
THE MAXIMUM NUMBER OF SINGULAR POINTS ON
RATIONAL HOMOLOGY PROJECTIVE PLANES

DONGSEON HWANG AND JONGHAE KEUM

Abstract. A normal projective complex surface is called a rational homology

projective plane if it has the same Betti numbers with the complex projective

plane CP2. It is known that a rational homology projective plane with quo-
tient singularities has at most 5 singular points. So far all known examples

have at most 4 singular points. In this paper, we prove that a rational homol-

ogy projective plane S with quotient singularities such that KS is nef has at
most 4 singular points except one case. The exceptional case comes from En-

riques surfaces with a configuration of 9 smooth rational curves whose Dynkin
diagram is of type 3A1 ⊕ 2A3.

We also obtain a similar result in the differentiable case and in the sym-

plectic case under certain assumptions which all hold in the algebraic case.

1. Introduction

A normal projective complex surface is called a rational homology projective
plane if it has the same Betti numbers with the complex projective plane CP2. A
normal projective complex surface with quotient singularities is a rational homology
projective plane, if its second Betti number is equal to 1 ([11], p. 2). If a rational
homology projective plane is smooth, then it is either CP2 or a fake projective
plane, i.e. a smooth projective surface of general type with pg = q = 0, K2 = 9.

Now let S be a rational homology projective plane with quotient singularities.
Assume that S is singular. L. Brenton constructed such surfaces [4], and all ex-
amples produced by his method have at most 4 singular points [3]. On the other
hand, from the orbifold Bogomolov-Miyaoka-Yau inequality ([22], [18], [17]), one
can derive that S has at most 5 singular points, see Corollary 3.4. However, there
has been no known examples with 5 singular points. Our main result is :

Theorem 1.1. Let S be a rational homology projective plane with quotient singu-
larities. Assume that KS is nef. Then S has at most 4 singular points except the
following case:

S has 5 singular points of type 3A1 ⊕ 2A3, and its minimal resolution S′ is an
Enriques surface.

An example of the exceptional case is given in Example 7.3.
One of the main ingredients in our proof is the orbifold Bogomolov-Miyaoka-Yau

inequality. This is the reason why we need the nefness of KS . The case where −KS
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is ample has been recently dealt with by G. B. Belousov [1]. He has proved that
log-Del Pezzo surfaces of Picard number 1 with quotient singularities have at most
4 singular points. Thus, Theorem 1.1 holds true without the nefness of KS .

Corollary 1.2. The following hold true.
(1) Rational cohomology projective planes with quotient singularities have at

most 4 singular points except the case given in Theorem 1.1.
(2) Integral homology projective planes with quotient singularities have at most

4 singular points.

Here, a rational cohomology projective plane is a normal projective complex
surface having the same rational cohomology ring with CP2. A rational homol-
ogy projective plane with quotient singularities is a rational cohomology projective
plane. As regards integral cohomology projective planes with quotient singularities,
D. Bindschadler and L. Brenton [2] have proved that they have at most one singular
point of type E8.

The problem of determining the maximum number of singular points on rational
homology projective planes with quotient singularities is related to the algebraic
Montgomery-Yang problem ([19], [11]).

We remark that if a rational homology projective plane S is allowed to have
rational singularities, then there is no bound for the number of singular points. In
fact, there are rational homology projective planes with an arbitrary number of
rational singularities. Such examples can be constructed by modifying Example
5 from [11]: take a minimal ruled surface X → P1 with negative section E, blow
up m distinct fibres into m strings of 3 rational curves (−2)— (−1) —(−2), then
contract the proper transform of E with the m adjacent (−2)-curves, and also the
m remaining (−2)-curves, to get a rational homology projective plane with m + 1
rational singularities.

We now present a brief outline of the proof of Theorem 1.1. Assume that our
surface S has 5 singular points. Then from the weak version of orbifold Bogomolov-
Miyaoka-Yau inequality (see Theorem 3.2) we get one of the following cases for the
5-tuple consisting of the orders of local fundamental groups of singular points:

(2, 2, 3, 3, 3), (2, 2, 2, 4, 4),
(2, 2, 2, 3, 3), (2, 2, 2, 3, 4), (2, 2, 2, 3, 5), (2, 2, 2, 3, 6),
(2, 2, 2, 2, q) for q ≥ 2.

Given its minimal resolution f : S′ → S, the exceptional curves and the canonical
class KS′ span a sublattice R + 〈KS′〉 of the unimodular lattice H2(S′, Z)free :=
H2(S′, Z)/torsion, where R is the sublattice spanned by the exceptional curves.
We note that rank(R + 〈KS′〉) = rank(R) if and only if KS is numerically trivial
(Lemma 3.3). The list above gives an infinite list of possible cases for R. We reduce
this infinite list for R by using the orbifold Bogomolov-Miyaoka-Yau inequality
(Theorem 3.1) together with detailed information about quotient singularities (e.g.
Lemmas 2.6, 2.7, 3.6, 3.7, Table 2). Here, we also use the fact that |det(R+〈KS′〉)|
is a square number if KS is not numerically trivial (Lemma 3.3). The reduced list
(Propositions 4.1, 5.1) is still an infinite list, but the infinite part comes from
singularities of special type called singularities of type T6. For each of these cases
for R, we then use lattice theoretic arguments to show that, except the two cases
R = 3A1⊕2A3 or 4A1⊕D5, either the lattice R or R+ 〈KS′〉 cannot be embedded
into the unimodular lattice H2(S′, Z)free (see §6). Finally, in §7 we show that the
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case R = 3A1 ⊕ 2A3 is supported by an example, and the case R = 4A1 ⊕D5 can
be ruled out by an argument from the classification theory of algebraic surfaces and
the theory of discriminant quadratic forms.

To prove that the lattice R or R+〈KS′〉 cannot be embedded into the unimodular
lattice H2(S′, Z)free, we consider the lattice M = R + 〈KS′〉 when it is of the
same rank as the unimodular lattice, and M = R ⊕ R⊥ otherwise, where R⊥

is the orthogonal complement of R in the unimodular lattice. Then we use the
Local-Global Principle together with computation of ε-invariants (in our case ε3-
invariants) to show that M is not isomorphic over Q to the unimodular lattice. The
most complicated cases are the cases for R coming from singularities of type T6.
We note that in these cases rank(R + 〈KS′〉) = rank(R), hence we have to consider
M = R ⊕ R⊥. We handle this infinite case by using induction on the rank of R
(Lemma 6.7). There is an alternative equivalent method: one may compute the
discriminant group of M and proceed to show that this group does not contain an
isotropic subgroup of order the square root of its order. The latter can be done by
showing that the 3-adic part of the discriminant group of M does not contain an
isotropic subgroup of order the square root of the order of the 3-adic part. We do
not give a detailed write-up of this computation. It takes about the same length of
computation as that for ε3-invariants.

Besides using the theory of algebraic surfaces to analyze the two cases in §7, we
only use topological facts about algebraic surfaces and quotient singularities. So
we can restate Theorem 1.1 in the differentiable case as well as in the symplectic
case under certain assumptions which all hold in the algebraic case, see §8.

The first six sections of this paper are as follows. In §2, we review the classi-
fication theory of cyclic quotient surface singularities, and prove some properties
of Hirzebruch-Jung continued fractions, which play a key role in reducing the list
of possible cases for R. In §3, we review the orbifold Bogomolov-Miyaoka-Yau in-
equality and give some information regarding the sublattice R + 〈KS′〉. In §4-§5,
we obtain a reduced list for R. In §6, we prove that only two cases for R may occur.

Throughout this paper, we work over the field C of complex numbers.

Acknowledgements. We thank János Kollár for useful comments and for the
suggestion that the statements for the differentiable case should be added to our
original version. We also thank Jonathan Wahl for helping us to improve the
exposition of the paper.

2. Cyclic quotient singularity and T -singularity

In this section, we briefly review the classification theory of cyclic quotient surface
singularities. We also prove some properties of Hirzebruch-Jung continued fractions,
which will be used later.

Let p ∈ Sing(S) be a cyclic quotient singularity. The irreducible components
lying over the point p in its minimal resolution form a string of smooth rational
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curves
−n1◦ − −n2◦ − · · · − −nl◦ , and their intersection matrix is given by

M(−n1, . . . ,−nl) =



−n1 1 0 · · · · · · 0
1 −n2 1 · · · · · · 0
0 1 −n3 · · · · · · 0
...

...
...

. . .
...

...
0 0 0 · · · −nl−1 1
0 0 0 · · · 1 −nl


It is known that the order of the local fundamental group Gp is equal to the absolute
value of the determinant of the matrix M(−n1, . . . ,−nl).

A string of smooth rational curves
−n1◦ − −n2◦ − · · · −−nl◦ is also represented by a

continued fraction

[n1, n2, ..., nl] = n1 −
1

n2 −
1

. . . − 1
nl

called the Hirzebruch-Jung continued fraction.

Definition 2.1. .
(1) For rational numbers n1, n2, ..., nl, we define

q := |det(M(−n1, . . . ,−nl))|

qa1,a2,...,am
:= |det(M ′)|

where M ′ is the (l −m)× (l −m) matrix obtained by deleting
−na1 ,−na2 , . . . ,−nam

from M(−n1, . . . ,−nl). For example,

q1 = |det(M(−n2, . . . ,−nl))| and q1,l = |det(M(−n2, . . . ,−nl−1))|.

(2) For convenience, we also define q1,...,l = |det(M(∅))| = 1.
Note that

q1ql = q1,lq + 1, [n1, n2, ..., nl] =
q

q1
.

The following fact from linear algebra will be used frequently.

Lemma 2.2 ([17]). For rational numbers n1, n2, ..., nl, the solution of the matrix
equation

−n1 1 0 · · · 0
1 −n2 1 · · · 0
0 1 −n3 · · · 0
...

...
...

. . .
...

0 · · · · · · 1 −nl




a1

a2

...
al−1

al

 = −


n1 − 2 + u

n2 − 2
...

nl−1 − 2
nl − 2 + v


is given by

ai = 1− (1− u)|det(M(−ni+1, . . . ,−nl))|
|det(M(−n1, . . . ,−nl))|

− (1− v)|det(M(−n1, . . . ,−ni−1))|
|det(M(−n1, . . . ,−nl))|

= 1− (1− u)q1,2,...,i

q
− (1− v)qi,i+1,...,l

q

for i = 1, 2, ..., l if q 6= 0.
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There is a special type of quotient singularity, called T -singularity. A quotient
singularity which admits a Q-Gorenstein smoothing is called a singularity of class
T .

Definition 2.3 ([14]). Let H be the set of all Hirzebruch-Jung continued fractions
[n1, n2, . . . , nl],

H =
⋃
l

{[n1, n2, . . . , nl] | all nj are integers ≥ 2}.

(1) A function τ : H → H defined by

τ([n1, n2, . . . , nl]) = [2, n1, n2, . . . , nl−1, nl + 1]

is called a τ -operation.
(2) A reverse operation is a function r : H → H defined by

r([n1, n2, . . . , nl]) = [nl, . . . , n2, n1].

Theorem 2.4 ([14], [12], [15]). For an integer d > 0, let Td ⊂ H be the following
set of continued fractions, or singularities

Td =
{

[n1, n2, . . . , nl] =
dn2

dna− 1
∈ H | n, a, integers, n > a > 0, gcd(n, a) = 1

}
.

Then

(1) [4] ∈ T1, [3, 3] ∈ T2, [3, 2, 3] ∈ T3, and [3, 2, 2, . . . , 2, 3] (d vertices) ∈ Td.
(2) If x ∈ Td, then r(x) ∈ Td and τ(x) ∈ Td.
(3) Every element of Td is obtained by starting with one of the singularities

described in (1) and iterating τ -operations and reverse operations.
(4) If [n1, . . . , nl] ∈ Td, then

∑
nj = 3l + 2− d.

(5) Every singularity of class T is either a rational double point or a singular
point of class Td for some d.

Furthermore, Looijenga and Wahl proved that a cyclic quotient singularity is of

class T if and only if
q1 + ql + 2

q
is an integer. More precisely,

Lemma 2.5 ([14], Proposition 5.9). Let [n1, . . . , nl] ∈ H.

(1) q1 + ql + 2 = 2q if and only if [n1, . . . , nl] corresponds to a rational double
point of type Al.

(2) q1 + ql + 2 = q if and only if [n1, . . . , nl] ∈ Td for some d.

We will also use the following properties of Hirzebruch-Jung continued fractions.

Lemma 2.6. The value of the formula q1+ql−q is preserved under the τ -operation
and the reverse operation, where l denotes the length of the corresponding continued
fraction.

Proof. Clearly, q1 + ql − q is preserved under the reverse operation.
Let v = [n1, . . . , nl]. Then τ(v) = [2, n1, . . . , nl−1, nl +1]. We use the small letter

q for v and the capital letter Q for τ(v). We see that

Q1

Q1,l+1
= [nl + 1, nl−1, . . . , n1] = [nl, nl−1, . . . , n1] + 1 =

q

ql
+ 1
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and Q1,l+1 = ql, thus Q1 = q + ql. Similarly,

Ql+1

Q1,l+1
= [2, n1, . . . , nl−1] = 2− q1,l

ql
,

Q1,2

Q1,2,l+1
= [nl + 1, nl−1, . . . , n2] =

q1

q1,l
+ 1,

hence

Ql+1 = 2ql − q1,l and Q1,2 = q1 + q1,l.

Now we have

Q1 + Ql+1 −Q = Q1 + Ql+1 − (2Q1 −Q1,2) = q1 + ql − q.

�

Lemma 2.7. Assume that l ≥ 3. Let Vl = {[n1, . . . , nl] ∈ H | −1 ≤ q1+ql−q ≤ 1}.
Then, the following hold true:

(1) [2, n2, . . . , nl−1, 2] /∈ Vl,
(2) If n1 ≥ 3 and nl ≥ 3, then [n1, n2, . . . , nl−1, nl] /∈ Vl,
(3) No element of Vl satisfies

∑l
j=1 nj = 3l − 4.

Proof. (1) Suppose that [2, n2, . . . , nl−1, 2] ∈ Vl. Then q1 + ql − q ≤ 1.
Since q = n1q1 − q1,2 = 2q1 − q1,2,
ql − q1 = (q1 + ql − q)− q1,2 ≤ 1− q1,2 < 0.
On the other hand, since q = nlql − ql−1,l = 2ql − ql−1,l,
q1 − ql = (q1 + ql − q)− ql−1,l ≤ 1− ql−1,l < 0,
which is a contradiction.

(2) Suppose that [n1, n2, . . . , nl−1, nl] ∈ Vl. Then q1 + ql − q ≥ −1.
Thus
ql−q1 = (q1 +ql−q)+(n1−2)q1−q1,2 ≥ −1+(n1−2)q1−q1,2 ≥ −1+q1−q1,2 > 0.
Here, if −1+q1−q1,2 = 0, then n2 = n3 = · · · = nl = 2, which violates the condition
nl ≥ 3.
On the other hand,
q1 − ql = (q1 + ql − q) + (nl − 2)ql − ql−1,l ≥ −1 + ql − ql−1,l ≥ 0,
a contradiction.

(3) If
∑

nj = 3l − 4, then l ≥ 4. Thus no element of V3 satisfies
∑

nj = 3l − 4.
We use induction on l. Assume that l ≥ 4. Assume also that no element of Vl−1

satisfies
∑l−1

j=1 nj = 3(l − 1) − 4. If v = [n1, n2, . . . , nl] ∈ Vl, then by (1) and (2)
either n1 = 3 and nl = 2, or n1 = 2 and nl = 3. Thus v = τ(v′) for some v′ ∈ H.
Then by Lemma 2.6, v′ ∈ Vl−1. But if v satisfies

∑
nj = 3l − 4, so does v′. �

3. The orbifold Bogomolov-Miyaoka-Yau inequality

Let S be a surface with quotient singularities and f : S′ → S be a minimal
resolution of S.

It is well-known that quotient singularities are log-terminal singularities. Thus
one can write

KS′ = f∗KS −
∑

Dp
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where Dp =
∑

(ajEj) is an effective Q-divisor supported on f−1(p) = ∪Ej and
0 ≤ aj < 1. It implies that

K2
S = K2

S′ −
∑

p∈Sing(S)

D2
p.

We also recall the orbifold Euler characteristic

eorb(S) := e(S)−
∑

p∈Sing(S)

(
1− 1

|Gp|

)
where Gp is the local fundamental group of p.

The following theorem, called the orbifold Bogomolov-Miyaoka-Yau inequality,
is one of the main ingredients in the proof of our main theorem.

Theorem 3.1 ([22], [18], [9], [17]). Let S be a normal projective surface with
quotient singularities such that KS is nef. Then

K2
S ≤ 3eorb(S).

We also need the following weaker inequality, which also holds when KS is nef.

Theorem 3.2 ([6]). Let S be a normal projective surface with quotient singularities
such that −KS is nef. Then

0 ≤ eorb(S).

We know that the torsion free part of the second cohomology group,

H2(S′, Z)free := H2(S′, Z)/torsion,

has a lattice structure which is unimodular. For a singular point p ∈ S, let Rp be
the sublattice of H2(S′, Z)free spanned by the numerical classes of the components
of f−1(p). Let

R = ⊕p∈Sing(S)Rp

be the sublattice of H2(S′, Z)free. We also consider the sublattice R + 〈KS′〉 of
H2(S′, Z)free spanned by R and the canonical class KS′ . Note that

rank(R) ≤ rank(R + 〈KS′〉) ≤ rank(R) + 1.

Lemma 3.3. The following hold true.
(1) rank(R + 〈KS′〉) = rank(R) if and only if KS is numerically trivial.
(2) det(R + 〈KS′〉) = det(R) ·K2

S if KS is not numerically trivial.
(3) If S is a rational homology projective plane with quotient singularities, and

if KS is not numerically trivial, then R+〈KS′〉 is a sublattice of finite index
in the unimodular lattice H2(S′, Z)free, in particular |det(R + 〈KS′〉)| is a
square number.

Proof. (1) follows from the equality KS′ = f∗KS −
∑

Dp.
(2) follows from the fact that

∑
Dp is a Q-linear combination of generators of R,

and f∗KS is orthogonal to R.
(3) follows from (1). �

The following corollary is well-known.

Corollary 3.4. A rational homology projective plane S with quotient singularities
has at most 5 singular points.
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Proof. Since b2(S) = 1, either KS is nef or −KS is ample. Let f : S′ → S be a
minimal resolution of S. Quotient singularities are rational, so pg(S′) = q(S′) = 0.
Thus, by the Noether formula, e(S′) + K2

S′ = 12. Theorem 3.1 or 3.2 imply that

0 ≤ eorb(S) = 3−
∑

p∈Sing(S)

(
1− 1

|Gp|

)
.

Thus S has at most 6 singular points. Assume that S has exactly 6 singular points.
Then, |Gp| = 2 for all p ∈ Sing(S) and b2(S′) = b2(S) + 6 = 7. Thus K2

S′ = 3 by
the Noether formula. The lattice R + 〈KS′〉 is of finite index in H2(S′, Z)free. Its
discriminant det(R + 〈KS′〉) = 263 is not a square, so it cannot be embedded into
a unimodular lattice of the same signature, a contradiction. �

Lemma 3.5. . Let S be a rational homology projective plane with quotient singu-
larities. Assume that S has 5 singular points. Then the 5-tuple consisting of the
orders of local fundamental groups of singular points is one of the following:

(2, 2, 3, 3, 3), (2, 2, 2, 4, 4),
(2, 2, 2, 3, 3), (2, 2, 2, 3, 4), (2, 2, 2, 3, 5), (2, 2, 2, 3, 6),
(2, 2, 2, 2, q) for q ≥ 2.

Proof. Theorem 3.1 implies that

0 ≤ eorb(S) = −2 +
∑

p∈Sing(S)

1
|Gp|

from which we obtain the list. �

The list above gives an infinite list of possible cases for R. In the next two
sections we will reduce this infinite list for R by using the orbifold Bogomolov-
Miyaoka-Yau inequality (Theorem 3.1) together with detailed information about
quotient singularities (e.g. Lemmas 2.6, 2.7, 3.3). The following two lemmas,
useful to calculate K2

S , are also part of such information.

Lemma 3.6 ([14], Proposition 5.9 (iii)). Let p be a cyclic quotient singular point
of S. Assume that f−1(p) has l components E1, . . . , El with Ei

2 = −ni forming a

string of smooth rational curves
−n1◦ − −n2◦ − · · · − −nl◦ .

(1) If l = 1, then D2
p = − (n1 − 2)2

n1
.

(2) If l ≥ 2, then D2
p = 2l −

∑
nj + a1 + al = 2l −

∑
nj + 2− q1 + ql + 2

q
.

Lemma 3.7. Let p be a non-cyclic quotient singular point of type Dq,q1 with the
dual graph given by < b; 2, 1; 2, 1; q, q1 > (see Table 1 for the notion of dual graph).

Let l be the length of the string < q, q1 >=
−n1◦ −−n2◦ −· · ·−−nl◦ . Assume that l ≥ 2.

Then we have the following:

(1) det(Rp) = (−1)l+34{(b− 1)q − q1}.

(2) al = 1− (b− 1)ql − q1,l

(b− 1)q − q1

(3) D2
p = 2l − Σnj + al − (b− 2)



NUMBER OF SINGULAR POINTS ON RATIONAL HOMOLOGY PROJECTIVE PLANES 9

Proof. (1) is just a linear algebra computation.
(2) Since Ej .KS′ = nj − 2 by the adjunction formula, we have the following matrix
equation:



−2 0 1 0 0 0 · · · 0
0 −2 1 0 0 0 · · · 0
1 1 −b 1 0 0 · · · 0
0 0 1 −n1 1 0 · · · 0
0 0 0 1 −n2 1 · · · 0
0 0 0 0 1 −n3 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 1 −nl





al+1

al+2

a0

a1

a2

a3

...
al


= −



0
0

b− 2
n1 − 2
n2 − 2
n3 − 2

...
nl − 2


We see that 2al+1 − a0 = 0 = 2al+2 − a0, hence al+1 = al+2 =

1
2
a0. So the

third row can be rewritten by −(b− 1)a0 + a1 = −(b− 2). Thus the above matrix
equation can be simplified to the following.


−(b− 1) 1 0 · · · 0

1 −n1 1 · · · 0
0 1 −n2 · · · 0
...

...
...

. . .
...

0 · · · · · · 1 −nl




a0

a1

a2

...
al

 = −


(b− 1)− 2 + 1

n1 − 2
n2 − 2

...
nl − 2


Since l ≥ 2, by Lemma 2.2,

al = 1− |det(M(−(b− 1),−n1,−n2, . . . ,−nl−1))|
|det(M(−(b− 1),−n1,−n2, . . . ,−nl))|

= 1− (b− 1)ql − q1,l

(b− 1)q − q1
.

From the matrix equation, we observe that

D2
p = −

l∑
j=1

aj(nj − 2)− a0(b− 2)

= −
l∑

j=1

(nj − 2)− a0 + a1 + al − a0(b− 2)

= −
l∑

j=1

nj + 2l + al − (b− 2).

�

4. Case: S with only cyclic quotient singularities

Let S be a rational homology projective plane with quotient singularities. In
this section we consider the case when S admits only cyclic quotient singularities.

By An, Dn, En we denote the negative definite root lattices.

Proposition 4.1. Let S be a rational homology projective plane with only cyclic
quotient singularities. Assume that KS is nef. Assume that S has 5 singular points.
Then we get one of the the following cases for R = ⊕p∈Sing(S)Rp:
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R = 3A1 ⊕ 2A3, 3A1 ⊕ A2 ⊕ 〈−5〉, 3A1 ⊕ A2 ⊕ A4, 3A1 ⊕ 2A2, 4A1 ⊕ A5, or
4A1 ⊕ [n1, n2, . . . , nl] for any [n1, n2, . . . , nl] ∈ T6.

Proof. We will use the orbifold Bogomolov-Miyaoka-Yau inequality (Theorem 3.1)
together with detailed information about quotient singularities (e.g. Theorem 2.4,
Lemmas 2.5, 2.6, 2.7, 3.6, 3.7). Here, we also use the fact that |det(R + 〈KS′〉)| is
a square number if KS is not numerically trivial (Lemma 3.3). We consider each
of the cases given in Lemma 3.5.

(1) The case (2, 2, 3, 3, 3)
The lattice R is one of the following:

2A1 ⊕ 3〈−3〉, 2A1 ⊕A2 ⊕ 2〈−3〉, 2A1 ⊕ 2A2 ⊕ 〈−3〉, 2A1 ⊕ 3A2,

and K2
S′ = 4, 3, 2, 1, respectively. Using Lemma 3.6, we get K2

S = 5, 11
3 , 7

3 , 1, re-
spectively. Thus in each case, K2

S 6= 0, hence KS is not numerically trivial. Fur-
thermore, det(R + 〈KS′〉) = det(R) ·K2

S = (−2233)5, (2233)( 11
3 ), (−2233)( 7

3 ), 2233,
respectively. None of these discriminants is a square number modulo ± sign, so
the lattice R + 〈KS′〉 cannot be embedded into a unimodular lattice of the same
signature, a contradiction.

(2) The case (2, 2, 2, 4, 4)
Here, the lattice R is one of the following:

3A1 ⊕ 2〈−4〉, 3A1 ⊕A3 ⊕ 〈−4〉, 3A1 ⊕ 2A3,

and K2
S′ = 4, 2, 0, respectively. In the first two cases, by Lemma 3.6 we see that

K2
S 6= 0, and det(R + 〈KS′〉) = det(R) · K2

S = (−2342)6, (−2342)3, respectively.
None of these is a square number modulo sign. Thus, the lattice R + 〈KS′〉 cannot
be embedded into a unimodular lattice of the same signature, a contradiction.

In the last case, b2(S′) = 10, KS′ = f∗(KS), and hence by Noether formula
K2

S = K2
S′ = 0. In particular, KS is numerically trivial. This gives the first case

for R.

(3) The case (2, 2, 2, 3, 6)
The lattice R is one of the following:

3A1 ⊕ 〈−3〉 ⊕ 〈−6〉, 3A1 ⊕A2 ⊕ 〈−6〉, 3A1 ⊕ 〈−3〉 ⊕A5, 3A1 ⊕A2 ⊕A5,

and K2
S′ = 4, 3, 0,−1, respectively. In the first three cases, we see that K2

S 6= 0, and
det(R+〈KS′〉) = det(R) ·K2

S is not a square number modulo sign. Thus, the lattice
R + 〈KS′〉 cannot be embedded into a unimodular lattice of the same signature, a
contradiction.

In the last case K2
S = K2

S′ = −1, a contradiction.

(4) The case (2, 2, 2, 3, 5)
The lattice R is one of the following:
3A1 ⊕ 〈−3〉 ⊕ 〈−5〉, 3A1 ⊕A2 ⊕ 〈−5〉, 3A1 ⊕−3⊕ [3, 2], 3A1 ⊕A2 ⊕ [3, 2],
3A1 ⊕ 〈−3〉 ⊕A4, 3A1 ⊕A2 ⊕A4,
and K2

S′ = 4, 3, 3, 2, 1, 0, respectively. Except the second and the last case, we see
that K2

S 6= 0, and det(R + 〈KS′〉) = det(R) · K2
S is not a square number modulo

sign. Thus, the lattice R + 〈KS′〉 cannot be embedded into a unimodular lattice of
the same signature.

In the second case, it can be checked that K2
S 6= 0 and det(R+ 〈KS′〉) = det(R) ·

K2
S is a square. This gives the second case for R.



NUMBER OF SINGULAR POINTS ON RATIONAL HOMOLOGY PROJECTIVE PLANES 11

In the last case, b2(S′) = 10 and K2
S′ = K2

S = 0. This gives the third case.

(5) The case (2, 2, 2, 3, 4)
There are 4 possible cases for R. In each case, we see that K2

S 6= 0, and det(R +
〈KS′〉) = det(R) · K2

S is not a square number modulo sign. Thus, the lattice
R + 〈KS′〉 cannot be embedded into a unimodular lattice of the same signature.

(6) The case (2, 2, 2, 3, 3)
There are 3 possible cases for R. In each case, we see that K2

S 6= 0. The absolute
value of the discriminant of R + 〈KS′〉 is a square only if R = 3A1 ⊕ 2A2 with
K2

S′ = 2. The latter gives the fourth case.

(7) The case (2, 2, 2, 2, q), q ≥ 2
In this case, we use the nefness of KS . We see that R = 4A1 ⊕Rp where |Gp| = q

and Theorem 3.1 says that 0 ≤ K2
S ≤ 3

q
. Let l be the number of irreducible

components of f−1(p). Note that b2(S′) = 1 + rank(R) = 5 + l and K2
S′ = 5− l.

If l = 1, then, by Lemma 3.6,

K2
S = K2

S′ −D2
p = 4 +

(q − 2)2

q
≥ 4,

which is a contradiction.
Now assume that l ≥ 2, and let [n1, n2, . . . , nl] be the Hirzebruch-Jung continued
fraction of Rp. In this case, also by Lemma 3.6,

K2
S = K2

S′ −D2
p =

l∑
j=1

nj − 3l + 5− (a1 + al).

So

3l − 5 + (a1 + al) ≤
l∑

j=1

nj ≤
3
q

+ 3l − 5 + (a1 + al).

Since 0 ≤ a1 + al < 2, we see that
l∑

j=1

nj = 3l − 5, 3l − 4, or 3l − 3.

(7-1) Assume that
l∑

j=1

nj = 3l − 5. Then a1 = al = 0, and K2
S = 0. Since

a1 = 1 − q1 + 1
q

, we see that Rp = Al. Then
∑

nj = 2l = 3l − 5. Thus, l = 5 and

R = 4A1 ⊕A5. This gives the fifth exceptional case.

(7-2) Assume that
l∑

j=1

nj = 3l − 3. Then by Lemma 2.2,

0 ≤ K2
S = 2− (a1 + al) =

q1 + ql + 2
q

≤ 3
q
.

So 0 ≤ q1 + ql + 2 ≤ 3, which is impossible.

(7-3) Now assume that
l∑

j=1

nj = 3l − 4. First note that
∑

nj = 3l − 4 ≥ 2l, so

l ≥ 4. By Lemma 2.2,

0 ≤ K2
S = 1− (a1 + al) =

q1 + ql + 2
q

− 1 ≤ 3
q
.
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Thus
q − 2 ≤ q1 + ql ≤ q + 1.

Hence, by Lemma 2.7,
q1 + ql = q − 2.

Then by Lemma 2.5, [n1, n2, . . . , nl] ∈ Td for some d, and by Theorem 2.4, d = 6.
Furthermore K2

S = 0. This gives the last infinite case for R. �

Remark 4.2. Except the case (2, 2, 2, 2, q), the argument above works without the
nefness of KS , i.e. works even in the case when −KS is ample.

Remark 4.3. Except the two cases R = 3A1 ⊕ A2 ⊕ 〈−5〉 and 3A1 ⊕ 2A2, we have
shown that rank(R + 〈KS′〉) = rank(R).

5. Case: S with a non-cyclic quotient singularity

Let S be a rational homology projective plane with quotient singularities. In this
section we consider the case when S admits a non-cyclic quotient singular point.

First we recall Brieskorn’s classification of finite subgroups of GL(2, C) without
quasi-reflections [5]. These are generalizations of the famous subgroups of SL(2, C),
i.e. cyclic or binary polyhedral groups. The result is summarized in Table 1.

Here we only explain the notation for dual graph.

< q, q1 > := the dual graph of the singularity of type
1
q
(1, q1),

< b; s1, t1; s2, t2; s3, t3 > := the tree of the form
< s2, t2 >

< s1, t1 > − ◦
−b
− < s3, t3 >

For more information about the table, we refer to the original paper of Brieskorn[5],
Matsuki’s exposition[16], or Riemenschneider’s work[21].

Proposition 5.1. Let S be a rational homology projective plane with quotient sin-
gularities. Assume that KS is nef. Assume that S has 5 singular points including
at least one non-cyclic quotient singular point. Then R = 4A1 ⊕D5.

Proof. Since S has a non-cyclic quotient singular point, the possible 5-tuples are
(2, 2, 2, 2, h). In particular, S has only one non-cyclic quotient singular point, and
Theorem 3.1 gives the inequality

(5.1) 0 ≤ K2
S ≤

3
h
≤ 3

8
.

Let p ∈ S be the non-cyclic quotient singular point.

(1) The case : p is of type Dq,q1

Let l be the length of the long arm < q, q1 >=
−n1◦ − −n2◦ − · · · − −nl◦ of the dual

graph of f−1(p). Then f−1(p) has l + 3 irreducible components, b2(S′) = l + 8 and
K2

S′ = 2− l.
If l = 1, then K2

S′ = 1, thus 1 ≤ K2
S , a contradiction to (5.1).

Assume that l ≥ 2.
By Lemma 3.7,

K2
S = K2

S′ −D2
p =

∑
nj − 3l + b− al.
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Table 1

Type G |G| Dual Graph ΓG

Aq,q1 Cq,q1 q < q, q1 > q1 < q, gcd(q, q1) = 1

Dq,q1 (Z2m, Z2m;Dq, Dq) 4mq < b; 2, 1; 2, 1; q, q1 > m = (b− 1)q − q1 odd

Dq,q1 (Z4m, Z2m;Dq, C2q) 4mq < b; 2, 1; 2, 1; q, q1 > m = (b− 1)q − q1 even

Tm (Z2m, Z2m;T, T ) 24m < b; 2, 1; 3, 2; 3, 2 > m = 6(b− 2) + 1

< b; 2, 1; 3, 1; 3, 1 > m = 6(b− 2) + 5

Tm (Z2m, Z2m;T,D2) 24m < b; 2, 1; 3, 1; 3, 2 > m = 6(b− 2) + 3

< b; 2, 1; 3, 2; 4, 3 > m = 12(b− 2) + 1

Om (Z2m, Z2m;O,O) 48m < b; 2, 1; 3, 1; 4, 3 > m = 12(b− 2) + 5

< b; 2, 1; 3, 2; 4, 1 > m = 12(b− 2) + 7

< b; 2, 1; 3, 1; 4, 1 > m = 12(b− 2) + 11

< b; 2, 1; 3, 2; 5, 4 > m = 30(b− 2) + 1

< b; 2, 1; 3, 2; 5, 3 > m = 30(b− 2) + 7

< b; 2, 1; 3, 1; 5, 4 > m = 30(b− 2) + 11

Im (Z2m, Z2m; I, I) 120m < b; 2, 1; 3, 2; 5, 2 > m = 30(b− 2) + 13

< b; 2, 1; 3, 1; 5, 3 > m = 30(b− 2) + 17

< b; 2, 1; 3, 2; 5, 1 > m = 30(b− 2) + 19

< b; 2, 1; 3, 1; 5, 2 > m = 30(b− 2) + 23

< b; 2, 1; 3, 1; 5, 1 > m = 30(b− 2) + 29

By (5.1),
∑

nj − 3l + b = 0 or 1.
If

∑
nj − 3l + b = 0, then al = 0 and hence by Zariski lemma (see e.g. [17],

Lemma 1.3) all components of f−1(p) are (−2)-curves, i.e. p is a rational double
point. Thus K2

S = K2
S′ = 0. It follows that l = 2 and p is of type D5. This gives

the case R = 4A1 ⊕D5.
If

∑
nj − 3l + b = 1, then

K2
S = 1− al =

(b− 1)ql − q1,l

(b− 1)q − q1
≥ 1

(b− 1)q − q1
=

4q

4mq
≥ 8

4mq
=

8
h

,

which is a contradiction to the inequality (5.1).

(2) The case : p is of type Tm, Om or Im

By calculating K2
S explicitly, we can check that K2

S does not satisfy the inequality
(5.1) for every possible case. The result of exact computation is summarized in
Table 2. �
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Table 2

Type Dual Graph K2
S

Tm < b; 2, 1; 3, 2; 3, 2 > 6b2−30b+35
6b−11

 ≤ − 1
7 if b ≤ 3

≥ 11
13 if b ≥ 4

< b; 2, 1; 3, 1; 3, 1 > 6b2−6b−1
6b−7 ≥ 11

5

Tm < b; 2, 1; 3, 1; 3, 2 > 18b2−54b+41
18b−27 ≥ 5

9

< b; 2, 1; 3, 2; 4, 3 > 12b2−72b+94
12b−23

 ≤ − 2
25 if b ≤ 4

≥ 34
37 if b ≥ 5

Om < b; 2, 1; 3, 1; 4, 3 > 12b2−48b+46
12b−19

 = − 2
5 if b = 2

≥ 10
17 if b ≥ 3

< b; 2, 1; 3, 2; 4, 1 > 12b2−24b+10
12b−17 ≥ 10

7

< b; 2, 1; 3, 1; 4, 1 > 12b2−14
12b−13 ≥ 34

11

< b; 2, 1; 3, 2; 5, 4 > 30b2−210b+297
30b−59

 ≤ − 3
91 if b ≤ 5

≥ 117
121 if b ≥ 6

< b; 2, 1; 3, 2; 5, 3 > 30b2−126b+129
30b−53

 = − 3
7 if b = 2

≥ 21
37 if b ≥ 3

< b; 2, 1; 3, 1; 5, 4 > 30b2−150b+165
30b−49

 ≤ −15
41 if b ≤ 3

≥ 45
71 if b ≥ 4

Im < b; 2, 1; 3, 2; 5, 2 > 30b2−114b+105
30b−47

 = − 3
13 if b = 2

≥ 33
43 if b ≥ 3

< b; 2, 1; 3, 1; 5, 3 > 30b2−66b+33
30b−43 ≥ 21

17

< b; 2, 1; 3, 2; 5, 1 > 30b2−30b−15
30b−41 ≥ 45

19

< b; 2, 1; 3, 1; 5, 2 > 30b2−54b+21
30b−37 ≥ 33

23

< b; 2, 1; 3, 1; 5, 1 > 30b2+30b−63
30b−31 ≥ 117

29

6. Quadratic Forms

In this section we prove that the cases for R given in Proposition 4.1 cannot
actually occur except the first case R = 3A1 + 2A3. We use the Local-Global
Principle together with computation of ε-invariants to show that, except the first
case, either the lattice R or R + 〈KS′〉 cannot be embedded into the unimodular
lattice H2(S′, Z)free.

Theorem 6.1. [23] (Local-Global Principle) Let f and f ′ be two quadratic forms
over Q. For f and f ′ to be equivalent over Q it is necessary and sufficient that they
are equivalent over each p-adic field Qp or the field Q∞ of real numbers.
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Let f be a quadratic form in n variables over the p-adic field Qp such that
f = a1X1

2 + a2X2
2 + . . . + anXn

2. Define discriminant dp(f) and ε-invariant εp(f)
of f as follows:

dp(f) = a1 . . . an ∈ Qp/Q∗2
p

εp(f) =
∏
i<j

(ai, aj)p

where (−,−)p is the Hilbert symbol on Qp.
Let f, f ′ be two quadratic forms over the p-adic field Qp. Then these invariants

have the following obvious properties.

dp(f ⊕ f ′) = dp(f) · dp(f ′)

εp(f ⊕ f ′) = εp(f)εp(f ′)(dp(f), dp(f ′))p

We set εp(f) = 1 if f is a quadratic form in 1 variable.

Theorem 6.2. [23] Let k be a p-adic field. Then two quadratic forms over k are
equivalent if and only if they have the same rank, the same discriminant, and the
same ε-invariant.

Every non-zero element of the p-adic field Qp can be written uniquely in the
form pαu for some integer α and some p-adic unit u. For any prime number p and
integers α and x with 1 ≤ x < p, we define

x̄ · pα :=
{

pαu
∣∣∣ u = x +

∑
i≥1

aip
i is a p-adic unit

}
.

Theorem 6.3. [23] (Computation of Hilbert symbol) Let p > 2 be a prime number
and let a, b ∈ Qp.
If a ∈ ū · pα, b ∈ v̄ · pβ, then the Hilbert symbol (a, b)p can be computed as

(a, b)p = (−1)αβρ(p)

(
u
−
p

)β(
v
−
p

)α

where
(u
−
p

)
denotes the Legendre symbol, ρ(p) denotes the class modulo 2 of

p− 1
2

.

Lemma 6.4. Let L be the integral lattice corresponding to a Hirzebruch-Jung
continued fraction [n1, n2, . . . , nl] with standard basis {e1, ..., el}. Let (L ⊗ Q, f)
be the quadratic form over Q defined by L. Then we can take an orthogonal
basis {v1, ..., vl} with vi

2 = −[ni, ..., n1] so that the quadratic form is given by
f =

∑
vi

2Xi
2.

Proof. It is Gram-Schmidt process, essentially. �

Lemma 6.5. Let L be the integral lattice corresponding to a Hirzebruch-Jung
continued fraction [n1, n2, . . . , nl]. Let (L ⊗ Q, fL) be the quadratic from with

fL =
l∑

i=1

ciXi
2 where ci = −[ni, . . . , n1] for i = 1, . . . , l. Let (τ(L) ⊗ Q, fτ(L))

be the quadratic form corresponding to τ([n1, n2, . . . , nl]). Then we can choose an
orthogonal basis {v1, . . . , vl+1} such that we can write fτ(L) =

∑
diXi

2 with di = ci

for i = 1, . . . , l−1, dl = cl−1, and dl+1 = −2−
l∑

j=1

dj

(d1d2 · · · dj)2
= −2+

q1 + q1,l

q + ql
,

where q = |det(M(−n1,−n2, . . . ,−nl))|.
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In particular, if [n1, . . . , nl] ∈ T6, then the 3-adic valuation of dl+1 is a positive
odd integer, more precisely, dl+1 ∈ 2̄ · 3α for a positive odd integer α.

Proof. Recall that τ([n1, . . . , nl]) = [2, n1, . . . , nl−1, nl + 1]. With respect to a
suitable basis {e1, e2, . . . , el+1}, we can write the corresponding intersection matrix
as follows:

Mτ(L) =



−n1 1 0 · · · · · · 0 1
1 −n2 1 0 · · · · · · 0
0 1 −n3 1 0 · · · 0
...

...
. . . . . . . . . . . .

...
0 · · · · · · 1 −nl−1 1 0
0 · · · · · · · · · 1 −nl − 1 0
1 0 · · · · · · · · · 0 −2


Then, by Gram-Schmidt process, we can write v1 = e1 and for i = 2, . . . , l + 1,

vi = ei −
i−1∑
j=1

〈vj , ei〉
〈vj , vj〉

vj .

Then di = v2
i for i = 1, 2, . . . , l + 1. It is easy to see that

di = ci for i = 1, . . . , l − 1,

dl = −[nl + 1, nl−1, . . . , n1] = −(1 + [nl, . . . , n1]) = −1 + cl,

and

dl+1 = e2
l+1 −

l∑
j=1

〈vj , el+1〉2

〈vj , vj〉
= −2−

l∑
j=1

dj

(d1 · · · dj)2
.

Write cj = − yj

yj−1
where y0 = 1 and yj = |det(M(−n1,−n2, . . . ,−nj))|. Clearly

yl = q and yl−1 = ql. Note that

dj

(d1 · · · dj)2
=

cj

(c1 · · · cj)2
= − 1

yj−1yj

for j = 1, . . . , l − 1. Claim that
k∑

j=1

1
yj−1yj

=
|det(M(−n2,−n3, . . . ,−nk))|

yk
.

We prove the claim by using induction. If k = 2, then
1

y0y1
+

1
y1y2

=
y2 + 1
y1y2

=
n2

y2
.

Now assume that the claim holds for k < m. Then
m∑

j=1

1
yj−1yj

=
m−1∑
j=1

1
yj−1yj

+
1

ym−1ym

=
|det(M(−n2,−n3, . . . ,−nm−1))|ym + 1

ym−1ym

=
|det(M(−n2,−n3, . . . ,−nm))|

ym
,
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which proves the claim. Thus

dl+1 = −2−
l−1∑
j=1

cj

(c1 · · · cj)2
− 1

(c1 · · · cl−1)2dl

= −2 +
l−1∑
j=1

1
yj−1yj

− 1
y2

l−1(cl − 1)

= −2 +
q1,l

ql
+

1
ql(q + ql)

= −2 +
q1 + q1,l

q + ql
.

Now assume that [n1, . . . , nl] ∈ T6. Then

q = 6n2, q1 = 6na− 1, ql = 6nb− 1

for some integers n, a, b with n > a > 0, gcd(n, a) = 1, a + b = n.
Since q1,lq = q1ql − 1, we see that q1,l = 6ab− 1. Using these we get

dl+1 =
−6(n + b)2

6n2 + 6nb− 1
.

Now it is easy to see that dl+1 ∈ 2̄ · 3α for a positive odd integer α. �

Lemma 6.6. (1) Let I1,m := 〈1〉 ⊕ m〈−1〉 be the odd unimodular lattice of
signature (1,m). Then εp(I1,m) = 1 for all p > 2.

(2) Let II1,8m+1 := H ⊕ mE8 be the even unimodular lattice of signature
(1, 8m + 1), where H is the even unimodular lattice of signature (1, 1), and
E8 the even unimodular lattice of signature (0, 8). Then ε3(II1,8m+1) = 1.

Proof. (1) follows from a direct calculation.
(2) It is easy to see that ε3(H) = 1. By a suitable change of basis, we can write

the quadratic form of E8 ⊗Q as follows:

f = −2X2
1 −

3
2
X2

2 −
4
3
X2

3 −
5
4
X2

4 −
6
5
X2

5 −
7
6
X2

6 −
8
7
X2

7 −
1
8
X2

8 .

A direct calculation shows that ε3(E8) = 1. Hence

ε3(H ⊕ E8) = ε3(H)ε3(E8)(d(H), d(E8))3 = 1.

Now, use induction. �

Lemma 6.7. Let l = m − 4 be an integer ≥ 6, and Rp be the lattice of rank
l corresponding to a singularity p of class T6. Then the negative definite lattice
N := 4A1 ⊕Rp of rank m cannot be embedded into the lattice I1,m.

Proof. Assume that N is embedded to I1,m. Let N⊥ be the orthogonal complement
of N in I1,m. Then (N ⊕N⊥)⊗Q3

∼= I1,m ⊗Q3. Thus by Lemma 6.6,

ε3(N ⊕N⊥) = ε3(I1,m) = 1.

To get a contradiction, we will show that ε3(N ⊕N⊥) = −1. Note that det(N) =
(−1)l246n2 and det(N⊥) = 6n′2 for some n, n′. Hence by Theorem 6.3

(d3(N), d3(N⊥))3 = ((−1)l6, 6)3 = (−1)l+1.

It is easy to see that ε3(N) = ε3(Rp). Thus

ε3(N ⊕N⊥) = ε3(N)ε3(N⊥)(d3(N), d3(N⊥))3 = (−1)l+1ε3(Rp)
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It is enough to show that
ε3(Rp) = (−1)l.

To do this we use induction on l.
If l = 6, then Rp corresponds to the Dynkin diagram

−3◦ −−2◦ −−2◦ −−2◦ −−2◦ −−3◦ ,
and by Lemma 6.4 the quadratic form (Rp ⊗Q, f) over Q is given by

f = −3X2
1 −

5
3
X2

2 −
7
5
X2

3 −
9
7
X2

4 −
11
9

X2
5 −

24
11

X2
6 .

A direct calculation shows that ε3(Rp) = 1.
It is clear that the epsilon invariant does not change under a reverse operation.

Since the τ -operation increases rank(Rp) by 1, it is sufficient to show that

ε3(Rp)ε3(τ(Rp)) = −1.

By Lemma 6.5 and notation there,

ε3(Rp)ε3(τ(Rp)) = (cldldl+1, c1 · · · cl−1)3(dl+1, dl)3.

Recall that [n1, . . . , nl] =
q

q1
=

6n2

6na− 1
, cl = −[nl, . . . , n1] = − q

ql
= − 6n2

6nb− 1
, for

some integers n > a > 0, n > b > 0 with gcd(n, a) = gcd(n, b) = 1. It implies that
q = 6n2, q1 = 6na− 1 ≡ 2 mod 3, ql = 6nb− 1 ≡ 2 mod 3, and cl ∈ 2̄ · 3α for some
odd integer α > 0. Note that

c1 · · · cl−1 = (−1)l−1ql.

Case 1: l is odd.
In this case c1 · · · cl−1 ∈ 2̄ · 30 and dl ∈ 2̄ · 30. Thus (cldldl+1, c1 · · · cl−1)3 = 1 and
(dl+1, dl)3 = −1. Hence ε3(Rp)ε3(τ(Rp)) = −1, as desired.

Case 2: l is even.
In this case c1 · · · cl−1 ∈ 1̄ · 30 and dl ∈ 2̄ · 30. Thus (cldldl+1, c1 · · · cl−1)3 = 1 and
(dl+1, dl)3 = −1. Hence ε3(Rp)ε3(τ(Rp)) = −1, as desired.
This completes the proof. �

Lemma 6.8. Let R = 3A1 ⊕A2 ⊕A4, or 4A1 ⊕A5.
Then the lattice R can be embedded into neither the lattice I1,9 nor II1,9.
In particular, neither the case R = 3A1⊕A2⊕A4 nor 4A1⊕A5 in Proposition 4.1
occurs.

Proof. Suppose that R can be embedded into L := I1,9 or II1,9. Let R⊥ be
the orthogonal complement of R in L. By Lemma 6.6, it suffices to show that
ε3(R⊕R⊥) = −1.

Case 1. R = 3A1 ⊕A2 ⊕A4.
Since d(R) = −23 · 3 · 5, we see that d(R⊥) = 30. By a direct calculation, it is easy
to see that ε3(R) = −1, so

ε3(R⊕R⊥) = ε3(R)ε3(R⊥)(d3(R), d3(R⊥))3 = −1.

Case 2. R = 4A1 ⊕A5.
Similar to Case 1. Since d(R) = −24 · 6, we see that d3(R⊥) = 6. A direct
calculation shows that ε3(R) = −1, so ε3(R⊕R⊥) = −1. �
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Corollary 6.9. There is no Enriques surface with a configuration of 9 smooth
rational curves whose Dynkin diagram is of type 3A1 ⊕A2 ⊕A4 or 4A1 ⊕A5.

Proof. The second cohomology group, modulo torsion, of any Enriques surface has
a lattice structure isomorphic to II1,9 = H ⊕ E8. �

Lemma 6.10. The two cases R = 3A1 ⊕ A2 ⊕ 〈−5〉 and R = 3A1 ⊕ 2A2 in
Proposition 4.1 do not occur.

Proof. It suffices to show that the lattice R = 3A1 ⊕ A2 ⊕ 〈−5〉 (resp. 3A1 ⊕ 2A2

cannot be embedded into the unimodular lattice H2(S′, Z)free which is isomorphic
to the lattice I1,6 (resp. I1,7). Note that

(R + 〈KS′〉)⊗Q ∼= (R + 〈f∗KS〉)⊗Q.

Thus
ε3(R + 〈KS′〉) = ε3(R + 〈f∗KS〉).

In case R = 3A1 ⊕ A2 ⊕ 〈−5〉, it can be checked that ε3(R + 〈f∗KS〉) = −1, so by
Lemma 6.6 the lattice R + 〈KS′〉 cannot be embedded into I1,6 = 〈1〉 ⊕ 6〈−1〉.

Similarly, in case R = 3A1⊕ 2A2, it can be checked that ε3(R + 〈KS′〉) = −1, so
by Lemma 6.6 the lattice R+〈KS′〉 cannot be embedded into I1,7 = 〈1〉⊕7〈−1〉. �

Now by Corollary 3.4, Lemmas 6.7, 6.8, 6.10, we can combine Propositions 4.1
and 5.1 into the following form:

Proposition 6.11. Let S be a rational homology projective plane with quotient
singularities. Assume that KS is nef. Then S has at most 4 singular points except
the following two cases:

S has 5 singular points of type 3A1 ⊕ 2A3 or 4A1 ⊕D5.

Proposition 6.12. In either case R = 3A1 ⊕ 2A3 or 4A1 ⊕D5, S′ is an Enriques
surface.

Proof. In either case, we have shown in the proof of Propositions 4.1 and 5.1 that
KS is numerically trivial. Since S has only rational double points, KS′ = f∗KS ,
hence KS′ is numerically trivial. We know that pg(S′) = q(S′) = 0. Thus by the
classification theory of algebraic surfaces S′ is an Enriques surface. �

7. Enriques surfaces

In this section we show that the case R = 3A1⊕2A3 is supported by an example,
and the case R = 4A1⊕D5 can be ruled out by an argument from the classification
theory of algebraic geometry and the theory of discriminant quadratic forms.

Let L be a non-degenerate even lattice. The bilinear form of L determines a
canonical embedding L ⊂ L∗ = Hom(L, Z). The factor group L∗/L, which is
denoted by disc(L), is an abelian group of order |det(L)|. We denote by l(L) the
number of minimal generators of disc(L). We extend the bilinear form on L to the
one on L∗, taking value in Q, and define

qL : disc(L) → Q/2Z, qL(x + L) = 〈x, x〉+ 2Z (x ∈ L∗).

We call qL the discriminant quadratic form of L. A subgroup A of disc(L) is said
to be isotropic if qL takes value identically 0 on A.

For a non-degenerate odd lattice, its discriminant quadratic form can be defined
similarly.
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Let L be a sublattice of a lattice M . The lattice L is said to be primitive if M/L
is torsion free. The minimal primitive sublattice of M containing L is called the
primitive closure of L, and is denoted by L̄. The orthogonal complement of L in
M is denoted by L⊥M , or simply by L⊥. The following is well known (see e.g. [20]).

Lemma 7.1. Let L be a non-degenerate even lattice.
(1) If an even lattice M is an over-lattice of L, i.e. M has the same rank as

L and contains L, then the group A := M/L is an isotropic subgroup of
disc(L), and disc(M) ∼= A⊥/A.

(2) Conversely, every isotropic subgroup A of disc(L) defines a unique over-
lattice M ⊂ L∗ with disc(M) ∼= A⊥/A.

(3) If L is primitive in a unimodular even lattice, then

(disc(L⊥), qL⊥) ∼= (disc(L),−qL).

Proposition 7.2. There is no Enriques surface with a configuration of 9 smooth
rational curves whose Dynkin diagram is of type 4A1 ⊕D5.

Proof. Suppose that there is such an Enriques surface W . The Néron-Severi group
modulo torsion, H2(W, Z)free := H2(W, Z)/torsion, has a lattice structure isomor-
phic to H ⊕ E8. Here, the torsion is generated by the canonical class KW . Let
R = 4A1⊕D5 be the sublattice of H2(W, Z)free generated by the 9 smooth rational
curves on W . Let E1, E2, E3, E4 be the smooth rational curves corresponding to
4A1. Note that

disc(R) =
( 4
⊕

i=1
(Z/2)〈ei〉

)
⊕

(
(Z/4)〈v〉

)
,

where 〈·〉 is the generator of the group, e.g. ei =
[Ei]
2

. The quadratic form on

disc(D5) ∼= (Z/4)〈v〉 is given by v2 = −5
4
. Since rankR⊥ = 1, disc(R⊥) is a cyclic

group. Hence by Lemma 7.1, we see that disc(R̄) ∼= −disc(R⊥) is a cyclic group
and R̄/R is an isotropic subgroup of disc(R). Since l(R) = 5, this is possible only if

disc(R̄) ∼= Z/4 and R̄/R =
2
⊕

i=1
(Z/2). Finding generators of R̄/R, we see that it is

generated by two elements e1 + e2 + e3 + e4 and ei + ej + 2f for some i 6= j. In any
case, e1 +e2 +e3 +e4 ∈ R̄/R. This means that E1 +E2 +E3 +E4 is divisible by 2 in
H2(W, Z)free, i.e. either E1 +E2 +E3 +E4 or E1 +E2 +E3 +E4 +KW is divisible
by 2 in H2(W, Z) = Pic(W ). Let X be the algebraic K3 cover of W . Then it follows
that the pre-images in X of the 4 curves E1, E2, E3, E4 are 8 smooth rational curves
whose sum is divisible by 2 in Pic(X). Let X → X ′ be the contraction of these 8
curves. Note that away from these singular points, X ′ contains 10 smooth rational
curves whose Dynkin diagram is of type 2D5. Then there is a double cover Y of
X ′ branched exactly along the 8 singular points. The surface Y is an algebraic
K3 surface (cf. [8], Theorem 1 and 2). Then Y contains 20 smooth rational curves
whose Dynkin diagram is of type 4D5. This implies that Y has Picard number ≥ 21,
which is impossible. �

The following example was mentioned in Theorem 1.1.

Example 7.3. There is an Enriques surface with a configuration of 9 smooth
rational curves whose Dynkin diagram is of type 3A1 ⊕ 2A3. See Example III, [13].
This Enriques surface has an elliptic fibration with 2 double fibres of type I4, 2
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fibres of type I2, and a special 2-section intersecting only one component in each
fibre.

Let S be a rational homology projective plane with 5 singularities of type 3A1⊕
2A3. Then S is not an integral homology projective plane, because H1(S, Z) ∼=
Z/2Z 6= 0. But S and CP2 have the isomorphic rational cohomology ring, although
H2(S, Q) does not contain an element of self-intersection 1.

Now Theorem 1.1 follows from Propositions 6.11, 6.12, 7.2 and Example 7.3.

8. The differentiable case

Let M be a smooth, compact 4-manifold whose boundary components are spher-
ical, that is, they are links. One can then attach cones to each boundary component
to get a 4-dimensional orbifold S. As in the algebraic case, there is a minimal res-
olution f : S′ → S, where S′ is a smooth, compact 4-manifold without boundary.
To each singular point p ∈ S (the vertex of each cone), we assign a uniquely defined
class Dp =

∑
(ajEj) ∈ H2(S′, Q) such that Dp · Ei = 2 + E2

i for each component
Ei of f−1(p).
We always assume that S and S′ satisfy the following two conditions:

(1) S is a Q-homology CP2, i.e. H1(S, Q) = 0 and H2(S, Q) ∼= Q.
(2) The intersection form on H2(S′, Q) is indefinite, and is negative definite on

the subspace generated by the classes of the exceptional curves of f .
If there is a class KS′ ∈ H2(S′, Q) satisfying both the Nöther formula

K2
S′ = 10− b2(S′)

and the adjunction formula

KS′ · E + E2 = −2

for each exceptional curve E of f : S′ → S, we call it a formal canonical class of
S′.

Theorem 8.1. Let M , S, and S′ be the same as above satisfying the conditions
(1) and (2). Assume that S′ admits a formal canonical class KS′ . Assume further
that

K2
S′ −

∑
p∈Sing(S)

D2
p ≤ 3eorb(S).

Then M has at most 4 boundary components except the following two cases:
M has 5 boundary components of type 3A1 + 2A3 or 4A1 + D5.

Note that the assumptions in Theorem 8.1 all hold for algebraic Q-homology
projective planes with quotient singularities such that the canonical divisor is nef.

Proof. In our proof up to Proposition 6.11 for the algebraic orbifold case, the canon-
ical class KS appears several times, but can be replaced by f∗KS . Given a formal
canonical class KS′ in the differentiable case, the class KS′ +

∑
Dp ∈ H2(S′, Q)

plays exactly the same role as f∗KS . The words “KS is numerically trivial” is now
replaced by “KS′ = −

∑
Dp ∈ H2(S′, Q)”, or by “KS′ ∈ R⊗Q”. �

Theorem 8.2. Let M , S, and S′ be the same as above satisfying the conditions
(1) and (2). Assume that S′ admits a formal canonical class KS′ . Assume further
that

0 ≤ eorb(S).
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Then M has at most 5 boundary components. The bound is sharp.

The assumptions in Theorem 8.2 all hold for algebraic Q-homology projective
planes with quotient singularities.

If S is a symplectic orbifold, then S′ is a symplectic manifold and the symplectic
canonical class KS′ gives a formal canonical class.

Corollary 8.3. Let M , S, and S′ be the same as above satisfying the conditions
(1) and (2). Assume that S is a symplectic orbifold. Assume further that

K2
S′ −

∑
p∈Sing(S)

D2
p ≤ 3eorb(S).

Then M has at most 4 boundary components except the following two cases:
M has 5 boundary components of type 3A1 + 2A3 or 4A1 + D5.

Corollary 8.4. Let M , S, and S′ be the same as above satisfying the conditions
(1) and (2). Assume that S is a symplectic orbifold. Assume further that

0 ≤ eorb(S).

Then M has at most 5 boundary components. The bound is sharp.

Remark 8.5. In the differentiable case, if a formal canonical class KS′ is given, then
a formal canonical class of S can be defined as the class KS′ +

∑
Dp ∈ H2(S′, Q).
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