TorR
i (M, k)i+j ≃ Hi(Cone∗(µ))i+j . �

Because TorR(M, k) can be obtained by the homology of our mapping cone, we
could take up our job about projections. Let’s restate above lemma as the following
useful Theorem.

Theorem 2.3. Let S = k[x1, . . . , xn] ⊂ R = k[x0, x1 . . . , xn] be polynomial rings.
For a graded R-module M , we have the following long exact sequence:

−→ TorS
i (M, k)i+j −→ TorR

i (M, k)i+j −→ TorS
i−1(M, k)i+j−1 −→

δ
−→ TorS

i−1(M, k)i+j −→ TorR
i−1(M, k)i+j −→ TorS

i−2(M, k)i+j−1
δ

−→ · · ·

whose connecting homomorphism δ is the multiplicative map ·x0.

Proof. It is clear from Lemma 2.2. �

This theorem 2.3 appears in [1] originally. We remark that this theorem is also
true even for infinitely generated S-module M . For each degree piece of Tor, there
exists a long exact sequence as above. This gives us an useful information about
syzygies of every projections of projective varieties.
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As a first step, we derive the following interesting interpretation about Tor‘s.

Corollary 2.4. Let I ⊂ R be a homogeneous ideal. Assume that I admits d-linear
resolution (d ≥ 2) up to p-th step for p ≥ 1 (i.e. satisfies Nd,p). Then,

(a) A multiplication by x0 induces a sequence of isomorphisms on TorS
i (R/I, k)i+j

except j = {d − 2, d − 1} step for 1 ≤ i ≤ p − 1 (p ≥ 2) as follows:

· · ·
·x0
∼
→ TorS

i (R/I, k)i+d−2
·x0

→֒ TorS
i (R/I, k)i+d−1

·x0

։ TorS
i (R/I, k)i+d

·x0
∼
→ · · ·

(b) And for i = p case,

· · ·
·x0

։ TorS
p (R/I, k)p+d−2

·x0→ TorS
p (R/I, k)p+d−1

·x0

։ TorS
p (R/I, k)p+d

·x0

։ · · ·

Proof. (a) First, consider the exact sequence by Theorem 2.3 for M = R/I

TorR
i (R/I, k)i+j → TorS

i−1(R/I, k)i−1+j
·x0−→ TorS

i−1(R/I, k)i−1+j+1 → TorR
i−1(R/I, k)i−1+j+1

Note that TorR
i (R/I)i+j = 0 for 1 ≤ i ≤ p and j 6= d − 1 by assumption that I is

d-linear up to p-th step. So We have an isomorphism

TorS
i−1(R/I, k)i−1+j

·x0−→ TorS
i−1(R/I, k)i−1+j+1,

for 1 ≤ i− 1 ≤ p− 1 and for all j /∈ {d− 2, d− 1}. And we have an injection (resp.
a surjection) for j = d − 2 (resp. j = d − 1).

(b) In case i = p we know TorR
p (R/I)r+j = 0 for j 6= d−1. So we have vanishing

Tor of the right hand side in the following sequence

TorR
p+1(R/I, k)p+1+j → TorS

p (R/I, k)p+j
·x0−→ TorS

p (R/I, k)p+j+1 → TorR
p (R/I, k)p+j+1

Therefore we get the desired surjection for i = p. �

Now we are going to mainly think about an inner projection, i.e. a projection
of a variety X from the point q of X , and its effect to syzygies. Let‘s consider the
preliminary settings.

Notations & Preliminaries 2.5. We are working on the following background:

• R = k[x0, . . . , xn] = Sym(V ) and S = k[x1, x2 . . . , xn] = Sym(W ): two
polynomial rings where W ⊂ V , codim(W, V ) = 1.

• (Betti number) βR
i,j(M) := dimk TorR

i (M, k)i+j , βS
i,j(M) := dimk TorS

i (M, k)i+j .

• Let X ⊂ Pn = P(V ) be a non-degenerate projective variety and q be a
point of X . We can assume q = (1, 0, . . . , 0) ∈ X (by suitable coordinate
change)

• We consider inner projection πq : X \ {q} ⊂ Pn −→ Y ⊂ Pn−1 = P(W ).

Let Y be the closure of the image, πq(X \ {q}). From now on, we mainly
focus on the syzygetic study of Y .

In fact, the inner projection of X from q is a rational map defined on X \ {q},
so we take Zariski closure of the image, Y . Geometrically, this is just adding
points, which is the image of tangential projection from q, to πq(X \ {q}). Alge-
braically, this process corresponds to the elimination of 1st variable x0 of ideal IX

(so, IY = IX

⋂
S).
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πq : X \ {q} −→ πq(X \ {q}) ⊂ Pn−1 = P(W )
yBlow up

yZariski closure

BlqX −→ Y ⊂ Pn−1 = P(W )

If we blow up X at q, we may make the projection map to a morphism. Y is
the very image of the morphism. But, in this paper, we are interested in the syzy-
gies and its related cohomological, geometric properties of the image Y , instead of
exploring how they are mapped(or embedded) to Y in Pn−1. So we will keep on
the view in which we consider πq : X −→ Y (in the sense of putting the tangent
direction image together in mind) and Y is simply one given by elimination ideal
of IX algebraically.

Note that IX(or R/IX) is not finitely generated S-module (Since q ∈ X , there is
no polynomial like f = x0

n + (other terms) in IX). But we can still consider their
S-module syzygies and they have an interesting syzygetic structure.

In general, IX(or R/IX) has the following S-module syzygy:

⊕∞

i=0 S(−i) · x0
i → R/IX → 0

S(−j − 1)βj,1 S(−2)β1,1 ր ↑
· · · → ⊕S(−j − 2)βj,2 → · · · → ⊕S(−3)β1,2 → IX → 0

⊕S(−j − 3)βj,3 ⊕S(−4)β1,3 ↑
· · · · · · 0

If we assume that X is generated by quadrics(i.e. satisfies N2,1), then we can
say

IX = (x0l1 − q1, . . . , x0lt − qt, Q1, . . . , Qs)

,where li is a linear form and qi, Qj are quadratic forms in S = k[x1, . . . , xn]. We
remark that we can also assume all {li} are linearly independent, and all {qi}
are distinct. And we know that t is the codim(X) and {li} generate (TqX)∗ if
q is smooth point. Generally, t is equal to n − dimTqX . Let’s think about S-
module syzygy of IX . First of all, in first syzygy module the quadric generators are
x0l1 − q1, . . . , x0lt − qt, Q1, . . . , Qs. In case of cubic generators, x0(x0li − qi), x0Qj

could be candidates. All x0(x0li − qi) are should be the cubic generators because
they have x0

2. But not all the x0Qj are the minimal cubic generator, because there
would be a relation such that L · (x0li−qi)+L′ ·Qk = x0Qj . Quartic is similar, but
has more possibilities. Although we can do this kind of analysis for higher degree
generators and next syzygy modules by manipulating concrete equations, it is very
hard to get an essential information of S-module syzygy of IX(or R/IX).

On the other hand, we can derive a more systematic result for S-module syzygy
of IX(or R/IX) from Tor-relations (Corollary 2.4) if we more assume about linear
syzygies of X(i.e. N2,p for p ≥ 2).

Proposition 2.6. Let X be a non-degenerate projective variety in Pn = P(V ).
Consider the inner projection πq : X → Y ⊂ Pn−1. Then, we have the following
results:
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(a) If X satisfies property N2,p (p ≥ 2), then IX has simple syzygies up to
(p − 1)-th step as follows:

S(−(p − 1) − 1)βp−1,1 S(−3)β2,1 S(−2)β1,1

→ ⊕S(−(p − 1) − 2)βp−1,2 → · · · → ⊕S(−4)β2,2 → ⊕S(−3)β1,2 → IX → 0
⊕S(−(p − 1) − 3)βp−1,3 ⊕S(−5)β2,3 ⊕S(−4)β1,3

· · · · · · · · ·

in the sense of . . . = βi,−1 = βi,0 = 0, βi,1 ≥ βi,2 = βi,3 = . . . (1 ≤ i ≤ p−1)
and . . . = βp,−1 = βp,0 = 0, βp,1 ≥ βp,2 ≥ βp,3 ≥ . . . (i = p case), where
βm,n = βS

m,n(R/IX).

(b) When X satisfies property Nd,p (p ≥ 2), then we have similar simple syzy-
gies of (IX)≥d up to (p − 1)-th step such that:
. . . = βi,d−3 = βi,d−2 = 0, βi,d−1 ≥ βi,d = βi,d+1 = . . . (1 ≤ i ≤ p − 1) and
. . . = βp,d−3 = βp,d−2 = 0, βp,d−1 ≥ βp,d ≥ βp,d+1 ≥ . . . (i = p case).

Proof. (a) This is a direct result of Corollary 2.4 when d = 2, since βm,n is

dimk TorS
m(R/IX , k)m+n.

(b) If X satisfies property Nd,p (p ≥ 2), then (IX)≥d has d-linear syzygies up to
p-th step. As above, apply Corollary 2.4 to (IX)≥d. �

From this result we could guess what the generator of each degree of syzygy
modules are and how they are varied in Tor-module by multiplying x0. For exam-
ple, we can easily deduce β1,1 = t + s if IX = (x0l1 − q1, . . . , x0lt − qt, Q1, . . . , Qs),
because they are all minimal quadric generators. And we might set β1,2 = t + s′

(s′ ≤ s) because x0(x0li − qi) should be a cubic S-module generator, while x0Qj

might not if there is a relation such that L · (x0li − qi) + L′ · Qk = x0Qj. And
β1,3 = t + s′′ . . . and so on.

Then, some natural questions arise at this point. Is it possible to know the
syzygy of IY from the S-module syzygy of IX? Is IY generated only by quadrics if
so IX is? If not, how about the case that X satisfies N2,2? Possibly there appear
some cubic generators like liqj − ljqi(= lj · (x0li − qi)− li · (x0lj − qj)) in IY if {Qk}
doesn’t generate it. In next section, we will answer this questions completely by
the S-module syzygies of IX and the partial elimination ideals, Ki(IX).

3. Syzygy structures of inner projections

For a projective variety X ⊂ Pn, property N2,p is a natural generalization of
property Np of M. Green. The following theorems show that property N2,p plays
an important role to control defining equations and syzygies of projected varieties
under inner projection.

Theorem 3.1. (inner projection of varieties satisfying N2,p)
Let X ⊂ Pn be a non-degenerate projective variety satisfying property N2,p for some
p ≥ 2 and q be a smooth point of X. Consider the inner projection πq : X → Y ⊂
Pn−1. Then the projected variety Y is cut out by quadrics and satisfies property
N2,p−1.

Before proving this theorem, let us explain the basic definition and information
on the partial elimination ideals under projections. For q = (1, 0, · · · , 0, 0), consider
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a projection πq : X → Y ⊂ Pn−1 = Proj(S), S = k[x1, x2, . . . , xn]. For the

degree lexicographic order, if f ∈ IX has leading term in(f) = xd0

0 · · ·xdn
n , we set

d0(f) = d0, the leading power of x0 in f . Then we can give the definition of partial
elimination ideals, which was given by M. Green in [11].

Definition 3.2 ([11]). Let IX ⊂ R be a homogeneous ideal of X and let

K̃i(IX) =
⊕

m≥0

{
f ∈ (IX)m | d0(f) ≤ i

}
.

If f ∈ K̃i(IX), we may write uniquely f = xi
0f̄ + g where d0(g) < i. Now we define

Ki(IX) by the image of K̃i(IX) in S1 under the map f 7→ f̄ and we call Ki(IX)
the i-th partial elimination ideal of IX .

Remark 3.3. We can remark some properties of these ideals

• 0-th partial elimination ideal of IX is

IY =
⊕

m≥0

{
f ∈ (IX)m | d0(f) = 0

}
= IX ∩ S

i.e. IY is equal to K0(IX) = K̃0(IX).

• And K̃i(IX) is finitely generated S-module and there is a short exact se-
quence as graded S-modules

(3.1) 0 →
K̃i−1(IX)

K̃0(IX)
→

K̃i(IX)

K̃0(IX)
→ Ki(IX)(−i) → 0.

• We have the following filtration on partial elimination ideals of IX :

IY = K0(IX) ⊂ K1(IX) ⊂ K2(IX) ⊂ · · · ⊂ Ki(IX) ⊂ · · · ⊂ S.

Lemma 3.4. Let X ⊂ Pn be a non-degenerate projective variety and q = (1, 0, . . . , 0)
be a smooth point of X. Suppose that IX is generated by quadrics(i.e. satisfies N2,1)
and write IX = (x0l1 − q1, . . . , x0lt − qt, Q1, . . . , Qs).

(a) Ki(IX) stabilizes at i = 1 step to an ideal IΣ = (l1, . . . , lt) which defines a
linear subspace of Pn, the tangent space TqX,

i.e. IY ⊂ IΣ = K1(IX) = K2(IX) = · · · = Ki(IX) = · · ·

(b) IX/IY has simple S-module syzygies such that:

S(−t − 1)bt S(−3)b2 S(−2)b1

0 → ⊕S(−t− 2)bt → · · · → ⊕S(−4)b2 → ⊕S(−3)b1 → IX/IY → 0 ,
⊕S(−t− 3)bt ⊕S(−5)b2 ⊕S(−4)b1

· · · · · · · · ·

where bi =
(
t
i

)
.

Proof. (a) From the definition 3.2, we know that (l1, . . . , lt) ⊂ Ki(IX) for ∀ i ≥ 1.
And note that all f̄ ∈ Ki(IX) (i ≥ 1) are also regarded as the defining equations
of tangent cone of X at q, TCqX , because they come from f = xi

0f̄ + g ∈ IX s.t.

d0(g) < i. Since q is smooth, TqX = TCqX and we know (l1, . . . , lt) =
√

(l1, . . . , lt).
Thus, Ki(IX) ⊂ (l1, . . . , lt) and we can say that Ki(IX) stabilizes at i = 1 to IΣ.

(b) Note that IX = K̃∞(IX). From the exact sequence (3.1), we get K̃1(IX)
IY

≃

K1(IX)(−1) so that they have linear syzygies 0 → S(−t−1)bt → · · · → S(−3)b2 →
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S(−2)b1 → K̃1(IX )
IY

→ 0. Next K2(IX)(−2) = K1(IX)(−2) has also linear syzygies

0 → S(−t − 2)bt → · · · → S(−4)b2 → S(−3)b1 → K2(IX)(−2) → 0 and we have
the following exact sequence from (3.1) again,

0 →
K̃1(IX)

IY

→
K̃2(IX)

IY

→ K2(IX)(−2) → 0.

By the long exact sequence of Tor, we know that

S(−t − 1)bt S(−3)b2 S(−2)b1

0 →
⊕

→ · · · →
⊕

→
⊕

→ K̃2(IX )
IY

→ 0.

S(−t − 2)bt S(−4)b2 S(−3)b1

Using (3.1) sequence, we can compute the syzygy of K̃i(IX )
IY

in a similar manner for

any i, and in the end we get the desired syzygy of IX/IY = K̃∞(IX)
IY

. �

Now we know the S-module syzygy of IX and IX/IY , so we are getting back to
the proof of the main theorem.

Proof. of Theorem 3.1

First of all, we note that TorS
i (R/IX , k)j = TorS

i−1(IX , k)j , TorS
i (S/IY , k)j =

TorS
i−1(IY , k)j . We will use this fact throughout the proof. And we have a basic

short exact sequence of S-modules,

0 → IY → IX →
IX

IY

→ 0

Since X satisfies N2,p (p ≥ 2) and q is a smooth point, each one has the following
S-module syzygies from Proposition 2.6, Lemma 3.4 :

0

S(−r)β
′

r−1,1 S(−3)β
′

2,1 S(−2)β
′

1,1 ↓
⊕ ⊕ ⊕

→ · · · → · · · → · · · → · · · → IY → 0

S(−cr−1)
β
′

r−1,cr−1−r+1 S(−c2)
β
′

2,c2−2 S(−c1)
β
′

1,c1−1

↓
S(−p)βp−1,1 S(−3)β2,1 S(−2)β1,1

→ ⊕S(−p− 1)ap−1 → · · · → ⊕S(−4)a2 → ⊕S(−3)a1 → IX → 0
⊕S(−p− 2)ap−1 ⊕S(−5)a2 ⊕S(−4)a1

· · · · · · · · ·
↓

S(−t − 1)bt S(−3)b2 S(−2)b1

0 → ⊕S(−t− 2)bt → · · · → ⊕S(−4)b2 → ⊕S(−3)b1 → IX/IY → 0
⊕S(−t− 3)bt ⊕S(−5)b2 ⊕S(−4)b1

· · · · · · · · · ↓
0

Next we show that ai = bi =
(
t
i

)
(1 ≤ i ≤ p − 1) and βi,j = bi for i ≥ p j ≫ 0.

Since IY is finitely generated S-module, for sufficiently large j, TorS
i (IY , k)i+j = 0

for all i. From the long exact sequence of Tor, we have an isomorphism

0 = TorS
i (IY , k)i+j → TorS

i (IX , k)i+j
∼
→ TorS

i (IX/IY , k)i+j → TorS
i−1(IY , k)i+j = 0
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for j ≫ 0. Because dimk TorS
i−1(IX , k)i+j = ai and dimk TorS

i−1(IX/IY , k)i+j = bi

for j > 0, we get the result.

Now we are going to show that IY has no cubic generator. From the long exact
sequence of Tor, we have

TorS
1 (IX , k)3 → TorS

1 (IX/IY , k)3 → TorS
0 (IY , k)3 → TorS

0 (IX , k)3 → TorS
0 (IX/IY , k)3 → 0

Since a1 = b1, it is enough to show that the map TorS
1 (IX , k)3 → TorS

1 (IX/IY , k)3
is surjective. But we deduce this surjectivity from the following diagram:

S(−3)β2,1 −→ S(−3)b2

h
ysurj. g

y≀
S(−k)a2

∼
−→ S(−k)b2

,where h, g are induced by multiplications by x0 and k ≫ 0. We already know
that h is surjective, because of N2,2 (Prop. 2.6) and that g is an isomorphism

(Lemma 3.4). Therefore, S(−3)β2,1 → S(−3)b2 is surjective and TorS
0 (IY , k)3 = 0,

no cubic generators in IY . Analogously, we get that IY has no higher generators,
either.

More generally, let’s show that ci ≤ i + 1 (1 ≤ i ≤ p − 1) by same argument as
above. This means Y satisfying N2,p−1. At a preceding paragraph, we show c1 = 2.
So, suppose that ci ≤ i + 1 for i < n (2 ≤ n ≤ p − 1). We will show cn ≤ n + 1.
For any c > n + 1, we have

TorS
n(IX , k)c → TorS

n(IX/IY , k)c → TorS
n−1(IY , k)c → TorS

n−1(IX , k)c → TorS
n−1(IX/IY , k)c → 0

The zero in the very right side comes from the induction hypothesis, TorS
n−2(IY , k)c =

0. Since an = bn (i.e. TorS
n−1(IX , k)c

∼
→ TorS

n−1(IX/IY , k)c), we get TorS
n−1(IY , k)c =

0 if we show TorS
n(IX , k)c ։ TorS

n(IX/IY , k)c, surjective. But we also have the fol-
lowing diagram:

S(−c)βn,−n+c
φ

−→ S(−c)bn

h
ysurj. g

y≀
S(−k)an

∼
−→ S(−k)bn

,where h, g are induced by multiplications by x0 and k ≫ 0. Since X satisfies
N2,n+1 (n + 1 ≤ p), h is a surjection. That means φ is surjective, as we wish. So

TorS
n−1(IY , k)c = 0, cn ≤ n + 1. Hence Y satisfies N2,p−1. �

Remark 3.5. (Inner projection from a singular point) Let X be a non-degenerate
projective variety and q ∈ X . If the point q is a singular, we could expect that
the inner projection from q has more complicate aspects and fails to satisfy N2,p−1

according to multiplicity of the singularity. On the other hand, it might be possible
to satisfy N2,p−1 if q is quite mild.
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