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Abstract. The graded modules over noncommutative algebras often have minimal free resolutions

of infinite length, resulting in infinite Castelnuovo-Mumford regularity. While a generalized notion

of regularity was developed in in [6] to address this problem, it is not easily computable. In this

paper, we compute the generalized Castelnuovo-Mumford regularity for integrable highest weight

representations of affine Kac-Moody algebras. It is shown that the generalized regularity depends

only on the type and rank of algebras and the level of representations.

Introduction

For graded modules over commutative algebras, the Castelnuovo-Mumford regularity provides a
computational invariant measuring the degree-complexity [1, 2]. However, in the case of graded
modules over noncommutative algebras, the projective dimension is usually infinite, resulting in infinite
Castelnuovo-Mumford regularity. In such a case, one cannot deduce any meaningful information out
of it.

To overcome this difficulty, the notion of the exponent of growth e(M) and the rate of growth r(M)
were introduced in [6], for a graded module M over a noncommutative algebra A. When the projective
dimension of M is finite, we have e(M) = 0, and r(M) coincides with the usual Castelnuovo-Mumford
regularity. For this reason, the pair (e(M), r(M)) is called the generalized Castelnuovo-Mumford
regularity of M . While the generalized Castelnuovo-Mumford regularity is often difficult to compute,
it was successfully computed for several interesting classes. These include finite dimensional irreducible
modules over finite dimensional simple Lie algebras, and integrable highest weight modules over affine
Kac-Moody algebras of type A(1)

n .
In this paper, we aim to compute the generalized Castelnuovo-Mumford regularity for integrable

highest weight representations of all affine Kac-Moody algebras. By contrast to an ad hoc method
used in the previous work [6], a unified approach is taken here that works for all affine cases. One
of the key ingredients of the computation is a thorough understanding of the structure of affine Weyl
groups. The Coxeter number and the dual Coxeter number appear naturally in the process of the

2000 Mathematics Subject Classification. 16E05, 16Gxx, 17B67.

Key words and phrases. free resolution, regularity, affine Kac-Moody algebra, representation.
∗ Corresponding author.
1 This research was supported by KRF Grant # 2007-341-C00001.
2 This research was supported by BK21 Mathematical Sciences Division.
3 This research was supported by KOSEF SRC Grant # R11-2007-035-01002-0.

1



2 SEOK-JIN KANG, DONG-IL LEE, EUIYONG PARK, AND HYUNGJU PARK

computation. As a result, it is shown that the exponents of growth are always 2 and that the rates of
growth depend only on the type and rank of algebras and the level of representations.

1. Generalized Castelnuovo-Mumford regularities

Let A =
⊕

α∈Zn
≥0
Aα be a Zn≥0-graded noncommutative C-algebra with A0 = C. An A-module M

is said to be Zn-graded if M has a decomposition

M =
⊕
β∈Zn

Mβ such that AαMβ ⊂Mα+β for all α, β ∈ Zn.

We assume that Mβ = 0 for β � 0. An element m of M is homogeneous of weight β if m ∈Mβ for some
β ∈ Zn. We write wt(m) = β if m ∈ Mβ . A homomorphism φ : M =

⊕
α∈Zn Mα → N =

⊕
α∈Zn Nα

is called a graded homomorphism of degree β if φ(Mα) ⊂ Nα+β for all α ∈ Zn. A free resolution
(Fi, φi)i≥0 of M is said to be graded if φi are graded homomorphisms of degree 0 for all i ≥ 0. It
is called minimal if it cannot be pruned. It can be shown that the minimal graded free resolution is
unique.

In [6], the following generalization of Caselnuovo-Mumford regularity was introduced for graded
A-modules.

Definition 1.1. Let M be a Zn-graded A-module and let (Fi, φi)i≥0 be the minimal graded free
resolution of M . For each i ≥ 0, write Fi =

⊕
j≥0Aεij , and set

Ti = max{|wt(εij)| | j ≥ 0},

where |α| = α1 + · · ·+ αn for α = (α1, . . . , αn) ∈ Zn.

(a) The length of (Fi, φi)i≥0 is called the projective dimension of M and is denoted by pdimAM .
(b) We define the exponent of growth of M to be

e(M) :=

 0 if pdimAM <∞;

lim sup
i→∞

log(Ti − i+ 1)
log i

if pdimAM =∞.

(c) If e(M) <∞, we define the rate of growth of M to be

r(M) :=

 sup {Ti − i | i ≥ 0} if e(M) = 0;

lim sup
i→∞

Ti − i
ie(M)

if e(M) 6= 0.

(d) The generalized Castelnuovo-Mumford regularity of M is defined to be the pair

regAM = (e(M), r(M)) .

As we have seen in [6], if pdimAM <∞, then e(M) = 0, and the rate of growth of M coincides with
the usual Castelnuovo-Mumford regularity. If pdimAM =∞, then we obtain the following asymptotic
behavior of the degree twistings:

Ti − i ≈ r(M)ie(M) for sufficiently large i.



GENERALIZED CASTELNUOVO-MUMFORD REGULARITY FOR AFFINE KAC-MOODY ALGEBRAS 3

2. Affine Kac-Moody algebras

In this section, we recall the basic facts about affine Kac-Moody algebras. We follow the definitions
and notations in [4, 5]. Let I = {0, 1, . . . , n} be the index set. The affine Cartan datum of type X(r)

N

(N ≥ 1, r = 1, 2, 3) consists of (i) the affine generalized Cartan matrix A = (aij)i,j∈I of type X(r)
N , (ii)

dual weight lattice P∨ =
⊕n

i=0 Zhi⊕Zd, (iii) the affine weight lattice P =
⊕n

i=0 ZΛi⊕Z(δ/a0) ⊂ h∗,
where h = C ⊗Z P

∨, Λi(hj) = δij , Λi(d) = 0, δ(hj) = 0, δ(d) = 1 (i, j ∈ I), a0 = 2 for type A(2)
2n ,

a0 = 1 otherwise, (iv) the set of simple coroots Π∨ = {hi | i ∈ I}, (v) the set of simple roots
Π = {αi | i ∈ I} ⊂ h∗ such that αj(hi) = aij , αj(d) = δj,0 (i, j ∈ I).

The free abelian group Q =
⊕n

i=0 Zαi is called the root lattice and the semigroup Q+ =
∑n
i=0 Z≥0αi

is called the positive root lattice. For α =
∑
i∈I kiαi ∈ Q, we define the height of α to be ht(α) :=∑

i∈I ki. We denote by

P+ := {λ ∈ h∗ |λ(hi) ∈ Z≥0, i ∈ I}

the set of dominant integral weights.
The affine Weyl group W is the subgroup of Aut(h∗) generated by the simple reflections {ri}i∈I ,

where ri(λ) := λ − λ(hi)αi for λ ∈ h∗ and i ∈ I. The length l(w) of w ∈ W is defined to be the
smallest k ≥ 0 such that w = ri1 · · · rik (ij ∈ I). For each k ∈ Z≥0, we set

W (k) := {w ∈W | l(w) = k}.

Definition 2.1. The affine Kac-Moody algebra g of type X(r)
N is the Lie algebra over C generated

by ei, fi, hi (i ∈ I) and d with the defining relations:

[hi, hj ] = 0, [hi, d] = 0 (i, j ∈ I),

[h, ei] = αi(h)ei, [h, fi] = −αi(h)fi (h ∈ h, i ∈ I),

[ei, fj ] = δijhi (i, j ∈ I),

(adei)1−aij (ej) = (adfi)1−aij (fj) = 0 (i 6= j).

The affine Kac-Moody algebra g has the triangular decomposition

g = g− ⊕ h⊕ g+,

where g+ (respectively, g−) is the subalgebra of g generated by the elements ei (i ∈ I) (respectively, fi
(i ∈ I)). For each α ∈ Q, gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h} is called the root space attached
to α. If α ∈ Q\{0} and gα 6= 0, then α is called a root of g. The set of all roots is denoted by ∆. We
have the root space decomposition

g = h⊕
⊕
α∈∆

gα.

The elements in ∆+ := ∆ ∩ Q+ (respectively, ∆− := −∆+) are called the positive (respectively,
negative) roots. The sets of all long and short roots are denoted by ∆L and ∆S , respectively. A
root α ∈ ∆ is called real if there exists w ∈ W such that w(α) ∈ Π. We denote by ∆re the set of
all real roots. The sets of all positive and negative real roots are denoted by ∆re

+ := ∆re ∩ Q+ and
∆re
− := −∆re

+ , respectively.
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Fix a dominant integral weight λ ∈ P+ and let b = h ⊕ g+ the Borel subalgebra of g. We denote
by Cλ := Cvλ the 1-dimensional b-module defined by hvλ = λ(h)vλ and eivλ = 0 for h ∈ h, i ∈ I.
Then the U(g)-module M(λ) := U(g) ⊗U(b) Cλ is called the Verma module with highest weight λ.
Let N(λ) be the submodule of M(λ) generated by f

λ(hi)+1
i vλ (i ∈ I). The irreducible quotient

V (λ) := M(λ)/N(λ) is called the integrable highest weight module with highest weight λ.
Choose an element ρ ∈ h∗ such that ρ(hi) = 1 for all i ∈ I. In [3], Garland and Lepowsky

constructed a natural free resolution of V (λ) viewed as a U(g−)-module:

(2.1) · · · → Fi(λ)→ · · · → F1(λ)→ F0(λ)→ V (λ)→ 0,

where Fi(λ) =
⊕

w∈W (i)M(w(λ + ρ) − ρ). The free resolution 2.1 is called the Berstein-Gelfand-
Gelfand resolution of V (λ). As we have seen in [6], the Bernstein-Gelfand-Gelfand resolution is a
minimal graded free resolution of V (λ). We denote by εiw the highest weight vector of the Verma
module M(w(λ + ρ) − ρ) with w ∈ W (k). Then the Berstein-Gelfand-Gelfand resolution 2.1 can be
written as

(2.2) · · · →
⊕

w∈W (i)

U(g−)εiw → · · · →
⊕

w∈W (1)

U(g−)ε1
w → U(g−)ε0

1 → V (λ)→ 0,

where |wt(εiw)| = ht(λ+ ρ− w(λ+ ρ)) for w ∈W (i).
Let ai, a∨i (i = 0, 1, . . . , n) be the numerical labels given in [5, Ch.4]. Then we have δ =

∑n
i=0 aiαi

and K =
∑n
i=0 a

∨
i hi, where K is the canonical central element of g. The Coxeter number and the dual

Coxeter number are defined to be

h =
n∑
i=0

ai, h∨ =
n∑
i=0

a∨i ,

respectively.

Let
◦
g be the finite dimensional simple Lie algebra associated with the Cartan matrix

◦
A := (aij)ni,j=1

and let
◦
W be the Weyl group of

◦
g generated by ri (i = 1, . . . , n). We denote by

◦
∆,

◦
∆+,

◦
∆S ,

◦
∆L,

◦
∆+,S , and

◦
∆+,L the set of roots, positive roots, short roots, long roots, positive short roots, and

positive long roots of
◦
g, respectively. We also denote by

◦
ρ the element of

◦
h∗ such that

◦
ρ(hi) = 1 for

i = 1, . . . , n. Thus we have
◦
ρ = 1

2

∑
α∈

◦
∆+

α. Set
◦
ρS = 1

2

∑
α∈

◦
∆+,S

α and
◦
ρL = 1

2

∑
α∈

◦
∆+,L

α.

Let
◦

h∗R := SpanR{α1, . . . , αn} (respectively,
◦
h∗ := SpanC{α1, . . . , αn}) and we denote the closure of

the fundamental Weyl chamber relative to
◦
Π = {α1, . . . , αn} by

C := {α ∈
◦

h∗R | (α|αi) ≥ 0 for i = 1, . . . , n}.

Note that C is the fundamental domain for the action of
◦
W on

◦
h∗R. For α ∈

◦
h∗, we define tα ∈ GL(h∗)

by

tα(λ) = λ+ 〈λ,K〉α−
(

(λ|α) +
1
2
‖α‖2〈λ,K〉

)
δ,
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where (.|.) is the normalized bilinear form on h∗ and ‖α‖2 = (α|α). Note that tα(λ) = λ − (λ|α)δ if
〈λ,K〉 = 0. Let

M =


◦
Q if A is symmetric or r > a0,

Z
◦
∆L if A is not symmetric and r = 1,

1
2

Z
◦
∆L if g = A

(2)
2n .

The free abelian group T = 〈tα | α ∈M〉 is called the group of translations. It is known that

W = T o
◦
W

(see, for example, [5, Ch.6]).

3. The exponent of growth

In this section, we show that the exponents of growth are always 2 for all integrable highest weight
modules over affine Kac-Moody algebras. We first prove:

Lemma 3.1. For a translation tα ∈ T , we have

l(tα) =



∑
µ∈

◦
∆+

|(µ|α)| if r = 1 or X(r)
N = A

(2)
2n ,

∑
µ∈

◦
∆+,S

|(µ|α)|+
∑

µ∈
◦
∆+,L

∣∣∣∣⌈ (µ|α)
r

⌉∣∣∣∣ otherwise,

where dxe denotes the smallest integer greater than or equal to x.

Proof. Since l(w) = |{µ ∈ ∆+| w(µ) ∈ ∆−}|, we have

l(tα) = |{µ ∈ ∆+| tα(µ) ∈ ∆−}|

= |{µ ∈ ∆re
+ | µ− (µ|α)δ ∈ ∆re

− }|.

If r = 1, it follows from [5, Proposition 6.3] that

l(tα) = |{µ+ nδ | µ+ nδ − (µ|α)δ ∈ ∆re
− , n ∈ Z≥0, µ ∈

◦
∆+}|

+ |{−µ+ nδ | − µ+ nδ + (µ|α)δ ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+}|

=
∑
µ∈

◦
∆+

|(µ|α)|.

If g = A
(2)
2n , we have

l(tα) = |{µ+ nδ | µ+ nδ − (µ|α)δ ∈ ∆re
− , n ∈ Z≥0, µ ∈

◦
∆+,S}|

+ |{−µ+ nδ | − µ+ nδ + (µ|α)δ ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,S}|

+ |{1
2

(µ+ (2n− 1)δ) | 1
2

(µ+ (2n− 1)δ − (µ|α)δ) ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,L}|
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+ |{1
2

(−µ+ (2n− 1)δ) | 1
2

(−µ+ (2n− 1)δ + (µ|α)δ) ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,L}|

+ |{µ+ 2nδ | µ+ 2nδ − (µ|α)δ ∈ ∆re
− , n ∈ Z≥0, µ ∈

◦
∆+,L}|

+ |{−µ+ 2nδ | − µ+ 2nδ + (µ|α)δ ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,L}|

=
∑

µ∈
◦
∆+,S

|(µ|α)|+
∑

µ∈
◦
∆+,L

∣∣∣∣⌊ (µ|α)
2

⌋∣∣∣∣+
∑

µ∈
◦
∆+,L

∣∣∣∣⌈ (µ|α)
2

⌉∣∣∣∣
=

∑
µ∈

◦
∆+

|(µ|α)|.

Here, bxc is the largest integer less than or equal to x.
If r = 2, 3 and g 6= A

(2)
2n , by a similar argument, we obtain

l(tα) = |{µ+ nδ | µ+ nδ − (µ|α)δ ∈ ∆re
− , n ∈ Z≥0, µ ∈

◦
∆+,S}|

+ |{−µ+ nδ | − µ+ nδ + (µ|α)δ ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,S}|

+ |{µ+ rnδ | µ+ rnδ − (µ|α)δ ∈ ∆re
− , n ∈ Z≥0, µ ∈

◦
∆+,L}|

+ |{−µ+ rnδ | − µ+ rnδ + (µ|α)δ ∈ ∆re
− , n ∈ Z>0, µ ∈

◦
∆+,L}|

=
∑

µ∈
◦
∆+,S

|(µ|α)|+
∑

µ∈
◦
∆+,L

∣∣∣∣⌈ (µ|α)
r

⌉∣∣∣∣ .
�

Using Lemma 3.1, we can compute the exponent of growth for the integrable highest weight module
V (λ).

Theorem 3.2. Let g be an affine Kac-Moody algebra. Then for any dominant integral weight λ ∈ P+,
we have

e(V (λ)) = 2.

Proof. Let w = tα
◦
w ∈W for α ∈M and

◦
w ∈

◦
W . Set

HT (w) := ht (λ+ ρ− w(λ+ ρ))

and let
◦
ω :=

◦
w(λ+ ρ)− λ− ρ ∈

◦
Q− := −

∑n
i=1 Z≥0αi. Then we have

HT (w) = ht
(
λ+ ρ− tα(λ+ ρ+

◦
ω)
)

= ht
(
λ+ ρ− (λ+ ρ+

◦
ω + 〈λ+ ρ+

◦
ω,K〉α− ((λ+ ρ+

◦
ω|α) +

1
2
‖α‖2〈λ+ ρ+

◦
ω,K〉)δ )

)
.

Since |
◦
W | <∞, we obtain

HT (w)− 1
2
〈λ+ ρ,K〉 ht(δ) ‖α‖2 = o(‖α‖2).
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On the other hand, since |
◦
∆| <∞, Lemma 3.1 implies there exist A ≥ B > 0 such that

B‖α‖ ≤ l(w) ≤ A‖α‖.

Therefore, Definition 1.1 and the Bernstein-Gelfand-Gelfand resolution (2.2) yield

e(V (λ)) = lim sup
w∈W

l(w)→∞

log(HT (w)− l(w) + 1)
log(l(w))

= 2.

�

4. The rate of growth

The remaining task is to compute the rate of growth of V (λ). For this purpose, we need a couple
of lemmas.

Lemma 4.1. For a dominant integral weight λ ∈ P+, we have

r(V (λ)) =
1
2
〈λ+ ρ,K〉 ht(δ) lim sup

α∈M
‖α‖→∞

‖α‖2

l(tα)2
.

Proof. With the same notations as in the proof of Theorem 3.2, we get

ht (λ+ ρ− w(λ+ ρ))
l(w)2

=
ht
(
λ+ ρ− tα(λ+ ρ+

◦
ω)
)

l(tα
◦
w)2

=
l(tα)2

l(tα
◦
w)2

〈λ+ ρ,K〉 ht(δ) ‖α‖2 + f(‖α‖)
2l(tα)2

for some f(‖α‖) = o(‖α‖2). Then, using the fact that |l(tα
◦
w) − l(tα)| ≤ |

◦
∆+| and ‖α‖ → ∞ if and

only if l(tα)→∞, we obtain

r(V (λ)) = lim sup
w∈W

l(w)→∞

ht (λ+ ρ− w(λ+ ρ))
l(w)2

= lim sup
α∈M
‖α‖→∞

1
2
〈λ+ ρ,K〉 ht(δ)

‖α‖2

l(tα)2
.

�

Lemma 4.2.

lim sup
α∈M
‖α‖→∞

‖α‖2

l(tα)2
=


lim sup
α∈C

‖α‖2

(2
◦
ρ | α)2

if r = 1 or g = A
(2)
2n ,

lim sup
α∈C

‖α‖2

(2
◦
ρS + 2

r

◦
ρL | α)2

otherwise.
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Proof. First, assume that r = 1 or g = A
(2)
2n . For any α ∈M and c ∈ Z, we have

‖α‖2

l(tα)2
=

‖α‖2(∑
µ∈

◦
∆+
|(µ|α)|

)2 =
‖cα‖2(∑

µ∈
◦
∆+
|(µ|cα)|

)2 .

Note that, for any α ∈
◦

h∗Q, there exists c ∈ Z such that cα ∈ M . Since Q is a dense subset of R, we
get

lim sup
α∈M
‖α‖→∞

‖α‖2

l(tα)2
= lim sup

α∈
◦

h∗R

‖α‖2(∑
µ∈

◦
∆+
|(µ|α)|

)2 .

On the other hand, for any simple reflection ri (i = 1, . . . , n) and α ∈
◦

h∗R, we have

(α|α)(∑
µ∈

◦
∆+
|(α|µ)|

)2 =
(riα|riα)(∑

µ∈
◦
∆+
|(riα|riµ)|

)2 =
(riα|riα)(∑

µ∈
◦
∆+
|(riα|µ)|

)2 .

Note that (.|.) is invariant under W and ri
◦
∆+ =

(
◦
∆+ \ {αi}

)
∪ {−αi} for i = 1, . . . , n. Thus, since

the closure C of the fundamental Weyl chamber is the fundamental domain for the action of
◦
W on

◦
h∗R,

we obtain

lim sup
α∈M
‖α‖→∞

‖α‖2

l(tα)2
= lim sup

α∈C

‖α‖2(∑
µ∈

◦
∆+
|(µ|α)|

)2 = lim sup
α∈C

‖α‖2(∑
µ∈

◦
∆+

(µ|α)
)2

= lim sup
α∈C

‖α‖2

(
∑
µ∈

◦
∆+

µ|α)2
= lim sup

α∈C

‖α‖2

(2
◦
ρ|α)2

.

Next, assume that r = 2, 3 and g 6= A
(2)
2n . Let

l̃(tα) =
∑

µ∈
◦
∆+,S

|(µ|α)|+
∑

µ∈
◦
∆+,L

|(µ|α)|
r
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for α ∈M . Note that |l(tα)− l̃(tα)| ≤ |
◦
∆+,L|. Thus by a similar argument given above, we can show

that

lim sup
α∈M
‖α‖→∞

‖α‖2

l(tα)2
= lim sup

α∈M
‖α‖→∞

l̃(tα)2

l(tα)2

‖α‖2

l̃(tα)2

= lim sup
α∈C

‖α‖2(∑
µ∈

◦
∆+,S

|(µ|α)|+
∑
µ∈

◦
∆+,L

|(µ|α)|
r

)2

= lim sup
α∈C

‖α‖2(
(2
◦
ρS |α) + (2

◦
ρL|α)
r

)2

= lim sup
α∈C

‖α‖2

(2
◦
ρS + 2

r

◦
ρL | α)2

.

�

Now we are ready to state and prove the main result of this paper.

Theorem 4.3. Let λ be a dominant integral weight of level ` = λ(K). Then we have

r(V (λ)) =



h(`+ h∨)
2

max
i∈I\{0}

‖Λi‖2

(2
◦
ρ | Λi)2

if r = 1 or g = A
(2)
2n ,

h(`+ h∨)
2

max
i∈I\{0}

‖Λi‖2

(2
◦
ρS + 2

r

◦
ρL | Λi)2

otherwise.

(4.1)

Proof. Let

ξ :=

 2
◦
ρ, if r = 1 or g = A

(2)
2n ,

2
◦
ρS +

2
r

◦
ρL, otherwise.

and

li :=
⋂

j∈I\{0,i}

Hj ,

where Hj = {α ∈
◦

h∗R | (α|αj) = 0} (j ∈ I \ {0}). Note that ξ ∈ C and li = RΛi. Since (.|.) is a

symmetric positive-definite bilinear form on
◦

h∗R, if ‖α‖ is fixed, (ξ|α) achieves its minimum value at
the boundary of C. Therefore

lim sup
α∈C

(α|α)
(ξ|α)2

= max
i∈I\{0}

lim sup
α∈li

(α|α)
(ξ|α)2

= max
i∈I\{0}

(Λi|Λi)
(ξ|Λi)2

.

Since 〈λ + ρ,K〉 = ` + h∨ and ht(δ) = h, the formula (4.1) follows from Lemma 4.1 and Lemma
4.2. �
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Corollary 4.4. Let λ be a dominant integral weight of level ` = λ(K) and write ξ =
∑
i∈I\{0} kiαi

with ki ∈ Z. Then we have

r(V (λ)) =
h(`+ h∨)

2
max
i∈I\{0}

(
2a′ii

‖αi‖2 k2
i

)
,

where (a′ij)i,j∈I\{0} is the inverse matrix of
◦
A.

Proof. Since 2(αi|α) = (αi|αi)α(hi) and Λi =
∑
j∈I\{0} a

′
jiαj for α ∈

◦
h∗R, i = 1, . . . , n, we have

(Λi|Λi) =

 ∑
j∈I\{0}

a′jiαj | Λi

 =
(αi|αi)a′ii

2

and

(ξ|Λi) =

 ∑
j∈I\{0}

kjαj | Λi

 =
(αi|αi)ki

2
.

Our assertion follows immediately from Theorem 4.3. �

Combining Theorem 3.2 and Corollary 4.4, we can compute explicitly the generalized Castelnuovo-
Mumford regularities for integrable highest weight representations of all affine Kac-Moody algebras.
Note that the rates of growth depend only on the type and rank of algebras and the level of represen-
tations.

Corollary 4.5. Let g be an affine Kac-Moody algebra of type X
(r)
N and let V (λ) be an integrable

highest weight g-module with highest weight λ ∈ P+. Then we have

regU(g−)V (λ) = (2, r(V (λ))),

where r(V (λ)) is given in the following table.

X
(r)
N A

(1)
n B

(1)
n C

(1)
n D

(1)
n E

(1)
6

r(V (λ)) `+n+1
2n

n(`+2n−1)
(2n−1)2

`+n+1
2n

`+2n−2
4(n−1)

`+12
32

X
(r)
N E

(1)
7 E

(1)
8 F

(1)
4 G

(1)
2 A

(2)
2

r(V (λ)) `+18
54

15(`+30)
1682

6(`+9)
121

9(`+4)
50

3(`+3)
2

X
(r)
N A

(2)
2n A

(2)
2n−1 D

(2)
n+1 E

(2)
6 D

(3)
4

r(V (λ)) (2n+1)(`+2n+1)
4n2

`+2n
2n−1

(n+1)(`+2n)
2n2

9(`+12)
121

9(`+6)
25
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