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Abstract. We extend the results of Chan-Huang ([4]) and Vasuki-Srivatsa Kumar
([14]) to all odd primes p on the modular equations of the Ramanujan-Göllnitz-
Gordon continued fraction v(τ) by computing the affine models of modular curves
X(Γ) with Γ = Γ1(8)∩Γ0(16p). We then deduce the Kronecker congruence relations
for these modular equations. And, by showing that v(τ) is a modular unit over Z we
give a new proof of the fact that the singular values of v(τ) are units at all imaginary
quadratic arguments and further obtain that they generate ray class fields modulo 8
over imaginary quadratic fields.

1. Introduction

The well known Rogers-Ramanujan continued fraction is a holomorphic function
r(τ) on the complex upper half plane H defined by
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where q = e2πiτ and (n
5
) is the Legendre symbol. In his first letter to Hardy, dated

1913, Ramanujan gave its value at τ = i as a radical expression
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He also gave some other values at τ = 5+i
2

,
√
−5, 5+

√
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2
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2
([1], [7]). And he

further stated that r(
√
−n
2

) can be exactly found whenever n is any positive rational
quantity. However, the existence of radical expressions is nowadays clear by the class
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field theory. Precisely speaking, since r(τ) becomes a modular function as a Haupt-
modul for the principal congruence subgroup Γ(5) ([8]), any singular value of r(τ) at
imaginary quadratic argument is contained in some ray class field over an imaginary
quadratic field, and so the splitting field of its minimal polynomial is abelian, namely
its Galois group is solvable. Thus the minimal polynomial is solvable by radicals. But
the problem is how to find such radical expressions explicitly. Gee and Honsbeek ([8])
recently treated and settled down this problem by using the Shimura reciprocity law,
and asserted that their method can be applied to any other similar problems.

Besides, one of the other important subjects is the one about modular equations.
Since the modular function field of level 5 has genus 0, there should be certain poly-
nomials giving the relations between r(τ) and r(nτ) for all positive integers n. These
are what we call the modular equations. Most of the followings were originally stated
by Ramanujan and later on proved by several people.

n mathematician (year)
2 Rogers (1920)
3 Rogers (1920)
4 Andrews, Berndt, Jacobsen, Lamphere (1992)
5 Rogers (1920), Watson (1929), Ramanathan (1984)
7 Yi (2001)
11 Rogers (1920)

Recently, the modular equations of the Rogers-Ramanujan continued fraction are
deeply studied and settled down by Cais and Conrad ([3]), whose arguments rely on
the theory of arithmetic models of modular curves. They further found the Kronecker
congruence relations for the modular equations which is similar to the one of the ellip-
tic modular function j(τ). We will consider the same problem with the Ramanujan-
Göllnitz-Gordon continued fraction defined below, but unlike Cais and Conrad’s ap-
proach we establish by finding affine models of some modular curves from the standard
theory of algebraic functions (see [10]).

Now the Ramanujan-Göllnitz-Gordon continued fraction v(τ) is defined by

v(τ) = V (q) =
q

1
2

1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 + · · ·

= q
1
2

∞∏
n=1

(1− q8n−7)(1− q8n−1)

(1− q8n−5)(1− q8n−3)
.

In this case its singular values at some imaginary quadratic arguments in terms of
radicals were studied by Chan and Huang ([4]), but Gee and Honsbeek’s method can
also be applied to this situation. Therefore we will not go into this direction any
further.

On the other hand there are some modular equations with v := v(τ) and w := v(nτ)
on a case-by-case basis as follows.
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n mathematician (year) equation
2 Chan-Huang (1997) v2 = w 1−w

1+w

3 Chan-Huang (1997) 3vw(1− vw)(v + w) + (v3 − w)(1 + vw3) = 0

4 Chan-Huang (1997) v =

√√
(2w(1−w)

1+w2 )2 + w(1−w)
1+w

− 2w(1−w)
1+w2

5 Vasuki-Srivatsa Kumar (2006) v5 − w + 5v2w − 10v2w3 − 10v3w4

+10v3w2 − 5v4w5 + 10v4w3 + v6w5

−5v5w2 + 5vw4 − vw6 = 0
7 Vasuki-Srivatsa Kumar (2006) v8 − 7v7w − (vw)7 − 7v7w3 + 7v7w5

+28v6w2 + 7v5w7 − 7v5w − 49(vw)5 − 7v5w3

+70(vw)4 + 7v3w − 7v3w7 − 7v3w5 − 49(vw)3

+28v2w6 − vw − 7vw7 − 7vw5 + 7vw3 + w8 = 0

Vasuki and Srivatsa Kumar also estimated the modular equation of order 11 ([14]).
For more backgrounds of r(τ) and v(τ) we refer to [1] and [7].

If we let Φn(X, Y ) = 0 be the above modular equation of order n, namely, Φn(v, w) =
0 with w = v(nτ), then it is worth of noting that

Φ3(X, Y ) ≡ (X3 − Y )(1 +XY 3) mod 3

and

Φ5(X, Y ) ≡ (X5 − Y )(1 +XY 5) mod 5.

Moreover for the case n = 7 we see that

Φ7(X, Y ) ≡ (X7 − Y )(X − Y 7) mod 7.

One of our results is to show that these Kroneckerian models can be formulated as
follows: for any odd prime p

Φp(X, Y ) ≡
{

(Xp − Y )(1 +XY p) mod p if p ≡ ±3 mod 8
(Xp − Y )(X − Y p) mod p if p ≡ ±1 mod 8.

We first extend in §3 the above known results systematically by providing an al-
gorithm to all odd primes p (, namely w = v(pτ)) on the modular equations of the
Ramanujan-Göllnitz-Gordon continued fraction and then as remarked above we give
an analytic proof of the Kronecker congruence relations for these modular equations
(Theorem 10). Secondly, although it is known that any singular value of v(τ) at imag-
inary quadratic argument is a unit ([4] §5 or [7] §9), we provide a new proof in §4 by
showing that v(τ) is a modular unit over Z. Finally, since v(τ) is a modular function,
its singular values may generate some class fields. To be more precise, now that v(τ)
is a Hauptmodul for Γ1(8) ∩ Γ0(2) (Theorem 5), we obtain in Theorem 15 that with
some conditions on an imaginary quadratic argument the singular value of v(τ) gener-
ates the ray class field modulo 8 over arbitrary imaginary quadratic field. Those our
methods can also be applied to the Rogers-Ramanujan continued fraction r(τ) as will
be remarked at the end of §4. In §2 we present some basic and necessary preliminaries
about modular functions and Klein forms, and give several lemmas about the cusps of
a congruence subgroup which will be used in §3.
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2. Preliminaries

Let H = {τ ∈ C| Im τ > 0} be the complex upper half plane, H∗ = H∪Q∪{∞} and

let Γ(N) = {
(
a b
c d

)
∈ SL2(Z)|a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N} be the principal

congruence subgroup of level N for any positive integer N . Here we mainly utilize
congruence subgroups such as Γ0(N), Γ0(N) and Γ1(N) where Γ0(N) (respectively,

Γ0(N), Γ1(N)) consists of all

(
a b
c d

)
∈ SL2(Z) such that c ≡ 0 mod N (respectively,

b ≡ 0 mod N , a ≡ d ≡ 1 mod N and c ≡ 0 mod N). Further let A0(Γ) be the field
of all modular functions with respect to Γ and A0(Γ,Q) be the field of all modular
functions f(τ) with respect to Γ such that the Fourier expansion of f(τ) has rational
coefficients.

¿From now on we briefly recall the Klein forms, which is mainly used in this paper.
We refer to [11] for more details. For any lattice L ⊂ C and z ∈ C, we define the
Weierstrass σ-function by

σ(z;L) = z
∏

ω∈L−{0}

(1− z

ω
)e

z
ω

+ 1
2
( z

ω
)2

which is holomorphic with only simple zeros at all points z ∈ L. We further define
the Weierstrass ζ-function by the logarithmic derivative of the Weierstrass σ-function,
i.e.,

ζ(z;L) =
σ′(z;L)

σ(z;L)
=

1

z
+

∑
ω∈L−{0}

(
1

z − ω
+

1

ω
+

z

ω2
)

which is meromorphic with only simple poles at all points z ∈ L. It is easy to see that
the Weierstrass σ-function (respectively, the Weierstrass ζ-function) is homogeneous
of degree 1 (respectively, −1), that is, σ(λz;λL) = λσ(z;L) (respectively, ζ(λz;λL) =
λ−1ζ(z;L)) for any λ ∈ C×. Note that ζ ′(z;L) = −℘(z;L) where

℘(z;L) =
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2
)

is the Weierstrass ℘-function. Since the Weierstrass ℘-function is an elliptic function,
namely ℘(z + ω;L) = ℘(z;L) for ω ∈ L, we obtain that d

dz
(ζ(z + ω;L)− ζ(z;L)) = 0

for any ω ∈ L. This means that ζ(z + ω;L) − ζ(z;L) depends only on ω ∈ L, not on
z ∈ C. Thus we may define η(ω;L) = ζ(z + ω;L) − ζ(z;L) for all ω ∈ L. Let L =
Zω1 + Zω2. For z = a1ω1 + a2ω2 with a1, a2 ∈ R we define the Weierstrass η-function
by

η(z;L) = a1η(ω1;L) + a2η(ω2;L).

Then it is easy to see that the Weierstrass η-function η(z;L) is well-defined, in other
words it does not depend on the choice of the basis {ω1, ω2} of L, and η(z;L) is R-linear
so that η(rz;L) = rη(z;L) for any r ∈ R. Note that since the Weierstrass ζ-function is
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homogeneous of degree −1, so is the Weierstrass η-function. We now define the Klein
form by

K(z;L) = e−η(z;L)z/2σ(z;L).

Let a = (a1 a2) ∈ R2 and τ ∈ H. We further define Ka(τ) = K(a1τ + a2; Zτ + Z)
which is also called the Klein form by abuse of terminology. Here we observe that
Ka(τ) is holomorphic and nonvanishing on H if a ∈ R2 − Z2 and that the Klein form
is homogeneous of degree 1, i.e., K(λz;λL) = λK(z;L).

The Klein form satisfies the following well-known properties (see [11]). Let γ =(
a b
c d

)
∈ SL2(Z) and a ∈ R2.

(K0) K−a(τ) = −Ka(τ).

(K1) Ka(γ(τ)) = (cτ + d)−1Kaγ(τ).

(K2) For b = (b1 b2) ∈ Z2, we have that Ka+b(τ) = ε(a,b)Ka(τ) where ε(a,b) =
(−1)b1b2+b1+b2eπi(b2a1−b1a2).

(K3) For a = ( r
N

s
N

) ∈ 1
N

Z2 − Z2 and γ ∈ Γ(N) with an integer N > 1, we obtain

that Ka(γ(τ)) = εa(γ) · (cτ + d)−1Ka(τ) where εa(γ) = −(−1)(a−1
N

r+ c
N

s+1)( b
N

r+ d−1
N

s+1) ·
eπi(br2+(d−a)rs−cs2)/N2

.

(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1 a2) ∈ Q2 − Z2 and further let q = e2πiτ ,
qz = e2πiz = e2πia2e2πia1τ . Then

Ka(τ) = − 1

2πi
eπia2(a1−1)q

1
2
a1(a1−1)(1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2

and ordqKa(τ) = 1
2
< a1 > (< a1 > −1) where < a1 > denotes the rational number

such that 0 ≤ < a1 > < 1 and a1− < a1 >∈ Z.

(K5) Let f(τ) =
∏

aK
m(a)
a (τ) be a finite product of Klein forms with a = ( r

N
s
N

) ∈
1
N

Z2 − Z2 for an integer N > 1, and let k = −
∑

am(a). Then f(τ) is a modular
function with respect to Γ(N) if and only if k = 0 and{ ∑

am(a)r2 ≡
∑

am(a)s2 ≡
∑

am(a)rs ≡ 0 mod N if N is odd,∑
am(a)r2 ≡

∑
am(a)s2 ≡ 0 mod 2N,

∑
am(a)rs ≡ 0 mod N if N is even.

We remark that if the condition k = 0 is omitted in K5, then f(τ) becomes a
modular form of weight k with respect to Γ(N).

For later use we now consider the set of all inequivalent cusps of some congruence
subgroup Γ which can be achieved from the standard methods in [13].

Let N , m be positive integers and Γ = Γ1(N) ∩ Γ0(mN). Note that if we let

Γ\Γ(1)/Γ(1)∞ = {Γγ1Γ(1)∞, · · · ,ΓγgΓ(1)∞},
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then {γ1(∞), · · · , γg(∞)} is a set of all cusps of Γ which satisfies that γi(∞) and γj(∞)
are not equivalent under Γ for any i 6= j. LetM = {(c̄, d̄) ∈ Z/mNZ×Z/mNZ | (c̄, d̄) =
1̄, i.e., (c, d,mN) = 1}. Further, let

∆ = {±(1 +Nk) ∈ (Z/mNZ)×|k = 0, · · · ,m− 1}
which is a subgroup of (Z/mNZ)×. We define an equivalence relation ∼ on M as
follows. (c1, d1) ∼ (c2, d2) if there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c2 = s̄ · c1
and d2 = s̄ · d1 + n̄ · c1. Then ∼ is indeed an equivalence relation. And we further

define a map φ : Γ\Γ(1)/Γ(1)∞ → M/ ∼ by φ(Γ

(
a b
c d

)
Γ(1)∞) = [(c̄, d̄)]. Here the

map φ is well-defined and bijective, and so we get the following lemma.

Lemma 1. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We understand
that ±1

0
= ∞. Then, with the notation ∆ as above, a

c
and a′

c′
are equivalent under

Γ1(N) ∩ Γ0(mN) if and only if there exist s̄ ∈ ∆ ⊂ (Z/mNZ)× and n ∈ Z such that(
a′

c′

)
≡

(
s̄−1a+ nc

s̄c

)
mod mN .

Proof. Let Γ = Γ1(N)∩ Γ0(mN). We take b, d, b′, d′ ∈ Z such that

(
a b
c d

)
,

(
a′ b′

c′ d′

)
∈ Γ(1). Then we have

a
c

and a′

c′
are equivalent under Γ

⇐⇒ Γ

(
a b
c d

)
Γ(1)∞ = Γ

(
a′ b′

c′ d′

)
Γ(1)∞

⇐⇒ [(c̄, d̄)] = [(c′, d′)]
⇐⇒ ∃ s̄ ∈ ∆, n̄ ∈ Z/mNZ s.t. c′ = s̄c̄, d′ = s̄d̄+ n̄c̄.

Since ad− bc = a′d′ − b′c′ = 1, the last statement is equivalent to the first one of the
followings. Note that

∃ s̄ ∈ ∆, n̄ ∈ Z/mNZ s.t. c′ = s̄c̄, (ad− bc) · d′ = s̄ · (a′d′ − b′c′) · d̄+ n̄c̄
⇐⇒ ∃ s̄ ∈ ∆, n̄ ∈ Z/mNZ s.t. c′ = s̄c̄, ādd′ = s̄a′ dd′ + n̄c̄
⇐⇒ ∃ s̄ ∈ ∆, n̄ ∈ Z/mNZ s.t. c′ = s̄c̄, ā = s̄a′ + n̄c̄

by observing (dd′, c̄) = 1̄. This completes the proof. �

For any positive divisor x of mN , let πx : (Z/mNZ)× → (Z/xZ)× be the natural
homomorphism. Observe that πx is surjective. And for a positive divisor c of mN ,
let s′c,1, · · · , s′c,nc

∈ (Z/mN
c

Z)× be all the distinct coset representatives of πmN
c

(∆) in

(Z/mN
c

Z)× where nc = ϕ(mN
c

)/|πmN
c

(∆)|. Here, ϕ is the Euler’s ϕ-function. Then for

any s′c,i with i = 1, · · · , nc we take sc,i ∈ (Z/mNZ)× such that πmN
c

(sc,i) = s′c,i. With

the notations as above, we let

Sc = {sc,1, · · · , sc,nc} ⊂ Z
be such a set that 0 < sc,1, · · · , sc,nc ≤ mN , (sc,i,mN) = 1 and sc,i is the representative
of sc,i for every i = 1, · · · , nc.
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On the other hand, for a positive divisor c of mN , let a′c,1, · · · , a′c,mc
∈ (Z/cZ)×

be all the distinct coset representatives of πc(∆∩ Ker(πmN
c

)) in (Z/cZ)×, where mc

= ϕ(c)/|πc(∆ ∩ Ker(πmN
c

))| = ϕ(c)|πmN
c

(∆)|/|π mN

(c, mN
c )

(∆)|. Then for any a′c,j with

j = 1, · · · ,mc we take ac,j ∈ (Z/mNZ)× such that πc(ac,j) = a′c,j. We further let

Ac = {ac,1, · · · , ac,mc} ⊂ Z
be such that 0 < ac,1, · · · , ac,mc ≤ mN , (ac,j,mN) = 1 and ac,j is the representative of
ac,j for every j = 1, · · · ,mc.

Lemma 2. With the notations as above, let

S = {(c̄ · sc,i, ac,j) ∈ Z/mNZ× Z/mNZ | sc,i ∈ Sc, ac,j ∈ Ac

for every positive divisor c of mN}.
For a given (c̄ · sc,i, ac,j) ∈ S, we can take x, y ∈ Z such that (x, y) = 1, x̄ = c̄ · sc,i

and ȳ = ac,j. Then for such x, y ∈ Z, y
x

form a set of all the inequivalent cusps of
Γ1(N) ∩ Γ0(mN) and the number of such cusps is

|S| =
∑
c>0

c|mN

nc ·mc =
∑
c>0

c|mN

ϕ(c)ϕ(mN
c

)

|π mN

(c, mN
c )

(∆)|
.

Proof. Since there is a bijection between Γ\Γ(1)/Γ(1)∞ and M ′/∼ where

M ′ = {(c̄, ā) ∈ Z/mNZ× Z/mNZ | (c̄, ā) = 1̄, i.e., (c, a,mN) = 1}
and (c1, a1) ∼ (c2, a2) if there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c2 = s̄ · c1 ∈
Z/mNZ and a2 = s̄−1a1 + n̄c1 ∈ Z/mNZ, it is enough to prove that the natural map
of S into M ′/∼ is a bijection.

We first prove the injectivity. Suppose that [(c̄ · sc,i, ac,j)] = [(c′ · sc′,i′ , ac′,j′)]. Then
there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ · sc′,i′ = s̄ · c̄ · sc,i ∈ Z/mNZ and ac′,j′ =
s̄−1ac,j + n̄ · c̄ · sc,i ∈ Z/mNZ. Since s̄, sc,i, sc′,i′ ∈ (Z/mNZ)× and c, c′ |mN , we obtain
c = c′; hence

πmN
c

(sc,i′) = πmN
c

(s̄) · πmN
c

(sc,i) =⇒ s′c,i′ ∈ πmN
c

(∆)s′c,i
=⇒ s′c,i′ = s′c,i
=⇒ i′ = i =⇒ πmN

c
(s̄) = 1̄,

in other words s̄ ∈ ∆ ∩ Ker(πmN
c

). Thus πc(ac,j′) = πc(s̄
−1)πc(ac,j) ∈ (Z/cZ)× implies

a′c,j′ ∈ πc(∆ ∩Ker(πmN
c

))a′c,j, from which we get j′ = j, that is, ac,j′ = ac,j.

Now we prove the surjectivity. Let [(c′, a′)] ∈ M ′/∼. We take c = (c′,mN). Then

( c′

c
) ∈ (Z/mN

c
Z)× implies(

c′

c

)
∈ πmN

c
(∆)s′c,i = πmN

c
(∆)πmN

c
(sc,i)

for some i. Since (c′, a′) = 1̄ ∈ Z/mNZ, we get 1 = (c′, a′,mN) = (c, a′), namely
a′ ∈ (Z/cZ)×, and hence a′ ∈ πc(∆ ∩Ker(πmN

c
))a′c,j for some j. We further claim that
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there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄ ·c ·sc,i and a′ = s̄−1ac,j + n̄ · c̄ ·sc,i. It

suffices to show that there exist s̄ ∈ ∆ such that πmN
c

(s̄) = ( c′

c
)πmN

c
(sc,i)

−1 ∈ πmN
c

(∆)

⊂ (Z/mN
c

Z)× and πc(s̄) = a′
−1
a′c,j ∈ πc(∆∩Ker(πmN

c
)) ⊂ (Z/cZ)×, which is equivalent

to prove the following isomorphisms

π mN

(c, mN
c )

(∆)/π mN

(c, mN
c )

(∆ ∩Ker(πmN
c

)) ∼= πmN
c

(∆)

π mN

(c, mN
c )

(∆ ∩Ker(πmN
c

)) ∼= πc(∆ ∩Ker(πmN
c

))

under the natural maps. Note that the kernel of the natural map π mN

(c, mN
c )

(∆) → πmN
c

(∆)

is equal to π mN

(c, mN
c )

(∆ ∩ Ker(πmN
c

)). As for the second, let s̄ ∈ ∆ ∩ Ker(πmN
c

) be such

that πc(s̄) = 1̄ ∈ (Z/cZ)×. Then s ≡ 1 mod mN
c

and s ≡ 1 mod c, which implies s ≡ 1

mod mN
(c, mN

c
)
. This completes the proof. �

The above lemma gives us a set of all the inequivalent cusps of Γ1(N) ∩ Γ0(mN).
And we can figure out the width of each cusp by the following lemma.

Lemma 3. Let a
c

be a cusp of Γ = Γ1(N)∩Γ0(mN) with a, c ∈ Z and (a, c) = 1. We

understand ±1
0

as ∞. Then the width h of the cusp a
c

in Γ\H∗ is

h =

{ m
(( c

2
)2,m)

if N = 4 and (m, 2) = 1 and (c, 4) = 2
mN

(c,N)·(m, c2

(c,N)
)

otherwise.

Proof. First, we consider the case where N does not divide 4. We take b, d ∈ Z such

that

(
a b
c d

)
∈ SL2(Z). Observe that the width of the cusp a

c
in Γ\H∗ is the smallest

positive integer h such that(
a b
c d

) (
1 h
0 1

) (
a b
c d

)−1

=

(
1− ach ∗
−c2h 1 + ach

)
∈ {±1} · (Γ1(N) ∩ Γ0(mN)).

If

(
1− ach ∗
−c2h 1 + ach

)
∈ {−1} · (Γ1(N) ∩ Γ0(mN)), then by taking the trace we have

2 ≡ −2 mod N , which is a contradiction. So we have(
1− ach ∗
−c2h 1 + ach

)
∈ Γ1(N) ∩ Γ0(mN).

Thus h ∈ N
(ac,N)

Z∩ mN
(c2,mN)

Z = mN

(c,N)·(m, c2

(c,N)
)
Z. For the cases N = 1, 2, 4, we can verify

the statement in a similar fashion. �

Now we remark that arbitrary intersection

Γ = Γ0(N1) ∩ Γ0(N2) ∩ Γ1(N3) ∩ Γ1(N4) ∩ Γ(N5)

is conjugate to the above form Γ1(N) ∩ Γ0(mN). More precisely,

α−1Γα = Γ1(N) ∩ Γ0(mN)
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where N = lcm(N3, N4, N5) and

α =

(
lcm(N2, N4, N5) 0

0 1

)
, m = lcm(N1, N3, N5)lcm(N2, N4, N5)/N.

Note that if we let {s1, · · · , sg} be a set of all the inequivalent cusps of some congruence
subgroup Γ′ and set Γ′ = α−1Γα for some α, then {α(s1), · · · , α(sg)} gives rise to a set
of all the inequivalent cusps of Γ.

If we restrict the congruence subgroup Γ to Γ0(N), Γ1(N) or Γ(N), then the above
lemmas may be reduced to simpler statements as follows.

Corollary 4. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We understand
that ±1

0
= ∞. Further we denote by SΓ a set of all the inequivalent cusps of a congruence

subgroup Γ. Then we have the following assertions.

(1) a
c

and a′

c′
are equivalent under Γ0(m) if and only if there exists s̄ ∈ (Z/mZ)× and

n ∈ Z such that

(
a′

c′

)
≡

(
s̄−1a+ nc

s̄c

)
mod m. Furthermore we can take SΓ0(m) as the

following set

SΓ0(m) = {ac,j

c
∈ Q | c > 0, c|m, 0 < ac,j ≤ m, (ac,j,m) = 1,

ac,j = ac,j′ ⇐⇒ ac,j ≡ ac,j′ mod (c, m
c
)}

and the width of the cusp a
c

in Γ0(m)\H∗ is m/(m, c2).

(2) a
c

and a′

c′
are equivalent under Γ1(N) if and only if there exists n ∈ Z such that(

a′

c′

)
≡ ±

(
a+ nc
c

)
mod N . And we can take SΓ1(N) to be the set

SΓ1(N) = {yc,j

xc,i
∈ Q | c > 0, c|N, 0 < sc,i, ac,j ≤ N, (sc,i, N) = (ac,j, N) = 1,

sc,i = sc,i′ ⇐⇒ sc,i ≡ ±sc,i′ mod N
c
,

ac,j = ac,j′ ⇐⇒ ac,j ≡ ±ac,j′ mod c if c = N
2

or N,
ac,j = ac,j′ ⇐⇒ ac,j ≡ ac,j′ mod c otherwise,
choose xc,i, yc,j ∈ Z such that (xc,i, yc,j) = 1 and
xc,i ≡ c · sc,i mod N and yc,j ≡ ac,j mod N}

and the width h of the cusp a
c

in Γ1(N)\H∗ is

h =

{
1 if N = 4 and (c, 4) = 2

N
(c,N)

otherwise.
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(3) a
c

and a′

c′
are equivalent under Γ(M) if and only if

(
a′

c′

)
≡ ±

(
a
c

)
mod M .

Further, we can take SΓ(M) as the set

SΓ(M) = {Myc,j

xc,i
∈ Q | c > 0, c|M2, 0 < sc,i, ac,j ≤M2, (sc,i,M) = (ac,j,M) = 1,

sc,i = sc,i′ ⇐⇒ sc,i ≡ ±sc,i′ mod (M, M2

c
),

ac,j = ac,j′ ⇐⇒ ac,j ≡ ±ac,j′ mod (c, M3

c(M, M2

c
)
) if (M, M2

c
) = 1 or 2,

ac,j = ac,j′ ⇐⇒ ac,j ≡ ac,j′ mod (c, M3

c(M, M2

c
)
) otherwise,

choose xc,i, yc,j ∈ Z such that (xc,i, yc,j) = 1 and
xc,i ≡ c · sc,i mod M2 and yc,j ≡ ac,j mod M2}

and the width of any cusp in Γ(M)\H∗ is M .

Proof. Let Γ = Γ1(N)∩Γ0(mN). If Γ = Γ0(m), i.e., N = 1, then ∆ = (Z/mZ)×; hence
Sc = {1} ⊂ Z for any positive divisor c of m. Since

ac,j = ac,j′ ⇐⇒ ac,j ≡ ac,j′ mod c

and

ac,j ≡ ac,j′ mod
m

c
⇐⇒ ac,j ≡ ac,j′ mod (c,

m

c
)

we obtain the assertion (1) by observing (c, ac,j) = 1.
Now we consider the case Γ = Γ1(N), namely m = 1. Since ∆ = {±1} ⊂ (Z/NZ)×,

we have

sc,i = sc,i′ ⇐⇒ sc,i ≡ ±sc,i′ mod
N

c
.

Note that ∆∩ Ker(πN
c
) = {±1} if c = N

2
or N , and ∆∩ Ker(πN

c
) = {1̄} otherwise.

Hence we get the assertion (2).

To prove (3), we first observe that α−1Γ(M)α = Γ1(M)∩Γ0(M
2) with α =

(
M 0
0 1

)
.

Thus we consider the case N = m = M . Since ∆ = {±(1 +Mk) | k = 0, · · · ,M−1} ⊂
(Z/M2Z)×, we have

sc,i = sc,i′ ⇐⇒ sc,i ≡ ±sc,i′ mod (M,
M2

c
).

Observe that we have

∆∩Ker(πM2

c

) = {1 +
M3

c(M, M2

c
)
k | k ∈ Z}∪{−1 +Mr

2

(M, M2

c
)

+
M3

c(M, M2

c
)
k | k ∈ Z}

with an integer r satisfying r · M

(M, M2

c
)
≡ 1 mod M2

c(M, M2

c
)

if (M, M2

c
) = 1 or 2, and we

have

∆ ∩Ker(πM2

c

) = {1 +
M3

c(M, M2

c
)
k | k ∈ Z}
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otherwise. Now that

πc(∆ ∩Ker(πM2

c

)) =

 {±(1 + M3

c(M, M2

c
)
k) | k ∈ Z} ⊂ (Z/cZ)× if (M, M2

c
) = 1 or 2

{1 + M3

c(M, M2

c
)
k | k ∈ Z} ⊂ (Z/cZ)× otherwise,

therefore we establish the assertion (3). This completes the proof. �

3. Modular equations and Kronecker’s congruences

By definition, a Hauptmodul for some congruence subgroup Γ of genus zero is a
modular function f(τ) with respect to Γ such that A0(Γ) = C(f(τ)). First, we note
that

v(τ) = q
1
2

∞∏
n=1

(1− q8n−7)(1− q8n−1)

(1− q8n−5)(1− q8n−3)
= −ζ−1

16

7∏
j=0

K(1/8 j/8)(τ)

K(3/8 j/8)(τ)

by K4 where ζn = e2πi/n, and so v(τ) is a modular function with respect to Γ(8) by
K5. Meanwhile, it was shown by Duke ([7]) that v2(τ) is a Hauptmodul for Γ1(8).

Theorem 5. The Ramanujan-Göllnitz-Gordon continued fraction v(τ) is a Haupt-
modul for Γ1(8) ∩ Γ0(2).

Proof. It is not hard to see that v2(τ) is indeed a Hauptmodul for Γ1(8) because we
know the transformation formulas of the Klein form (see [7]). If we let C(v(τ)) = A0(Γ)
for some Γ, then 2 = [C(v(τ)) : C(v2(τ))] = [Γ1(8) : Γ]. As stated above, since v(τ) is

invariant under Γ(8), Γ contains Γ(8). Note that Γ1(8)∩Γ0(2) = < Γ(8),

(
1 2
0 1

)
> and

[Γ1(8) : Γ1(8)∩Γ0(2)] = 2. So if v ◦
(

1 2
0 1

)
= v holds, then Γ1(8)∩Γ0(2) ⊂ Γ ⊂ Γ1(8);

hence
2 = [Γ1(8) : Γ1(8) ∩ Γ0(2)]

= [Γ1(8) : Γ][Γ : Γ1(8) ∩ Γ0(2)]
= 2[Γ : Γ1(8) ∩ Γ0(2)]

implies Γ = Γ1(8) ∩ Γ0(2). Therefore it remains to verify that v ◦
(

1 2
0 1

)
= v. By

using the transformation formulas K1 and K2 we obtain

v ◦
(

1 2
0 1

)
= −ζ−1

16

7∏
j=0

K(1/8 (2+j)/8)(τ)

K(3/8 (6+j)/8)(τ)
= −ζ−1

16

eπi/4 ·
∏7

j=0K(1/8 j/8)(τ)

e9πi/4 ·
∏7

j=0K(3/8 j/8)(τ)
= v.

�

Since v(τ) clearly has rational Fourier coefficients, the above theorem implies that
Q(v(τ)) = A0(Γ1(8) ∩ Γ0(2),Q). And, from the following proposition we can further
see the existence of an affine plane model defined over Q, which is called in our case
the modular equation.
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Proposition 6. Let n be a positive integer. Then we have

Q(v(τ), v(nτ)) = A0(Γ1(8) ∩ Γ0(2) ∩ Γ0(8n),Q).

Proof. Since v(τ) is a Hauptmodul for Γ1(8)∩Γ0(2), we get that for α ∈ GL+
2 (Q), v ◦α

= v yields α ∈ Q×(Γ1(8) ∩ Γ0(2)). Let Γ = Γ1(8) ∩ Γ0(2) and β =

(
n 0
0 1

)
. First,

note that Γ1(8) ∩ Γ0(2) ∩ Γ0(8n) = Γ ∩ β−1Γβ, hence it is clear that v(τ), v(nτ) ∈
A0(Γ∩β−1Γβ,Q). Thus it is enough to show that Q(v(τ), v(nτ)) ⊃ A0(Γ∩β−1Γβ,Q).
Let Γ′ be the subgroup of SL2(Z) such that Q(v(τ), v(nτ)) = A0(Γ

′,Q), and let γ
be any matrix in Γ′. Since v(τ) and v(nτ) are invariant under γ by the remark in
the beginning of the proof, we establish that γ ∈ Γ and βγβ−1 ∈ Γ, which implies
γ ∈ Γ ∩ β−1Γβ. This completes the proof because it means that Γ′ ⊂ Γ ∩ β−1Γβ, that
is, A0(Γ

′,Q) ⊃ A0(Γ ∩ β−1Γβ,Q). �

In general, if we let C(f1(τ), f2(τ)) be the field of all modular functions with re-
spect to some congruence subgroup where f1(τ) and f2(τ) are nonconstants, then
[C(f1(τ), f2(τ)) : C(fi(τ))] is equal to the total degree Di of poles of fi(τ) for i = 1, 2.
So there exists a polynomial Φ(X, Y ) ∈ C[X, Y ] for which Φ(f1(τ), Y ) is an irreducible
polynomial of f2(τ) over C(f1(τ)) with degree D1 and similarly so is Φ(X, f2(τ)) over
C(f2(τ)) with degree D2. Then Proposition 6 claims the existence of a polynomial
Φn(X, Y ) ∈ Q[X, Y ] with rational coefficients such that Φn(v(τ), v(nτ)) = 0 and
Φn(X, Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial
in Y over C(X), for every positive integer n.

Let Γ′ = Γ1(8) ∩ Γ0(16n). Then it is not hard to see that Γ′ is conjugate to Γ1(8) ∩
Γ0(2) ∩ Γ0(8n), i.e., (

2 0
0 1

)
Γ′

(
2 0
0 1

)−1

= Γ1(8) ∩ Γ0(2) ∩ Γ0(8n)

and Q(v(2τ), v(2nτ)) = A0(Γ
′,Q). Since it is rather easier to handle with Γ′, we are

going to concentrate on the modular equation of v(2τ) and v(2nτ), which is also the
modular equation of v(τ) and v(nτ).

Now that it is more convenient to work with a Hauptmodul having the pole at ∞,
we let f(τ) = 1/v(2τ) and consider the modular equation Fn(X, Y ) = 0 of f(τ) and
f(nτ) with Fn(X, Y ) ∈ Q[X, Y ]. Hereafter, we fix d1 (respectively, dn) to be the total
degree of poles of the modular function f(τ) (respectively, f(nτ)) with respect to Γ′ =
Γ1(8) ∩ Γ0(16n). Then we may let Fn(X, Y ) =

∑
0≤i≤dn
0≤j≤d1

Ci,jX
iY j ∈ Q[X, Y ] so that it

satisfies Fn(f(τ), f(nτ)) = 0.
Here we observe that f(τ) is a Hauptmodul for Γ1(8)∩Γ0(16) with a simple pole only

at ∞ and a simple zero only at 3/16, because v(τ) is a Hauptmodul for Γ1(8) ∩ Γ0(2)
with a simple zero only at ∞ and a simple pole only at 3/8.

In what follows, we fix the notation by

f(τ) =
1

v(2τ)
, Γ = Γ1(8) ∩ Γ0(16)
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so that f(τ) is a Hauptmodul for Γ.

Lemma 7. Let a, c, a′, c′ ∈ Z and f(τ) = 1/v(2τ). Then we obtain the following
assertions.

(1) f(τ) has a pole at a
c
∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1, c ≡ 0

mod 16, a ≡ ±1 mod 8.
(2) f(nτ) has a pole at a′

c′
∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that

a
c

= na′

c′
, (a, c) = 1, c ≡ 0 mod 16, a ≡ ±1 mod 8.

(3) f(τ) has a zero at a
c
∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1, c ≡ 0

mod 16, a ≡ ±3 mod 8.
(4) f(nτ) has a zero at a′

c′
∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that

a
c

= na′

c′
, (a, c) = 1, c ≡ 0 mod 16, a ≡ ±3 mod 8.

Proof. It is enough to show (1) and (3), because (2) and (4) are the immediate conse-
quences of (1) and (3). Since f(τ) is a Hauptmodul for Γ with a simple pole only at
∞, f(τ) has a pole only at a

c
∈ Q ∪ {∞} such that a

c
is equivalent to ∞ under Γ. By

Lemma 1 we know that
a
c

is equivalent to ∞ under Γ

⇐⇒ ∃ s̄ ∈ ∆ = {±1,±7 ∈ (Z/16Z)×}, n ∈ Z s.t.

(
a
c

)
≡

(
s̄−1 + 0

0

)
mod 16.

So we get the assertion (1). In a similar way we have the assertion (3) by observing
that f(τ) has a simple zero at 3/16. This completes the proof. �

We now introduce a method of finding modular equations by computing

F2(X, Y ) =
∑

0≤i≤d2
0≤j≤d1

Ci,jX
iY j

precisely. Then the congruence subgroup which we should consider is Γ′ = Γ1(8) ∩
Γ0(32); hence

∆ = {±1,±9,±17,±25 ∈ (Z/32Z)×}
where the notation ∆ is the subgroup illustrated as in §2. We will first obtain d1. By
the above lemma and Lemma 2 we should consider S16, A16, S32 and A32, which are
easily described as S16 = S32 = {1}, A16 = A32 = {1, 3}. So all the cusps of Γ′ at
which f(τ) has poles are 1/16 and 1/32 by (1) of Lemma 7, where 1/32 is equivalent
to ∞ by Lemma 1. And, all the cusps of Γ′ at which f(τ) has zeros are 3/16 and 3/32
by (3) of Lemma 7. We see from Lemma 3 that the widths of 1/16, ∞ in Γ′\H∗ are
1 and 1, respectively. Since f(τ) = q−1 + O(1), we derive that ord∞f(τ) = −1. And,

since f ◦
(

1 0
16 1

)
= f = q−1 + O(1) by observing that

(
1 0
16 1

)
∈ Γ, we conclude

that ord1/16f(τ) = −1. Hence the total degree d1 of poles of f(τ) is 2. Next we will
compute d2. In like manner, by Lemma 7 and Lemma 2 we should consider S32 and
A32, which are already obtained as S32 = {1}, A32 = {1, 3}. Thus all the cusps of Γ′ at
which f(2τ) has poles is 1/32 by (2) in the above lemma, where 1/32 is equivalent to
∞ by Lemma 1. Meanwhile, we see that all the cusps of Γ′ at which f(2τ) has zeros
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is 3/32 by (4) of Lemma 7. As estimated in the above the width of ∞ in Γ′\H∗ is 1.
Since f(2τ) = q−2 + O(q−1), we have that ord∞f(2τ) = −2. So the total degree d2 of
poles of f(2τ) is 2. Therefore we have

F2(X, Y ) =
∑

0≤i≤2
0≤j≤2

Ci,jX
iY j.

In order to determine F2(X,Y ) precisely, we are going to use the following theorem
due to Ishida and Ishii ([9]) which can be derived from the standard theory of algebraic
functions.

Theorem 8. For any congruence subgroup Γ′, let f1(τ) and f2(τ) be nonconstants such
that C(f1(τ), f2(τ)) = A0(Γ

′) with the total degree Dk of poles of fk(τ) for k = 1, 2,
and let

F (X, Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X, Y ]

be such that F (f1(τ), f2(τ)) = 0. Let SΓ′ be a set of all the inequivalent cusps of Γ′ and
let

Sk,0 = {s ∈ SΓ′ | fk(τ) has zeros at s}
Sk,∞ = {s ∈ SΓ′ | fk(τ) has poles at s}

for k = 1, 2. Further let

a = −
∑

s∈S1,∞∩S2,0

ordsf1(τ), b =
∑

s∈S1,0∩S2,0

ordsf1(τ).

Here we assume that a (respectively, b) is 0 if S1,∞ ∩ S2,0 (respectively, S1,0 ∩ S2,0) is
empty. Then we obtain the following assertions.

(1) CD2,a 6= 0. If further S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j 6= a.
(2) C0,b 6= 0. If further S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j 6= b.
(3) Ci,D1 = 0 for 0 ≤ i < |S1,0 ∩ S2,∞|, D2 − |S1,∞ ∩ S2,∞| < i ≤ D2.
(4) Ci,0 = 0 for 0 ≤ i < |S1,0 ∩ S2,0|, D2 − |S1,∞ ∩ S2,0| < i ≤ D2.
If we interchange the roles of f1(τ) and f2(τ), then we may have further properties

similar to (1)∼(4). Suppose further that there exist r ∈ R and N, n1, n2 ∈ Z with
N > 0 such that

fk(τ + r) = ζnk
N fk(τ)

for k = 1, 2, where ζN = e2πi/N . Then we get the following assertion.
(5) n1i+ n2j ≡/ n1D2 + n2a mod N =⇒ Ci,j = 0. Here note that n2b ≡ n1D2 + n2a

mod N .

Now we are ready to apply the above theorem to our situation. If we let f1(τ) =
f(τ) and f2(τ) = f(2τ) in the above, then we achieve

S1,0 = {3/16, 3/32}, S1,∞ = {1/16,∞},
S2,0 = {3/32}, S2,∞ = {∞}.
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So we have
S1,∞ ∩ S2,0 = φ =⇒ a = 0 =⇒ C2,0 6= 0

S1,∞ ∩ S2,∞ = {∞} =⇒ C2,2 = 0
S1,0 ∩ S2,0 = {3/32} =⇒ C0,0 = 0.

Since f(τ + 1/2) = −f(τ) and f(2(τ + 1/2)) = f(2τ), we also have that

i ≡/ 0 mod 2 =⇒ Ci,j = 0

namely C1,0 = C1,1 = C1,2 = 0. Therefore we conclude that F2(X, Y ) = C2,1X
2Y +

C2,0X
2 + C0,2Y

2 + C0,1Y .
Here we may determine all the coefficients of F2(X, Y ) by inserting Fourier expan-

sions of f(τ) and f(2τ). Since v(τ) is given by the q-product in §1 and f(τ) = 1
v(2τ)

,

we obtain the Fourier expansions of f(τ) and f(2τ) by expanding each corresponding
q-product as a series. Since C2,0 6= 0, we may let C2,0 = 1 and by inserting enough
terms of the Fourier expansions of f(τ) and f(2τ) we conclude that C2,1 = −1, C0,2 =
1, C0,1 = 1, and hence

F2(X, Y ) = −X2Y +X2 + Y 2 + Y,

from which we induce the relation

v2(τ) =
v(2τ)(1− v(2τ))

1 + v(2τ)
.

Note that this relation coincides with one of Chan and Huang’s results.
Next, we consider the cases of all odd primes n = p which also cover the results of

Chan-Huang ([4]) and Vasuki-Srivatsa Kumar ([14]).

Theorem 9. With the notations as above, let p be an odd prime. Then Fp(X, Y ) =∑
0≤i,j≤p+1Ci,jX

iY j ∈ Q[X, Y ] satisfies the following conditions.

(1) If p ≡ ±1 mod 8 then Cp+1,0 6= 0, C0,0 = 0 and

Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0
i+ j ≡ 1 mod 2 =⇒ Ci,j = 0.

(2) If p ≡ ±3 mod 8 then Cp+1,p 6= 0 and

Cp+1,0 = Cp+1,1 = · · · = Cp+1,p−1 = Cp+1,p+1 = 0
i+ j ≡ 0 mod 2 =⇒ Ci,j = 0.

Proof. The congruence subgroup which we should consider is Γ′ = Γ1(8)∩Γ0(16p), and
hence

∆ = {±(1 + 8k) ∈ (Z/16pZ)× | k = 0, · · · , 2p− 1}
where ∆ is the subgroup as in §2. Note that among the values k = 0, · · · , 2p− 1, only
two of them do not satisfy the condition ±(1 + 8k) ∈ (Z/16pZ)× because p is an odd
prime. By Lemma 2 and 7 we have to consider S16, A16, S16p and A16p. And we know
that S16 = {1}, for example, by observing that {1 + 8k ∈ (Z/pZ)× | k = 0, · · · , p − 1
such that 1 + 8k ≡/ 0 mod p} is equal to the whole set (Z/pZ)×. Further, we easily see
that S16p = {1}. Since |∆| = 4(p − 1) and |πp(∆)| = p − 1 as noted in the above, we
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get m16 = 2 with the notation m16 as in §2. So we have that A16 = {1, 3}. Since m16p

is also equal to 2, we derive that

A16p =

{
{1, 3} if p 6= 3
{1, 5} if p = 3.

Thus all the inequivalent cusps under consideration are 1
16

, 3
16

, 1
16p

and 3
16p

(respectively,
1
16

, 3
16

, 1
48

and 5
48

) if p 6= 3 (respectively, p = 3). Although we consider only the case
p 6= 3 for convenience, all the statements below are true by replacing with appropriate
cusps. Hence we concentrate on the cusps 1

16
, 3

16
, 1

16p
and 3

16p
at which the widths are

p, p, 1 and 1, respectively by Lemma 3, and 1
16p

is equivalent to ∞ by Lemma 1. If

we let f1(τ) = f(τ) and f2(τ) = f(pτ) in Theorem 8, then by Lemma 7 we know that
S1,∞ = { 1

16
, 1

16p
}, S1,0 = { 3

16
, 3

16p
}. Further we obtain that

S2,∞ = { 1
16
, 1

16p
}, S2,0 = { 3

16
, 3

16p
} if p ≡ ±1 mod 8

S2,∞ = { 3
16
, 1

16p
}, S2,0 = { 1

16
, 3

16p
} if p ≡ ±3 mod 8.

Since f ◦
(

1 0
16 1

)
= f = q−1 +O(1) due to the fact that

(
1 0
16 1

)
∈ Γ, we derive that

ord∞f(τ) = −1 and ord1/16f(τ) = −p. So the total degree d1 of poles of f(τ) is p+ 1.
Since f(pτ) = q−p + O(q−p+1), we get that ord∞f(pτ) = −p. Let a = 1 (respectively,
a = 3) if p ≡ ±1 mod 8 (respectively, p ≡ ±3 mod 8). In order to find orda/16f(pτ),

we first take b, d ∈ Z such that

(
a b
16 d

)
∈ SL2(Z). Then since there exists x ∈ Z such

that d− 8x ≡ 0 mod p, we have(
2p 0
0 1

) (
a b
16 d

)
=

(
pa 2b− ax
8 d−8x

p

) (
2 x
0 p

)
where

(
pa 2b− ax
8 d−8x

p

)
∈ SL2(Z). Thus the Fourier expansion of f(pτ) at a/16 can be

derived from

1/v ◦
(

2p 0
0 1

) (
a b
16 d

)
= 1/v ◦

(
pa 2b− ax
8 d−8x

p

) (
2 x
0 p

)
= (some root of unity) ·

∏7
j=0

K(pa/8 ∗)(2τ/p+x/p)

K(3pa/8 ∗)(2τ/p+x/p)

by K1 and K2. By K4 we see that the above is of the form

(some root of unity) · qk
p + higher order terms

where k = 8(< 3pa
8
> (< 3pa

8
> −1)− < pa

8
> (< pa

8
> −1)) with the notation < > as

in K4. By plugging p ≡ ±1 mod 8 and p ≡ ±3 mod 8, respectively, into the above
we come up with that k = −1 whether p ≡ ±1 mod 8 or not. Thus if p ≡ ±1 mod 8
then ord1/16f(pτ) = −1, and if p ≡ ±3 mod 8 then ord3/16f(pτ) = −1. And the total
degree dp of poles of f(pτ) is p+ 1. Therefore Fp(X, Y ) is of the form

Fp(X, Y ) =
∑

0≤i,j≤p+1

Ci,jX
iY j.
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Since S1,∞ ∩ S2,0 is empty (respectively, { 1
16
}) if p ≡ ±1 mod 8 (respectively, p ≡ ±3

mod 8), we claim that a = 0 (respectively, a = p); and hence Cp+1,0 6= 0 (respectively,
Cp+1,p 6= 0). Similarly, by Theorem 8 we derive all the other assertions. For example,
by observing f(τ + 1

2
) = −f(τ) and f(p(τ + 1

2
)) = −f(pτ) we get that

i+ j ≡ 1 mod 2 =⇒ Ci,j = 0 if p ≡ ±1 mod 8
i+ j ≡ 0 mod 2 =⇒ Ci,j = 0 if p ≡ ±3 mod 8.

This completes the proof. �

Now we are able to estimate the modular equation Φp(X, Y ) = 0 of v(τ) and v(pτ)
by inserting enough terms of the Fourier expansions of f(τ) and f(pτ) into Fp(X,Y ) in
Theorem 9 and observing Φp(X, Y ) = Xp+1 Y p+1 Fp(

1
X
, 1

Y
). For instance, we have the

following table which recovers the results of Chan-Huang and Vasuki-Srivatsa Kumar
in §1. It is obvious that one may apply our method to find higher order modular
equations Φp(X, Y ) = 0 for p ≥ 13.

p the modular equation of v(:= v(τ)) and w(:= v(pτ))
3 v4w3 − v3(3w2 − 1)− 3v2(w3 − w)− v(w4 − 3w2)− w = 0
5 v6w5 − v5(5w2 − 1)− 5v4(w5 − 2w3)− 10v3(w4 − w2)

−5v2(2w3 − w)− v(w6 − 5w4)− w = 0
7 v8 − v7(w7 − 7w5 + 7w3 + 7w) + 28v6w2

+7v5(w7 − 7w5 − w3 − w) + 70v4w4 − 7v3(w7 + w5 + 7w3 − w)
+28v2w6 − v(7w7 + 7w5 − 7w3 + w) + w8 = 0

11 v12w11 + v11(11w10 − 33w8 − 11w6 + 33w4 − 11w2 + 1)
−11v10(w11 − 6w9 + 6w7 − 6w3 + w)

−11v9(6w10 − 21w8 − 5w6 + 36w4 − 6w2)
+33v8(w11 − 12w9 + 16w7 + 6w5 − 7w3 + w)

−66v7(3w8 + 6w6 − 8w4 + w2)
−11v6(w11 − 5w9 + 36w7 − 36w5 + 5w3 − w)

+66v5(w10 − 8w8 + 6w6 + 3w4)
−33v4(w11 − 7w9 + 6w7 + 16w5 − 12w3 + w)
−11v3(6w10 − 36w8 + 5w6 + 21w4 − 6w2)

+11v2(w11 − 6w9 + 6w5 − 6w3 + w)
−v(w12 − 11w10 + 33w8 − 11w6 − 33w4 + 11w2)− w = 0

¿From now on, in order to find the Kronecker congruence relations for the modular
equations of v(τ) and v(nτ) we let Γ = Γ1(8)∩ Γ0(16) as before and further let n be a
positive integer with (n, 2) = 1. For any integer a with (a, 2) = 1, we fix σa ∈ SL2(Z)

such that σa ≡
(
a−1 0
0 a

)
mod 16. Then we have

Γ

(
1 0
0 n

)
Γ =

⋃
a>0
a|n

⋃
0≤b< n

a
(a,b, n

a
)=1

Γσa

(
a b
0 n

a

)
,
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in which the right hand side is a disjoint union. Indeed, first note that |Γ\Γ
(

1 0
0 n

)
Γ|

= n
∏

p|n(1 + 1
p
) and use [13], Proposition 3.36.

Since σa depends only on a modulo 16, we fix σa as

σ±1 = ±
(

1 0
0 1

)
, σ±3 = ±

(
27 32
16 19

)
,

σ±5 = ±
(
−19 32
16 −27

)
, σ±7 = ±

(
−41 32
32 −25

)
.

It follows from the transformation formulas K0∼K2 that

f ◦ σ±1 = f ◦ σ±7 = f, f ◦ σ±3 = f ◦ σ±5 = − 1

f
.

For convenience, let αa,b = σa

(
a b
0 n

a

)
for such a, b. We now consider the following

polynomial Ψn(X, τ) with the indeterminate X

Ψn(X, τ) =
∏
a>0
a|n

∏
0≤b< n

a
(a,b, n

a
)=1

(X − (f ◦ αa,b)(τ)).

Note that degX Ψn(X, τ) = n
∏

p|n(1 + 1
p
). Since all the coefficients of Ψn(X, τ) are

the elementary symmetric functions of the f ◦ αa,b, they are invariant under Γ, i.e.,
Ψn(X, τ) ∈ C(f(τ))[X], and we may write Ψn(X, f(τ)) instead of Ψn(X, τ).

With the notations as in Theorem 8, we let f1(τ) = f(τ) and f2(τ) = f(nτ). Since
(n, 2) = 1, we have S1,∞ ∪ S1,0 = S2,∞ ∪ S2,0 by Lemma 7.

Theorem 10. With the notations as above, for a positive integer n with (n, 2) = 1 we
define

Fn(X, f(τ)) = f(τ)aΨn(X, f(τ)),

that is, Fn(X,Y ) = Y aΨn(X, Y ) with the nonnegative integer

a = −
∑

s∈S1,∞∩S2,0

ordsf(τ).

Here we assume that a = 0 if S1,∞ ∩ S2,0 is empty. Then we obtain the following
assertions.

(1) Fn(X, Y ) ∈ Z[X, Y ] and degX Fn(X, Y ) = degY Fn(X, Y ) = n
∏

p|n(1 + 1
p
).

(2) Fn(X, Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial
in Y over C(X).

(3) Let d = n
∏

p|n(1 + 1
p
). If n ≡ ±1 mod 8, then

Fn(X, Y ) = Fn(Y,X).

If n ≡ ±3 mod 8, then

Fn(X,Y ) = Y dFn(− 1

Y
,X).
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(4) If n is not a square, then Fn(X,X) is a polynomial of degree > 1 whose leading
coefficient is ±1.

(5) (Kronecker’s congruences) Let p be an odd prime. If p ≡ ±1 mod 8, then

Fp(X, Y ) ≡ (Xp − Y )(X − Y p) mod pZ[X, Y ].

If p ≡ ±3 mod 8, then

Fp(X, Y ) ≡ (Xp − Y )(XY p + 1) mod pZ[X, Y ].

Proof. Since f(τ) = 1
v(2τ)

, we may let f(τ) = 1
q
+

∑∞
m=1 cmq

m with cm ∈ Z. We further

let d = n
∏

p|n(1 + 1
p
) and let ψ ∈ Gal(Q(ζn)/Q) be such that ψ(ζn) = ζk

n for some

integer k with (k, n) = 1. Then ψ induces an automorphism of Q(ζn)((q
1
n )) through the

action on the coefficients. We denote the induced automorphism by the same notation
ψ. Since

f ◦
(
a b
0 n

a

)
= f(a2

n
τ + ab

n
)

= ζ−ab
n

(q
1
n )a2

+
∑∞

m=1 cmζ
abm
n (q

1
n )a2m,

we get that

ψ(f ◦
(
a b
0 n

a

)
) =

ζ−abk
n

(q
1
n )a2

+
∞∑

m=1

cmζ
abkm
n (q

1
n )a2m.

Let b′ be the unique integer such that 0 ≤ b′ < n
a

and b′ ≡ bk mod n
a
. Then

ψ(f ◦
(
a b
0 n

a

)
) = f ◦

(
a b′

0 n
a

)
because ζabk

n = ζab′
n . Since f ◦ σa = f or − 1

f
, we have ψ(f ◦ αa,b) = f ◦ αa,b′ , and so all

the coefficients of Ψn(X, f(τ)) are contained in Q((q
1
n )). Hence by observing the fact

Ψn(X, f(τ)) ∈ C(f(τ))[X] we see that Ψn(X, f(τ)) ∈ Q(f(τ))[X].
Meanwhile, Ψn(f( τ

n
), f(τ)) = 0 implies that [C(f( τ

n
), f(τ)) : C(f(τ))] ≤ d. Let F be

the field of all meromorphic functions on H which contains C(f( τ
n
), f(τ)) as a subfield.

Note that for γ ∈ Γ the map h(τ) 7→ h(γ(τ)) is an embedding of C(f( τ
n
), f(τ)) into F,

which is the identity on C(f(τ)). Also, observe that for any αa,b there exists γa,b ∈ Γ
such that (

1 0
0 n

)
γa,bα

−1
a,b ∈ Γ.

Since f(αa,b(τ)) 6= f(αa′,b′(τ)) if αa,b 6= αa′,b′ , there are at least d distinct embeddings
of C(f( τ

n
), f(τ)) into F over C(f(τ)) defined by

f(
τ

n
) 7→ f ◦

(
1 0
0 n

)
◦ γa,b = f(αa,b(τ)).

Thus

[C(f(
τ

n
), f(τ)) : C(f(τ))] = d,

which yields that Ψn(X, f(τ)) is irreducible over C(f(τ)).



20 BUMKYU CHO, JA KYUNG KOO, AND YOON KYUNG PARK

With the notations as in Theorem 8, if we let

a = −
∑

s∈S1,∞∩S2,0
ordsf(τ), b =

∑
s∈S1,0∩S2,0

ordsf(τ),

a′ = −
∑

s∈S2,∞∩S1,0
ordsf(nτ), b′ =

∑
s∈S2,0∩S1,0

ordsf(nτ),

then F (X,Y ) in Theorem 8 is of the form

Cdn,aX
dnY a + C0,bY

b + Ca′,d1X
a′Y d1 + Cb′,0X

b′ +
∑

0<i<dn
0<j<d1

Ci,jX
iY j.

Since F (X, f(τ)) is an irreducible polynomial of f( τ
n
) over C(f(τ)) and F (f( τ

n
), Y ) is

also an irreducible polynomial of f(τ) over C(f( τ
n
)), we know that

f(τ)aΨn(X, f(τ)) =
F (X, f(τ))

Cdn,a

and Fn(X, Y ) is a polynomial inX and Y which is irreducible both as a polynomial inX
over C(Y ) and as a polynomial in Y over C(X). Since f(τ)aΨn(X, f(τ)) ∈ Q[X, f(τ)]
and all the Fourier coefficients of the coefficients of Ψn(X, f(τ)) are algebraic integers,
we conclude that f(τ)aΨn(X, f(τ)) ∈ Z[X, f(τ)], namely Fn(X, Y ) ∈ Z[X,Y ].

We first consider the case n ≡ ±1 mod 8. Since Ψn(f(nτ), f(τ)) = 0, i.e., Ψn(f(τ), f( τ
n
))

= 0, f( τ
n
) is a root of the polynomial Fn(f(τ), X) ∈ Z[X, f(τ)]. Now that f( τ

n
) is a

root of the irreducible polynomial Fn(X, f(τ)), we derive that

Fn(f(τ), X) = g(X, f(τ))Fn(X, f(τ))

for some polynomial g(X, f(τ)) ∈ Z[X, f(τ)] by the Gauss lemma on the irreducibility
of polynomials. Thus

Fn(f(τ), X) = g(X, f(τ))g(f(τ), X)Fn(f(τ), X)

implies g(X, f(τ)) = ±1. If g(X, f(τ)) = −1, then Fn(f(τ), f(τ)) = −Fn(f(τ), f(τ));
hence f(τ) is a root of Fn(X, f(τ)), which is a contradiction to the irreducibility of
Fn(X, f(τ)) over C(f(τ)). Therefore we have

Fn(X, f(τ)) = Fn(f(τ), X).

Next, we consider the case n ≡ ±3 mod 8. Since Ψn(− 1
f(nτ)

, f(τ)) = 0, namely

Ψn(− 1
f(τ)

, f( τ
n
)) = 0, f( τ

n
) is a root of the polynomial f(τ)d Fn(− 1

f(τ)
, X) ∈ Z[X, f(τ)].

So

f(τ)dFn(− 1

f(τ)
, X) = g(X, f(τ))Fn(X, f(τ))

for some polynomial g(X, f(τ)) ∈ Z[X, f(τ)] again by the Gauss lemma. Note that

d = degX Fn(X, Y ) = degY Fn(X, Y ) + degY g(X, Y )

and
degY Fn(X, Y ) = degX Fn(X, Y ) + degX g(X, Y ),

and so g(X, Y ) is a constant and

degX Fn(X,Y ) = degY Fn(X, Y ) = d.
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Since Fn(X, Y ) is a primitive polynomial, we have g(X,Y ) = ±1. By considering
the coefficients of the equation Y dFn(− 1

Y
, X) = g(X,Y )Fn(X, Y ) we also get that the

coefficient of Xd−aY d in Fn(X, Y ) is equal to (−1)ag(X, Y ). Since Ψn(X, f(τ)) is equal
to ∏

a>0,a|n
a≡±1 (8)

∏
0≤b< n

a
(a,b, n

a
)=1

(X − ζ−ab
n q−

a2

n + · · · )
∏

a>0,a|n
a≡±3 (8)

∏
0≤b< n

a
(a,b, n

a
)=1

(X + ζab
n q

a2

n + · · · ),

we see that the coefficient of Xd−aY d in Fn(X, Y ) is equal to∏
a>0,a|n
a≡±1 (8)

∏
0≤b< n

a
(a,b, n

a
)=1

(−ζ−ab
n ).

For convenience, we denote the above products by
∏ ∏

, in other words, the first
product runs over a > 0, a|n, a ≡ ±1 (8) and the second product runs over 0 ≤ b < n

a
,

(a, b, n
a
) = 1. Observe that

∏ ∏
(−1) = (−1)a by considering the degree with respect

to X, and so g(X, Y ) =
∏ ∏

ζ−ab
n . Hence we immediately obtain that g(X,Y ) = 1 by

the following elementary lemma (see [3], Lemma 6.7): If m > 0 is an odd integer and
k|m, then

∏
0≤b<m
(b,k)=1

ζ−b
m = 1.

Now we consider the case where n is not a square. Then

f(τ)− f(αa,b(τ)) =


1
q
− ζ−ab

n

q
a2
n

+O(q
1
n ) if a ≡ ±1 mod 8

1
q

+O(q
1
n ) if a ≡ ±3 mod 8.

Therefore the coefficient of the lowest degree in Fn(f(τ), f(τ)) is a unit. Since it must
be an integer, Fn(X,X) is a polynomial of degree > 1 with leading coefficient ±1.

Let p be an odd prime. For any g(τ), h(τ) ∈ Z[ζp]((q
1
p )) and α ∈ Z[ζp], we write

g(τ) ≡ h(τ) mod α

if g(τ)− h(τ) ∈ αZ[ζp]((q
1
p )).

First, we consider the case p ≡ ±1 mod 8. Since

f(τ) =
1

q
+

∞∑
m=1

cmq
m (cm ∈ Z),

we have that

f(α1,b(τ)) =
ζ−b
p

q
1
p

+
∞∑

m=1

cmζ
bm
p (q

1
p )m ≡ 1

q
1
p

+
∞∑

m=1

cm(q
1
p )m mod 1− ζp,

that is,

f(α1,b(τ)) ≡ f(α1,0(τ)) mod 1− ζp
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for any b = 0, · · · , p− 1. And, since

f(αp,0(τ)) =
1

qp
+

∞∑
m=1

cmq
pm

and cpm ≡ cm mod p, we establish that f(αp,0(τ)) ≡ f(τ)p mod p, i.e.,

f(αp,0(τ)) ≡ f(τ)p mod 1− ζp.

Here we note that
f(τ) ≡ f(α1,0(τ))

p mod 1− ζp.

Since a = −
∑

s∈S1,∞∩S2,0
ordsf(τ) = 0 by Theorem 9, the above congruences yield that

Fp(X, f(τ)) = f(τ)aΨp(X, f(τ)) = Ψp(X, f(τ))
=

∏
a=1,p

∏
0≤b< p

a
(X − f(αa,b(τ)))

≡ (X − f(α1,0(τ)))
p(X − f(τ)p)

≡ (Xp − f(α1,0(τ))
p)(X − f(τ)p)

≡ (Xp − f(τ))(X − f(τ)p) mod 1− ζp.

Let Fp(X, f(τ))−(Xp−f(τ))(X−f(τ)p) =
∑

ν ψν(f(τ))Xν , where ψν(f(τ)) ∈ Z[f(τ)].
Since all the Fourier coefficients of ψν(f(τ)) are rational integers and divisible by 1−ζp,
we see that ψν(f(τ)) ∈ pZ[f(τ)]. So

Fp(X, f(τ)) ≡ (Xp − f(τ))(X − f(τ)p) mod pZ[X, f(τ)]

when p ≡ ±1 mod 8 as desired.

Lastly, we consider the case p ≡ ±3 mod 8. By the same arguments as in the case
p ≡ ±1 mod 8, we achieve that

f(α1,b(τ)) ≡ f(α1,0(τ)) mod 1− ζp

for any b = 0, · · · , p− 1 and

f(τ) ≡ f(α1,0(τ))
p mod 1− ζp.

Since f(αp,0(τ)) = − 1
f(pτ)

and f(pτ) ≡ f(τ)p mod p, we get that f(αp,0(τ)) ≡ − 1
f(τ)p

mod p, i.e.,

f(αp,0(τ)) ≡ − 1

f(τ)p
mod 1− ζp.

Now that a = −
∑

s∈S1,∞∩S2,0
ordsf(τ) = p by Theorem 9 again, we claim that

Fp(X, f(τ)) = f(τ)aΨp(X, f(τ)) = f(τ)pΨp(X, f(τ))
= f(τ)p

∏
a=1,p

∏
0≤b< p

a
(X − f(αa,b(τ)))

≡ f(τ)p(X − f(α1,0(τ)))
p(X + 1

f(τ)p )

≡ (Xp − f(α1,0(τ))
p)(Xf(τ)p + 1)

≡ (Xp − f(τ))(Xf(τ)p + 1) mod 1− ζp.

Then by the same arguments as in the case p ≡ ±1 mod 8 we conclude that

Fp(X, f(τ)) ≡ (Xp − f(τ))(Xf(τ)p + 1) mod pZ[X, f(τ)].

This completes the proof. �
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With the notations as in Theorem 10 we remark that Fn(X, Y ) = 0 is the modular
equation of f(τ) and f(nτ) such that the coefficient of XdY a in Fn(X, Y ) is 1. Since
degX Fn(X, Y ) = degY Fn(X,Y ) = d, Theorem 10 can be rewritten as the modular
equation Φn(X, Y ) = 0 of v(τ) and v(nτ) by observing Φn(X, Y ) = Xd Y d Fn( 1

X
, 1

Y
).

4. Units and application

Let j(τ) be the classical elliptic modular function. By definition a modular unit over
Z is a modular function f(τ) of some level N rational over Q(ζN) such that f(τ) and
1/f(τ) are integral over Z[j(τ)].

Lemma 11. Let h(τ) be a modular function of some level N rational over Q(ζN) for
which h(τ) has neither zeros nor poles on H. If for every γ ∈ SL2(Z) the Fourier
expansion of h ◦ γ has algebraic integer coefficients and the coefficient of the term of
lowest degree is a unit, then h(τ) is a modular unit over Z.

Proof. We refer the reader to [11] Chapter 2, Lemma 2.1, which can also be proved by
the theory of Shimura reciprocity law (see [13]). �

Let h(τ) be a modular unit over Z and K be an imaginary quadratic field. Since
it is well known that j(τ) is an algebraic integer for every τ ∈ K − Q, we can derive
that for such τ , h(τ) is an algebraic integer which is a unit. By observing this fact we
derive the following theorem.

Theorem 12. Let v(τ) be the Ramanujan-Göllnitz-Gordon continued fraction and K
be an imaginary quadratic field. Then v(τ) are units for all τ ∈ K −Q.

Proof. As stated in the above, it is enough to prove that v(τ) is a modular unit over

Z. Let γ =

(
a b
c d

)
∈ SL2(Z). Since v(τ) = −ζ−1

16

∏7
j=0

K(1/8 j/8)(τ)

K(3/8 j/8)(τ)
, we obtain that

v(γ(τ)) = −ζ−1
16

7∏
j=0

K((a+jc)/8 (b+jd)/8)(τ)

K((3a+jc)/8 (3b+jd)/8)(τ)

by K1. If we replace the Klein forms by the q-products in K4 and expand the products
as a series, then the series is the Fourier expansion of v(γ(τ)). Since we want to prove
that v(γ(τ)) has algebraic integer Fourier coefficients and the lowest coefficient is a
unit, we may assume that

0 ≤ (a+ jc)/8, (3a+ jc)/8 < 1

by K2. If we assume these, then the only term we should consider in K4 is 1 − qz.
First, we treat the case where c is even. Since a is odd, (a+ jc)/8 cannot be an integer
for any j = 0, · · · , 7. Similarly (3a+jc)/8 cannot be an integer for any j = 0, · · · , 7. So
1−qz cannot be complex numbers, namely it has algebraic integer coefficients with the
lowest coefficient 1, and the series expansion of v(γ(τ)) has the desired properties. Now
we consider the case of c odd. Since c ∈ (Z/8Z)×, there exist unique j1, j2 ∈ {0, · · · , 7}
such that

a+ j1c ≡ 0 mod 8, 3a+ j2c ≡ 0 mod 8.
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Hence for such j1, j2 (respectively, j2),

1− qz =

{
1− ζb+j1d

8 if j1 arises

1− ζ3b+j2d
8 if j2 arises.

Thus v(γ(τ)) has the desired properties if
1−ζ

b+j1d
8

1−ζ
3b+j2d
8

is a unit. First, note that

(2, b+ j1d) = (2, 3b+ j2d) = 1

because (1
8

j1
8
) = (a+j1c

8
b+j1d

8
)

(
d −b
−c a

)
with (a + j1c)/8 ∈ Z. Meanwhile, by the

following elementary lemma we obtain the assertion. Let p be a prime and r, s ∈ Z
such that (p, rs) = 1. Then

1−ζr
pn

1−ζs
pn

is a unit of Z[ζpn ]. Indeed, s ∈ (Z/pnZ)× implies

that r ≡ st mod pn for some t ∈ Z, and so

1− ζr
pn

1− ζs
pn

=
1− ζst

pn

1− ζs
pn

= 1 + ζs
pn + · · ·+ ζ

s(t−1)
pn ∈ Z[ζpn ].

Similarly,
1−ζs

pn

1−ζr
pn
∈ Z[ζpn ]. This completes the proof. �

Next let N be a positive integer, K be an imaginary quadratic field and let z ∈ K∩H
be a root of the primitive equation ax2 + bx + c = 0 such that b2 − 4ac = dK , where
dK is the discriminant of K. Further, let

f(a1 a2)(z) =
g2(Zz + Z)g3(Zz + Z)

∆(Zz + Z)
℘(a1z + a2; Zz + Z)

be the first Fricke function defined as in [13] §6.1 where (a1 a2) ∈ Q2 − Z2. By the
notation K · F′(z) in the following theorem we mean the field generated over K by all
the values h(z), where h ∈ F′ is defined and finite at z. And, let FN stand for the field
of all modular functions of level N rational over Q(ζN).

Theorem 13. With the notations as above, let x (respectively, y) be the least positive
integer such that x = (Nx, a) (respectively, y = (Ny, c)), and let

F
(1)
min = Q(j, j ◦

(
Nx 0
0 1

)
, f(0 1

N
)),

F
(2)
min = the field of all modular functions for Γ0(Nx) ∩ Γ1(N)

with rational Fourier coefficients,

F
(3)
min = the field of all modular functions for Γ0(Ny) ∩ Γ1(N)

with rational Fourier coefficients,

F
(4)
min = Q(j, j ◦

(
1 0
0 Ny

)
, f(0 1

N
) ◦

(
1 0
0 Ny

)
),

Fmax = the field of all modular functions for Γ0(Nc) ∩ Γ0(Na) ∩ Γ(N)

whose Fourier coefficients with respect to e2πiz/Nc belong to Q(ζN).
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Then for any field F′ described in the hypothesis K · F′(z) is the ray class field modulo

N over K. Furthermore, if F′′ is any intermediate field such that F
(i)
min ⊂ F′′ ⊂ Fmax

for some i = 1, · · · , 4 or FN ⊂ F′′ ⊂ Fmax, then K · F′′(z) is also the ray class field
modulo N over K.

Proof. [5] Theorem 29. �

Here we will make use of the following lemma to show that the units mentioned in
Theorem 12 really generate some ray class fields over imaginary quadratic fields.

Lemma 14. Let K be an imaginary quadratic field with discriminant dK and τ ∈ K∩H
be a root of the primitive equation ax2 + bx + c = 0 such that b2 − 4ac = dK, and let
Γ′ be any congruence subgroup containing Γ(N) and contained in Γ1(N). Suppose that
(N, a) = 1. Then the field generated over K by all the values h(τ), where h ∈ A0(Γ

′,Q)
is defined and finite at τ , is the ray class field modulo N over K.

Proof. With the notations as in Theorem 13, if (N, a) = 1 then x in Theorem 13 is

equal to 1. Therefore the inclusions F
(2)
min = A0(Γ1(N),Q) ⊂ A0(Γ

′,Q) ⊂ A0(Γ(N),Q)
⊂ FN ⊂ Fmax imply the lemma. �

Theorem 15. Let K be an imaginary quadratic field with discriminant dK and τ ∈
K ∩ H be a root of the primitive equation ax2 + bx + c = 0 such that b2 − 4ac = dK.
Then K(v(τ)) is the ray class field modulo 8 over K if (2, a) = 1. In particular, if Z[τ ]
is the ring of integers in K, then K(v(τ)) is the ray class field modulo 8 over K.

Proof. Since v(τ) is a Hauptmodul for Γ1(8) ∩ Γ0(2) with rational Fourier coefficients
and Γ(8) ⊂ Γ1(8) ∩ Γ0(2) ⊂ Γ1(8), we obtain the first assertion by Lemma 14. In
particular, if Z[τ ] is the ring of integers in K, then a = 1 and hence we conclude the
last assertion immediately. �

By the same arguments in this section we are able to obtain similar results for
the Rogers-Ramanujan continued fraction r(τ) which is a Hauptmodul for Γ(5) with
rational Fourier coefficients ([8]). More precisely, r(τ) becomes a modular unit over
Z so that its singular value r(τ) at any imaginary quadratic argument τ is a unit.
Further, with the notations as in Theorem 15, K(r(τ)) is the ray class field modulo 5
over K if (5, a) = 1.
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