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Abstract. We introduce and generalize the notion of Castelnuovo-Mumford regularity for represen-

tations of noncommutative algebras, effectively establishing a measure of complexity for such objects.

The Gröbner-Shirshov basis theory for modules over noncommutative algebras is developed, by which a

noncommutative analogue of Schreyer’s Theorem is proved for computing syzygies. By a repeated ap-

plication of this theorem, we construct free resolutions for representations of noncommutative algebras.

Some interesting examples are included in which graded free resolutions and regularities are computed

for representations of various algebras. In particular, using the Bernstein-Gelfand-Gelfand resolutions for

integrable highest weight modules over Kac-Moody algebras, we compute the projective dimensions and

regularities explicitly for the cases of finite type and affine type A
(1)
n .

Introduction

One of the motivations for this paper is to introduce a measure of complexity for various representa-
tions of noncommutative algebras. In the commutative case, the well-established concept of Castelnuovo-
Mumford regularity [5, 9] provides such a measure. In order to obtain a noncommutative analogue, one
has to study how to compute the free resolutions of modules over noncommutative algebras, starting from
the computation of the first syzygy module. While a fairly straightforward generalization based on such
a free resolution produces an obvious noncommutative analogue, the resulting regularity often becomes
infinite and does not produce a sensible notion of complexity.

Let A be a noncommutative algebra. In order to study free resolutions for representations of A, we start
by developing Gröbner-Shirshov basis theory for A-modules. The Gröbner-Shirshov basis theory provides
a powerful tool for understanding the structure of associative algebras and their representations, especially
in computational aspect. The main idea originates from Buchberger’s algorithm [7] of computing Gröbner
bases for commutative algebras and Shirshov’s Composition Lemma [25] for Lie algebras. In [18], Kang
and Lee developed the Gröbner-Shirshov basis theory for cyclic A-modules by introducing the notion of
Gröbner-Shirshov pair. In this paper, we generalize their result to arbitrary finitely generated A-modules
and prove an analogue of Schreyer’s Theorem for computing syzygies for A-modules (Theorem 2.1). Using

2000 Mathematics Subject Classification. Primary 16E05, 16Gxx; Secondary 17B67.
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Theorem 2.1, we can find a set of generators in the module of syzygies for an A-module. Then we apply
Theorem 2.1 inductively to produce a free resolution of a given module.

In [14], Green, Solberg and Zacharia constructed projective resolutions for A-modules when A is a
quotient of a path algebra, using a filtration of projective A-modules. On the other hand, in [21], Levan-
dovskyy investigated the case of G-algebras; i.e., the algebras with Poincaré-Birkhoff-Witt bases, and he
constructed free resolutions of finitely generated modules over G-algebras. Our approach is more general
in that we deal with all noncommutative algebras and their representations defined by generators and
relations. Even for the universal enveloping algebras of Lie algebras, which are G-algebras, our approach
is different from [21]. For instance, let U(g) be the universal enveloping algebra of a finite dimensional
simple Lie algebra g. While the elements of a basis of g and the commutation relations among them play
a crucial role in [21], we take the Chevalley generators and the Serre relations as the key ingredients so
that our approach can be extended to Kac-Moody algebras and their highest weight modules.

A lot of important information on the complexity of a graded algebraic object can be derived from the
minimal graded free resolutions if the uniqueness of such resolutions is established. For this purpose, using
the graded version of Nakayama’s Lemma, we introduce several equivalent conditions for the minimality of
graded free resolutions of a given graded A-module. This allows one to prove that a graded A-module has
a unique minimal graded free resolution up to isomorphism and that the length of its minimal resolution,
called the projective dimension, is well-defined. Furthermore, the Castelnuovo-Mumford regularity is well-
defined, although often infinite. When the regularity r(M) of a graded A-module M is finite, it roughly
means that, past degree r(M), nothing tricky happens in M . Therefore, in the case of finite regularity, it
can be interpreted as a measure of complexity for graded A-modules.

The Hilbert syzygy theorem holds for PBW algebras [13, Proposition 4.1], and any left ideal in a PBW
algebra has a finite Gröbner-Shirshov basis [12, Theorem III]. Thus, one concludes that finitely generated
modules over PBW algebras have finite Castelnuovo-Mumford regularity. For the quantum polynomial
algebras, the Castelnuovo-Mumford regularity of graded modules are defined in [15], using homological
methods.

However, in general, the Castelnuovo-Mumford regularity of graded modules over graded noncommuta-
tive algebras can be infinite. So we need to modify and generalize the notion of the Castelnuovo-Mumford
regularity to analyze such cases. For this purpose, we introduce the notions of the exponent of growth
and the rate of growth of twistings in a minimal free resolution. The latter one is a generalization of the
rate of growth introduced by Backelin [2]. We define the regularity of an A-module M to be the pair
(e(M), r(M)), where e(M) is the exponent of growth of M and r(M) is the rate of growth of M . As
expected, e(M) = 0 if and only if M has a finite Castelnuovo-Mumford regularity, and in such a case, the
rate of growth r(M) coincides with the Castelnuovo-Mumford regularity in the usual sense.

As an application, we investigate the regularity of integrable highest weight modules over Kac-Moody
algebras. Using the Bernstein-Gelfand-Gelfand resolution (see, for example, [11, 20, 24]), we compute the
projective dimensions and regularities of integrable highest weight modules over Kac-Moody algebras of
finite type and affine type A(1)

n explicitly.
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The paper is organized as follows: In Section 1, we develop the Gröbner-Shirshov basis theory for
A-modules over a noncommutative algebra. We also introduce a linear algebraic algorithm of computing
Gröbner-Shirshov bases for A-modules, which is a representation-theoretic analogue of F4-algorithm given
in [10, 17]. Section 2 contains the proof of an analogue of Schreyer’s Theorem for computing syzygies, which
allows one to find free resolutions of A-modules. In Section 3, we study minimal graded free resolutions
of A-modules and define the notion of regularity. We include several examples in which we compute the
minimal graded free resolutions of modules over down-up algebras and exterior algebras. In Section 4, by
using the Bernstein-Gelfand-Gelfand resolution, we compute the projective dimension and regularity of
integrable highest weight modules over Kac-Moody algebras of finite type and affine type A(1)

n explicitly.

1. Gröbner-Shirshov basis theory for A-modules

Let R = F〈x1, x2, . . . , xn〉 be the free associative algebra generated by a finite set {x1, x2, . . . , xn} over
a field F and m(R) be the set of all monomials in R. Let A be a noncommutative algebra over F, which is
identified with the quotient algebra R/I, where I = 〈S〉 is a two-sided ideal of R generated by a Gröbner-
Shirshov basis S. In this section, the Gröbner-Shirshov basis theory for finitely generated left A-modules
is developed, which is a generalization of [18].

1.1. Basic theory.

Let F =
⊕t

i=1Aei be a free left A-module with basis {e1, . . . , et} and let F̃ =
⊕t

i=1Rẽi be a free left
R-module with basis {ẽ1, . . . , ẽt}. A monomial in F̃ is an element of the form rẽi, where r is a monomial in
R. Let m(F̃ ) denote the set of all monomials in F̃ . The degree (or the length) of a monomial m = rẽi ∈ F̃
is defined to be the degree of r ∈ R, and will be denoted by degm (or l(m)). The degree of a polynomial
f ∈ F̃ is defined to be the maximal degree of monomials appearing in f . Once R has a monomial order
>R, one can define a monomial order > on F̃ induced by >R as follows:

Definition 1.1. A monomial order > on F̃ induced by >R is a total order on F̃ such that

(i) for all m,n ∈ m(F̃ ) and r, s ∈ m(R),

m > n implies rm > rn; r >R s implies rm > sm;

(ii) every nonempty subset of m(F̃ ) has a minimal element.

Remark. If R = F[x1, . . . , xn], the commutative polynomial ring, then the condition (ii) follows from the
Noetherian property of R. However, when R is noncommutative, the Artinian condition (ii) is necessary
for the division algorithm and the calculation of compositions.

For each a ∈ A, write a = r + I for some r ∈ R and define ã to be the normal form of r. Since S
is a Gröbner-Shirshov basis of I, ã is well-defined. Thus we get a natural map ψF : F → F̃ given by
ψF (

∑t
i=1 aiei) =

∑t
i=1 ãiẽi. For f ∈ F , we denote by f̃ the image of f under ψF . Similarly, for a subset

T of F , we define T̃ = {f̃ | f ∈ T}. When there is no danger of confusion, we will simply write f and T

for f̃ and T̃ , respectively.
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A monomial in R is called S-standard if it is not divisible by any leading monomial for all polynomials
in S. A monomial rẽi in F̃ is called S-standard if r is S-standard. A monomial in F is an element of the
form aei, where ã is an S-standard monomial in R. Note that ψF defines a bijection between the set of
monomials in F and the set of S-standard monomials in F̃ . We denote by m(F ) the set of all monomials
in F .

Let < be a monomial order on F̃ induced by a monomial order on R. Then < induces a total order
on m(F ) via the map ψF . For a nonzero element f ∈ F , the leading monomial f denotes the maximal
monomial appearing in f with respect to <. A nonzero element f ∈ F is said to be monic if the leading
coefficient lc(f) of f is 1. For any subset T of F , we denote by T =

{
f |f ∈ T

}
the set of leading monomials

of T .
For m,n ∈ m(F ), we say that m is divisible by n, or m is a multiple of n, denoted by n|m, if there exists

a ∈ m(A) such that m = an. A monomial t ∈ m(F ) is called a common multiple of m and n if m|t and
n|t. The least common multiple of m and n is defined to be the common multiple t ∈ m(F ) of m and n

that divides any common multiple of m and n.

Definition 1.2. For a subset T of F , we denote by 〈T 〉 the A-submodule of F generated by T .

(a) For an A-submodule M of F , the initial submodule in(M) of M is the A-submodule of F generated
by M . That is, in(M) = 〈M〉.

(b) We say that T is a Gröbner-Shirshov basis of M if M = 〈T 〉 and in(M) = 〈T 〉.
(c) A Gröbner-Shirshov basis T of M is called minimal if t does not divide t′ for all distinct t, t′ ∈ T .
(d) A Gröbner-Shirshov basis T of M is called reduced if no term in t′ is divisible by any t for all

distinct t, t′ ∈ T .

Remark. If F = A, then 〈T 〉 is a left ideal of A. In this case, the pair (S, T ) is called a Gröbner-Shirshov
pair (See [17, 18, 19]).

Definition 1.3.

(a) Let p and q be monic elements of F̃ . If there exists a in m(R) such that p = aq = w, then the
right-justified composition is defined to be (p, q)w = p− aq.

(b) Let p ∈ R and q ∈ F̃ be monic elements.
(i) If there exist a ∈ m(R) and b ∈ m(F̃ ) such that pb = aq = w with l(p) > l(a), then the

composition of intersection is defined to be (p, q)w = pb− aq.
(ii) If there exist a ∈ m(R) and b ∈ m(F̃ ) such that apb = q = w, then the composition of

inclusion is defined to be (p, q)a,b = apb− q.

We denote by Cwa,b(p, q) the composition of p and q determined by a, b and w. If the composition is not
defined, we simply put Cwa,b(p, q) = 0.

Definition 1.4.

(a) Let T̃ be a subset of F̃ and let p, q ∈ F̃ , w ∈ m(F̃ ). We say that p is congruent to q modulo T̃
and w, written as p ≡ q mod (T̃ ;w), if there exist αi, βj ∈ F, ai, bi, cj ∈ m(R), si ∈ S and tj ∈ T̃
such that p− q =

∑
αiaisibiei +

∑
βjcjtj with cjtj � w for all i, j.
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(b) A subset T̃ of monic elements in F̃ is said to be closed under composition if Cwa,b(p, q) ≡ 0
mod (T̃ ;w) for all p ∈ S or p ∈ T̃ , q ∈ T̃ , w ∈ m(F̃ ), a ∈ m(R) and b ∈ m(F̃ ).

A monomial m in F̃ is called T̃ -standard if it is S-standard and it is not divisible by t for all t ∈ T̃ . As
in the case of cyclic A-modules, we obtain the following division algorithm [17, 18, 19].

Proposition 1.5. Let T̃ be a set of monic elements in F̃ . Then every element f ∈ F̃ can be written as

(1.1) f =
∑

αiaisibiei +
∑

βjcjtj +
∑

γkmk

where αi, βj , γk ∈ F, ai, bi, cj ∈ m(R), si ∈ S, tj ∈ T̃ , mk ∈ m(F̃ ), aisibi ≤ f , cjtj ≤ f , mk ≤ f and mk

are T̃ -standard.

The term
∑
γkmk in the above expression (1.1) is called a normal form (or a remainder) of f with

respect to T̃ (and with respect to the monomial order <). In general, a normal form of f is not unique.
In the following theorem, we characterize the basic properties of Gröbner-Shirshov bases. The proof is

standard (See [9, Theorem 15.8], [18, §3] or [19, Proposition 1.9]).

Theorem 1.6. Let T be a set of monic elements in F , let M be the A-submodule of F generated by T ,
and let B be the set of all T̃ -standard monomials in F̃ . Then the following are equivalent :

(a) T is a Gröbner-Shirshov basis of M .
(b) Every f ∈ F̃ has a unique normal form with respect to T̃ .
(c) B is an F-linear basis of F/M .
(d) T̃ is closed under composition.

1.2. Linear algebraic approach.

The part (d) of Theorem 1.6 gives an analogue of Buchberger’s algorithm of computing a Gröbner-
Shirshov basis of a given A-submodule M . More precisely, let T be a set of monic elements in F and let
M = 〈T 〉 be the A-submodule of F generated by T . We define

T̃ (0) =
{
f/lc(f)| f ∈ T̃

}
,

T̃(i) =
{

(p, q)w 6≡0 mod (T̃ (i);w)| p, q ∈ T̃ (i), (p, q)w is right-justified
}
,

T̃ (i+1) = T̃ (i) ∪ T̃(i).

Then the set T̃ c =
⋃
i≥0 T̃

(i) is closed under the right-justified composition with respect to S. We now
consider the compositions of elements in S and T̃ c. Let X(0) = T̃ c and for i ≥ 0, define

X(i) =
{

(p, q)w 6≡0, (p, q)a,b 6≡0 mod (X(i);w)| p ∈ S, q ∈ X(i)
}
,

X(i+1) =
(
X(i) ∪X(i)

)c
.

Then, by construction, T̃ =
⋃
i≥0X

(i) is closed under composition, and hence T = ψ−1
F (T̃ ) is a Gröbner-

Shirshov basis of M .
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However, in general, there is no guarantee that this algorithm would terminate in finitely many steps.
To overcome this difficulty, a linear algebraic approach was introduced in [17] so that one can compute
truncated Gröbner-Shirshov bases for cyclic A-modules whose elements are bounded by a fixed monomial.
This method can be considered as a representation-theoretic analogue of F4 algorithm [10]. In this sub-
section, we develop an analogous algorithm of computing Gröbner-Shirshov bases for finitely generated
A-modules.

Let A = (aij) be an s×tmatrix over F andMA = (m1, . . . ,mt) be an ordered set of distinct monomials in

F̃ . We define Rows(A,MA) to be
{∑t

j=1 aijmj |i = 1, . . . , s
}
\{0}, the set of polynomials given by (A,MA).

Conversely, for a set T of elements in F , we make M(T̃ ) an ordered set of all monomials appearing in T̃

with respect to the monomial order on F̃ . Then we obtain an |T̃ |×|M(T̃ )| matrix AT , the Macaulay matrix
of T , whose (i, j)-entry is the coefficient of jth monomial in the ith element in T̃ . Let RRE (AT ) denote
the unique reduced row echelon form of AT , and we call the set RRE(T ) = Rows

(
RRE (AT ) ,M(T̃ )

)
the

reduced row echelon form of T .
We define the notion of composition pairs from (S, T̃ ). For p, q ∈ T̃ , we define

Comp0(p, q) = (p, aq) whenever the right-justified composition (p, q)w = p− aq is defined.

For all p ∈ S, q ∈ T̃ , a ∈ m(R), b, w ∈ m(F̃ ), we define

Comp1(p, q;w) = (pb, aq) whenever the composition of intersection (p, q)w = pb− aq is defined,

Comp2(p, q; a, b) = (apb, q) whenever the composition of inclusion (p, q)a,b = apb− q is defined.

The set of all composition pairs from (S, T̃ ) is denoted by P(S, T̃ ). We also define the set of all composition
data from (S, T̃ ) to be

D(S, T̃ ) = {f ∈ F̃ | there exists g ∈ F̃ such that (f, g) ∈P(S, T̃ ) or (g, f) ∈P(S, T̃ )}.

Recall that S is a Gröbner-Shirshov basis in R. Let T̃ (0) = T̃ . Assume inductively that we have
constructed T̃ (i) for i ≥ 0. Set

Di = D(S, T̃ (i)), and Pi = Di \Di−1 (D−1 = ∅).

Let ai = min{deg f |f ∈ Pi} and bi = max{deg f |f ∈ Pi}, and let Pi(d) ⊆ Pi be the subset consisting of
elements of degree d, ai ≤ d ≤ bi. We define the sets Fi(d) and Fi(d)+ for each d inductively from ai to
bi as follows:

Let Pi(d)(0) = Pi(d), and assume, inductively on k, that Pi(d)(k) has been constructed for k ≥ 0.
For each m ∈ m(Pi(d)(k)) \ Pi(d)(k) which is reducible mod (S, T̃ (i) ∪

⋃d−1
j=ai

Fi(j)
+) (mod (S, T̃ (i)) if

d = ai), choose f ∈ S and monomials m′ ∈ m(R) and m′′ ∈ m(F̃ ) such that m = m′fm′′, or choose
f ∈ T̃ (i) ∪

⋃d−1
j=ai

Fi(j)
+ (f ∈ T̃ (i) if d = ai) and m′ ∈ m(R) such that m = m′f .

Let Pi(d)(k+1) be the set of all such m′fm′′ or m′f , and define

Fi(d) =
⋃
k≥0

Pi(d)(k).
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Let

Fi(d)+ =
{
f ∈ RRE (Fi(d)) | f /∈ Fi(d)

}
,

where RRE (Fi(d)) is the reduced row echelon form of Fi(d).
Finally, define

T̃ (i+1) = T̃ (i) ∪
bi⋃

d=ai

Fi(d)+
.

Then T̃ =
⋃
i≥0 T̃

(i) is closed under composition and hence T = ψ−1
F (T̃ ) is a Gröbner-Shirshov basis of

M = 〈T 〉.

2. Syzygies for A-modules

Let T̃ = {t1, . . . tn} be a set of monic elements of F̃ and M the submodule of F generated by T :=
ψ−1
F (T̃ ). Consider a free A-module F1 =

⊕n
i=1Aεi and a natural surjective A-module homomorphism

ϕ : F1 →M given by ϕ(εi) = ψ−1
F (ti) for i = 1, . . . n. Let F̃1 =

⊕n
i=1Rε̃i be a free R-module and let

σwa,b(p, tj) =



ε̃i − aε̃j if p = ti, ti = atj = w for some a ∈ m(R),

−aε̃j if p ∈ S, pb = atj = w for some a ∈ m(R), b ∈ m(F̃ ) with l(p) > l(a),

−ε̃j if p ∈ S, apb = tj = w for some a ∈ m(R), b ∈ m(F̃ ) with a 6= 1,

0 otherwise,

and consider the corresponding composition Cwa,b(p, tj) given by

Cwa,b(p, tj) =



ti − atj if p = ti, ti = atj = w for some a ∈ m(R),

pb− atj if p ∈ S, pb = atj = w for some a ∈ m(R), b ∈ m(F̃ ) with l(p) > l(a),

apb− tj if p ∈ S, apb = tj = w for some a ∈ m(R), b ∈ m(F̃ ) with a 6= 1,

0 otherwise.

Apply the division algorithm to obtain

Cwa,b(p, tj) =
∑
k

αkakskbk +
n∑
r=1

βrcrtr + hwa,b,

where αk, βr ∈ F, ak, cr ∈ m(R), bk ∈ m(F̃ ), sk ∈ S, crtr � w and cr are S-standard for all r.
If T is a Gröbner-Shirshov basis, then it is closed under composition, hence hwa,b = 0 for all a ∈

m(R), b, w ∈ m(F̃ ). We define the syzygies on T̃ by

τwa,b(p, tj) = σwa,b(p, tj)−
n∑
r=1

βrcr ε̃r

for all p ∈ S or p ∈ T̃ , a ∈ m(R), b, w ∈ m(F̃ ) and j = 1, . . . , n.

The following is an A-module analogue of Schreyer’s Theorem [9, Theorem 15.10].
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Theorem 2.1. Let > be a monomial order on F̃ and let T̃ = {t1, . . . tn} be a set of monic elements of F̃ .
Suppose that T := ψ−1

F (T̃ ) is a Gröbner-Shirshov basis of 〈T 〉.

(a) For a, b ∈ m(R), we define aε̃i � bε̃j if and only if (i) ati > btj, or (ii) ati = btj and i < j. Then
� is an monomial order on F̃1.

(b) Let

K = {τwa,b(p, q)| p ∈ S or p ∈ T̃ , q ∈ T̃ , a ∈ m(R) and b, w ∈ m(F̃ )}

be the set of syzygies induced from T̃ . Then ψ−1
F1

(K) is a Gröbner-Shirshov basis for kerϕ.

Proof. (a) It is clear that the induced order � is a total order on F̃1 and is preserved under the multipli-
cation by a monomial from the left. The Artinian condition on F̃1 follows from that on F̃ .

(b) Let ϕ̃ : F̃1 → F̃ be the lifting of ϕ given by ϕ̃(ε̃i) = ti for all i. Note that ϕ = ψ−1
F ◦ ϕ̃ ◦ ψF1 . Let

f ∈ kerϕ, then ψF1(f) can be written as
∑n
i=1 βiniε̃i where βi ∈ F, ni ∈ m(R) and ni are S-standard.

Without loss of generality, we may assume that niε̃i � nj ε̃j for all i < j. Let r be the minimal positive
integer such that βr 6= 0. Then ψF1(f) = nr ε̃r.

If nrtr is not S-standard, then nrtr is divisible by some element s ∈ S. Hence there exist a S-standard
monomial a ∈ m(R) and b, w ∈ m(F̃ ) such that Cwa,b(s, tr) 6= 0. It follows that τwa,b(s, tr) 6= 0 and τwa,b(s, tr)
divides ψF1(f). Therefore ψF1(f) ∈ 〈K〉.

Assume that nrtr is S-standard. By definition, we have τwa,b(p, q) = σwa,b(p, q) for all p ∈ S or p ∈ T, q ∈
T, a ∈ m(R) and b, w ∈ m(F̃ ). If nrtr 6= nktk for all k > r then, since nr ε̃r � nkε̃k, we have nrtr 
 nktk.
This implies

ϕ(f) = ψ−1
F ◦ ϕ̃ ◦ ψF1(f) = ψ−1

F (βrnrtr +
∑
k>r

βknktk) 6= 0,

which is a contradiction. Therefore, we must have nrtr = nktk for some k > r. This implies that there
exists a,A ∈ m(R) and b, w ∈ m(F̃ ) such that nr ε̃r − nkε̃k = Aσwa,b(tr, tk). It follows that

ψF1(f) = nr ε̃r = Aσwa,b(tr, tk) = Aτwa,b(tr, tk) ∈ 〈K〉.

Consequently,

ψF1(kerϕ) ⊂ 〈K〉,

hence, since ψF1(f) = ψF1(f) for f ∈ F1,

in(kerϕ) = 〈ψ−1
F1

(K)〉.

From the fact that ψ−1
F1

(K) ⊂ kerψ, ψ−1
F1

(K) is a Gröbner-Shirshov basis of kerϕ. �

Let M be an A-module. Then there exists a free A-module F0 and a canonical surjective A-module
homomorphism ϕ0 : F0 → M . Using the linear algebraic method described in Subsection 1.2, we find a
Gröbner-Shirshov basis T = {t1, . . . , tn} of kerϕ0. Let F1 =

⊕n
i=1Aεi be the free A-module of rank n

and let ρ1 : F1 → kerϕ0 be the canonical surjective homomorphism defined by ρ1(εi) = ti for i = 1, . . . , n.
Set ϕ1 = ι0 ◦ ψ1 : F1 → F0, where ι0 : kerϕ0 → F0 be the inclusion map. Then it is easy to see that
imϕ1 = imρ1 = kerϕ0.
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Applying Theorem 2.1, find a Gröbner-Shirshov basis K1 of ker ρ1 and let F2 be the free A-module of
rank |K1| with a canonical surjective homomorphism ρ2 : F2 → ker ρ1. Set ϕ2 = ι1 ◦ ρ2 : F2 → F1, where
ι1 : ker ρ1 → F1 is the inclusion map. By construction, we have imϕ2 = kerφ1. Repeating this procedure,
we construct a free A-module resolution (Fi, ϕi)i≥0 of M :

· · · ϕi+1−→ Fi
ϕi−→ · · · ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M −→ 0.

3. Graded free resolutions for A-modules

For a monomial m ∈ m(R), we define the weight of m to be

wt(m) = (α1, . . . , αn) ∈ Zn,

where αi is the number of xi’s appearing in m, and for α = (α1, . . . , αn) ∈ Zn, the α-weight space of R is
defined to be

Rα = SpanF{m ∈ m(R) | wt(m) = α}.

Then R is a Zn-graded algebra; i.e.,

R =
⊕
α∈Zn

Rα, RαRβ ⊂ Rα+β , and dimRα =
(α1 + · · ·+ αn)!

α1! · · ·αn!
.

Let I be a homogeneous ideal of R and set A = R/I. Then I can be written as I =
⊕

α∈Zn Iα, where
Iα = I ∩ Rα. Moreover, if we define Aα = Rα/Iα, then we have A =

⊕
α∈Zn Aα and A becomes a

Zn-graded algebra.
We say that an A-module M is Zn-graded if M has a decomposition

M =
⊕
β∈Zn

Mβ such that AαMβ ⊂Mα+β for all α, β ∈ Zn.

An element m of M is homogeneous of weight β if m ∈ Mβ for some β ∈ Zn and a submodule of M is
homogeneous if it is generated by a set of homogeneous elements.

Definition 3.1. Let M =
⊕

β∈ZnMβ be a Zn-graded A-module with dimMβ < ∞ for all β ∈ Zn and
Mβ = 0 for β � 0. Then we define the Hilbert series HM (t1, . . . , tn) of M to be the formal Laurent series

HM (t1, . . . , tn) =
∑

β=(β1,...,βn)∈Zn
(dimMβ)tβ1

1 · · · tβnn .

A homomorphism φ : M =
⊕

α∈ZnMα → N =
⊕

α∈Zn Nα is called a graded homomorphism of degree
β if φ(Mα) ⊂ Nα+β for all α ∈ Zn.

A free resolution (Fi, φi)i≥0 of M is said to be graded if φi are graded homomorphisms of degree 0 for
all i ≥ 0. Once we are given a graded free resolution (Fi, φi)i≥0 of M , by the Euler-Poincaré principle, we
have

HM (t1, . . . , tn) =
∑
i≥0

(−1)iHFi(t1, . . . , tn).
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Note that if F =
⊕

ε∈X Aε is a free left A-module, then we have

HF (t1, . . . , tn) = HA(t1, . . . , tn)
∑
ε∈X

twt(ε).

Basic properties on Hilbert series of noncommutative graded algebras are described briefly in [1].

Let M =
⊕

β∈ZnMβ be a Zn-graded A-module with Mβ = 0 for β � 0, and let p =
⊕
|α|>0Aα the

maximal homogeneous ideal of A. To define the notion of minimal graded free resolutions, we state the
graded version of Nakayama’s Lemma (See [9, Exercise 4.6] or [22, §II.8]).

Lemma 3.2. Let M =
⊕

β∈ZnMβ be a Zn-graded A-module with Mβ = 0 for β � 0.

(a) If there exists a homogeneous ideal I of A contained in p such that IM = M , then M = 0.
(b) If N =

⊕
β∈Zn Nβ is a Zn-graded submodule of M such that N + pM = M , then N = M .

(c) Let G = {g1, . . . , gt} be a set of homogeneous elements in M . If G generates M mod pM , then G

generates M .

Definition 3.3. Let (Fi, φi)i≥0 be a complex of graded A-modules.

(a) A complex is trivial if it is isomorphic to

0 −→ Aε
c−→ Aε −→ 0,

where c is a nonzero scalar multiplication.
(b) We say that a complex can be pruned if it has a trivial subcomplex as a direct summand.
(c) A graded free resolution (Fi, φi)i≥0 of a graded module M is called minimal if (Fi, φi)i≥0 cannot

be pruned.

Let φ :
⊕t

j=1Aεj →
⊕s

i=1Aei be a grade homomorphism of degree 0 between free A-modules. For
each j = 1, . . . , t, write

φ(εj) =
s∑
i=1

aijei with aij ∈ A.

Then we obtain a matrix
[φ] = (aij)1≤i≤s, 1≤j≤t ,

which is called the matrix presentation of φ.
The following proposition gives a characterization of minimal graded free resolutions. The proof is

standard, as is given in [8, Ch.6, Proposition 3.10] or [9, Lemma 19.4].

Proposition 3.4. Let (Fi, φi)i≥0 be a graded free resolution of a Zn-graded A-module M :

· · · −→ Fi
φi−→ Fi−1 −→ · · · −→ F1

φ1−→ F0
φ0−→M −→ 0.

Then the following are equivalent :

(a) The free resolution (Fi, φi)i≥0 is minimal.
(b) For each i > 0, imφi is contained in pFi−1.
(c) For each i > 0, if [φi] = (apq), then we have apq /∈ F× for all 1 ≤ p ≤ rankFi−1, 1 ≤ q ≤ rankFi.
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(d) For each i ≥ 0, the homomorphism φi takes an A-module basis of Fi to a minimal set of generators
of imφi.

Definition 3.5. Let M be a Zn-graded A-module. We say that two graded free resolutions (Fi, φi)i≥0

and (Gi, ψi)i≥0 of M are isomorphic if there exist graded isomorphisms αi : Fi → Gi of degree 0 for all
i ≥ 0 such that ψ0 ◦ α0 = φ0 and ψi ◦ αi = αi−1 ◦ φi.

In the next theorem, we obtain the uniqueness of a minimal graded free resolution of a given graded
A-module. The proof is quite similar to that for the cases of finitely generated modules over graded
commutative rings and local rings (See [8, Ch.6, Theorem 3.13] or [9, Exercise 4.11, Theorem 20.2]).

Theorem 3.6. Let M be a Zn-graded A-module.

(a) Any two minimal graded free resolutions of M are isomorphic.
(b) Every graded free resolution of M contains a minimal graded free resolution as a direct summand.

Definition 3.7. Let M be a Zn-graded A-module and let (Fi, φi)i≥0 be a minimal graded free resolution
of M .

(a) The length of a minimal resolution (Fi, φi)i≥0 of M is called the projective dimension of M and
is denoted by pdimAM .

(b) For each i ≥ 0, write Fi =
⊕

j≥0Aεij , and set

Ti = max{|wt(εij)| | j ≥ 0},

where |α| = α1 + · · ·+ αn for α = (α1, . . . , αn). We define the exponent of growth of M to be

e(M) :=

 0 if pdimAM <∞;

lim sup
i→∞

log(Ti − i+ 1)
log i

if pdimAM =∞.

(c) Assume that e(M) <∞. We define the rate of growth of M to be

r(M) :=

 sup {Ti − i | i ≥ 0} if e(M) = 0;

lim sup
i→∞

Ti − i
ie(M)

if e(M) 6= 0.

(d) We define the regularity of M to be the pair

regAM = (e(M), r(M)) .

If pdimAM <∞, then e(M) = 0, in which case the rate of growth of M coincides with the Castelnuovo-
Mumford regularity, sup {Ti − i | i ≥ 0}, in the usual sense. This detects the largest twisting in the
resolution, and gives us a notion of complexity of M . In the commutative case, it often coincides with the
degree complexity of M , i.e. the maximum degree d(M) in the reduced Gröbner basis of M . One notes
that the actual behavior in the commutative case depends on the term order used, although d(M) is an
upper bound for r(M) in general, [3].
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Suppose that pdimAM =∞. Then, from the regularity (e(M), r(M)), one gets the following asymptotic
behavior of the twistings:

Ti − i ≈ r(M)ie(M) for large i.

Thus the regularity (e(M), r(M)) enables us to refine the notion of the Castelnuovo-Mumford regularity
for the cases when it is infinite. In [2], Backelin introduced and studied the notion of the rate of growth
when e(M) = 1. Our definition is a generalization to analyze the cases of the infinite Castelnuovo-Mumford
regularity. An example with e(M) = 2 will be demonstrated in the next section. Let us close this section
with some examples.

Example 3.8. We take the down-up algebra A(α, β, γ) introduced in [6]. Let A = A(1, 1, 0) = C〈d, u〉/I,
where I is the two-sided ideal generated by the homogeneous set

S =
{
p := d2u− dud− ud2, q := du2 − udu− u2d

}
.

Fix the degree-lexicographic order with d > u. Note that S is a Gröbner-Shirshov basis for A, and the set
of S-standard monomials is {ui(du)jdk|i, j, k ≥ 0}. Let

Tn = {g1 := du, g2 := d, g3 := un} ,

and let Mn be the quotient module of A by the homogeneous left ideal generated by Tn.
Assume that n ≥ 2. Then Tn is a reduced Gröbner-Shirshov basis for the left A-module Mn. By

considering all possible compositions between S and Tn and applying the method described in Theorem
2.1, we obtain the minimal graded free resolution of Mn (n ≥ 2):

0→ Aη → Aξ1 ⊕Aξ2 ⊕Aξ3 → Aε1 ⊕Aε2 ⊕Aε3 → Ae→Mn → 0,

where
wt(e) = (0, 0), wt(ε1) = (1, 1), wt(ε2) = (1, 0), wt(ε3) = (0, n),

wt(ξ1) = (2, 1), wt(ξ2) = (1, n), wt(ξ3) = (1, n+ 1), wt(η) = (2, n+ 1).

It follows that

pdimAMn = 3, regAMn = (0, n),

and

HMn
(d, u) =

1
(1− d)(1− u)(1− du)

(
1− (du+ d+ un) + (d2u+ dun + dun+1)− d2un+1

)
= 1 + u+ u2 + · · ·+ un−1.

Example 3.9. Let A be the exterior algebra E3 = C〈x, y, z〉/I, where I is the two-sided ideal generated
by

S =
{
x2, y2, z2, yx+ xy, zx+ xz, zy + yz

}
.

Fix the degree-lexicographic order with x < y < z.
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Let N be the A-module defined by (S, T ), where T = {xyz}. By using Theorem 2.1 and Proposition
3.4, one can calculate the minimal graded free resolution of N :

· · · →
⊕

a+b+c=i−1

Aεiabc → · · · →
⊕

a+b+c=1

Aε2
abc → Aε1

000 → Ae→ N → 0,

where

wt(e) = (0, 0, 0), wt(εiabc) = (a+ 1, b+ 1, c+ 1), for i ∈ Z>0, a, b, c ∈ Z≥0, a+ b+ c = i− 1.

This implies

pdimAN =∞, regAN = (0, 2),

and

HN (x, y, z) = (1 + x)(1 + y)(1 + z) (1− xyz(1− h1 + h2 − h3 + · · · ))

= (1 + e1 + e2 + e3) (1− e3 + e3h1 − e3h2 + · · · ) = 1 + e1 + e2,

where e1 := x+ y + z, e2 := xy + yz + zx, e3 := xyz are the elementary symmetric functions and

hn :=
∑

a,b,c∈Z≥0, a+b+c=n

xaybzc (n ≥ 1)

are the nth complete symmetric functions in the variables x, y, z, respectively.

4. Applications to Kac-Moody algebras

In this section, we concentrate on the regularity of integrable highest weight modules over Kac-Moody
algebras. For Kac-Moody algebras of finite type, many results on Gröbner-Shirshov bases have been
known (see, for example, [4, 19, 21]. However, for general Kac-Moody algebras, which are usually infinite
dimensional, very little is known for Gröbner-Shirshov bases except for a few results on affine Kac-Moody
algebras [23].

We will use the Bernstein-Gelfand-Gelfand resolutions [11, 20, 24] to investigate the regularity of inte-
grable highest weight modules over Kac-Moody algebras. In particular, we will compute the regularity of
integrable highest weight modules over Kac-Moody algebras of finite type and of affine type A(1)

n .
Let us recall some of the basic facts on Kac-Moody algebras [16]. Let I be a finite index set. An

integral matrix A = (aij)i,j∈I is called a generalized Cartan matrix if (i) aii = 2 for all i ∈ I, (ii) aij ≤ 0
for i 6= j, (iii) aij = 0 if and only if aji = 0. In this paper, it is assumed that A is symmetrizable;
i.e., there exists a diagonal matrix D such that DA is symmetric. A Cartan datum associated with A is
the quintuple (A,Π,Π∨, P, P∨); i.e., (i) the dual weight lattice P∨ is a free ablelian group with a Z-basis
{hi|i ∈ I} ∪ {ds|s = 1, . . . , |I| − rankA}, (ii) the weight lattice is the set P = {λ ∈ h∗|λ(P∨) ⊂ Z}, (iii)
the set of simple coroots is Π∨ = {hi|i ∈ I}, (iv) the set of simple roots Π is a linearly independent subset
{αi|i ∈ I} ⊂ h∗ satisfying αj(hi) = aij and αj(ds) = 0 or 1 for i, j ∈ I, s = 1, . . . , |I| − rankA.

The free abelian group Q =
∑
i∈I Zαi is called the root lattice and Q+ =

∑
i∈I Z≥0αi is called the

positive root lattice. There is a partial order ≥ on h∗ by λ ≥ µ if and only if λ−µ ∈ Q+ for λ, µ ∈ h∗. For
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α =
∑
i∈I kiαi ∈ Q, ht(α) :=

∑n
i=1 ki is called the height of α. We define

P+ := {λ ∈ h∗ |λ(hi) ∈ Z≥0, i ∈ I},

P++ := {λ ∈ h∗ |λ(hi) ∈ Z>0, i ∈ I}.

The elements of P+ are called dominant integral weights. Choose an element ρ ∈ h∗ such that ρ(hi) = 1
for all i ∈ I. The Weyl group W is the subgroup of Aut(h∗) generated by simple reflections {ri}i∈I , where
ri(λ) := λ− λ(hi)αi for λ ∈ h∗ and i ∈ I. For each k ∈ Z≥0, we set

W (k) := {w ∈W | l(w) = k},

where l(w) is the length of a reduced expression of w.

Definition 4.1. The Kac-Moody algebra g associated with a Cartan datum (A,Π,Π∨, P, P∨) is the Lie
algebra over C generated by h and ei, fi(i ∈ I) with the defining relations:

(a) [h, h′] = 0 for h, h′ ∈ P∨,
(b) [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi for h ∈ P∨,
(c) [ei, fj ] = δijhi for i, j ∈ I,
(d) (ad ei)1−aij (ej) = 0, (ad fi)1−aij (fj) = 0 for all i 6= j.

We have the triangular decomposition

g = g− ⊕ h⊕ g+,

where g+ (respectively, g−) is the subalgebra of g generated by the elements ei (i ∈ I) (respectively, fi
(i ∈ I)). For each α ∈ Q, gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h} is called the root space attached
to α, and α ∈ Q\{0} such that gα 6= ∅ is called a root of g. The set of all roots is denoted by ∆. The
elements in ∆+ := ∆ ∩ Q+ (respectively, ∆− := −∆+) are called positive (respectively, negative) roots.
Then we have the root space decomposition

g = h⊕
⊕
α∈∆

gα.

Let b = h ⊕ g+. For λ ∈ h∗, Cλ := Cvλ is the 1-dimensional b-module such that hvλ = λ(h)vλ and
eivλ = 0 for h ∈ h, i ∈ I. Denote by U(g) the universal enveloping algebra of a given Lie algebra g.
Then M(λ) := U(g) ⊗U(b) Cλ becomes a U(g)-module under the natural left action, which is called the
Verma module. For λ ∈ P+, let N(λ) be the submodule of M(λ) generated by f

λ(hi)+1
i for i ∈ I. Then

V (λ) := M(λ)/N(λ) becomes the irreducible highest weight module with highest weight λ.
In [13], Garland and Lepowsky constructed a certain natural resolution of V (λ) (λ ∈ P+), called the

Berstein-Gelfand-Gelfand resolution for Kac-Moody algebras, which is given below:
Let g be a Kac-Moody algebra and V (λ) the integrable irreducible highest weight module with highest

weight λ ∈ P+. Then there is an exact sequence of g-module homomorphisms:

(4.1) · · · → Fi(λ)→ · · · → F1(λ)→ F0(λ)→ V (λ)→ 0,

where Fi(λ) =
⊕

w∈W (i)M(w(λ+ ρ)− ρ). Modifying the proof of [20, (3.23)], one can prove the following
proposition.
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Proposition 4.2. With the same notations as above, the exact sequence (4.1) is a minimal graded free
resolution of V (λ) as a U(g−)-module.

Proof. Let I = {1, . . . , n} and w ∗ λ := w(λ + ρ)− ρ for w ∈ W . Note that λ− w ∗ λ ∈ Q+. Since every
highest weight g-module can be decomposed as root spaces, there is a natural Zn-graded structure on
M(w ∗ λ). More precisely, given w ∈W and m ∈M(w ∗ λ)α, if we define

wt(m) := (a1, . . . , an),

where M(w ∗ λ)α is the α-weight space and λ − α =
∑n
i=1 aiαi, then this gives a Zn-graded structure

on M(w ∗ λ). When there is no danger of confusion, we identity Q with Zn. On the other hand, since
every Verma module is isomorphic to U(g−) as a U(g−)-module, Fp(λ) is a graded free U(g−)-module.
Moreover, it follows from the fact that the maps appearing in (4.1) are g-module maps that they are
graded U(g−)-homomorphisms of degree 0. It remains to show that the image of each map in (4.1) is
contained in pF∗(λ), where p is the subalgebra of U(g−) generated by {fi}ni=1. For w ∈W with l(w) = p,
let V = {v ∈W | v � w, l(v) = p− 1} where � is the Bruhat-Chevalley partial ordering on W , and let f
be the p-th map of (4.1) from Fp(λ) to Fp−1(λ). Then, from [20, (3.23)], we have

f |M(w∗λ) =
∑
v∈V

avιv,

for some av ∈ C and some nonzero embedding maps ιv ∈ Homg(M(w ∗λ),M(v ∗λ)). Since W acts simply
transitively on chambers [16, Proposition 3.12], w ∗ λ 6= v ∗ λ. Thus, w ∗ λ � v ∗ λ, which implies that
im(ιv) ⊂ pM(v ∗ λ). Therefore, the image of each map in (4.1) is contained in pF∗(λ). �

By Proposition 4.2, the Bernstein-Gelfand-Gelfand resolution is minimal. To compute the regularity of
integrable modules, we restate the resolution (4.1) in terms of free modules and bases:

(4.2) · · · →
⊕

w∈W (i)

U(g−)εiw → · · · →
⊕

w∈W (1)

U(g−)ε1
w →

⊕
w∈W (0)

U(g−)ε0
w → V (λ)→ 0,

where |wt(εiw)| = ht(λ+ ρ− w(λ+ ρ)) for w ∈W (i). Then we obtain the following theorem.

Theorem 4.3. Let g be a Kac-Moody algebra and λ a dominant integral weight. Set A = U(g−).

(a) If g is of finite type, then

pdimAV (λ) = l(w0), regAV (λ) = (0, ht(λ+ ρ− w0(λ+ ρ))− l(w0)) ,

where w0 is the longest element of W .
(b) If g is not of finite type, then

pdimAV (λ) =∞.

Proof. Let ν = λ+ ρ. For each i ∈ Z≥0, if W (i) 6= ∅, choose $i ∈W (i) such that

ht(ν −$iν) ≥ max{ht(ν − wν) | w ∈W (i)}.
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Suppose W (i) 6= ∅. The aim is to show that

ht(ν −$iν) > ht(ν −$i−1ν).

Since $i−1 is not the maximal element of W , there is a simple reflection rk such that l(rk$i−1) > l($i−1).
It follows from rk$i−1 � $i−1 with respect to the Bruhat-Chevalley partial order on W that

ht(ν − rk$i−1ν) > ht(ν −$i−1ν),

which implies that ht(ν −$iν) > ht(ν −$i−1ν).
(a) Since g is of finite type, W has a unique maximal element w0. Since {ht(ν − $iν)}l(w0)

i=1 is strictly
increasing,

pdimAV (λ) = l(w0), regAV (λ) = (0,ht (λ+ ρ− w0(λ+ ρ))− l(w0)) .

(b) Assume g is not of finite type. Since there is no maximal element in W , the length of a minimal graded
free resolution (4.2) is infinite. �

Remark. Note that, if g is of finite type, the projective dimension depends only on the Weyl group. On
the other hand, the regularity depends also on the highest weight. If g is not of finite type, the projective
dimension and the Castelnuovo-Mumford regularity are infinite. To analyze this case, we need a general-
ization of Castelnuovo-Mumford regularity introduced in Definition 3.7.

As an illustration, let us compute the regularity of integrable highest weight modules over the affine
Kac-Moody algebras of type A(1)

n . Set I = {0, 1, . . . , n}.

Theorem 4.4. Let g be the affine Kac-Moody algebra of type A(1)
n and λ a dominant integral weight. Set

A = U(g−). Then

regAV (λ) =
(

2,
l + n+ 1

2n

)
,

where l :=
∑n
i=0 λ(hi) is the level of λ.

Before starting the proof of Theorem 4.4, we need a few lemmas. From now on, we assume that g is the
affine Kac-Moody algebra of type A(1)

n , W is the Weyl group corresponding to g and V (λ) the integrable
irreducible highest weight module with highest weight λ ∈ P+.

Lemma 4.5. Let x = r0r1r2 . . . rn−1rnrn−1 . . . r1 ∈W and ν ∈ P++. Then, for each i ∈ Z≥0,

(a) l(xi) = 2ni.
(b) Let l be the level of ν. Then

ht(ν − xiν) = (n+ 1)li2 + (l − (n+ 1)ν(h0))i.

Proof. Let l =
∑n
i=0 ν(hi), δ =

∑n
i=0 αi and put αr,s :=

∑s
i=r αi for 1 ≤ r ≤ s ≤ n. Then since g is of

type A(1)
n ,

∆+ ={kδ | k ∈ Z>0} ∪ {αr,s + kδ | 1 ≤ r ≤ s ≤ n, k ∈ Z≥0}(4.3)
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∪ {−αr,s + kδ | 1 ≤ r ≤ s ≤ n, k ∈ Z>0}.

On the other hand, it follows from [16, (6.5.1)] and r1r2 · · · rn−1(αn) = α1 + · · ·+ αn that

xiν = ν −
(
li2 − ν(h0)i

)
δ − liα0.(4.4)

(a) Let us consider

N(xi) := {µ ∈ ∆+| xiµ ∈ ∆−}.

By computing from (4.3) and (4.4) directly, we obtain that

N(xi) = {α1,n + (i+ j)δ | 0 ≤ j < i} ∪ {αr,s + jδ | r = 1 or s = n, 0 ≤ j < i},

which implies that l(xi) = |N(xi)| = 2ni.
(b) It follows from (4.4). �

Lemma 4.6. Let w ∈W with l(w) > 0 and ν ∈ P++. Put

ν − wν =
n∑
i=0

aiαi

for some ai ∈ Z≥0. Then
|ai − ai±1|

l(w)
≤ max{ν(hi)| i = 0, 1, . . . , n},

where a−1 = an and an+1 = a0.

Proof. (a) Let M = max{ν(hi)| i = 0, 1, . . . , n}. We may write w = rkw
′ with l(w) = l(w′) + 1 for some

w′ ∈ W and some simple reflection rk. Let ν − w′ν =
∑n
i=0 a

′
iαi for some a′i ∈ Z≥0. For simplicity, we

write a′−1 = a′n and a′n+1 = a′0. Then

wν = rkw
′ν

= rk

(
ν −

n∑
i=0

a′iαi

)

= ν −
n∑
i=0

a′iαi − ν(hk)αk +
n∑
i=0

a′iαi(hk)αk.

= w′ν − ν(hk)αk +
n∑
i=0

a′iαi(hk)αk,

which implies that

ai =

{
a′k+1 + a′k−1 − a′k + ν(hk) if i = k;
a′i if i 6= k.

(4.5)

If l(w) = 1, then the statement is true clearly. Assume that l(w) > 1. Let us check the following two cases
by using (4.5). The first is that, for k 6= i, i± 1,

|ai − ai±1|
l(w)

=
|a′i − a′i±1|
l(w′) + 1

≤
|a′i − a′i±1|
l(w′)

≤M.
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The second case is that

|ak − ak±1|
l(w)

=
|a′k∓1 − a′k + ν(hk)|

l(w′) + 1
≤ l(w′)M+ ν(hk)

l(w′) + 1
≤M.

Using a standard induction argument on l(w), the proof is complete. �

Lemma 4.7. Let l be the level of λ and M = max{λ(hi)| i = 0, 1, . . . , n}. Then

e(V (λ)) = 2 and
(n+ 1)(l + n+ 1)

4n2
≤ r(V (λ)) ≤M+ 1.

Proof. Let ν = λ + ρ. Note that ν ∈ P++. Consider w ∈ W with l(w) > 0. Then there exist an element
w′ ∈W and a simple reflection rk such that w = rkw

′ and l(w) = l(w′) + 1. Note that w′ν > wν. Put

ν − w′ν =
n∑
i=0

a′iαi.

For simplicity, we write a′−1 = a′n and a′n+1 = a′0. Then, from (4.5),

ht(ν − wν) = ht(ν − w′ν) + ν(hk) + a′k+1 + a′k−1 − 2a′k,

which implies that, by Lemma 4.6,

|ht(ν − wν)− ht(ν − w′ν)| ≤ ν(hk) + |a′k − a′k+1|+ |a′k − a′k−1| ≤ 2(M+ 1)l(w′) +M+ 1.

Therefore, since w is arbitrary,

e(V (λ)) ≤ 2, r(V (λ)) ≤M+ 1.

On the other hand, with the same notations as in Lemma 4.5,

lim sup
i→∞

ht(ν − xiν)
l(xi)2

= lim
i→∞

(n+ 1)(l + n+ 1)i2 + (l + n+ 1− (n+ 1)ν(h0))i
(2ni)2

=
(n+ 1)(l + n+ 1)

4n2
.

Therefore, by definition,

2 ≤ e(V (λ)),
(n+ 1)(l + n+ 1)

4n2
≤ r(V (λ)).

�

By Lemma 4.7, e(V (λ)) = 2 and the rate of growth r(V (λ)) exists. To compute r(V (λ)) precisely, the
following lemma is needed.

Lemma 4.8. Let x0, x1, . . . , xn ∈ Z such that x0 + · · ·+ xn = 0 and xi 6= 0 for some i. Then

x2
0 + · · ·+ x2

n

(
∑

0≤i<j≤n

|xi − xj | )2
≤ 1

n(n+ 1)
.

The equality holds if and only if there is k such that xi = xj for i, j 6= k.
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Proof. It is enough to show that ∑
0≤i<j≤n

|xi − xj |

2

− n(n+ 1)
(
x2

0 + · · ·+ x2
n

)
≥ 0.

Then  ∑
0≤i<j≤n

|xi − xj |

2

− n(n+ 1)(x2
0 + · · ·+ x2

n)

=
∑

0≤i<j≤n
0≤k<l≤n
(i,j)6=(k,l)

|xi − xj ||xk − xl|+
∑

0≤i<j≤n

|xi − xj |2 − n(n+ 1)(x2
0 + · · ·+ x2

n)

=
∑

0≤i<j≤n
0≤k<l≤n
(i,j)6=(k,l)

|xi − xj ||xk − xl| − n2(x2
0 + · · ·+ x2

n)− 2
∑

0≤i<j≤n

xixj ,

=
∑

0≤i<j≤n
0≤k<l≤n
(i,j)6=(k,l)

|xi − xj ||xk − xl| − n(n− 1)(x2
0 + · · ·+ x2

n) + 2(n− 1)
∑

0≤i<j≤n

xixj

=
∑

0≤i<j≤n
0≤k<l≤n
(i,j)6=(k,l)

|xi − xj ||xk − xl| − (n− 1)
∑

0≤i<j≤n

|xi − xj |2

= 2
∑

1≤i<j≤n

|xi − xj |

 ∑
0≤k<l≤n
(i,j)6=(k,l)

|xk − xl|

− (n− 1)
∑

1≤i<j≤n

|xi − xj |2

+ 2
∑

1≤i<j≤n

|x0 − xi||x0 − xj | − (n− 1)
∑

1≤i≤n

|x0 − xi|2

= 2
∑

1≤i<j≤n

|xi − xj |

 ∑
0≤k<l≤n
(i,j)6=(k,l)

|xk − xl|

− (n− 1)
∑

1≤i<j≤n

|xi − xj |2

−
∑

1≤i<j≤n

||x0 − xi| − |x0 − xj ||2,

= 2
∑

1≤i<j≤n

|Xi −Xj |

 ∑
1≤k<l≤n
(i,j)6=(k,l)

|Xk −Xl|+
n∑
i=1

|Xi|

− (n− 1)
∑

1≤i<j≤n

|Xi −Xj |2

−
∑

1≤i<j≤n

||Xi| − |Xj ||2 if we let Xi = xi − x0 for i = 1, . . . n,

=
∑

1≤i<j≤n

|Xi −Xj |

 ∑
1≤k<l≤n

|Xk −Xl|+
n∑
i=1

|Xi| − n|Xi −Xj |





20 SEOK-JIN KANG, DONG-IL LEE, EUIYONG PARK, AND HYUNGJU PARK

+
∑

1≤i<j≤n

|Xi −Xj |

 ∑
1≤k<l≤n
(i,j)6=(k,l)

|Xk −Xl|+
n∑
i=1

|Xi|

− ∑
1≤i<j≤n

||Xi| − |Xj ||2

≥ 0, since |Xi −Xk|+ |Xk −Xj | ≥ |Xi −Xj | and |Xi −Xj | ≥ ||Xi| − |Xj ||.

Moreover, the equality holds if and only if X1 = · · · = Xn or there is k such that Xi = 0 for i 6= k. �

Finally we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Put K :=
∑n
i=0 hi, l := λ(K) and δ :=

∑n
i=0 αi. Let T be the group of translations

of W ,
◦
W the subgroup generated by r1, . . . , rn and

◦
∆+ the set of positive roots of

◦
W . Then

W = T o
◦
W.

For w ∈W , denote by w̃ the translation part of w. Since l(
◦
w) ≤ n(n+1)

2 for
◦
w ∈

◦
W ,

l(w̃) ≤ l(w) +
n(n+ 1)

2
and l(w) ≤ l(w̃) +

n(n+ 1)
2

.(4.6)

Note that
◦
w(λ)(K) = λ(K) for

◦
w ∈

◦
W . By Lemma 4.7, [16, (6.5.2)] and (4.6),

r(V (λ)) = lim sup
i→∞

(
max
w∈W (i)

ht(ν − wν)
(l(w))2

)
= lim sup

i→∞

(
max
w∈W (i)

ht(ν − w̃ν)
(l(w̃))2

)
.

Let
◦
Q :=

⊕n
i=1 Zαi. Choose a nonzero weight α =

∑n
i=1 kiαi ∈

◦
Q for ki ∈ Z and denote by tα the

translation with α. For simplicity, let k0 = kn+1 = 0. From [16, (6.5.2)],

tα(ν) = ν + ν(K)α−
(
ν(α∨) +

ν(K)α(α∨)
2

)
δ,(4.7)

where α∨ :=
∑n
i=1 kihi. Note that

α(α∨) = k2
1 + (k1 − k2)2 + · · ·+ (kn−1 − kn)2 + k2

n.

Then, using (4.3) and (4.7),

l(tα) = |{µ ∈ ∆+| tαµ ∈ ∆−}|

= |{◦µ+ iδ | ◦µ+ iδ − ◦µ(
n∑
i=1

kihi)δ ∈ −∆+,
◦
µ ∈

◦
∆+, i ≥ 0 }|

+ |{−◦µ+ iδ | − ◦µ+ iδ +
◦
µ(

n∑
i=1

kihi)δ ∈ −∆+,
◦
µ ∈

◦
∆+, i > 0 }|

=
∑

1≤i≤j≤n

| − ki−1 + ki + kj − kj+1|.

Let xi = ki+1 − ki for i = 0, . . . , n. Note that x0 + · · ·+ xn = 0. By Lemma 4.8,

r(V (λ)) = lim sup
i→∞

(
max
w∈W (i)

ht(ν − w̃ν)
(l(w̃))2

)
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= lim sup
i→∞

(
max

tα∈W (i),α∈
◦
Q

ht(ν − tαν)
(l(tα))2

)

≤ sup
0 6=(k1,...,kn)∈Zn

(n+ 1)(l + n+ 1)
(
k2

1 + (k1 − k2)2 + · · ·+ (kn−1 − kn)2 + k2
n

)
2 (

∑
1≤i≤j≤n

| − ki−1 + ki + kj − kj+1|)2

=
(n+ 1)(l + n+ 1)

2

 sup
06=(x0,...,xn)∈Zn+1

x0+···+xn=0

x2
0 + x2

1 + · · ·+ x2
n

(
∑

0≤i<j≤n

|xi − xj |)2


≤ l + n+ 1

2n
.

Moreover, if we let ki = ki for i = 1, . . . , n and k ∈ Z \ {0}, then the equality holds. Therefore,

r(V (λ)) =
l + n+ 1

2n
.

�

In the case of affine Kac-Moody algebras of type A
(1)
n , the projective dimension is infinite and Ti

appearing in Definition 3.7(c) goes to infinity as i goes to infinity. It follow from Theorem 4.4 that

Ti =
l + n+ 1

2n
i2 + o(i2) for large enough i,

which means that the regularity introduced in this paper describes the asymptotic behavior of the twisting
Ti quite well. Moreover, since r (V (λ)) is proportional to the level of λ, it is compatible with our intuitive
notion of complexity on representations. Further study is necessary in order to understand the regularity of
representations of various algebras not considered in this paper. Especially, representations with negative
levels and critical levels of Kac-Moody algebras should be carefully studied.
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