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Abstract. A circular distribution is a Galois equivariant map ψ from the
roots of unity µ∞ to an algebraic closure of Q such that ψ satisfies product
conditions,

∏
ζd=ε ψ(ζ) = ψ(ε) for ε ∈ µ∞ and d ∈ N, and congruence condi-

tions for each prime number l and s ∈ N with (l, s) = 1, ψ(εζ) ≡ ψ(ζ) modulo
primes over l for all ε ∈ µl, ζ ∈ µs, where µl and µs denote respectively the

sets of lth and sth roots of unity. For such ψ, let P ψ
s be the group generated

over Z[Gal(Q(µs)/Q)] by ψ(ζ), ζ ∈ µs and let Cψ
s be P ψ

s
⋂

Us, where Us de-

notes the global units of Q(µs). We give formulas for the indices (Ps : P ψ
s )

and (Cs : Cψ
s ) of P ψ

s and Cψ
s inside the circular numbers Ps and units Cs of

Sinnott over Q(µs).

1991 Mathematics Subject Classification: 11R18, 11S23, 11R27, 11R29, 11S31,
11R34, 11R37.

1. Introduction

Circular distributions of Coleman(cf. [2]) arise in various contexts in number
theory. In particular, they give rise to Euler systems (cf. [5]) and higher special
units over number fields(cf. [11]). They play a role in connecting the structure of
the ideal class group with that of a certain quotient of special units of an abelian
number field. Circular distributions can also be characterized using an Archimedean
place(cf. [2]). One of the fundamental questions of this paper is computation of the
indices between the circular units coming from various circular distributions. Let µs

be the set of sth roots of unity and let ζs be a primitive sth root of unity in a fixed
algebraic closure Qalg of Q. Let µ∞ =

⋃
s∈N µs and µ∗s = µs \ {1}, µ∗∞ = µ∞ \ {1},

where N is the set of positive integers. A circular distribution after Coleman is a
Galois equivariant map f from µ∗∞ to Qalg such that f satisfies product conditions,

∏

ζd=ε

f(ζ) = f(ε), for ε ∈ µ∗∞ and d ∈ N

and congruence conditions for each prime number l and s ∈ N with (l, s) = 1,

f(εζ) ≡ f(ζ) modulo primes over l

for all ε ∈ µ∗l , ζ ∈ µ∗s. Let F denote the set of all circular distributions. Let Rs =
Z[G(Q(µs)/Q)] be the group ring of the Galois group G(Q(µs)/Q) and R∞ = lim←−Rs

be the projective limit of Rs with respect to the natural restriction maps. Then
R∞ acts naturally on the group F . In this note, l denotes a fixed odd prime. For
an abelian group A, we denote by A[l] the profinite l-completion lim←−A/Aln of A.
For any subgroup of the global units of a number field being finitely generated as a
Z-module, its profinite l-completion can be identified with the tensor product with
Zl. Let F(s) be the group generated by f(ζ) for all f in F and all ζ in µ∗s and let
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Fs be the intersection of F(s) and the global units of Q(µs). Then F(s) and Fs

contain respectively the circular numbers Ps and the circular units Cs of Q(µs) in
the sense of Sinnott, as defined in [14] and [15]. In this paper, we let sn denote ln+1.
Let k = k0 = Q(µs0) and kn = Q(µsn) be the intermediate field of the cyclotomic
Zl-extension k∞ =

⋃
n kn of degree ln over k0. In fact, we have

F(sn)[l] = Psn [l], Fsn [l] = Csn [l]

for all n ∈ N⋃{0}(cf. [10]), where Psn
and Csn

denote the circular numbers and
the circular units respectively of kn in the sense of Sinnott. For each ψ in F , let
Pψ

sn
be the group generated over Rsn

by ψ(ζ), ζ ∈ µ∗sn
, and let Cψ

sn
= Pψ

sn

⋂
Usn

,
where Usn denotes the global units of kn. Then from the above equation, we have

Pψ
sn

[l] ⊆ Psn [l], Cψ
sn
⊆ Csn [l]

for all n ∈ N⋃{0}. The group ring Rsn
acts naturally on the groups Pψ

sn
and Cψ

sn
.

Let ξ be the element of F defined by ξ(ζ) = 1 − ζ, ζ ∈ µ∗∞. Notice that P ξ
sn

and
Cξ

sn
are the circular numbers Psn

and the circular units Csn
of kn. We compute

formulas for the indices of the ψ-circular numbers Pψ
sn

and units Cψ
sn

coming from
a single circular distribution ψ of F rather than the whole circular units Fsn inside
the circular numbers Psn and units Csn . Suppose that l is prime to φ(s), the Euler
phi function. Let

hsn = [kn : Q(ψ(ζsn))]

be the degree of the field extension kn/Q(ψ(ζsn)). Notice that if hsn > 1 for
infinitely many numbers n, then ψ(ζsn) is a root of unity for all n(cf. [12]). By
Dirichlet’s unit theorem, in order for the index (Csn : Cψ

sn
) to be finite, ψ must

satisfy the assumption that ψ(ζsn) /∈ µsn , and hsn = 1 as well. Hence in this note,
we will assume that hsn = 1. Let Ξ be the set of nontrivial Dirichlet characters of
Q(µsn), which are even, i.e., χ(−1) = 1. If χ in Ξ is of conductor f , then for each
ψ ∈ F , we write

tψ(χ) = −2−1
∑

(a,f)=1

χ(a) log |ψ(ζa
f )|.

We write t(χ) = tξ(χ). Let Okn denote the ring of integers of kn. For each prime
l, we define the sign,

sgnl(ψ) = vln(ψ(ζln))

of ψ at l to be the ln-adic valuation vln(ψ(ζln)) of ψ(ζln), where ln is the unique
prime of Q(µln) lying over l and vln is the discrete valuation of kn associated to ln

defined as αOkn = l
vln (α)
n a with (a, ln) = 1. According to the product conditions

of circular distributions, sgnl(ψ) does not depend on n. It depends only on ψ and
prime l. Let vl denote the l-adic valuation defined as vl(l) = 1 and let |.|l denote
the l-adic absolute value normalized by |l|l = 1/l. For a finite set S, we denote by
#(S) the cardinality of S.

Theorem 1.1. Pψ
sn

[l] and Cψ
sn

[l] are contained in Psn [l] and Csn [l], respectively.
Suppose that sgnl(ψ) 6= 0, and tψ(χ) 6= 0 for all χ ∈ Ξ, then the ψ-numbers
Pψ

sn
[l] and the ψ-units Cψ

sn
[l] have finite indices in Psn [l] and Csn [l], respectively.

Conversely, if Pψ
sn

[l] and Cψ
sn

[l] have finite indices respectively in Psn [l] and Csn [l],
then we have sgnl(ψ) 6= 0, and tψ(χ) 6= 0 for all χ ∈ Ξ. In this case, we have the
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following formulas,

(Psn
[l] : Pψ

sm
[l]) = lvl(NQ(ψ(ζsm )))|θsn

∏

χ∈Ξ

t(χ)tψ(χ)−1 |l

(Csn [l] : Cψ
sn

[l]) = |θsn

∏
χ∈Ξ t(χ)∏

χ∈Ξ tψ(χ)
|l = |θsn

∏

χ∈Ξ

t(χ)tψ(χ)−1 |l

where θsn
= #(µsn

/µsn

⋂
Cψ

sn
).

In §2, we compute the cohomology groups of the circular numbers and circu-
lar units and relate it to the Λ-module structures of the inverse limits of circular
numbers and units. We give the outline of the proof of Theorem 1.1.

In the appendix, we apply Sinnott’s argument to compute the index of the ψ-
circular numbers and units using the cohomology groups of ψ-circular numbers and
units, and hence recover the proof of Theorem 1.1. Finally, we remark that if r
is bigger than or equal to the rank rankQl

Clsn
[l] of Ql-vector space Clsn

[l] ⊗Zl
Ql

of the l-primary part Clsn [l] of the ideal class group Clsn of Q(µsn), then all the
results in this note remain valid when the circular distributions are replaced by the
truncated Euler systems Er

Q of depth r(cf. [13]). The notion of Er
Q will be briefly

introduced at the end of the appendix.

Acknowledgement: The author is grateful to the referee for helpful comments
on an earlier version of this paper.

2. Cohomology of circular distributions

For a finitely generated Z-module A, let A be the quotient of A by the torsion
subgroup Ator, A = A/Ator. Let k = k0 be the cyclotomic field Q(µs) or Q(µsl)
according as s is divisible by l or not. Let k∞ be the cyclotomic Zl-extension of
k with its unique subfield kn = Q(µsn), which is fixed by the Galois group Γln

where Γ = G(k∞/k). Let C∞[l] be the inverse limit of Csn [l] with respect to
the norm maps, where Csn is the circular units of kn. Then C∞[l] has a natural
Rl∞-module structure, where Rl∞ = lim←−Zl[G(kn/Q)] is the completed group ring of
G(k∞/Q). The group G(k∞/Q) has a direct decomposition G(k∞/Q) = G(k∞/k)×
G(k0/Q) into the l-part G(k∞/k) and the prime to l-part G(k0/Q). We have
Rl∞ = Λ[G(k0/Q)], where Λ = Zl[[Γ]] = lim←−Zl[Γ/Γn], and Γn = Γln is the unique
subgroup of Γ of index ln. We need the following theorem of Kuz’min.

Theorem 2.1 (=Theorem 1.1 of [7]). The groups P∞[l] and C∞[l] are free Λ-
modules of rank 1

2 [k0 : Q].

For a number field F , let U ′
F be the l-units of F , i.e., the group of elements of F

which are unit over the primes not dividing l. For any Zl-extension F∞ =
⋃

n Fn of
F , let U ′

sn be the l-units of Fn and let U ′∞[l] = lim←−U ′
sn [l] be the inverse limit of

U ′
sn [l] with respect to the norm maps. The following theorem is due to Kuz’min.

Theorem 2.2 (=Theorem 7.2 of [6]). Suppose that F∞/F is cyclotomic. Then
U ′∞[l] is Λ-free of rank r1 + r2, where r1, r2 are the numbers of real places and
complex places of F , respectively.

Note that Greither(cf. [3]) proved a more general theorem on U ′∞[l] when F∞/F
is cyclotomic or F does not contain a primitive lth root of unity. In this case, it is
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proved that U ′∞[l] is Λ-free of rank r1 + r2 + g, where g is the number of primes
lying over l, which split completely over F∞/F .

Let Cψ
∞[l] be the inverse limit of Cψ

sn [l] with respect to the norm maps, where
Cψ

sn is the ψ-circular units of kn. We need a proposition of Belliard(cf. [1]). In the
proposition, Gn denotes G(kn/Q).

Proposition 2.3 (=Proposition 1.3 of [1]). Let Mn ⊂ Ln be Zl[Gn]-modules
equipped with the natural norm map Nm,n : Lm → Ln and the extension map
in,m : Ln → Lm satisfying the following properties:
(i) L∞ := lim←−Ln is Λ-free.

(ii) in,m : Ln → L
G(km/kn)
m is injective.

(iii) Let Mn verify asymptotic Galois descent, i.e., ∃N ∈ N such that for all
m ≥ n ≥ N, M

G(km/kn)
m = Mn. Then M∞ := lim←−Mn is Λ-free.

For a circular distribution ψ, the product condition
∏

ζd=ε ψ(ζ) = ψ(ε) for ε ∈ µ∞
and d ∈ N, is known to be equivalent to the following conditions (cf. [9]). For any
prime number, l, and square free integer, r, with (r, l) = 1,

NQ(µlr)/Q(µr)ψ(ζlζr) = ψ(ζr) Frl−1

and for n− i ≥ 1,

NQ(µlnr)/Q(µln−1r)ψ(ζlnζr) = ψ(ζln−1ζl
r)

where Frl is the Frobenius at l. In the sections to follow, we often use these equiv-
alent conditions rather than the product conditions. In the following proposition,
we give a necessary and sufficient condition for the 0th Tate cohomology group
of the ψ-circular units to be trivial. The proof follows from arguments similar to
those used for Theorem 2.2 of Belliard(cf. [1]) and Lemma 4.2 of Nguyen Quang
Do(cf. [8]).

Proposition 2.4. Suppose (C∞[l]/C
ψ

∞[l])Γn < ∞, for all n ∈ N. Then the follow-
ing two statements are equivalent.
(i) There exists a positive integer N such that Ĥ0(G(km/kn), Cψ

sm [l]) is trivial for
all m ≥ n ≥ N .
(ii) C

ψ

∞[l] is a Λ-free module.

Proof. If Ĥ0(G(km/kn), Cψ
sm [l]) = 0, then (Cψ

sm [l])G(km/kn) = Nkm/kn
Cψ

sm [l],

which is equal to Cψ
sn [l] by the assumption on l. By Theorem 2.2 and Proposition

2.3, C
ψ

∞[l] is a Λ-free module. Suppose now that C
ψ

∞[l] is a Λ-free module. Let π
be the natural projection from U∞ into Uk. We denote the group π(U∞) of norm
coherent units by U coh

k , and similarly for U coh
sn

and

(Cψ
sn

)coh = Cψ
sn

⋂
U coh

sn

for the coherent global units and coherent ψ-circular units of kn, respectively. When
ψ = ξ, the following lemma is the same as Lemma 2.5 of Belliard(cf. [1]). For a
general ψ, it follows easily from the same argument. We leave the proof of the
following lemma to the reader.

Lemma 2.5. Let K be a number field and K∞/K be a Zl-extension. Let Kn be
the unique subfield of K∞, which has degree ln over K. Let n ∈ N and let In be the
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inertia field of Kn at l. Then we have

Cψ
n [l] = Cψ

In
[l](Cψ

n )coh[l].

If we let I denote the inertia field of p in K∞ then we have I ⊂ Kn:

Cψ
n [l] = Cψ

I [l](Cψ
n )coh[l].

It follows from the above Lemma that if l is totally ramified in k then the ψ-
circular units of kn are norm coherent. It follows from the exact sequence 0 →
Cψ
∞[l] → U ′∞[l] → U ′∞[l]/Cψ

∞[l] → 0 and Theorem 2.2 and the snake lemma that
0 → (U ′∞[l]/Cψ

∞[l])Γn → (Cψ
∞[l])Γn

→ (U ′∞[l])Γn
. As Λ is noetherian, there is

N such that (U ′∞[l]/Cψ
∞[l])Γn = (U ′∞[l]/Cψ

∞[l])ΓN for all n ≥ N . Theorem 7.3
of Kuz’min in [6] tells us that the natural map (U ′∞[l])Γn

→ U ′
sn [l] is injective.

Hence, we obtain an exact sequence,

0 → (U ′∞[l]/Cψ
∞[l])ΓN → (Cψ

∞[l])Γn → (Cψ
sn)coh[l] → 0.

As Cψ
∞[l] is Λ-free, (Cψ

∞[l])Γn
is Zl[G(km/kn)]-free. Moreover, G(km/kn) acts triv-

ially on Zl-free module (U ′∞[l]/Cψ
∞[l])ΓN . For all n ≥ N , we have that the Tate

cohomology Ĥ0(G(km/kn), Cψ
m[l]) is isomorphic to Ĥ0(G(km/kn), (Cψ

sm)coh[l]) =
Ĥ1(G(km/kn), (U ′∞[l]/Cψ

∞[l])ΓN ) = 0. Let k+
n be the maximal real subfield of kn.

For every subgroup A of kn, we write A+ := A
⋂

k+
n for its intersection with k+

n .
Let Dn := 〈 l | l|l 〉⋂ (Cl+n ⊗ Zl) be the subgroup of l-Sylow subgroup Cl+n ⊗ Zl

of k+
n generated by the primes lying over l. Taking the inverse limits to the exact

sequence 0 → Dn → Cl+n ⊗ Zl → Cl+n ⊗ Zl/Dn → 0, we have an exact sequence,
0 → D∞ → Cl+∞ ⊗ Zl → Cokernel → 0. As l is totally ramified, Γn acts trivially
on D∞. By the snake lemma, we have 0 → D∞ → (Cl+∞ ⊗ Zl)Γn → (Cokernel)Γn .
Leopoldt conjecture, which is true for our abelian case, tells us that the second term
(Cl+∞ ⊗ Zl)Γn is finite and hence so is D∞. Write Sn for the set of primes of k+

n

lying over l. From the exact sequence 0 → (U ′
sn

)+[l]/U+
sn [l] → Zl[Sn] → Dn → 0,

we have

0 → U+∞[l]/(Cψ
∞)+[l] → (U ′∞)+[l]/(Cψ

∞)+)[l] → Zl[S∞] → D∞ → 0

where Zl[S∞] = lim←−Zl[Sn] = Zl[S0] by the assumption on l. Since D∞ is finite,

we have 0 → U+∞[l]/(Cψ
∞)+[l] → (U ′∞)+[l]/(Cψ

∞)+)[l] → Fr → 0, where Fr is a free
Zl-module with trivial Galois action. The snake lemma induces,

0 → (U+∞[l]/(Cψ
∞)+[l])Γn → ((U ′∞)+[l]/(Cψ

∞)+)[l])Γn → FrΓn .

Thanks to the Iwasawa main conjecture, (U+∞[l]/(C∞)+[l]) and Cl+∞ ⊗ Zl have the
same characteristic ideal. For the latter group, Cl+∞ ⊗ Zl, its Galois coinvariant
(Cl+∞⊗Zl)Γn is finite by the Leopoldt conjecture. Hence, from the assumption, we
have

(U+∞[l]/(Cψ
∞)+[l])Γn < ∞.

If j denotes the complex conjugation then Nj = 1 + j is the norm map from kn

to k+
n . If α lies in the kernel of Nj , then αj = α−1, which implies that all the

conjugates of α have an absolute value of one. Because the kernel is a subset of the
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units, the kernel is the set µ(kn) of all roots of unity in kn. The exact sequence

0 → µ(kn)
⋂

Cψ
sn
→ Cψ

sn

Nj→ (Cψ
sn

)+ induces

1 −→ Cψ
sn [l] −→ (Cψ

sn)+[l] −→ (Cψ
sn)+[l]/NCψ

sn [l] −→ 0

and ((Cψ
sn

)+)2 ⊆ NjC
ψ
sn
⊆ (Cψ

sn
)+. For an odd prime l, we have (Cψ

sn)+[l]/NjC
ψ
sn [l] =

0, Cψ
sn [l] ∼= (Cψ

sn)+[l] and Cψ
∞[l] ∼= (Cψ

∞)+[l]. It follows that (Cψ
∞)+[l] is a free Λ-

module under our assumption. Since U+∞[l] is Λ-free(cf. [1]), M := U+∞[l]/(Cψ
∞)+[l]

has a projective dimension less than or equal to one. Hence, the maximal finite
submodule M0 must be trivial. From the exact sequence above, it follows that
((U ′∞)+[l]/(Cψ

∞)+[l])Γn is isomorphic to a Zl-free module with trivial Galois action.
Hence, we can apply the same argument for the maximal real subfield to obtain
the following isomorphisms. The Tate cohomology Ĥ0(G(km/kn), (Cψ

sm)+[l]) is iso-
morphic to Ĥ0(G(km/kn), ((Cψ

sm)+)coh[l]), which is isomorphic to the first Tate
group Ĥ1(G(km/kn), ((U ′∞)+[l]/(Cψ

∞)+[l])ΓN ), which is the trivial group. The
isomorphism above shows that for all m ≥ n ≥ N , Ĥ0(G(km/kn), Cψ

sm [l]) ∼=
Ĥ0(G(km/kn), (Cψ

sm)+[l]) = 0. This completes the proof of Proposition 2.4. 2

Let ψ be a circular distribution in F . As was defined in the introduction, let Pψ
sn

be the subgroup of the multiplicative group k×n of kn generated by the elements
ψ(ζ) and µsn , for ζ ∈ µsn , ζ 6= 1, and let Pψ

∞ = lim←−Pψ
sn

. If sgnl(ψ) = 0, then the
index of circular numbers become infinity,

(Psn [l] : Pψ
sn

[l]) = ∞.

Hence, we will consider the case ψ(ζsn) with sgnl(ψ) 6= 0. Notice that if ψ(ζsn) is
Z-torsion, then Pψ

∞ is either trivial or Zl. Let δm be the degree of field extension
[Q(ψ(ζsm)) : Q] and hm = [km : Q]/δm. Notice that if hm > 1 for infinitely many
numbers m, then ψ(ζsm) is a root of unity for all m. Hence, if ψ(ζsm) is Z-torsion
free then there is an integer N such that for all m ≥ N,hm = 1. If the l-part
of the index (Csm [l] : Cψ

sm
[l]) is finite, then ψ must satisfy the assumption that

ψ(ζsm) /∈ µsm for an m and hence ψ(ζsa) /∈ µsa for all a ≥ m equivalently, and
hm = 1 as we assumed in the introduction. The latter condition is asymptotically
implied by the former condition in the following sense(cf. [12]).

Lemma 2.6. If ψ(ζsm) /∈ µsm , then for all sufficiently large numbers m, hm = 1.

In order to apply the cohomology groups of circular distributions to the index
formula in the next section, we determine the cohomology groups in the following
proposition. When ψ = ξ, the cohomologies are well known(cf. [4]). For an arbitrary
distribution ψ, we need more calculations. We give here a detailed proof in a self-
contained way.

Proposition 2.7. Suppose that the quotient Csm [l]/Cψ
sm

[l] is finite and sgnl(ψ) 6=
0. Then the Tate cohomology groups of ψ-circular units Cψ

sm
are

Ĥ0(G(km/Q), Cψ
sm

) = 0, Ĥ1(G(km/Q), Cψ
sm

) = Z/φ(sm)Z

and the Tate cohomology groups of ψ-circular numbers Pψ
sm

are

Ĥ0(G(km/Q), Pψ
sm

) = 0, Ĥ1(G(km/Q), Pψ
sm

) = 0.
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Proof. Let G = G(km/Q), H = G(km/Q(ψ(ζsm))) and ∆ = G/H. We have a
natural surjection from the group ring Z[∆] to Pψ

sm
via e → ψ(ζsm

). If Iψ
sm

denotes
the kernel of this surjection, then Z[∆]/Iψ

sm
∼= Pψ

sm
. Since Iψ

sm
is the annihilator

of Pψ
sm

inside Z[∆], each element
∑

σ∈∆ aσσ ∈ Iψ
m must satisfy

∑
σ∈∆ aσ = 0

from sgnl(ψ) 6= 0. It follows that (Iψ
m)G = 0 and (Iψ

m)s(G) = Iψ
m, and hence

Ĥ0(G(km/Q), Iψ
sm

) = 0. We have an exact hexagon

→ Ĥ0(G(km/Q), Iψ
m) → Ĥ0(G(km/Q),Z[∆]) → Ĥ0(G(km/Q), Pψ

sm
) →

← Ĥ1(G(km/Q), Pψ
sm

) ← Ĥ1(G(km/Q),Z[∆]) ← Ĥ1(G(km/Q), Iψ
m) ←↩

induced from the exact sequence

0 −→ Iψ
m −→ Z[∆] −→ Pψ

sm
−→ 0.

It follows from the exact hexagon above that

Ĥ1(G(km/Q), Pψ
sm

) = 0

because the first cohomology group Ĥ1(G(km/Q),Z[∆]) is trivial. From the as-
sumption of sgnl(ψ) 6= 0, the absolute norm map NQ = Nkm/Q induces an exact
sequence,

0 −→ Cψ
sm
−→ Pψ

sm
−→ Z −→ 0

where the last map is NQ, and Z is the cyclic group generated by NQ(ψ(ζsm)). The
exact sequence induces the exact hexagon.

→ Ĥ0(G(km/Q), Cψ
sm

) → Ĥ0(G(km/Q), Pψ
sm

) → Ĥ0(G(km/Q),Z) →
← Ĥ1(G(km/Q),Z) ← Ĥ1(G(km/Q), Pψ

sm
) ← Ĥ1(G(km/Q), Cψ

sm
) ←↩

From the remark above, the exact hexagon reduces to

0 −→ Ĥ0(G(km/Q), Cψ
sm

) −→ Ĥ0(G(km/Q), Pψ
sm

)
NQ−→ Ĥ0(G(km/Q),Z) −→

−→ Ĥ1(G(km/Q), Cψ
sm

) −→ 0.

First, we show that the map NQ is injective. Let α ∈ (Pψ
sm

)G(km/Q). Suppose that
α belongs to the kernel of NQ. Then there is an integer r such that

αφ(sm) = NQ(α) = lnlrφ(sm) = NQ(ψ(ζsm))rφ(sm)

where nl is the integer with vl(NQ(ψ(ζsm))) = nl. Hence α = ±NQ(ψ(ζsm))r

because both lie in the rational field and the roots of unity in the rational field are
±1. Hence, the map is injective modulo ±1. We can ignore this part because we
will consider for the l-parts, an odd prime l. Hence, we have

Ĥ0(G(km/Q), Cψ
sm

) = 0.

The exact hexagon reduces to the following short exact sequence,

0 −→ Ĥ0(G(km/Q), Pψ
sm

)
NQ−→ Ĥ0(G(km/Q),Z) −→ Ĥ1(G(km/Q), Cψ

sm
) −→ 0.

We now claim that Ĥ0(G(km/Q), Pψ
sm

) is trivial, and hence NQ is a trivial map.
In order to confirm this, we first consider the short exact sequence above with
ψ replaced by ξ. Then nl = 1 and Z is generated by l, and (P ξ

sm
)G(km/Q) =

P
G(km/Q)
sm = lZ, as P

G(km/Q)
sm are l-units in the rational field containing lZ. The

absolute norm map NQ is then a trivial map from P
G(km/Q)
sm = lZ to Z/φ(sm)Z =

Ĥ0(G(km/Q),Z) in the short exact sequence above. Hence, the first cohomology
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Ĥ0(G(km/Q), Psm) is a trivial group from the exact hexagon above. From this,
we compute the first cohomology Ĥ1(G(km/Q), Pψ

sm
) using the Herbrand quotient.

Since l - φ(s), F(sm)/P ξ(sm) = F(sm)/P (sm) is of order prime to l from Theorem
A of [10] and hence F(sm) ⊗ Zl = P (sm) ⊗ Zl. From this, a natural inclusion
Pψ

sm
[l] ↪→ Psm

[l] follows. Then the cokernel is either infinite or finite. By applying
the snake lemma to the exact sequences,

0 −−−−→ Cψ
sm

[l] −−−−→ Pψ
sm

[l]
NQ−−−−→ Zl −−−−→ 0

y
y

yNQ(ψ(ζsm ))

0 −−−−→ Csm
[l] −−−−→ Psm

[l]
NQ−−−−→ Zl −−−−→ 0

we have that Psm [l]/Pψ
sm

[l] is finite if and only if Csm [l]/Cψ
sm

[l] is finite and the top
absolute norm map NQ is non trivial, i.e., sgnl(ψ) 6= 0. In this case the indices of
circular numbers and units are given as follows,

(Psm
[l] : Pψ

sm
[l]) = lvl(NQ(ψ(ζsm )))(Csm

[l] : Cψ
sm

[l]).

If it is infinite then the index (Csm
[l] : Cψ

sm
[l]) is infinite and hence we exclude this

case. By applying the Herbrand quotient hG(km/Q)(−) to the short exact sequence

0 −→ Pψ
sm

[l] −→ Psm [l] −→ Psm [l]/Pψ
sm

[l] −→ 0,

we have
hG(km/Q)(Psm [l]) = hG(km/Q)(Pψ

sm
[l])

since the quotient Psm [l]/Pψ
sm

[l] is finite. It follows from the triviality of the
cohomologies Ĥ1(G(km/Q), Pψ

sm
), Ĥ0(G(km/Q), Psm), Ĥ1(G(km/Q), Psm), and the

equality hG(km/Q)(Psm) = hG(km/Q)(Pψ
sm

) that

Ĥ0(G(km/Q), Pψ
sm

[l]) = 0.

Let G0 = G(km/k0) be the l-Sylow subgroup of G(km/Q) and G1 = G(km/Q)/G0.
As G0 is an l-group, we have Ĥ0(G0, P

ψ
sm

) = Ĥ0(G0, P
ψ
sm

[l]). It follows that
Ĥ0(G1, (Pψ

sm
)G0) = 0 because the order of G1 is prime to l and Ĥ0(G1, (Pψ

sm
)G0) is

of order l-power. From the following equality,

1 = Ĥ0(G(km/Q), Pψ
sm

[l]) = (Pψ
sm

[l])G(km/Q)/Nkm/QPψ
sm

[l]

which is equal to ((Pψ
sm

[l])G1)G0/NG0(NG1P
ψ
sm

[l]) and by applying the triviality of
Ĥ0(G1, P

ψ
sm

) = Ĥ0(G1, P
ψ
sm

[l]), we have

1 = ((Pψ
sm

[l])G1)G0/NG0(P
ψ
sm

[l])G1 = Ĥ0(G0, P
ψ
sm

[l]G1) = Ĥ0(G0, (Pψ
sm

)G1 [l]).

Since G0 is an l-group and Ĥ0(G1, P
ψ
sm

) is a trivial group, it reduces to

Ĥ0(G0, (Pψ
sm

)G1) = Ĥ0(G(km/Q), Pψ
sm

).

Hence we obtain
Ĥ0(G(km/Q), Pψ

sm
) = 1.

It follows from the reduced exact hexagon that Ĥ0(G(km/Q), Cψ
sm

) = 0, and

Ĥ1(G(km/Q), Cψ
sm

) ∼= Ĥ0(G(km/Q),Z) = Z/φ(sm)Z.

This completes the proof of Proposition 2.7. 2
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Notice that the structure of cohomology groups in Proposition 2.7 is not valid
without the finiteness condition on Csm

[l]/Cψ
sm

[l]. Write s(G(Q(µl)/Q)) for the sum
in Z[G(Q(µl)/Q)] of elements of G(Q(µl)/Q). Let ψ(ζ) = (1− ζ)Ñl , where Ñl is a
fixed preimage π−1(s(G(Q(µl)/Q))) of s(G(Q(µl)/Q)) under the natural projection
map π from the Galois group G(Q(µ∞)/Q) of the maximal abelian extension Q(µ∞)
to the Galois group G(Q(µl)/Q). In this case, Ĥ0(G(k0/Q), Pψ

s0
) = Z/(l − 1)Z.

Hence, in general, the cohomology groups vary depending on ψ. As l is an odd
prime, it follows that for i = 1, 2 and any subgroup µ of µsm

, the cohomology
group Ĥi(G(km/Q), µ) is trivial. From this and the short exact sequences 0 →
µsm

⋂
Cψ

sm
→ Cψ

sm
→ Cψ

sm → 0, and 0 → µsm

⋂
Pψ

sm
→ Pψ

sm
→ Pψ

sm → 0 induce
the following isomorphisms

Ĥi(G(km/Q), Cψ
sm

) ∼= Ĥi(G(km/Q), Cψ
sm), Ĥi(G(km/Q), Pψ

sm
) ∼= Ĥi(G(km/Q), Pψ

sm).

Hence, Proposition 2.7 leads to the following corollary.

Corollary 2.8. Under the assumptions of Proposition 2.7, we have

Ĥ0(G(km/Q), Cψ
sm) = 0, Ĥ1(G(km/Q), Cψ

sm) = Z/φ(sm)Z

Ĥ0(G(km/Q), Pψ
sm) = 0, Ĥ1(G(km/Q), Pψ

sm) = 0.

In the next section, we will find certain conditions on sgnl(ψ), hm and characters
where the finiteness of indices is satisfied. As a direct consequence of Proposi-
tions 2.4, 2.7, we infer that if the quotient Csm [l]/Cψ

sm
[l] is finite then C

ψ

∞[l] is Λ-

free. From the assumption of l and Corollary 2.8 we have that (Pψ
sm [l])G(km/kn) =

Nkm/kn
Pψ

sm [l], which is equal to Pψ
sn [l]. By Theorem 2.2 and Proposition 2.3, P

ψ

∞[l]

is a Λ-free module. We derive the following corollary, which asserts that P
ψ

∞[l] and
C

ψ

∞[l] are Λ-free.

Corollary 2.9. Under the assumptions of Proposition 2.7, we have that P
ψ

∞[l] and
C

ψ

∞[l] are Λ-free.

From this freeness result, we can outline the proof of Theorem 1.1.

Sketch of the proof of Theorem 1.1. With simplified notation, let C∞[l] be gen-
erated over R∞ by ξ∞, and C

ψ

∞[l] by ψ∞. Then there is a unique α ∈ R∞ with
ψ∞ = ξ∞α. By applying an even character χ plus the logarithmic embedding ex-
plained in the appendix to this we see that χ(α) is exactly tψ(χ)/t(χ). On the other
hand, C∞[l]/C

ψ

∞[l] is R∞-isomorphic to R∞/αR∞. By codescent to finite level for
each character χ, the result follows. 2

In the appendix, we will give a detailed version of the proof by applying Sinnott’s
argument for its own interest. If ψ = ξ, then sgnl(ψ) = 1 and hm = 1, and hence the
corollary above tells us that P∞[l] and C∞[l] are Λ-free, which is known. Theorem
A of [10] leads us to the exact sequence, 0 → Cψ

sn [l] → Csn [l] → Csn [l]/Cψ
sn [l] → 0,

and because the functor of the inverse limit is left exact we have the short exact
sequence,

0 −→ Cψ
∞[l] −→ C∞[l] −→ C∞[l]/Cψ

∞[l] −→ 0.
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We now suppose that the quotient C∞[l]/Cψ
∞[l] is finite. For a finitely generated

Λ-module A, the rank of A is the vector space dimension of A⊗Λ Q(Λ) over Q(Λ),
where Q(Λ) is the quotient field of Λ. We write Ator := {a ∈ A | ∃λ ∈ Λ, λa =
0, λ 6= 0}. A is said to be a Λ-torsion free module if Ator = 0. We need the following
proposition of Kuz’min.

Proposition 2.10 (=Proposition 1.1 of [6]). Let A be a Λ-torsion free module of
rank r. Then A is isomorphic to a submodule of finite index of some Λ-free module
of rank r. This index is equal to one if and only if A is free.

According to Corollary 2.9, Proposition 2.10 and the short exact sequence above
show that when C∞[l]/Cψ

∞[l] is finite C
ψ

∞[l] must be equal to C∞[l], which is a
Λ-free module.

Corollary 2.11. Under the assumptions of Proposition 2.7, we have that C∞[l]/Cψ
∞[l]

is finite if and only if C
ψ

∞[l] = C∞[l].

3. Appendix

In this appendix, we apply Sinnott’s argument of [14] to our circular distri-
butions. Let ψ be a circular distribution in F . Let P̃ψ

sn
be the subgroup of

the multiplicative group k×n of kn generated by the elements ψ(ζ) and µsn , for
ζ ∈ µsn , ζ 6= 1, and let C̃ψ

sn
= P̃ψ

sn

⋂
Usn . Hence, the ψ-circular units Cψ

sn
of

kn satisfy C̃ψ
sn

= Cψ
sn

µsn . Write θsn for the cardinality #(µsn/µsn

⋂
Cψ

sn
). If

ψ(ζ) = ξ(ζ) = 1 − ζ, then C̃ψ
sn

= Cψ
sn

. In this section, we will compute the index
ψ-circular units of kn inside the circular units of Sinnott. In order for the index
to be finite we need to assume that ψ(ζsn) /∈ µsn and hn = 1, as in the intro-
duction. By Lemma 2.6, the former condition implies the latter condition for all
sufficiently large numbers n. Let U+

sn
be the global units of the maximal subfield

k+
n of kn and let (Cψ

sn
)+ = C̃ψ

sn

⋂
U+

sn
. By the assumption on l, we have that

Usn = U+
sn

µsn = U+
sn

C̃ψ
sn

and an isomorphism, Usn/C̃ψ
sn
∼= U+

sn
/(Cψ

sn
)+. Write Gsn

for the absolute Galois group G(kn/Q) of kn and write s(Gsn) for the sum in Z[Gsn ]
of elements of Gsn .

Lemma 3.1. Let α = ψ(ζ) ∈ P̃ψ
sn

. Then αs(Gsn ) = 1 if and only if α ∈ C̃ψ
sn

, and
α1+j = 1 if and only if α ∈ µsn .

Proof. If α ∈ C̃ψ
sn

, then its absolute norm αs(Gsn ) is one because our kn

is imaginary. If αs(Gsn ) = 1, then since C̃ψ
sn

contains ψ(ζ)1−σ for σ ∈ Gsn ,
1 = αs(Gsn ) ≡ α#(Gsn ) modulo C̃ψ

sn
. This shows that α must be a unit and hence

an element inside C̃ψ
sn

. If α1+j = 1, then αs(Gn) = 1 and hence α must be a unit
whose conjugates have an absolute value of one. This shows that α is a root of
unity. 2

Following Sinnott, we now define the map t from k×n → R[Gsn ] to be

t(α) =
∑

σ∈Gsn

−2−1 log |ασ|σ−1.

If t(α) = 0, then α1+j = 1. By Lemma 3.1, α must be a root of unity in kn. Hence,
the map t induces an isomorphism Usn/C̃ψ

sn
∼= t(Usn)/t(C̃ψ

sn
). For an Rsn -module
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A, write AGsn
for the set of elements of A, which is annihilated by s(Gsn). Using

Lemma 3.1 and the argument of Lemma 4.2 of Sinnott in [14], we obtain

Lemma 3.2. Let Tψ
sn

= t(Pψ
sn

). Then t(C̃ψ
sn

) = (Tψ
sn

)Gsn
.

Let e1 = |Gsn |−1
∑

σ∈Gsn
σ be the idempotent associated to the trivial character

of Gsn
. We prove the following lemma, which will be used in the main theorem.

Lemma 3.3. (Tψ
sn

)Gsn
= Tψ

sn

⋂
(1 − e1)Tψ

sn
. If g denotes the number of primes

dividing sn, then the index ((1 − e1)Tψ
sn

: (Tψ
sn

)Gsn
) is finite and it is given by

((1− e1)Tψ
sn

: (Tψ
sn

)Gsn
) = 2−gφ(sn).

Proof. As s(Gsn)s(Gsn) = #(Gsn)s(Gsn), (Tψ
sn

)Gsn
= Tψ

sn

⋂
(1− e1)Tψ

sn
follows

immediately from the definitions. ((1− e1)Tψ
sn

/(Tψ
sn

)Gsn
∼= ((1− e1)Tψ

sn
/Tψ

sn

⋂
(1−

e1)Tψ
sn

), which is isomorphic to Tψ
sn

+ (1 − e1)Tψ
sn

/Tψ
sn

∼= (Tψ
sn

+ e1T
ψ
sn

)/Tψ
sn

∼=
Tψ

sn
/(Tψ

sn

⋂
e1T

ψ
sn

). As Tψ
sn

⋂
e1T

ψ
sn
∼= (Tψ

sn
)Gsn , there results an isomorphism

((1− e1)Tψ
sn

/(Tψ
sn

)Gsn
∼= e1T

ψ
sn

/(Tψ
sn

)Gsn .

First, we compute the numerator,

e1T
ψ
sn

= φ(sn)−1s(Gsn)t(Pψ
sn

) = φ−1(sn)t((Pψ
sn

)s(Gsn )).

We need the following lemma of Coleman. We include its proof for the reader’s
convenience.

Lemma 3.4 (Coleman). Let f be a circular distribution in F . If sn is divisible
by at least two different primes, then f(ζsn) is a unit of Q(µsn). If sn is a prime
power ln+1, then f(ζsn) is an l-unit of Q(µsn).

Proof. By the norm coherent property of circular distribution f , we have the
equality, NQ(µln+r )/Q(µln )f(ζln+r ) = f(ζln), for any r ≥ 0. Let lu denote the prime
ideal of Q(µlu) lying over l. Let p be a prime ideal dividing the principal ideal
(f(ζln)), which is prime to l. Let p be the rational prime, which is divisible by p.
The decomposition group Dp of p must be laZl, for some a ≥ 0. The inertia group
Ip of p is either zero or lbZl, for some b ≥ 0. By the local class field theory, the
inertia group Ip comes from the local units of the complete local field at p. Hence
if Ip is lbZl, then we have a surjection from Zp to lbZl which is impossible. Hence,
the inertia group Ip of p must be trivial. The decomposition Dp has an infinite
residue class degree, which means (f(ζln)) is infinitely divisible by the prime p.
This contradiction implies that f(ζln) is an l-unit. If sn is divisible by at least two
different primes l, v, then f(ζsn) is a unit outside both l and v. Hence, f(ζsn) must
be a global unit. This completes the proof of Lemma 3.4. 2

If 1 6= ζ ∈ µsn and the order of ζ is not a prime power, then we have ψ(ζ)s(Gsn ) =
1 by Lemma 3.4. If the order of ζ is a prime power la with a > 0, then by Lemma
3.4 and under the assumption sgnl(ψ) 6= 0, there exists a positive rational nl(ψ)
such that

ψ(ζ)s(Gsn ) = lnl(ψ)φ(sn)/φ(la)

and hence (P̃ψ
sn

)s(Gsn ) =
∏

l|sn
lφ(sn)/φ(la)Z. It follows that

e1T
ψ
sn

= φ(sn)−1t((P̃ψ
sn

)s(Gsn )) =
∑

l|m

nl(ψ)
2φ(ln+1)

log l · s(Gsn)Z.
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We now compute (Tψ
sn

)Gsn . For an element α ∈ P̃ψ
sn

, t(α) ∈ (Tψ
sn

)Gsn if and only if
(σ − 1)t(α) = t(ασ−1) = 0, for all σ ∈ Gsn

. As the kernel of t in P̃ψ
sn

is the group
of roots of unity, t(α) ∈ (Tψ

sn
)Gsn if and only if 1 = (ασ−1)1+j = (α1+j)σ−1, for

all σ ∈ Gsn
, if and only if α1+j ∈ Q×. Let (P̃ψ

sn
)1 be the set of elements α ∈ P̃ψ

sn

satisfying α1+j ∈ Q×. Then we have t((P̃ψ
sn

)1) = (Tψ
sn

)Gsn . Write e+ = (1 + j)/2.
By applying e+ we have (Tψ

sn
)Gsn = 2−1t((P̃ψ

sn
)1+j
1 ). Let L be the imaginary

quadratic field in Q(µl). Write αl = NQ(µl)/Lψ(ζl). The integer nl(ψ) defined
above satisfies α1+j

l = NQψ(ζl) = lnl(ψ). Hence, αl is contained in (P̃ψ
sn

)1 and
(P̃ψ

sn
)1+j
1 contains the subgroup Hψ = 〈lnl(ψ)〉 of Q× generated by the prime power

lnl(ψ). As stated in the introduction, for the index to be finite, it is assumed that
hsn

= 1. It follows that

〈lnl(ψ)〉 = Hψ ⊆ (P̃ψ
sn

)1+j
1 ⊆ (P̃ψ

sn
)Gsn

and by Proposition 2.7, (P̃ψ
sn

)Gsn is contained in NGsn
P̃ψ

sn
⊆ 〈NGsψ(ζl)〉 = 〈lnl(ψ)〉.

Hence, Hψ = (P̃ψ
sn

)1+j
1 and (Tψ

sn
)Gsn = 2−1(2−1nl(ψ) log l) · s(Gsn)Z. By compar-

ing the formulas e1T
ψ
sn

and (Tψ
sn

)Gsn , we obtain the index formula of Lemma 3.3.
2

Here, we define notions that will be used in the proof of Theorem 1.1. Write
uψ(r) = −2−1 log |ψ(ζr)|, for r ∈ Q\1. Then for each even nontrivial Dirichlet char-
acter χ associated with k, uψ(χ) =

∑
(a,f)=1 χ(a)uψ(a/f) = −2−1

∑
(a,f)=1 χ(a) log

|ψ(ζa
f )| = tψ(χ). Let χ be the complex conjugate of the primitive Dirichlet character

associated with χ. Write wψ =
∑

χ 6=1 uψ(χ)eχ, with the sum taken over the nontriv-
ial characters of Gsn . Let eχ denote the idempotent |Gsn |−1

∑
σ∈Gsn

χ(σ)σ−1 asso-
ciated with χ. Let σl =

∑
χ χ(l)eχ, and let Hf denote the subgroup of Gsn consist-

ing of the elements σt, with (t,m) = 1 and t ≡ 1 mod f . By Proposition 2.1 of Sin-
nott in [14], Tψ

sn
satisfies (1− e1)Tψ

sn
= wψW , where W denotes the Z[Gsn ]-module

generated in C[Gsn ] by the elements s(Hf )
∏

l|f (1−σl), 1 ≤ f ≤ sn, f |sn. As in the
introduction, let vl denote the l-adic valuation defined as vl(l) = 1 and let |.|l denote
the l-adic absolute value normalized by |l|l = 1/l. For a finite set S, #(S) denotes
the cardinality of S. From Usn/C̃ψ

sn
∼= U+

sn
/(Cψ

sn
)+ ∼= t(Usn)/t(C̃ψ

sn
) and Theo-

rem 4.1 of [14] and Lemma 3.3, we have that the index (t(Usn) : t(C̃ψ
sn

)) is equal to
(t(Usn) : e+Z[Gsn ]Gsn

)(e+Z[Gsn ]Gsn
: e+WGsn

)(e+WGsn
: (1−e1)Tψ

sn
)((1−e1)Tψ

sn
:

(Tψ
sn

)Gsn
). It is known that the first two indices are finite and independent of our

ψ. The last index is Lemma 3.3, and hence it remains to compute the index
(e+WGn : (1− e1)Tψ

sn
). Note that (1− e1)Tψ

sn
⊂ X := (1− e1)e+R[Gsn ]. It follows

from (1 − e1)Tψ
sn

= wψW and (1 − e1)e+x = x for any x ∈ X that (1 − e1)Tψ
sn

=
wψ(1−e1)Tψ

sn
. It also follows from ibid that (1−e1)W = WGn . The linear transfor-

mation Aψ on X induced by Aψ(x) = wψx and hence Aψ(e+WGn) = (1 − e1)Tψ
sn

.
Hence, the index is finite if and only if det(Aψ) =

∏+
χ6=1 tψ(χ) 6= 0. In this case, the

index is equal to det(Aψ) =
∏+

χ6=1 tψ(χ). As in the introduction, F(sn) denotes the
group generated by f(ζ) for all f in F and all ζ in µ∗sn

. Then F(sn) contains the
circular numbers Psn of Q(µsn). As l - φ(s), the index (F(sn) : Psn) is finite by The-
orem A of [10]. Hence, there is an integer q prime to φ(s) such that C̃ψ(sn)q ⊆ Psn .
If tψ(χ) 6= 0 for all χ ∈ Ξ, then C̃ψ(sn)q has also a finite index in the global units
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Usn and hence (C̃ψ(sn)q : Psn) is finite. The formula above shows that we can
compute the indices (U ′

sn
: C̃ψ(sn)q) = (Usn

: (C̃ψ
sn

)q) = (t(Usn
) : t((C̃ψ

sn
)q)) and

(U ′
sn

: Psn
) = (Usn

: Csn
) = (t(Usn

) : t(Csn
)). The l-primary part of Psn

/C̃ψ(sn)q

is trivial as q is prime to l. Hence (Psn [l] : C̃ψ(sn)q[l]) = (Psn [l] : C̃ψ(sn)[l]). We
have the following indices,

(Csn
[l] : C̃ψ

sn
[l]) = (t(Csn

[l]) : t(C̃ψ
sn

[l])) =
(t(Usn

[l]) : t(C̃ψ
sn

[l]))
(t(Usn

[l]) : t(Csn
[l]))

=| det(Aψ)
det(Aξ)

|l

which, by det(Aψ) =
∏+

χ6=1 tψ(χ), is equal to,

|
∏

χ∈Ξ t(χ)∏
χ∈Ξ tψ(χ)

|l = |
∏

χ∈Ξ

t(χ)tψ(χ)−1 |l .

From the isomorphism C̃ψ
sn

/Cψ
sn

= Cψ
sn

µsn
/Cψ

sn
∼= µsn

/µsn

⋂
Cψ

sn
, we prove the

second index formula,

(Csn
[l] : Cψ

sn
[l]) = lvl(θsn )(t(Csn

[l]) : t(C̃ψ
sn

[l])) = lvl(θsn ) (t(Usn
[l]) : t(C̃ψ

sn
[l]))

(t(Usn
[l]) : t(Csn

[l]))

where θsn denotes the cardinality #(µsn/µsn

⋂
Cψ

sn
). Finally from the equality that

(Psm [l] : Pψ
sm

[l]) = lvl(NQ(ψ(ζsm )))(Csm [l] : Cψ
sm

[l]), we have

(Psm [l] : Pψ
sm

[l]) = lvl(NQ(ψ(ζsm )))|θsn

∏
χ∈Ξ t(χ)∏

χ∈Ξ tψ(χ)
|l

which proves the first index formula. This recovers the proof of Theorem 1.1. 2

Remark. As we mentioned in the introduction, our results in this study are valid
when the circular distributions are replaced by the truncated Euler systems of a
certain depth. We briefly recall truncated Euler systems of a fixed depth r(cf. [13]).
Let K be an abelian extension of F containing the Hilbert class field of F . Let
IrK/F be the set of square free integral fractional ideals a of F , such that each
prime p dividing a has an absolute degree one and splits completely in K, and the
number of primes dividing a is less than or equal to r. For each prime ideal p of
F , let F (p) denote the ray class field of F modulo p, and for an integral fractional
ideal a, let F (a) denote the composite field of F (p) for all prime divisors p of a.
Let K(a) be the composite of K and F (a). We define truncated Euler systems
Er

K/F of depth r to be the set of maps ψ from IrK/F to a fixed algebraic closure
Qalg, such that for each m, n ∈ IrK/F with n|m, ψ(m) ∈ K(m), NK(m)/K(n)ψ(m)

is equal to ψ(n)
∏

p|m,p-n(1−Frob−1
p ), and ψ(np) is congruent to ψ(n) modulo primes

over p, whenever n is prime to p. Write Er
Q for Er

K/F when F = K = Q. Let
Clsm denote the ideal class group of km and let rankQl

Clsm [l] denote the Ql-rank of
Clsm [l]⊗Zl

Ql. Based on these definitions, if r ≥ rankQl
Clsm [l], then all the results

in this note are valid when the circular distributions are replaced by the truncated
Euler systems Er

Q of depth r. This follows from the fact(cf. ibid) that under the
assumption r ≥ rankQl

Cl[l] and l - φ(s), we have the following equality,

Er
Q(sm)⊗ Zl = Psm ⊗ Zl,

where Er
Q(sm) denotes the set { ψ(ζ) | ψ ∈ Er

Q, ζ ∈ µsm} of all special numbers
coming from truncated Euler systems Er

Q of depth r.
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