ON FORMULAS FOR THE INDEX OF THE CIRCULAR DISTRIBUTIONS

SOOGIL SEO

Abstract

A circular distribution is a Galois equivariant map ψ from the roots of unity μ_{∞} to an algebraic closure of \mathbb{Q} such that ψ satisfies product conditions, $\prod_{\zeta^{d}=\epsilon} \psi(\zeta)=\psi(\epsilon)$ for $\epsilon \in \mu_{\infty}$ and $d \in \mathbb{N}$, and congruence conditions for each prime number l and $s \in \mathbb{N}$ with $(l, s)=1, \psi(\epsilon \zeta) \equiv \psi(\zeta)$ modulo primes over l for all $\epsilon \in \mu_{l}, \zeta \in \mu_{s}$, where μ_{l} and μ_{s} denote respectively the sets of l th and s th roots of unity. For such ψ, let P_{s}^{ψ} be the group generated over $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{s}\right) / \mathbb{Q}\right)\right]$ by $\psi(\zeta), \zeta \in \mu_{s}$ and let C_{s}^{ψ} be $P_{s}^{\psi} \bigcap U_{s}$, where U_{s} denotes the global units of $\mathbb{Q}\left(\mu_{s}\right)$. We give formulas for the indices $\left(P_{s}: P_{s}^{\psi}\right)$ and $\left(C_{s}: C_{s}^{\psi}\right)$ of P_{s}^{ψ} and C_{s}^{ψ} inside the circular numbers P_{s} and units C_{s} of Sinnott over $\mathbb{Q}\left(\mu_{s}\right)$.

1991 Mathematics Subject Classification: 11R18, 11S23, 11R27, 11R29, 11S31, 11R34, 11R37.

1. Introduction

Circular distributions of Coleman(cf. [2]) arise in various contexts in number theory. In particular, they give rise to Euler systems (cf. [5]) and higher special units over number fields(cf. [11]). They play a role in connecting the structure of the ideal class group with that of a certain quotient of special units of an abelian number field. Circular distributions can also be characterized using an Archimedean place(cf. [2]). One of the fundamental questions of this paper is computation of the indices between the circular units coming from various circular distributions. Let μ_{s} be the set of s th roots of unity and let ζ_{s} be a primitive s th root of unity in a fixed algebraic closure $\mathbb{Q}^{\text {alg }}$ of \mathbb{Q}. Let $\mu_{\infty}=\bigcup_{s \in \mathbb{N}} \mu_{s}$ and $\mu_{s}^{*}=\mu_{s} \backslash\{1\}, \mu_{\infty}^{*}=\mu_{\infty} \backslash\{1\}$, where \mathbb{N} is the set of positive integers. A circular distribution after Coleman is a Galois equivariant map f from μ_{∞}^{*} to $\mathbb{Q}^{\text {alg }}$ such that f satisfies product conditions,

$$
\prod_{\zeta^{d}=\epsilon} f(\zeta)=f(\epsilon), \text { for } \epsilon \in \mu_{\infty}^{*} \text { and } d \in \mathbb{N}
$$

and congruence conditions for each prime number l and $s \in \mathbb{N}$ with $(l, s)=1$,

$$
f(\epsilon \zeta) \equiv f(\zeta) \text { modulo primes over } l
$$

for all $\epsilon \in \mu_{l}^{*}, \zeta \in \mu_{s}^{*}$. Let \mathcal{F} denote the set of all circular distributions. Let $R_{s}=$ $\mathbb{Z}\left[G\left(\mathbb{Q}\left(\mu_{s}\right) / \mathbb{Q}\right)\right]$ be the group ring of the Galois group $G\left(\mathbb{Q}\left(\mu_{s}\right) / \mathbb{Q}\right)$ and $R_{\infty}=\lim _{s} R_{s}$ be the projective limit of R_{s} with respect to the natural restriction maps. Then R_{∞} acts naturally on the group \mathcal{F}. In this note, l denotes a fixed odd prime. For an abelian group A, we denote by $A[l]$ the profinite l-completion $\lim A / A^{l^{n}}$ of A. For any subgroup of the global units of a number field being finitely generated as a \mathbb{Z}-module, its profinite l-completion can be identified with the tensor product with \mathbb{Z}_{l}. Let $\mathcal{F}(s)$ be the group generated by $f(\zeta)$ for all f in \mathcal{F} and all ζ in μ_{s}^{*} and let
\mathcal{F}_{s} be the intersection of $\mathcal{F}(s)$ and the global units of $\mathbb{Q}\left(\mu_{s}\right)$. Then $\mathcal{F}(s)$ and \mathcal{F}_{s} contain respectively the circular numbers P_{s} and the circular units C_{s} of $\mathbb{Q}\left(\mu_{s}\right)$ in the sense of Sinnott, as defined in [14] and [15]. In this paper, we let s_{n} denote l^{n+1}. Let $k=k_{0}=\mathbb{Q}\left(\mu_{s_{0}}\right)$ and $k_{n}=\mathbb{Q}\left(\mu_{s_{n}}\right)$ be the intermediate field of the cyclotomic \mathbb{Z}_{l}-extension $k_{\infty}=\bigcup_{n} k_{n}$ of degree l^{n} over k_{0}. In fact, we have

$$
\mathcal{F}\left(s_{n}\right)[l]=P_{s_{n}}[l], \quad \mathcal{F}_{s_{n}}[l]=C_{s_{n}}[l]
$$

for all $n \in \mathbb{N} \bigcup\{0\}(c f .[10])$, where $P_{s_{n}}$ and $C_{s_{n}}$ denote the circular numbers and the circular units respectively of k_{n} in the sense of Sinnott. For each ψ in \mathcal{F}, let $P_{s_{n}}^{\psi}$ be the group generated over $R_{s_{n}}$ by $\psi(\zeta), \zeta \in \mu_{s_{n}}^{*}$, and let $C_{s_{n}}^{\psi}=P_{s_{n}}^{\psi} \cap U_{s_{n}}$, where $U_{s_{n}}$ denotes the global units of k_{n}. Then from the above equation, we have

$$
P_{s_{n}}^{\psi}[l] \subseteq P_{s_{n}}[l], \quad C_{s_{n}}^{\psi} \subseteq C_{s_{n}}[l]
$$

for all $n \in \mathbb{N} \bigcup\{0\}$. The group ring $R_{s_{n}}$ acts naturally on the groups $P_{s_{n}}^{\psi}$ and $C_{s_{n}}^{\psi}$. Let ξ be the element of \mathcal{F} defined by $\xi(\zeta)=1-\zeta, \zeta \in \mu_{\infty}^{*}$. Notice that $P_{s_{n}}^{\xi}$ and $C_{s_{n}}^{\xi}$ are the circular numbers $P_{s_{n}}$ and the circular units $C_{s_{n}}$ of k_{n}. We compute formulas for the indices of the ψ-circular numbers $P_{s_{n}}^{\psi}$ and units $C_{s_{n}}^{\psi}$ coming from a single circular distribution ψ of \mathcal{F} rather than the whole circular units $\mathcal{F}_{s_{n}}$ inside the circular numbers $P_{s_{n}}$ and units $C_{s_{n}}$. Suppose that l is prime to $\phi(s)$, the Euler phi function. Let

$$
h_{s_{n}}=\left[k_{n}: \mathbb{Q}\left(\psi\left(\zeta_{s_{n}}\right)\right)\right]
$$

be the degree of the field extension $k_{n} / \mathbb{Q}\left(\psi\left(\zeta_{s_{n}}\right)\right)$. Notice that if $h_{s_{n}}>1$ for infinitely many numbers n, then $\psi\left(\zeta_{s_{n}}\right)$ is a root of unity for all n (cf. [12]). By Dirichlet's unit theorem, in order for the index $\left(C_{s_{n}}: C_{s_{n}}^{\psi}\right)$ to be finite, ψ must satisfy the assumption that $\psi\left(\zeta_{s_{n}}\right) \notin \mu_{s_{n}}$, and $h_{s_{n}}=1$ as well. Hence in this note, we will assume that $h_{s_{n}}=1$. Let Ξ be the set of nontrivial Dirichlet characters of $\mathbb{Q}\left(\mu_{s_{n}}\right)$, which are even, i.e., $\chi(-1)=1$. If χ in Ξ is of conductor f, then for each $\psi \in \mathcal{F}$, we write

$$
t^{\psi}(\chi)=-2^{-1} \sum_{(a, f)=1} \chi(a) \log \left|\psi\left(\zeta_{f}^{a}\right)\right|
$$

We write $t(\chi)=t^{\xi}(\chi)$. Let $\mathcal{O}_{k_{n}}$ denote the ring of integers of k_{n}. For each prime l, we define the sign,

$$
\operatorname{sgn}_{l}(\psi)=v_{\mathfrak{l}_{n}}\left(\psi\left(\zeta_{l^{n}}\right)\right)
$$

of ψ at l to be the $\mathfrak{l}_{n^{-}}$-adic valuation $v_{\mathfrak{l}_{n}}\left(\psi\left(\zeta_{l^{n}}\right)\right)$ of $\psi\left(\zeta_{l^{n}}\right)$, where \mathfrak{l}_{n} is the unique prime of $\mathbb{Q}\left(\mu_{l^{n}}\right)$ lying over l and $v_{\mathfrak{l}_{n}}$ is the discrete valuation of k_{n} associated to \mathfrak{l}_{n} defined as $\alpha \mathcal{O}_{k_{n}}=\mathfrak{l}_{n}^{v_{\tau_{n}}}(\alpha) \mathfrak{a}$ with $\left(\mathfrak{a}, \mathfrak{l}_{n}\right)=1$. According to the product conditions of circular distributions, $\operatorname{sgn}_{l}(\psi)$ does not depend on n. It depends only on ψ and prime l. Let v_{l} denote the l-adic valuation defined as $v_{l}(l)=1$ and let $|\cdot|_{l}$ denote the l-adic absolute value normalized by $|l|_{l}=1 / l$. For a finite set S, we denote by $\#(S)$ the cardinality of S.

Theorem 1.1. $P_{s_{n}}^{\psi}[l]$ and $C_{s_{n}}^{\psi}[l]$ are contained in $P_{s_{n}}[l]$ and $C_{s_{n}}[l]$, respectively. Suppose that $\operatorname{sgn}_{l}(\psi) \neq 0$, and $t^{\psi}(\chi) \neq 0$ for all $\chi \in \Xi$, then the ψ-numbers $P_{s_{n}}^{\psi}[l]$ and the ψ-units $C_{s_{n}}^{\psi}[l]$ have finite indices in $P_{s_{n}}[l]$ and $C_{s_{n}}[l]$, respectively. Conversely, if $P_{s_{n}}^{\psi}[l]$ and $C_{s_{n}}^{\psi}[l]$ have finite indices respectively in $P_{s_{n}}[l]$ and $C_{s_{n}}[l]$, then we have $\operatorname{sgn}_{l}(\psi) \neq 0$, and $t^{\psi}(\chi) \neq 0$ for all $\chi \in \Xi$. In this case, we have the
following formulas,

$$
\begin{gathered}
\left(P_{s_{n}}[l]: P_{s_{m}}^{\psi}[l]\right)=l^{v_{l}\left(N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)}\left|\theta_{s_{n}} \prod_{\chi \in \Xi} t(\chi) t^{\psi}(\chi)^{-1}\right|_{l} \\
\left(C_{s_{n}}[l]: C_{s_{n}}^{\psi}[l]\right)=\left|\theta_{s_{n}} \frac{\prod_{\chi \in \Xi} t(\chi)}{\prod_{\chi \in \Xi} t^{\psi}(\chi)}\right|_{l}=\left|\theta_{s_{n}} \prod_{\chi \in \Xi} t(\chi) t^{\psi}(\chi)^{-1}\right|_{l}
\end{gathered}
$$

where $\theta_{s_{n}}=\#\left(\mu_{s_{n}} / \mu_{s_{n}} \cap C_{s_{n}}^{\psi}\right)$.
In $\S 2$, we compute the cohomology groups of the circular numbers and circular units and relate it to the Λ-module structures of the inverse limits of circular numbers and units. We give the outline of the proof of Theorem 1.1.

In the appendix, we apply Sinnott's argument to compute the index of the ψ circular numbers and units using the cohomology groups of ψ-circular numbers and units, and hence recover the proof of Theorem 1.1. Finally, we remark that if r is bigger than or equal to the rank $\operatorname{rank}_{\mathbb{Q}_{l}} \mathrm{Cl}_{s_{n}}[l]$ of \mathbb{Q}_{l}-vector space $\mathrm{Cl}_{s_{n}}[l] \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$ of the l-primary part $\mathrm{Cl}_{s_{n}}[l]$ of the ideal class group $\mathrm{Cl}_{s_{n}}$ of $\mathbb{Q}\left(\mu_{s_{n}}\right)$, then all the results in this note remain valid when the circular distributions are replaced by the truncated Euler systems $\mathcal{E}_{\mathbb{Q}}^{r}$ of depth r (cf. [13]). The notion of $\mathcal{E}_{\mathbb{Q}}^{r}$ will be briefly introduced at the end of the appendix.

Acknowledgement: The author is grateful to the referee for helpful comments on an earlier version of this paper.

2. Cohomology of circular distributions

For a finitely generated \mathbb{Z}-module A, let \bar{A} be the quotient of A by the torsion subgroup $A_{\text {tor }}, \bar{A}=A / A_{\text {tor }}$. Let $k=k_{0}$ be the cyclotomic field $\mathbb{Q}\left(\mu_{s}\right)$ or $\mathbb{Q}\left(\mu_{s l}\right)$ according as s is divisible by l or not. Let k_{∞} be the cyclotomic \mathbb{Z}_{l}-extension of k with its unique subfield $k_{n}=\mathbb{Q}\left(\mu_{s_{n}}\right)$, which is fixed by the Galois group $\Gamma^{l^{n}}$ where $\Gamma=G\left(k_{\infty} / k\right)$. Let $\bar{C}_{\infty}[l]$ be the inverse limit of $\bar{C}_{s_{n}}[l]$ with respect to the norm maps, where $C_{s_{n}}$ is the circular units of k_{n}. Then $\bar{C}_{\infty}[l]$ has a natural $R_{l \infty}$-module structure, where $R_{l^{\infty}}=\lim _{\rightleftarrows} \mathbb{Z}_{l}\left[G\left(k_{n} / \mathbb{Q}\right)\right]$ is the completed group ring of $G\left(k_{\infty} / \mathbb{Q}\right)$. The group $G\left(k_{\infty} / \mathbb{Q}\right)$ has a direct decomposition $G\left(k_{\infty} / \mathbb{Q}\right)=G\left(k_{\infty} / k\right) \times$ $G\left(k_{0} / \mathbb{Q}\right)$ into the l-part $G\left(k_{\infty} / k\right)$ and the prime to l-part $G\left(k_{0} / \mathbb{Q}\right)$. We have $R_{l \infty}=\Lambda\left[G\left(k_{0} / \mathbb{Q}\right)\right]$, where $\Lambda=\mathbb{Z}_{l}[[\Gamma]]=\lim _{\leftrightarrows} \mathbb{Z}_{l}\left[\Gamma / \Gamma_{n}\right]$, and $\Gamma_{n}=\Gamma^{l^{n}}$ is the unique subgroup of Γ of index l^{n}. We need the following theorem of Kuz'min.
Theorem 2.1 (=Theorem 1.1 of [7]). The groups $\bar{P}_{\infty}[l]$ and $\bar{C}_{\infty}[l]$ are free Λ modules of $\operatorname{rank} \frac{1}{2}\left[k_{0}: \mathbb{Q}\right]$.

For a number field F, let U_{F}^{\prime} be the l-units of F, i.e., the group of elements of F which are unit over the primes not dividing l. For any \mathbb{Z}_{l}-extension $F_{\infty}=\bigcup_{n} F_{n}$ of F, let $U_{s^{n}}^{\prime}$ be the l-units of F_{n} and let $\overline{U^{\prime}} \infty[l]=\lim _{\leftrightarrows} \overline{U^{\prime}}{ }_{s^{n}}[l]$ be the inverse limit of $\overline{U^{\prime}}{ }_{s^{n}}[l]$ with respect to the norm maps. The following theorem is due to Kuz'min.
Theorem 2.2 (=Theorem 7.2 of [6]). Suppose that F_{∞} / F is cyclotomic. Then $\overline{U^{\prime}}[l]$ is Λ-free of rank $r_{1}+r_{2}$, where r_{1}, r_{2} are the numbers of real places and complex places of F, respectively.

Note that Greither(cf. [3]) proved a more general theorem on $\overline{U^{\prime}}{ }_{\infty}[l]$ when F_{∞} / F is cyclotomic or F does not contain a primitive l th root of unity. In this case, it is
proved that $\overline{U^{\prime}} \infty[l]$ is Λ-free of rank $r_{1}+r_{2}+g$, where g is the number of primes lying over l, which split completely over F_{∞} / F.

Let $\overline{C_{\infty}^{\psi}}[l]$ be the inverse limit of $\overline{C_{s^{n}}^{\psi}}[l]$ with respect to the norm maps, where $C_{s^{n}}^{\psi}$ is the ψ-circular units of k_{n}. We need a proposition of Belliard(cf. [1]). In the proposition, G_{n} denotes $G\left(k_{n} / \mathbb{Q}\right)$.
Proposition 2.3 (=Proposition 1.3 of [1]). Let $M_{n} \subset L_{n}$ be $\mathbb{Z}_{l}\left[G_{n}\right]$-modules equipped with the natural norm map $N_{m, n}: L_{m} \rightarrow L_{n}$ and the extension map $i_{n, m}: L_{n} \rightarrow L_{m}$ satisfying the following properties:
(i) $L_{\infty}:=\lim L_{n}$ is Λ-free.
(ii) $i_{n, m}: L_{n} \rightarrow L_{m}^{G\left(k_{m} / k_{n}\right)}$ is injective.
(iii) Let M_{n} verify asymptotic Galois descent, i.e., $\exists N \in \mathbb{N}$ such that for all $m \geq n \geq N, M_{m}^{G\left(k_{m} / k_{n}\right)}=M_{n}$. Then $M_{\infty}:=\lim M_{n}$ is Λ-free.

For a circular distribution ψ, the product condition $\prod_{\zeta^{d}=\epsilon} \psi(\zeta)=\psi(\epsilon)$ for $\epsilon \in \mu_{\infty}$ and $d \in \mathbb{N}$, is known to be equivalent to the following conditions (cf. [9]). For any prime number, l, and square free integer, r, with $(r, l)=1$,

$$
N_{\mathbb{Q}\left(\mu_{l r}\right) / \mathbb{Q}\left(\mu_{r}\right)} \psi\left(\zeta_{l} \zeta_{r}\right)=\psi\left(\zeta_{r}\right)^{\mathrm{Fr}_{l}-1}
$$

and for $n-i \geq 1$,

$$
N_{\mathbb{Q}\left(\mu_{l^{n} r}\right) / \mathbb{Q}\left(\mu_{l^{n-1_{r}}}\right)} \psi\left(\zeta_{l^{n}} \zeta_{r}\right)=\psi\left(\zeta_{l^{n-1}} \zeta_{r}^{l}\right)
$$

where Fr_{l} is the Frobenius at l. In the sections to follow, we often use these equivalent conditions rather than the product conditions. In the following proposition, we give a necessary and sufficient condition for the 0th Tate cohomology group of the ψ-circular units to be trivial. The proof follows from arguments similar to those used for Theorem 2.2 of Belliard(cf. [1]) and Lemma 4.2 of Nguyen Quang Do(cf. [8]).

Proposition 2.4. Suppose $\left(\bar{C}_{\infty}[l] / \bar{C}_{\infty}^{\psi}[l]\right)^{\Gamma_{n}}<\infty$, for all $n \in \mathbb{N}$. Then the following two statements are equivalent.
(i) There exists a positive integer N such that $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{C_{s_{m}}^{\psi}}[l]\right)$ is trivial for all $m \geq n \geq N$.
(ii) $\bar{C}_{\infty}^{\psi}[l]$ is a Λ-free module.

Proof. If $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{C_{s_{m}}^{\psi}}[l]\right)=0$, then $\left(\overline{C_{s_{m}}^{\psi}}[l]\right)^{G\left(k_{m} / k_{n}\right)}=N_{k_{m} / k_{n}} \overline{C_{s_{m}}^{\psi}}[l]$, which is equal to $\overline{C_{s_{n}}^{\psi}}[l]$ by the assumption on l. By Theorem 2.2 and Proposition 2.3, $\bar{C}_{\infty}^{\psi}[l]$ is a Λ-free module. Suppose now that $\bar{C}_{\infty}^{\psi}[l]$ is a Λ-free module. Let π be the natural projection from U_{∞} into U_{k}. We denote the group $\pi\left(U_{\infty}\right)$ of norm coherent units by U_{k}^{coh}, and similarly for $U_{s_{n}}^{\mathrm{coh}}$ and

$$
\left(C_{s_{n}}^{\psi}\right)^{\mathrm{coh}}=C_{s_{n}}^{\psi} \bigcap U_{s_{n}}^{\mathrm{coh}}
$$

for the coherent global units and coherent ψ-circular units of k_{n}, respectively. When $\psi=\xi$, the following lemma is the same as Lemma 2.5 of Belliard(cf. [1]). For a general ψ, it follows easily from the same argument. We leave the proof of the following lemma to the reader.

Lemma 2.5. Let K be a number field and K_{∞} / K be a \mathbb{Z}_{l}-extension. Let K_{n} be the unique subfield of K_{∞}, which has degree l^{n} over K. Let $n \in \mathbb{N}$ and let I_{n} be the
inertia field of K_{n} at l. Then we have

$$
\overline{C_{n}^{\psi}}[l]=\overline{C_{I_{n}}^{\psi}}[l]\left(\overline{C_{n}^{\psi}}\right)^{\mathrm{coh}}[l] .
$$

If we let I denote the inertia field of p in K_{∞} then we have $I \subset K_{n}$:

$$
\overline{C_{n}^{\psi}}[l]=\overline{C_{I}^{\psi}}[l]\left(\overline{C_{n}^{\psi}}\right)^{\operatorname{coh}}[l] .
$$

It follows from the above Lemma that if l is totally ramified in k then the ψ circular units of k_{n} are norm coherent. It follows from the exact sequence $0 \rightarrow$ $C_{\infty}^{\psi}[l] \rightarrow \overline{U^{\prime}}{ }_{\infty}[l] \rightarrow \overline{U^{\prime}}[l] / C_{\infty}^{\psi}[l] \rightarrow 0$ and Theorem 2.2 and the snake lemma that $0 \rightarrow\left(\overline{U^{\prime}} \infty[l] / \overline{C_{\infty}^{\psi}}[l]\right)^{\Gamma_{n}} \rightarrow\left(\overline{C_{\infty}^{\psi}}[l]\right)_{\Gamma_{n}} \rightarrow\left(\overline{U_{\infty}^{\prime}}[l]\right)_{\Gamma_{n}}$. As Λ is noetherian, there is N such that $\left(\overline{U^{\prime}}[l] / \overline{C_{\infty}^{\psi}}[l]\right)^{\Gamma_{n}}=\left(\overline{U_{\infty}^{\prime}}[l] / \overline{C_{\infty}^{\psi}}[l]\right)^{\Gamma_{N}}$ for all $n \geq N$. Theorem 7.3 of Kuz'min in [6] tells us that the natural map $\left(\overline{U^{\prime}}{ }_{\infty}[l]\right)_{\Gamma_{n}} \rightarrow \overline{U^{\prime}}{ }_{s^{n}}[l]$ is injective. Hence, we obtain an exact sequence,

$$
0 \rightarrow\left(\overline{U^{\prime}}[l] / \overline{C_{\infty}^{\psi}}[l]\right)^{\Gamma_{N}} \rightarrow\left(\overline{C_{\infty}^{\psi}}[l]\right)_{\Gamma_{n}} \rightarrow\left(\overline{C_{s_{n}}^{\psi}}\right)^{\operatorname{coh}}[l] \rightarrow 0 .
$$

As $\overline{C_{\infty}^{\psi}}[l]$ is Λ-free, $\left(\overline{C_{\infty}^{\psi}}[l]\right)_{\Gamma_{n}}$ is $\underline{\mathbb{Z}_{l}\left[G\left(k_{m} / k_{n}\right)\right] \text {-free. Moreover, } G\left(k_{m} / k_{n}\right) \text { acts triv- }}$ ially on \mathbb{Z}_{l}-free module $\left(\overline{U^{\prime}}{ }_{\infty}[l] / C_{\infty}^{\psi}[l]\right)^{\Gamma_{N}}$. For all $n \geq N$, we have that the Tate cohomology $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{C_{m}^{\psi}}[l]\right)$ is isomorphic to $\left.\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{\left(C_{s_{m}}^{\psi}\right.}\right)^{\text {coh }}[l]\right)=$ $\widehat{H}^{1}\left(G\left(k_{m} / k_{n}\right),\left(\overline{U^{\prime}}[l] / \overline{C_{\infty}^{\psi}}[l]\right)^{\Gamma_{N}}\right)=0$. Let k_{n}^{+}be the maximal real subfield of k_{n}. For every subgroup A of k_{n}, we write $A^{+}:=A \bigcap k_{n}^{+}$for its intersection with k_{n}^{+}. Let $D_{n}:=\langle\mathfrak{l}| \mathfrak{l}|l\rangle \bigcap\left(\mathrm{Cl}_{n}^{+} \otimes \mathbb{Z}_{l}\right)$ be the subgroup of l-Sylow subgroup $\mathrm{Cl}_{n}^{+} \otimes \mathbb{Z}_{l}$ of k_{n}^{+}generated by the primes lying over l. Taking the inverse limits to the exact sequence $0 \rightarrow D_{n} \rightarrow \mathrm{Cl}_{n}^{+} \otimes \mathbb{Z}_{l} \rightarrow \mathrm{Cl}_{n}^{+} \otimes \mathbb{Z}_{l} / D_{n} \rightarrow 0$, we have an exact sequence, $0 \rightarrow D_{\infty} \rightarrow \mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l} \rightarrow$ Cokernel $\rightarrow 0$. As l is totally ramified, Γ_{n} acts trivially on D_{∞}. By the snake lemma, we have $0 \rightarrow D_{\infty} \rightarrow\left(\mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l}\right)^{\Gamma_{n}} \rightarrow(\text { Cokernel })^{\Gamma_{n}}$. Leopoldt conjecture, which is true for our abelian case, tells us that the second term $\left(\mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l}\right)^{\Gamma_{n}}$ is finite and hence so is D_{∞}. Write S_{n} for the set of primes of k_{n}^{+} lying over l. From the exact sequence $0 \rightarrow \overline{\left(U_{s_{n}}^{\prime}\right)^{+}}[l] / \overline{U_{s_{n}}^{+}}[l] \rightarrow \mathbb{Z}_{l}\left[S_{n}\right] \rightarrow D_{n} \rightarrow 0$, we have

$$
0 \rightarrow \overline{U_{\infty}^{+}}[l] / \overline{\left(C_{\infty}^{\psi}\right)^{+}}[l] \rightarrow\left(\overline{\left.U_{\infty}^{\prime}\right)^{+}}[l] /\left(\overline{\left.C_{\infty}^{\psi}\right)^{+}}\right)[l] \rightarrow \mathbb{Z}_{l}\left[S_{\infty}\right] \rightarrow D_{\infty} \rightarrow 0\right.
$$

where $\mathbb{Z}_{l}\left[S_{\infty}\right]=\lim _{\longleftarrow} \mathbb{Z}_{l}\left[S_{n}\right]=\mathbb{Z}_{l}\left[S_{0}\right]$ by the assumption on l. Since D_{∞} is finite, we have $0 \rightarrow \overline{U_{\infty}^{+}}[l] / \overline{\left(C_{\infty}^{\psi}\right)^{+}}[l] \rightarrow\left(\overline{\left.U_{\infty}^{\prime}\right)^{+}}[l] /\left(\overline{\left.C_{\infty}^{\psi}\right)^{+}}\right)[l] \rightarrow \mathrm{Fr} \rightarrow 0\right.$, where Fr is a free \mathbb{Z}_{l}-module with trivial Galois action. The snake lemma induces,

$$
0 \rightarrow\left(\overline{U_{\infty}^{+}}[l] \overline{\left(C_{\infty}^{\psi}\right)^{+}}[l]\right)^{\Gamma_{n}} \rightarrow\left(\left(\overline{\left.U_{\infty}^{\prime}\right)^{+}}[l] /\left(\overline{\left.C_{\infty}^{\psi}\right)^{+}}\right)[l]\right)^{\Gamma_{n}} \rightarrow \operatorname{Fr}^{\Gamma_{n}} .\right.
$$

Thanks to the Iwasawa main conjecture, $\left(\overline{U_{\infty}^{+}}[l] /\left(\overline{\left.C_{\infty}\right)^{+}}[l]\right)\right.$ and $\mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l}$ have the same characteristic ideal. For the latter group, $\mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l}$, its Galois coinvariant $\left(\mathrm{Cl}_{\infty}^{+} \otimes \mathbb{Z}_{l}\right)^{\Gamma_{n}}$ is finite by the Leopoldt conjecture. Hence, from the assumption, we have

$$
\overline{\left(\overline{U_{\infty}^{+}}[l] / \overline{\left(C_{\infty}^{\psi}\right)+}[l]\right)^{\Gamma_{n}}<\infty . . ~}
$$

If j denotes the complex conjugation then $N_{j}=1+j$ is the norm map from k_{n} to k_{n}^{+}. If α lies in the kernel of N_{j}, then $\alpha^{j}=\alpha^{-1}$, which implies that all the conjugates of α have an absolute value of one. Because the kernel is a subset of the
units, the kernel is the set $\mu\left(k_{n}\right)$ of all roots of unity in k_{n}. The exact sequence $0 \rightarrow \mu\left(k_{n}\right) \bigcap C_{s_{n}}^{\psi} \rightarrow C_{s_{n}}^{\psi} \xrightarrow{N_{j}}\left(C_{s_{n}}^{\psi}\right)^{+}$induces

$$
1 \longrightarrow \overline{C_{s_{n}}^{\psi}}[l] \longrightarrow \overline{\left(C_{s_{n}}^{\psi}\right)^{+}}[l] \longrightarrow \overline{\left(C_{s_{n}}^{\psi}\right)+}[l] / N \overline{C_{s_{n}}^{\psi}}[l] \longrightarrow 0
$$

and $\left(\left(C_{s_{n}}^{\psi}\right)^{+}\right)^{2} \subseteq N_{j} C_{s_{n}}^{\psi} \subseteq\left(C_{s_{n}}^{\psi}\right)^{+}$. For an odd prime l, we have $\overline{\left(C_{s_{n}}^{\psi}\right)^{+}}[l] / N_{j} \overline{C_{s_{n}}^{\psi}}[l]=$ $0, \overline{C_{s_{n}}^{\psi}}[l] \cong \overline{\left(C_{s_{n}}^{\psi}\right)^{+}}[l]$ and $\overline{C_{\infty}^{\psi}}[l] \cong \overline{\left(C_{\infty}^{\psi}\right)^{+}}[l]$. It follows that $\overline{\left(C_{\infty}^{\psi}\right)^{+}}[l]$ is a free Λ module under our assumption. Since $\overline{U_{\infty}^{+}}[l]$ is Λ-free(cf. [1]), $M:=\overline{U_{\infty}^{+}}[l] /\left(\overline{\left.C_{\infty}^{\psi}\right)^{+}}[l]\right.$ has a projective dimension less than or equal to one. Hence, the maximal finite submodule M_{0} must be trivial. From the exact sequence above, it follows that $\left(\overline{\left(U_{\infty}^{\prime}\right)^{+}}[l] /\left(\overline{\left.C_{\infty}^{\psi}\right)^{+}}[l]\right)^{\Gamma_{n}}\right.$ is isomorphic to a \mathbb{Z}_{l}-free module with trivial Galois action. Hence, we can apply the same argument for the maximal real subfield to obtain the following isomorphisms. The Tate cohomology $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{\left(C_{s_{m}}^{\psi}\right)+}[l]\right)$ is isomorphic to $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{\left.\left(\left(C_{s_{m}}^{\psi}\right)^{+}\right)^{\text {coh }}[l]\right) \text {, which is isomorphic to the first Tate }}\right.$ group $\widehat{H}^{1}\left(G\left(k_{m} / k_{n}\right),\left(\left(\overline{\left.U_{\infty}^{\prime}\right)^{+}}[l] / \overline{\left(C_{\infty}^{\psi}\right)^{+}}[l]\right)^{\Gamma_{N}}\right)\right.$, which is the trivial group. The isomorphism above shows that for all $m \geq n \geq N, \widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{C_{s_{m}}^{\psi}}[l]\right) \cong$ $\widehat{H}^{0}\left(G\left(k_{m} / k_{n}\right), \overline{\left(C_{s_{m}}^{\psi}\right)+[l]}\right)=0$. This completes the proof of Proposition 2.4.

Let ψ be a circular distribution in \mathcal{F}. As was defined in the introduction, let $P_{s_{n}}^{\psi}$ be the subgroup of the multiplicative group k_{n}^{\times}of k_{n} generated by the elements $\psi(\zeta)$ and $\mu_{s_{n}}$, for $\zeta \in \mu_{s_{n}}, \zeta \neq 1$, and let $P_{\infty}^{\psi}=\lim _{\rightleftarrows} P_{s_{n}}^{\psi}$. If $\operatorname{sgn}_{l}(\psi)=0$, then the index of circular numbers become infinity,

$$
\left(P_{s_{n}}[l]: P_{s_{n}}^{\psi}[l]\right)=\infty
$$

Hence, we will consider the case $\psi\left(\zeta_{s_{n}}\right)$ with $\operatorname{sgn}_{l}(\psi) \neq 0$. Notice that if $\psi\left(\zeta_{s_{n}}\right)$ is \mathbb{Z}-torsion, then P_{∞}^{ψ} is either trivial or \mathbb{Z}_{l}. Let δ_{m} be the degree of field extension $\left[\mathbb{Q}\left(\psi\left(\zeta_{s_{m}}\right)\right): \mathbb{Q}\right]$ and $h_{m}=\left[k_{m}: \mathbb{Q}\right] / \delta_{m}$. Notice that if $h_{m}>1$ for infinitely many numbers m, then $\psi\left(\zeta_{s_{m}}\right)$ is a root of unity for all m. Hence, if $\psi\left(\zeta_{s_{m}}\right)$ is \mathbb{Z}-torsion free then there is an integer N such that for all $m \geq N, h_{m}=1$. If the l-part of the index $\left(C_{s_{m}}[l]: C_{s_{m}}^{\psi}[l]\right)$ is finite, then ψ must satisfy the assumption that $\psi\left(\zeta_{s_{m}}\right) \notin \mu_{s_{m}}$ for an m and hence $\psi\left(\zeta_{s_{a}}\right) \notin \mu_{s_{a}}$ for all $a \geq m$ equivalently, and $h_{m}=1$ as we assumed in the introduction. The latter condition is asymptotically implied by the former condition in the following sense(cf. [12]).
Lemma 2.6. If $\psi\left(\zeta_{s_{m}}\right) \notin \mu_{s_{m}}$, then for all sufficiently large numbers $m, h_{m}=1$.
In order to apply the cohomology groups of circular distributions to the index formula in the next section, we determine the cohomology groups in the following proposition. When $\psi=\xi$, the cohomologies are well known(cf. [4]). For an arbitrary distribution ψ, we need more calculations. We give here a detailed proof in a selfcontained way.

Proposition 2.7. Suppose that the quotient $C_{s_{m}}[l] / C_{s_{m}}^{\psi}[l]$ is finite and $\operatorname{sgn}_{l}(\psi) \neq$ 0 . Then the Tate cohomology groups of ψ-circular units $C_{s_{m}}^{\psi}$ are

$$
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right)=0, \quad \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right)=\mathbb{Z} / \phi\left(s_{m}\right) \mathbb{Z}
$$

and the Tate cohomology groups of ψ-circular numbers $P_{s_{m}}^{\psi}$ are

$$
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)=0, \quad \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)=0 .
$$

Proof. Let $G=G\left(k_{m} / \mathbb{Q}\right), H=G\left(k_{m} / \mathbb{Q}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)$ and $\Delta=G / H$. We have a natural surjection from the group ring $\mathbb{Z}[\Delta]$ to $P_{s_{m}}^{\psi}$ via $e \rightarrow \psi\left(\zeta_{s_{m}}\right)$. If $I_{s_{m}}^{\psi}$ denotes the kernel of this surjection, then $\mathbb{Z}[\Delta] / I_{s_{m}}^{\psi} \cong P_{s_{m}}^{\psi}$. Since $I_{s_{m}}^{\psi}$ is the annihilator of $P_{s_{m}}^{\psi}$ inside $\mathbb{Z}[\Delta]$, each element $\sum_{\sigma \in \Delta} a_{\sigma} \sigma \in I_{m}^{\psi}$ must satisfy $\sum_{\sigma \in \Delta} a_{\sigma}=0$ from $\operatorname{sgn}_{l}(\psi) \neq 0$. It follows that $\left(I_{m}^{\psi}\right)^{G}=0$ and $\left(I_{m}^{\psi}\right)_{s(G)}=I_{m}^{\psi}$, and hence $\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), I_{s_{m}}^{\psi}\right)=0$. We have an exact hexagon

$$
\begin{aligned}
& \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), I_{m}^{\psi}\right) \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}[\Delta]\right) \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \rightarrow \\
& \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}[\Delta]\right) \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), I_{m}^{\psi}\right) \hookleftarrow
\end{aligned}
$$

induced from the exact sequence

$$
0 \longrightarrow I_{m}^{\psi} \longrightarrow \mathbb{Z}[\Delta] \longrightarrow P_{s_{m}}^{\psi} \longrightarrow 0 .
$$

It follows from the exact hexagon above that

$$
\widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)=0
$$

because the first cohomology group $\widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}[\Delta]\right)$ is trivial. From the assumption of $\operatorname{sgn}_{l}(\psi) \neq 0$, the absolute norm map $N_{\mathbb{Q}}=N_{k_{m} / \mathbb{Q}}$ induces an exact sequence,

$$
0 \longrightarrow C_{s_{m}}^{\psi} \longrightarrow P_{s_{m}}^{\psi} \longrightarrow \mathbb{Z} \longrightarrow 0
$$

where the last map is $N_{\mathbb{Q}}$, and \mathbb{Z} is the cyclic group generated by $N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)$. The exact sequence induces the exact hexagon.

$$
\begin{aligned}
& \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \rightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right) \rightarrow \\
& \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right) \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \leftarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \hookleftarrow
\end{aligned}
$$

From the remark above, the exact hexagon reduces to

$$
\begin{aligned}
& 0 \longrightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \longrightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \xrightarrow{N_{\mathbb{Q}}} \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right) \longrightarrow \\
& \longrightarrow
\end{aligned}
$$

First, we show that the map $N_{\mathbb{Q}}$ is injective. Let $\alpha \in\left(P_{s_{m}}^{\psi}\right)^{G\left(k_{m} / \mathbb{Q}\right)}$. Suppose that α belongs to the kernel of $N_{\mathbb{Q}}$. Then there is an integer r such that

$$
\alpha^{\phi\left(s_{m}\right)}=N_{\mathbb{Q}}(\alpha)=l^{n_{l} r \phi\left(s_{m}\right)}=N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)^{r \phi\left(s_{m}\right)}
$$

where n_{l} is the integer with $v_{l}\left(N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)=n_{l}$. Hence $\alpha= \pm N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)^{r}$ because both lie in the rational field and the roots of unity in the rational field are ± 1. Hence, the map is injective modulo ± 1. We can ignore this part because we will consider for the l-parts, an odd prime l. Hence, we have

$$
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right)=0
$$

The exact hexagon reduces to the following short exact sequence,

$$
0 \longrightarrow \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \xrightarrow{N_{\mathbb{Q}}} \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right) \longrightarrow \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \longrightarrow 0
$$

We now claim that $\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)$ is trivial, and hence $N_{\mathbb{Q}}$ is a trivial map. In order to confirm this, we first consider the short exact sequence above with ψ replaced by ξ. Then $n_{l}=1$ and \mathbb{Z} is generated by l, and $\left(P_{s_{m}}^{\xi}\right)^{G\left(k_{m} / \mathbb{Q}\right)}=$ $P_{s_{m}}^{G\left(k_{m} / \mathbb{Q}\right)}=l^{\mathbb{Z}}$, as $P_{s_{m}}^{G\left(k_{m} / \mathbb{Q}\right)}$ are l-units in the rational field containing $l^{\mathbb{Z}}$. The absolute norm map $N_{\mathbb{Q}}$ is then a trivial map from $P_{s_{m}}^{G\left(k_{m} / \mathbb{Q}\right)}=l^{\mathbb{Z}}$ to $\mathbb{Z} / \phi\left(s_{m}\right) \mathbb{Z}=$ $\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right)$ in the short exact sequence above. Hence, the first cohomology
$\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}\right)$ is a trivial group from the exact hexagon above. From this, we compute the first cohomology $\widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)$ using the Herbrand quotient. Since $l \nmid \phi(s), \mathcal{F}\left(s_{m}\right) / P^{\xi}\left(s_{m}\right)=\mathcal{F}\left(s_{m}\right) / P\left(s_{m}\right)$ is of order prime to l from Theorem A of [10] and hence $\mathcal{F}\left(s_{m}\right) \otimes \mathbb{Z}_{l}=P\left(s_{m}\right) \otimes \mathbb{Z}_{l}$. From this, a natural inclusion $P_{s_{m}}^{\psi}[l] \hookrightarrow P_{s_{m}}[l]$ follows. Then the cokernel is either infinite or finite. By applying the snake lemma to the exact sequences,

we have that $P_{s_{m}}[l] / P_{s_{m}}^{\psi}[l]$ is finite if and only if $C_{s_{m}}[l] / C_{s_{m}}^{\psi}[l]$ is finite and the top absolute norm map $N_{\mathbb{Q}}$ is non trivial, i.e., $\operatorname{sgn}_{l}(\psi) \neq 0$. In this case the indices of circular numbers and units are given as follows,

$$
\left(P_{s_{m}}[l]: P_{s_{m}}^{\psi}[l]\right)=l^{v_{l}\left(N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)}\left(C_{s_{m}}[l]: C_{s_{m}}^{\psi}[l]\right) .
$$

If it is infinite then the index $\left(C_{s_{m}}[l]: C_{s_{m}}^{\psi}[l]\right)$ is infinite and hence we exclude this case. By applying the Herbrand quotient $h_{G\left(k_{m} / \mathbb{Q}\right)}(-)$ to the short exact sequence

$$
0 \longrightarrow P_{s_{m}}^{\psi}[l] \longrightarrow P_{s_{m}}[l] \longrightarrow P_{s_{m}}[l] / P_{s_{m}}^{\psi}[l] \longrightarrow 0
$$

we have

$$
h_{G\left(k_{m} / \mathbb{Q}\right)}\left(P_{s_{m}}[l]\right)=h_{G\left(k_{m} / \mathbb{Q}\right)}\left(P_{s_{m}}^{\psi}[l]\right)
$$

since the quotient $P_{s_{m}}[l] / P_{s_{m}}^{\psi}[l]$ is finite. It follows from the triviality of the cohomologies $\widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right), \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}\right), \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}\right)$, and the equality $h_{G\left(k_{m} / \mathbb{Q}\right)}\left(P_{s_{m}}\right)=h_{G\left(k_{m} / \mathbb{Q}\right)}\left(P_{s_{m}}^{\psi}\right)$ that

$$
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}[l]\right)=0 .
$$

Let $G_{0}=G\left(k_{m} / k_{0}\right)$ be the l-Sylow subgroup of $G\left(k_{m} / \mathbb{Q}\right)$ and $G_{1}=G\left(k_{m} / \mathbb{Q}\right) / G_{0}$. As G_{0} is an l-group, we have $\widehat{H}^{0}\left(G_{0}, P_{s_{m}}^{\psi}\right)=\widehat{H}^{0}\left(G_{0}, P_{s_{m}}^{\psi}[l]\right)$. It follows that $\widehat{H}^{0}\left(G_{1},\left(P_{s_{m}}^{\psi}\right)^{G_{0}}\right)=0$ because the order of G_{1} is prime to l and $\widehat{H}^{0}\left(G_{1},\left(P_{s_{m}}^{\psi}\right)^{G_{0}}\right)$ is of order l-power. From the following equality,

$$
1=\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}[l]\right)=\left(P_{s_{m}}^{\psi}[l]\right)^{G\left(k_{m} / \mathbb{Q}\right)} / N_{k_{m} / \mathbb{Q}} P_{s_{m}}^{\psi}[l]
$$

which is equal to $\left(\left(P_{s_{m}}^{\psi}[l]\right)^{G_{1}}\right)^{G_{0}} / N_{G_{0}}\left(N_{G_{1}} P_{s_{m}}^{\psi}[l]\right)$ and by applying the triviality of $\widehat{H}^{0}\left(G_{1}, P_{s_{m}}^{\psi}\right)=\widehat{H}^{0}\left(G_{1}, P_{s_{m}}^{\psi}[l]\right)$, we have

$$
1=\left(\left(P_{s_{m}}^{\psi}[l]\right)^{G_{1}}\right)^{G_{0}} / N_{G_{0}}\left(P_{s_{m}}^{\psi}[l]\right)^{G_{1}}=\widehat{H}^{0}\left(G_{0}, P_{s_{m}}^{\psi}[l]^{G_{1}}\right)=\widehat{H}^{0}\left(G_{0},\left(P_{s_{m}}^{\psi}\right)^{G_{1}}[l]\right)
$$

Since G_{0} is an l-group and $\widehat{H}^{0}\left(G_{1}, P_{s_{m}}^{\psi}\right)$ is a trivial group, it reduces to

$$
\widehat{H}^{0}\left(G_{0},\left(P_{s_{m}}^{\psi}\right)^{G_{1}}\right)=\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)
$$

Hence we obtain

$$
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right)=1
$$

It follows from the reduced exact hexagon that $\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right)=0$, and

$$
\widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \cong \widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \mathbb{Z}\right)=\mathbb{Z} / \phi\left(s_{m}\right) \mathbb{Z}
$$

This completes the proof of Proposition 2.7.

Notice that the structure of cohomology groups in Proposition 2.7 is not valid without the finiteness condition on $C_{s_{m}}[l] / C_{s_{m}}^{\psi}[l]$. Write $s\left(G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)\right)$ for the sum in $\mathbb{Z}\left[G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)\right]$ of elements of $G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)$. Let $\psi(\zeta)=(1-\zeta)^{\tilde{N}_{l}}$, where \tilde{N}_{l} is a fixed preimage $\pi^{-1}\left(s\left(G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)\right)\right)$ of $s\left(G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)\right)$ under the natural projection map π from the Galois group $G\left(\mathbb{Q}\left(\mu_{\infty}\right) / \mathbb{Q}\right)$ of the maximal abelian extension $\mathbb{Q}\left(\mu_{\infty}\right)$ to the Galois group $G\left(\mathbb{Q}\left(\mu_{l}\right) / \mathbb{Q}\right)$. In this case, $\widehat{H}^{0}\left(G\left(k_{0} / \mathbb{Q}\right), P_{s_{0}}^{\psi}\right)=\mathbb{Z} /(l-1) \mathbb{Z}$. Hence, in general, the cohomology groups vary depending on ψ. As l is an odd prime, it follows that for $i=1,2$ and any subgroup μ of $\mu_{s_{m}}$, the cohomology group $\widehat{H}^{i}\left(G\left(k_{m} / \mathbb{Q}\right), \mu\right)$ is trivial. From this and the short exact sequences $0 \rightarrow$ $\mu_{s_{m}} \cap C_{s_{m}}^{\psi} \rightarrow C_{s_{m}}^{\psi} \rightarrow \overline{C_{s_{m}}^{\psi}} \rightarrow 0$, and $0 \rightarrow \mu_{s_{m}} \cap P_{s_{m}}^{\psi} \rightarrow P_{s_{m}}^{\psi} \rightarrow \overline{P_{s_{m}}^{\psi}} \rightarrow 0$ induce the following isomorphisms
$\widehat{H}^{i}\left(G\left(k_{m} / \mathbb{Q}\right), C_{s_{m}}^{\psi}\right) \cong \widehat{H}^{i}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{C_{s_{m}}^{\psi}}\right), \widehat{H}^{i}\left(G\left(k_{m} / \mathbb{Q}\right), P_{s_{m}}^{\psi}\right) \cong \widehat{H}^{i}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{P_{s_{m}}^{\psi}}\right)$.
Hence, Proposition 2.7 leads to the following corollary.
Corollary 2.8. Under the assumptions of Proposition 2.7, we have

$$
\begin{gathered}
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{C_{s_{m}}^{\psi}}\right)=0, \quad \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{C_{s_{m}}^{\psi}}\right)=\mathbb{Z} / \phi\left(s_{m}\right) \mathbb{Z} \\
\widehat{H}^{0}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{P_{s_{m}}^{\psi}}\right)=0, \quad \widehat{H}^{1}\left(G\left(k_{m} / \mathbb{Q}\right), \overline{P_{s_{m}}^{\psi}}\right)=0 .
\end{gathered}
$$

In the next section, we will find certain conditions on $\operatorname{sgn}_{l}(\psi), h_{m}$ and characters where the finiteness of indices is satisfied. As a direct consequence of Propositions 2.4, 2.7, we infer that if the quotient $C_{s_{m}}[l] / C_{s_{m}}^{\psi}[l]$ is finite then $\bar{C}_{\infty}^{\psi}[l]$ is Λ free. From the assumption of l and Corollary 2.8 we have that $\left(\overline{P_{s_{m}}^{\psi}}[l]\right)^{G\left(k_{m} / k_{n}\right)}=$ $N_{k_{m} / k_{n}} \overline{P_{s_{m}}^{\psi}}[l]$, which is equal to $\overline{P_{s_{n}}^{\psi}}[l]$. By Theorem 2.2 and Proposition $2.3, \bar{P}_{\infty}^{\psi}[l]$ is a Λ-free module. We derive the following corollary, which asserts that $\bar{P}_{\infty}^{\psi}[l]$ and $\bar{C}_{\infty}^{\psi}[l]$ are Λ-free.
Corollary 2.9. Under the assumptions of Proposition 2.7, we have that $\bar{P}_{\infty}^{\psi}[l]$ and $\bar{C}_{\infty}^{\psi}[l]$ are Λ-free.

From this freeness result, we can outline the proof of Theorem 1.1.
Sketch of the proof of Theorem 1.1. With simplified notation, let $\bar{C}_{\infty}[l]$ be generated over R_{∞} by ξ_{∞}, and $\bar{C}_{\infty}^{\psi}[l]$ by ψ_{∞}. Then there is a unique $\alpha \in R_{\infty}$ with $\psi_{\infty}=\xi_{\infty} \alpha$. By applying an even character χ plus the logarithmic embedding explained in the appendix to this we see that $\chi(\alpha)$ is exactly $t^{\psi}(\chi) / t(\chi)$. On the other hand, $\bar{C}_{\infty}[l] / \bar{C}_{\infty}^{\psi}[l]$ is R_{∞}-isomorphic to $R_{\infty} / \alpha R_{\infty}$. By codescent to finite level for each character χ, the result follows.

In the appendix, we will give a detailed version of the proof by applying Sinnott's argument for its own interest. If $\psi=\xi$, then $\operatorname{sgn}_{l}(\psi)=1$ and $h_{m}=1$, and hence the corollary above tells us that $\bar{P}_{\infty}[l]$ and $\bar{C}_{\infty}[l]$ are Λ-free, which is known. Theorem A of [10] leads us to the exact sequence, $0 \rightarrow \overline{C_{s_{n}}^{\psi}}[l] \rightarrow \bar{C}_{s_{n}}[l] \rightarrow \bar{C}_{s_{n}}[l] / \overline{C_{s_{n}}^{\psi}}[l] \rightarrow 0$, and because the functor of the inverse limit is left exact we have the short exact sequence,

$$
0 \longrightarrow \overline{C_{\infty}^{\psi}}[l] \longrightarrow \bar{C}_{\infty}[l] \longrightarrow \bar{C}_{\infty}[l] / \overline{C_{\infty}^{\psi}}[l] \longrightarrow 0
$$

We now suppose that the quotient $\bar{C}_{\infty}[l] / \overline{C_{\infty}^{\psi}}[l]$ is finite. For a finitely generated Λ-module A, the rank of A is the vector space dimension of $A \otimes_{\Lambda} Q(\Lambda)$ over $Q(\Lambda)$, where $Q(\Lambda)$ is the quotient field of Λ. We write $A_{\text {tor }}:=\{a \in A \mid \exists \lambda \in \Lambda, \lambda a=$ $0, \lambda \neq 0\}$. A is said to be a Λ-torsion free module if $A_{\text {tor }}=0$. We need the following proposition of Kuz'min.

Proposition 2.10 (=Proposition 1.1 of [6]). Let A be a Λ-torsion free module of rank r. Then A is isomorphic to a submodule of finite index of some Λ-free module of rank r. This index is equal to one if and only if A is free.
According to Corollary 2.9, Proposition 2.10 and the short exact sequence above show that when $\bar{C}_{\infty}[l] / \overline{C_{\infty}^{\psi}}[l]$ is finite $\bar{C}_{\infty}^{\psi}[l]$ must be equal to $\bar{C}_{\infty}[l]$, which is a Λ-free module.
Corollary 2.11. Under the assumptions of Proposition 2.7, we have that $\bar{C}_{\infty}[l] / \overline{C_{\infty}^{\psi}}[l]$ is finite if and only if $\bar{C}_{\infty}^{\psi}[l]=\bar{C}_{\infty}[l]$.

3. Appendix

In this appendix, we apply Sinnott's argument of [14] to our circular distributions. Let ψ be a circular distribution in \mathcal{F}. Let $\widetilde{P}_{s_{n}}^{\psi}$ be the subgroup of the multiplicative group k_{n}^{\times}of k_{n} generated by the elements $\psi(\zeta)$ and $\mu_{s_{n}}$, for $\zeta \in \mu_{s_{n}}, \zeta \neq 1$, and let $\widetilde{C}_{s_{n}}^{\psi}=\widetilde{P}_{s_{n}}^{\psi} \cap U_{s_{n}}$. Hence, the ψ-circular units $C_{s_{n}}^{\psi}$ of k_{n} satisfy $\widetilde{C}_{s_{n}}^{\psi}=C_{s_{n}}^{\psi} \mu_{s_{n}}$. Write $\theta_{s_{n}}$ for the cardinality $\#\left(\mu_{s_{n}} / \mu_{s_{n}} \cap C_{s_{n}}^{\psi}\right)$. If $\psi(\zeta)=\xi(\zeta)=1-\zeta$, then $\widetilde{C}_{s_{n}}^{\psi}=C_{s_{n}}^{\psi}$. In this section, we will compute the index ψ-circular units of k_{n} inside the circular units of Sinnott. In order for the index to be finite we need to assume that $\psi\left(\zeta_{s_{n}}\right) \notin \mu_{s_{n}}$ and $h_{n}=1$, as in the introduction. By Lemma 2.6, the former condition implies the latter condition for all sufficiently large numbers n. Let $U_{s_{n}}^{+}$be the global units of the maximal subfield k_{n}^{+}of k_{n} and let $\left(C_{s_{n}}^{\psi}\right)^{+}=\widetilde{C}_{s_{n}}^{\psi} \cap U_{s_{n}}^{+}$. By the assumption on l, we have that $U_{s_{n}}=U_{s_{n}}^{+} \mu_{s_{n}}=U_{s_{n}}^{+} \widetilde{C}_{s_{n}}^{\psi}$ and an isomorphism, $U_{s_{n}} / \widetilde{C}_{s_{n}}^{\psi} \cong U_{s_{n}}^{+} /\left(C_{s_{n}}^{\psi}\right)^{+}$. Write $G_{s_{n}}$ for the absolute Galois group $G\left(k_{n} / \mathbb{Q}\right)$ of k_{n} and write $s\left(G_{s_{n}}\right)$ for the sum in $\mathbb{Z}\left[G_{s_{n}}\right]$ of elements of $G_{s_{n}}$.
Lemma 3.1. Let $\alpha=\psi(\zeta) \in \widetilde{P}_{s_{n}}^{\psi}$. Then $\alpha^{s\left(G_{s_{n}}\right)}=1$ if and only if $\alpha \in \widetilde{C}_{s_{n}}^{\psi}$, and $\alpha^{1+j}=1$ if and only if $\alpha \in \mu_{s_{n}}$.

Proof. If $\alpha \in \widetilde{C}_{s_{n}}^{\psi}$, then its absolute norm $\alpha^{s\left(G_{s_{n}}\right)}$ is one because our k_{n} is imaginary. If $\alpha^{s\left(G_{s_{n}}\right)}=1$, then since $\widetilde{C}_{s_{n}}^{\psi}$ contains $\psi(\zeta)^{1-\sigma}$ for $\sigma \in G_{s_{n}}$, $1=\alpha^{s\left(G_{s_{n}}\right)} \equiv \alpha^{\#\left(G_{s_{n}}\right)}$ modulo $\widetilde{C}_{s_{n}}^{\psi}$. This shows that α must be a unit and hence an element inside $\widetilde{C}_{s_{n}}^{\psi}$. If $\alpha^{1+j}=1$, then $\alpha^{s\left(G_{n}\right)}=1$ and hence α must be a unit whose conjugates have an absolute value of one. This shows that α is a root of unity.

Following Sinnott, we now define the map t from $k_{n}^{\times} \rightarrow \mathbb{R}\left[G_{s_{n}}\right]$ to be

$$
t(\alpha)=\sum_{\sigma \in G_{s_{n}}}-2^{-1} \log \left|\alpha^{\sigma}\right| \sigma^{-1}
$$

If $t(\alpha)=0$, then $\alpha^{1+j}=1$. By Lemma 3.1, α must be a root of unity in k_{n}. Hence, the map t induces an isomorphism $U_{s_{n}} / \widetilde{C}_{s_{n}}^{\psi} \cong t\left(U_{s_{n}}\right) / t\left(\widetilde{C}_{s_{n}}^{\psi}\right)$. For an $R_{s_{n}}$-module
A, write $A_{G_{s_{n}}}$ for the set of elements of A, which is annihilated by $s\left(G_{s_{n}}\right)$. Using Lemma 3.1 and the argument of Lemma 4.2 of Sinnott in [14], we obtain
Lemma 3.2. Let $T_{s_{n}}^{\psi}=t\left(P_{s_{n}}^{\psi}\right)$. Then $t\left(\widetilde{C}_{s_{n}}^{\psi}\right)=\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}$.
Let $e_{1}=\left|G_{s_{n}}\right|^{-1} \sum_{\sigma \in G_{s_{n}}} \sigma$ be the idempotent associated to the trivial character of $G_{s_{n}}$. We prove the following lemma, which will be used in the main theorem.

Lemma 3.3. $\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}=T_{s_{n}}^{\psi} \cap\left(1-e_{1}\right) T_{s_{n}}^{\psi}$. If g denotes the number of primes dividing s_{n}, then the index $\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi}:\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}\right)$ is finite and it is given by $\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi}:\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}\right)=2^{-g} \phi\left(s_{n}\right)$.

Proof. As $s\left(G_{s_{n}}\right) s\left(G_{s_{n}}\right)=\#\left(G_{s_{n}}\right) s\left(G_{s_{n}}\right),\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}=T_{s_{n}}^{\psi} \cap\left(1-e_{1}\right) T_{s_{n}}^{\psi}$ follows immediately from the definitions. $\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi} /\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}} \cong\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi} / T_{s_{n}}^{\psi} \cap(1-\right.\right.$ $\left.e_{1}\right) T_{s_{n}}^{\psi}$), which is isomorphic to $T_{s_{n}}^{\psi}+\left(1-e_{1}\right) T_{s_{n}}^{\psi} / T_{s_{n}}^{\psi} \cong\left(T_{s_{n}}^{\psi}+e_{1} T_{s_{n}}^{\psi}\right) / T_{s_{n}}^{\psi} \cong$ $T_{s_{n}}^{\psi} /\left(T_{s_{n}}^{\psi} \bigcap e_{1} T_{s_{n}}^{\psi}\right)$. As $T_{s_{n}}^{\psi} \bigcap e_{1} T_{s_{n}}^{\psi} \cong\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$, there results an isomorphism

$$
\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi} /\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}} \cong e_{1} T_{s_{n}}^{\psi} /\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}\right.
$$

First, we compute the numerator,

$$
e_{1} T_{s_{n}}^{\psi}=\phi\left(s_{n}\right)^{-1} s\left(G_{s_{n}}\right) t\left(P_{s_{n}}^{\psi}\right)=\phi^{-1}\left(s_{n}\right) t\left(\left(P_{s_{n}}^{\psi}\right)^{s\left(G_{s_{n}}\right)}\right)
$$

We need the following lemma of Coleman. We include its proof for the reader's convenience.

Lemma 3.4 (Coleman). Let f be a circular distribution in \mathcal{F}. If s_{n} is divisible by at least two different primes, then $f\left(\zeta_{s_{n}}\right)$ is a unit of $\mathbb{Q}\left(\mu_{s_{n}}\right)$. If s_{n} is a prime power l^{n+1}, then $f\left(\zeta_{s_{n}}\right)$ is an l-unit of $\mathbb{Q}\left(\mu_{s_{n}}\right)$.

Proof. By the norm coherent property of circular distribution f, we have the
 ideal of $\mathbb{Q}\left(\mu_{l^{u}}\right)$ lying over l. Let \mathfrak{p} be a prime ideal dividing the principal ideal $\left(f\left(\zeta_{l^{n}}\right)\right)$, which is prime to l. Let p be the rational prime, which is divisible by \mathfrak{p}. The decomposition group D_{p} of p must be $l^{a} \mathbb{Z}_{l}$, for some $a \geq 0$. The inertia group I_{p} of p is either zero or $l^{b} \mathbb{Z}_{l}$, for some $b \geq 0$. By the local class field theory, the inertia group I_{p} comes from the local units of the complete local field at p. Hence if I_{p} is $l^{b} \mathbb{Z}_{l}$, then we have a surjection from \mathbb{Z}_{p} to $l^{b} \mathbb{Z}_{l}$ which is impossible. Hence, the inertia group I_{p} of p must be trivial. The decomposition D_{p} has an infinite residue class degree, which means $\left(f\left(\zeta_{l^{n}}\right)\right)$ is infinitely divisible by the prime \mathfrak{p}. This contradiction implies that $f\left(\zeta_{l^{n}}\right)$ is an l-unit. If s_{n} is divisible by at least two different primes l, v, then $f\left(\zeta_{s_{n}}\right)$ is a unit outside both l and v. Hence, $f\left(\zeta_{s_{n}}\right)$ must be a global unit. This completes the proof of Lemma 3.4.

If $1 \neq \zeta \in \mu_{s_{n}}$ and the order of ζ is not a prime power, then we have $\psi(\zeta)^{s\left(G_{s_{n}}\right)}=$ 1 by Lemma 3.4. If the order of ζ is a prime power l^{a} with $a>0$, then by Lemma 3.4 and under the assumption $\operatorname{sgn}_{l}(\psi) \neq 0$, there exists a positive rational $n_{l}(\psi)$ such that

$$
\psi(\zeta)^{s\left(G_{s_{n}}\right)}=l^{n_{l}(\psi) \phi\left(s_{n}\right) / \phi\left(l^{a}\right)}
$$

and hence $\left(\widetilde{P}_{s_{n}}^{\psi}\right)^{s\left(G_{s_{n}}\right)}=\prod_{l \mid s_{n}} l^{\phi\left(s_{n}\right) / \phi\left(l^{a}\right) \mathbb{Z}}$. It follows that

$$
e_{1} T_{s_{n}}^{\psi}=\phi\left(s_{n}\right)^{-1} t\left(\left(\widetilde{P}_{s_{n}}^{\psi}\right)^{s\left(G_{s_{n}}\right)}\right)=\sum_{l \mid m} \frac{n_{l}(\psi)}{2 \phi\left(l^{n+1}\right)} \log l \cdot s\left(G_{s_{n}}\right) \mathbb{Z}
$$

We now compute $\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$. For an element $\alpha \in \widetilde{P}_{s_{n}}^{\psi}, t(\alpha) \in\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$ if and only if $(\sigma-1) t(\alpha)=t\left(\alpha^{\sigma-1}\right)=0$, for all $\sigma \in G_{s_{n}}$. As the kernel of t in $\widetilde{P}_{s_{n}}^{\psi}$ is the group of roots of unity, $t(\alpha) \in\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$ if and only if $1=\left(\alpha^{\sigma-1}\right)^{1+j}=\left(\alpha^{1+j}\right)^{\sigma-1}$, for all $\sigma \in G_{s_{n}}$, if and only if $\alpha^{1+j} \in \mathbb{Q}^{\times}$. Let $\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}$ be the set of elements $\alpha \in \widetilde{P}_{s_{n}}^{\psi}$ satisfying $\alpha^{1+j} \in \mathbb{Q}^{\times}$. Then we have $t\left(\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}\right)=\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$. Write $e^{+}=(1+j) / 2$. By applying e^{+}we have $\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}=2^{-1} t\left(\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}^{1+j}\right)$. Let L be the imaginary quadratic field in $\mathbb{Q}\left(\mu_{l}\right)$. Write $\alpha_{l}=N_{\mathbb{Q}\left(\mu_{l}\right) / L} \psi\left(\zeta_{l}\right)$. The integer $n_{l}(\psi)$ defined above satisfies $\alpha_{l}^{1+j}=N_{\mathbb{Q}} \psi\left(\zeta_{l}\right)=l^{n_{l}(\psi)}$. Hence, α_{l} is contained in $\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}$ and $\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}^{1+j}$ contains the subgroup $H^{\psi}=\left\langle l^{n_{l}(\psi)}\right\rangle$ of \mathbb{Q}^{\times}generated by the prime power $l^{n_{l}(\psi)}$. As stated in the introduction, for the index to be finite, it is assumed that $h_{s_{n}}=1$. It follows that

$$
\left\langle l^{n_{l}(\psi)}\right\rangle=H^{\psi} \subseteq\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}^{1+j} \subseteq\left(\widetilde{P}_{s_{n}}^{\psi}\right)^{G_{s_{n}}}
$$

and by Proposition 2.7, $\left(\widetilde{P}_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$ is contained in $N_{G_{s_{n}}} \widetilde{P}_{s_{n}}^{\psi} \subseteq\left\langle N_{G_{s}} \psi\left(\zeta_{l}\right)\right\rangle=\left\langle l^{n_{l}(\psi)}\right\rangle$. Hence, $H^{\psi}=\left(\widetilde{P}_{s_{n}}^{\psi}\right)_{1}^{1+j}$ and $\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}=2^{-1}\left(2^{-1} n_{l}(\psi) \log l\right) \cdot s\left(G_{s_{n}}\right) \mathbb{Z}$. By comparing the formulas $e_{1} T_{s_{n}}^{\psi}$ and $\left(T_{s_{n}}^{\psi}\right)^{G_{s_{n}}}$, we obtain the index formula of Lemma 3.3.

Here, we define notions that will be used in the proof of Theorem 1.1. Write $u^{\psi}(r)=-2^{-1} \log \left|\psi\left(\zeta_{r}\right)\right|$, for $r \in \mathbb{Q} \backslash 1$. Then for each even nontrivial Dirichlet character χ associated with $k, u^{\psi}(\chi)=\sum_{(a, f)=1} \chi(a) u^{\psi}(a / f)=-2^{-1} \sum_{(a, f)=1} \chi(a) \log$ $\left|\psi\left(\zeta_{f}^{a}\right)\right|=t^{\psi}(\chi)$. Let $\bar{\chi}$ be the complex conjugate of the primitive Dirichlet character associated with χ. Write $w^{\psi}=\sum_{\chi \neq 1} u^{\psi}(\bar{\chi}) e_{\chi}$, with the sum taken over the nontrivial characters of $G_{s_{n}}$. Let e_{χ} denote the idempotent $\left|G_{s_{n}}\right|^{-1} \sum_{\sigma \in G_{s_{n}}} \chi(\sigma) \sigma^{-1}$ associated with χ. Let $\bar{\sigma}_{l}=\sum_{\chi} \bar{\chi}(l) e_{\chi}$, and let H_{f} denote the subgroup of $G_{s_{n}}$ consisting of the elements σ_{t}, with $(t, m)=1$ and $t \equiv 1 \bmod f$. By Proposition 2.1 of Sinnott in [14], $T_{s_{n}}^{\psi}$ satisfies $\left(1-e_{1}\right) T_{s_{n}}^{\psi}=w^{\psi} W$, where W denotes the $\mathbb{Z}\left[G_{s_{n}}\right]$-module generated in $\mathbb{C}\left[G_{s_{n}}\right]$ by the elements $s\left(H_{f}\right) \prod_{l \mid f}\left(1-\bar{\sigma}_{l}\right), 1 \leq f \leq s_{n}, f \mid s_{n}$. As in the introduction, let v_{l} denote the l-adic valuation defined as $v_{l}(l)=1$ and let $|\cdot|_{l}$ denote the l-adic absolute value normalized by $|l|_{l}=1 / l$. For a finite set S, \#(S) denotes the cardinality of S. From $U_{s_{n}} / \widetilde{C}_{s_{n}}^{\psi} \cong U_{s_{n}}^{+} /\left(C_{s_{n}}^{\psi}\right)^{+} \cong t\left(U_{s_{n}}\right) / t\left(\widetilde{C}_{s_{n}}^{\psi}\right)$ and Theorem 4.1 of [14] and Lemma 3.3, we have that the index $\left(t\left(U_{s_{n}}\right): t\left(\widetilde{C_{s_{n}}}\right)\right)$ is equal to $\left(t\left(U_{s_{n}}\right): e^{+} \mathbb{Z}\left[G_{s_{n}}\right]_{G_{s_{n}}}\right)\left(e^{+} \mathbb{Z}\left[G_{s_{n}}\right]_{G_{s_{n}}}: e^{+} W_{G_{s_{n}}}\right)\left(e^{+} W_{G_{s_{n}}}:\left(1-e_{1}\right) T_{s_{n}}^{\psi}\right)\left(\left(1-e_{1}\right) T_{s_{n}}^{\psi}:\right.$ $\left.\left(T_{s_{n}}^{\psi}\right)_{G_{s_{n}}}\right)$. It is known that the first two indices are finite and independent of our ψ. The last index is Lemma 3.3, and hence it remains to compute the index $\left(e^{+} W_{G_{n}}:\left(1-e_{1}\right) T_{s_{n}}^{\psi}\right)$. Note that $\left(1-e_{1}\right) T_{s_{n}}^{\psi} \subset X:=\left(1-e_{1}\right) e^{+} \mathbb{R}\left[G_{s_{n}}\right]$. It follows from $\left(1-e_{1}\right) T_{s_{n}}^{\psi}=w^{\psi} W$ and $\left(1-e_{1}\right) e^{+} x=x$ for any $x \in X$ that $\left(1-e_{1}\right) T_{s_{n}}^{\psi}=$ $w^{\psi}\left(1-e_{1}\right) T_{s_{n}}^{\psi}$. It also follows from ibid that $\left(1-e_{1}\right) W=W_{G_{n}}$. The linear transformation A^{ψ} on X induced by $A^{\psi}(x)=w^{\psi} x$ and hence $A^{\psi}\left(e^{+} W_{G_{n}}\right)=\left(1-e_{1}\right) T_{s_{n}}^{\psi}$. Hence, the index is finite if and only if $\operatorname{det}\left(A^{\psi}\right)=\prod_{\chi \neq 1}^{+} t^{\psi}(\chi) \neq 0$. In this case, the index is equal to $\operatorname{det}\left(A^{\psi}\right)=\prod_{\chi \neq 1}^{+} t^{\psi}(\chi)$. As in the introduction, $\mathcal{F}\left(s_{n}\right)$ denotes the group generated by $f(\zeta)$ for all f in \mathcal{F} and all ζ in $\mu_{s_{n}}^{*}$. Then $\mathcal{F}\left(s_{n}\right)$ contains the circular numbers $P_{s_{n}}$ of $\mathbb{Q}\left(\mu_{s_{n}}\right)$. As $l \nmid \phi(s)$, the index $\left(\mathcal{F}\left(s_{n}\right): P_{s_{n}}\right)$ is finite by Theorem A of [10]. Hence, there is an integer q prime to $\phi(s)$ such that $\widetilde{C}^{\psi}\left(s_{n}\right)^{q} \subseteq P_{s_{n}}$. If $t^{\psi}(\chi) \neq 0$ for all $\chi \in \Xi$, then $\widetilde{C}^{\psi}\left(s_{n}\right)^{q}$ has also a finite index in the global units
$U_{s_{n}}$ and hence $\left(\widetilde{C}^{\psi}\left(s_{n}\right)^{q}: P_{s_{n}}\right)$ is finite. The formula above shows that we can compute the indices $\left(U_{s_{n}}^{\prime}: \widetilde{C}^{\psi}\left(s_{n}\right)^{q}\right)=\left(U_{s_{n}}:\left(\widetilde{C}_{s_{n}}^{\psi}\right)^{q}\right)=\left(t\left(U_{s_{n}}\right): t\left(\left(\widetilde{C}_{s_{n}}^{\psi}\right)^{q}\right)\right)$ and $\left(U_{s_{n}}^{\prime}: P_{s_{n}}\right)=\left(U_{s_{n}}: C_{s_{n}}\right)=\left(t\left(U_{s_{n}}\right): t\left(C_{s_{n}}\right)\right)$. The l-primary part of $P_{s_{n}} / \widetilde{C}^{\psi}\left(s_{n}\right)^{q}$ is trivial as q is prime to l. Hence $\left(P_{s_{n}}[l]: \widetilde{C}^{\psi}\left(s_{n}\right)^{q}[l]\right)=\left(P_{s_{n}}[l]: \widetilde{C}^{\psi}\left(s_{n}\right)[l]\right)$. We have the following indices,

$$
\left(C_{s_{n}}[l]: \widetilde{C}_{s_{n}}^{\psi}[l]\right)=\left(t\left(C_{s_{n}}[l]\right): t\left(\widetilde{C}_{s_{n}}^{\psi}[l]\right)\right)=\frac{\left(t\left(U_{s_{n}}[l]\right): t\left(\widetilde{C}_{s_{n}}^{\psi}[l]\right)\right)}{\left(t\left(U_{s_{n}}[l]\right): t\left(C_{s_{n}}[l]\right)\right)}=\left|\frac{\operatorname{det}\left(A^{\psi}\right)}{\operatorname{det}\left(A^{\xi}\right)}\right|_{l}
$$

which, by $\operatorname{det}\left(A^{\psi}\right)=\prod_{\chi \neq 1}^{+} t^{\psi}(\chi)$, is equal to,

$$
\left|\frac{\prod_{\chi \in \Xi} t(\chi)}{\prod_{\chi \in \Xi} t^{\psi}(\chi)}\right|_{l}=\left|\prod_{\chi \in \Xi} t(\chi) t^{\psi}(\chi)^{-1}\right|_{l}
$$

From the isomorphism $\widetilde{C}_{s_{n}}^{\psi} / C_{s_{n}}^{\psi}=C_{s_{n}}^{\psi} \mu_{s_{n}} / C_{s_{n}}^{\psi} \cong \mu_{s_{n}} / \mu_{s_{n}} \cap C_{s_{n}}^{\psi}$, we prove the second index formula,

$$
\left(C_{s_{n}}[l]: C_{s_{n}}^{\psi}[l]\right)=l^{v_{l}\left(\theta_{s_{n}}\right)}\left(t\left(C_{s_{n}}[l]\right): t\left(\widetilde{C}_{s_{n}}^{\psi}[l]\right)\right)=l^{v_{l}\left(\theta_{s_{n}}\right)} \frac{\left(t\left(U_{s_{n}}[l]\right): t\left(\widetilde{C}_{s_{n}}^{\psi}[l]\right)\right)}{\left(t\left(U_{s_{n}}[l]\right): t\left(C_{s_{n}}[l]\right)\right)}
$$

where $\theta_{s_{n}}$ denotes the cardinality $\#\left(\mu_{s_{n}} / \mu_{s_{n}} \cap C_{s_{n}}^{\psi}\right)$. Finally from the equality that $\left(P_{s_{m}}[l]: P_{s_{m}}^{\psi}[l]\right)=l^{v_{l}\left(N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)}\left(C_{s_{m}}[l]: C_{s_{m}}^{\psi}[l]\right)$, we have

$$
\left(P_{s_{m}}[l]: P_{s_{m}}^{\psi}[l]\right)=l^{v_{l}\left(N_{\mathbb{Q}}\left(\psi\left(\zeta_{s_{m}}\right)\right)\right)}\left|\theta_{s_{n}} \frac{\prod_{\chi \in \Xi} t(\chi)}{\prod_{\chi \in \Xi} t^{\psi}(\chi)}\right|_{l}
$$

which proves the first index formula. This recovers the proof of Theorem 1.1.
Remark. As we mentioned in the introduction, our results in this study are valid when the circular distributions are replaced by the truncated Euler systems of a certain depth. We briefly recall truncated Euler systems of a fixed depth r (cf. [13]). Let K be an abelian extension of F containing the Hilbert class field of F. Let $\mathrm{I}_{K / F}^{r}$ be the set of square free integral fractional ideals \mathfrak{a} of F, such that each prime \mathfrak{p} dividing \mathfrak{a} has an absolute degree one and splits completely in K, and the number of primes dividing \mathfrak{a} is less than or equal to r. For each prime ideal \mathfrak{p} of F, let $F(\mathfrak{p})$ denote the ray class field of F modulo \mathfrak{p}, and for an integral fractional ideal \mathfrak{a}, let $F(\mathfrak{a})$ denote the composite field of $F(\mathfrak{p})$ for all prime divisors \mathfrak{p} of \mathfrak{a}. Let $K(\mathfrak{a})$ be the composite of K and $F(\mathfrak{a})$. We define truncated Euler systems $\mathcal{E}_{K / F}^{r}$ of depth r to be the set of maps ψ from $\mathrm{I}_{K / F}^{r}$ to a fixed algebraic closure $\mathbb{Q}^{\text {alg }}$, such that for each $\mathfrak{m}, \mathfrak{n} \in \mathrm{I}_{K / F}^{r}$ with $\mathfrak{n} \mid \mathfrak{m}, \psi(\mathfrak{m}) \in K(\mathfrak{m}), N_{K(\mathfrak{m}) / K(\mathfrak{n})} \psi(\mathfrak{m})$ is equal to $\psi(\mathfrak{n})^{\Pi_{\mathfrak{p} \mid \mathfrak{m}, \mathfrak{p} \mathfrak{\mathfrak { n }}}\left(1-\mathrm{Frob}_{\mathfrak{p}}^{-1}\right)}$, and $\psi(\mathfrak{n p})$ is congruent to $\psi(\mathfrak{n})$ modulo primes over \mathfrak{p}, whenever \mathfrak{n} is prime to \mathfrak{p}. Write $\mathcal{E}_{\mathbb{Q}}^{r}$ for $\mathcal{E}_{K / F}^{r}$ when $F=K=\mathbb{Q}$. Let $\mathrm{Cl}_{s_{m}}$ denote the ideal class group of k_{m} and let $\operatorname{rank}_{\mathbb{Q}_{l}} \mathrm{Cl}_{s_{m}}[l]$ denote the \mathbb{Q}_{l}-rank of $\mathrm{Cl}_{s_{m}}[l] \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$. Based on these definitions, if $r \geq \operatorname{rank}_{\mathbb{Q}_{l}} \mathrm{Cl}_{s_{m}}[l]$, then all the results in this note are valid when the circular distributions are replaced by the truncated Euler systems $\mathcal{E}_{\mathbb{Q}}^{r}$ of depth r. This follows from the fact(cf. ibid) that under the assumption $r \geq \operatorname{rank}_{\mathbb{Q}_{l}} \mathrm{Cl}[1]$ and $l \nmid \phi(s)$, we have the following equality,

$$
\mathcal{E}_{\mathbb{Q}}^{r}\left(s_{m}\right) \otimes \mathbb{Z}_{l}=P_{s_{m}} \otimes \mathbb{Z}_{l}
$$

where $\mathcal{E}_{\mathbb{Q}}^{r}\left(s_{m}\right)$ denotes the set $\left\{\psi(\zeta) \mid \psi \in \mathcal{E}_{\mathbb{Q}}^{r}, \zeta \in \mu_{s_{m}}\right\}$ of all special numbers coming from truncated Euler systems $\mathcal{E}_{\mathbb{Q}}^{r}$ of depth r.

References

[1] J. Belliard, Sous-modules d'unités en théorie d'Iwasawa, Théorie des nombres, Années 1998/2001, Publ. Math. UFR Sci. Tech. Besançon, Univ. Franche-Comte, Besançon(2002), 12 pp.
[2] R. Coleman, On an Archimedean characterization of the circular units, J. reine angew. Math. 356(1985), 161-173.
[3] C. Greither, Sur les normes universelles dans les Z_{p}-extensions, J. Théor. Nombres Bordeaux 6(1994), 205-220.
[4] J. Kim, Cohomology groups of cyclotomic units, J. Algebra 152(1992), 514-519.
[5] V. A. Kolyvagin, Euler systems. in: The Grothendieck Festschrift, vol. 2, 435-483, Birkhäuser Verlag, 1990.
[6] L. V. Kuz'min, The Tate module of algebraic number fields, Izv. Akad. Nauk SSSR Ser. Mat. 36(1972), 267-327.
[7] L. V. Kuz'min, On formulae for the class number of real Abelian fields, Math. USSR-Izv. 60(1996), 695-761.
[8] T. Nguyen Quang Do, Sur la conjecture faible de Greenberg dans le cas abélien p-décomposé, Int. J. Number Theory 2(2006), 49-64.
[9] S. Seo, Circular distributions and Euler systems, J. Number Theory 88(2001), 366-379.
[10] S. Seo, Circular distributions and Euler systems II, Compositio Math. 137(2003), 91-98.
[11] S. Seo, Euler Systems and Special Units, J. Number Theory 109(2004), 59-68.
[12] S. Seo, Circular distributions of finite order, Math. Res. Let. 13(2006), 1-14.
[13] S. Seo, Truncated Euler Systems, J. reine angew. Math. 614(2008), 53-71.
[14] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108(1978), 107-134.
[15] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Invent. Math. 62(1980), 181-234.

Department of Mathematics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, South Korea e-mail: sgseo@yonsei.ac.kr

