A COMPLETE DETERMINATION OF
RABINOWITSCH POLYNOMIALS

DONGHO BYEON AND JUNGYUN LEE

Abstract. Let m be a positive integer and f,,(z) be a polynomial of the
form f,(z) = 22 + 2 — m. We call a polynomial f,,(x) a Rabinowitsch
polynomial if for s = [\/m] and consecutive integers x = zg, xg + 1, ---,
xo+ s — 1, |fm(x)| is either 1 or prime. In this paper, we show that there
are exactly 14 Rabinowitsch polynomials f,(x).

1. INTRODUCTION

Euler discovered that the polynomial 2% + x + 41 is prime for any
integer such that 0 < z < 39 and remarked that there are few such
polynomials. In [14], Rabinowitsch proved the following theorem.

Theorem (Rabinowitsch) Let m be a positive integer. The polynomial
2% 4+ x + m is prime for any integer x such that 0 < x < m — 2 if and
only if 4m — 1 is square-free and the class number of the imaginary
quadratic field K = Q(v/1 — 4m) is equal to 1.

The complete determination of such polynomials is done by the com-
plete determination of imaginary quadratic fields with class number
one [1] [17]. So we know that there are exactly 7 such polynomials,
corresponding to m = 1,2,3,5,11,17 and 41.

Later, many authors studied analogue of this for real quadratic fields.
For examples, see [6] [7] [9] [12] [13]. Let m be a positive integer and
fm(z) be a polynomial of the form f,,(z) = 2* + z — m. We call
a polynomial f,,(x) a Rabinowitsch polynomial if for s = [\/m] and
consecutive integers x = xg, zo + 1, -+, xo+ 5 — 1, | fn(x)] is either 1
or prime. In [6] [7], Byeon and Stark proved the following theorem.

Theorem (Byeon and Stark) Let m be a positive integer. If the poly-
nomial f,(x) = 2? +x —m is a Rabinowitsch polynomial, then 4m + 1
s square-free except m = 2 and the class number of the real quadratic
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field K = Q(v/4m + 1) is equal to 1. Moreover, every Rabinowitsch
polynomial f,,(x) is one of the following types.

(i) 2?2 +z — 2,

(i) 2% + x — t2, where t is 1 or a prime,

(ili) 2® + 2 — (2 +t +n), where —t <n <, |n| is 1 or |n|=2F+ is an
odd prime.

We note that the real quadratic fields
K = QWA+ 1),

corresponding to the type (ii) and

K=QWAE+t+n) +1)=Q(/(2t + 1)2 + 4n),

corresponding to the type (iii) are so-called Richaud-Degert type. In
7], using determination of real quadratic fields of Richaud-Degert type
with class number one, they showed that there are all 14 Rabinowitsch
polynomials f,,(x) with at most one possible exception and there is no
exception under the the generalized Riemann hypothesis. The aim of
this paper is to show the following theorem unconditionally.

Theorem 1.1. There are exactly 14 Rabinowitsch polynomials f,(x).
And the complete list of such (m,xo) is (m,zo) = (1,0), (2,0), (3,0),
(4,1), (7,0), (9,1), (13,0), (25,1), (43,0), (49,1), (73,0), (103, 4), (169, 1),
(283,6).

In [2] [3], Biro completely determined the real quadratic fields K =
Q(v4t? 4+ 1) and K = Q(1/(2t +1)%2 +4) of class number one. In [5],
Byeon, Kim and Lee completely determined the real quadratic fields
K = Q(+y/(2t 4+ 1)2 — 4) of class number one. Using these results, we
can completely determine Rabinowitsch polynomials of type (ii) and
(iii) |n|] = 1. Since the real quadratic fields corresponding to (iii)
In|=25 is K = Q(v/9n? £ 4n), if we prove the following theorem and
completely determine the real quadratic fields K = Q(v/9n? + 4n) of

class number one, we can obtain Theorem 1.1 from the table in [7].

Theorem 1.2. Let n # 1 be a positive integer. Let d = 9n? & 4n
be a positive square-free integer and h(d) the class number of the real
quadratic field K = Q(\/d). Then h(d) > 2 if n > 162871.

To porove Theorem 1.2, we basically follow Biro’s method in [2] [3]
and by using an observation in section 2, we simplify the computation
of special values of L-functions.
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2. PRELIMINARIES

Let K be a real quadratic field and f an ideal of K. Let Ix(f) be
a group of ideal a of K with (a,f) = 1 and P¢; be a subgroup of
Ik (f) consisting of principal ideals (a)) generated by a totally positive
a€1+f. Let CLg(f) = Ix(f)/Pr1 be the ray class group of modulo
f and x be a ray class character. Let N(a) be the number of O(K)/a
for integral ideal a and Nk (a) = aa. Then the L-function of K and y
Lk (s, x) is defined as follows;

Li(s,x):== Y,  x(@N(a)™

integral a € Ik (f)

For a ray class C, we define the partial zeta function ((s,C) as
follows;

((s,C) := Z N(a)™®.

integral a € C

Let C, be the ray class defined by
Co = [(ua)], 2 € 14+£, po >0, <O0.
Then we have the following proposition.
Proposition 2.1. For a ray class C € CLk(f),
¢(0,C) + ¢(0,C,C) = 0.

Proof: Let B be a ray class and H be a group of ray class characters
X such that

X(Cz) = 1.
We note that for x € H,
Li(s,;x) = > x(C)X(s,C)= > x(C)((s,CCy).
C € CLgk(f) C e CLk(f)

Thus we have

2 57 X(B)Li(s.X)

— Z x(B™) Z x(C) [C(s, C) +((s, CQC)]
xeH C e CLk(f)

= Y Y ABTO)((5,0) +((s.C:0)|

CeCLg(f)x e H

= |H|(¢(s.B) + (5. C:B)).
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Since for xy € H,
LK(O7 X) = 07
we complete the proof. O

Let {by, ba, - , by} be the complete representatives of narrow ideal
class group of K. We define

Li(b,s, )= 3 x@N@)™,
integral a~b
where a ~ b means that
a= (a)b,

for totally positive element o. Then we have

h
LK(Su X) = ZLK<bl7 S?X)'
i=1
Proposition 2.2. If x(Cs) = —1 then

LK(b, O, X) = LK(MQba 07 X)

Proof: Let {aj,as,---a,} be the complete representatives of ray
classes modulo f such that a; ~ b. Then from Proposition 2.1

m

Lg(p2b,0,x) = Z X (Cala;])((0, Cafay])

= > x([a])<(0, [ai]) = L(b,0, x).

=1

3. COMPUTATION OF Lg(0, x)

3.1. K =Q(V9n2 +4n). Let d = 9n? 4 4n be a positive square free
integer. Let K be the real quadratic field K = Q(v/d) and h(d) its
class number. Then the fundamental unit of K is
M +2+3V9% +4n
‘- 2
and {1,w} is a basis of a ring of integer O, where

_ 3n+vVIn? +4n
- : )

w
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We note that
e—1

3

W=

For an ideal b of K, we define

R(b) :={z+yelr,y €e Qwith 0 < 2 < 1,0 <y < 1 and b(z+ye) C O(K)}.

Then we find that

() )

Li(,0,x) = > x((@+ye)b) > Ng(z+m+(y+ns)e) *|oo.
z+ye € R(b) n1,m2=0

To compute Lk (b, 0, x), we need the following lemmas.

Lemma 3.1 (Shintani [15] [16]).

- 1 1,1 1
> Ni(z+ni+(y+na)e)*|e=o = (a:—i)(y—§)+Z(e+€)(x2+y2—x—y+§).
ni,n2=0
Lemma 3.2. Let q be a positive rational integer and K = Q(\/E),
where d = 9n? + 4n is a positive square free integer. Then
v, C D+gj D +yqj
{(z, )|z +ye € R((q)} = {(z, y)]z = 6:(j) + T 3¢ Mlv= 3, 12

where 0 < <2, 0<C,D<q—1 and
. 0, 0<j<Bep-—1
51(j) = J= e
17 BC,DS]§2

2=3c)

for Bep = — .

Proof: Suppose that z + ye € R((¢)) and

-1
q(:erye):C’+Dw+q(i+jw):C+qi+(D+QJ)<€3 )a

for 0 < C,D < g — 1 and some integers 7, j. Since

0Sy=D+@j<L
we have .
)
3q
And since ,
0ca=Cyi XU oy

q 3g
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we have

D+ qj C]+Q_D+qj

3¢ ¢ q 3q

q 3q q

14+ € D for — [223¢] < <o

x:1+[

O

Let ¢ be a positive rational integer and x : (Z/qZ)* — C* be a odd
primitive character with conductor g. Then we define
xoN :Ix(q) = C,

by x o N(a) = x(N(a)). Then x o N is a ray class character modulo ¢
since for a € F, 1, we have

N(a)=1 (mod q).

Theorem 3.3. Let q be a positive rational integer and K = Q(\/E),
where d = 9n? +4n is a positive square free integer. Let x : (Z/qZ)* —
C* be a odd primitive character with conductor q. If h(d) =1, then

Lg(0,xoN) = 2Lk((q),0,x0N)

= 2%12 Z x(C? 4+ 3nCD — nD?)
0<C,D<q—1

(6C2 4 27C?*n — 18C'Dn + 6D*n
— 4BcpCq+9Cnq — 18 B¢ pCng — 6Dng + 6 B¢ pDng
— ¢*+2Bcpq® + ng® — 3Be,png® + 3BZ png?)

D—3C]‘

where Be,p = —[=,

Proof: If h(d) = 1 then {(q), (quz2)} is a complete representatives of
narrow ideal class group of K, since the fundamental unit € has norm

1. And
X o N([p2]) = x(=Nk(p2)) = —1.
Thus from Proposition 2.2 we have
Lk(0,xoN)=2Lk((q),0,x o N).
If x =061(j) + % — —D;;qj and y = —D;;qj then
qg(x+ye) =C+ Dw (mod q).
Thus

N(q(z + ye)) = Ng(q(z + ye)) = C* + 3nCD — nD?* (mod q).
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Now from the equation (1), Lemma 3.1 and Lemma 3.2, we can prove
the theorem. O

Corollary 3.4. Let q be a positive rational integer and K = Q(\/E),
where d = 9n? +4n is a positive square free integer. Let x : (Z/qZ)* —
C* be a odd primitive character with conductor q. If h(d) = 1 and
n=qk+r for0<r <gq, then

Li(0.x 0 N) = —— (By(r)k + Ay(r)),

2q¢°
where
A(r) = Z x(C? 4+ 3rCD — rD?)
0<C,D<g—1
(6C? 4 27C?r — 18CDr 4 6D*r
— 4BcpCq+9Crq —18B¢ pCrq — 6Drq + 6 B¢ pDrg
— ¢ +2Bcpq’ + 14> — 3Be,prg® + 3BZ pr?)
B.(r) = Z X(C* +3rCD — rD?)

0<C,D<q—1
(27C?*q — 18C Dq + 6D*q
+ 90¢* — 18BcpCq* — 6Dg* + 6Bc,p Dg?
+ ¢ —3Bcpq’ + 3B pd’).
Proof: Since x has a conductor ¢, we have for n = qk + r
X(C? +3nCD — nD?) = x(C* + 3rCD — rD?).
Thus Corollary 3.4 follows from Theorem 3.3. U

3.2. K =Q((9n?—4n). Let d = 9n? — 4n be a positive square free
integer. Let K be the real quadratic field K = Q(v/d) and h(d) its
class number. Then the fundamental unit of K is

In —2+3vV9In2 —4n
€:

2
and {1,w} is a basis of a ring of integer Ok, where
3n+vVIn? —4n
w = :
2
We note that
e+1

W = i

3
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Lemma 3.5. Let ¢ be a positive rational integer and K = Q(V/d),
where d = 9n? — 4n is a positive square free integer. Then

D .
and y = +q)

{0l + e € R(a)} = {(wp)le = 80) - 22+ 2 0 3 h

where 0 < <2, 0<C,D<q—1 and

. 1, 0<j<A
@u>:{ oo

+

3

07 AC,D+1§]§2

for sc,p :=—3C — D — 3q[=25= D] and Acp = [2<2].

q

Proof: Suppose that = + ye € R((q)) and

e—i—l)

q(x—i—ye):C—f—Dw—i—q(z'—i-jw):C’+qi+(D+QJ)< 3

for 0 < C,D < g — 1 and some integers 7, j. Since

0 < D +qj

= <1,
<y 34

we have
_D+gqy
3q

for j =0,1,2.

And since

C D j
<o g2t

q 3q
[ 3C’ D]

<1

we have for s p = —=3C — D — 3¢

D+qj C7 C D '
qJ }+_+ +qJ
3q q

I -3C —-D ' s -3C—-D '
1 Sg’;]D+[ ]]_(O,D+ J

:14_:_’__.}_(_7__)

r=1+1—

1_ sc,D

sc,D
3 %f0r0<j<[q}

~gp g for [0 41< <2
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Theorem 3.6. Let ¢ be a positive rational integer and K = Q(V/d),
where d = 9n? —4n is a positive square free integer. Let x : (Z/qZ)* —
C* be a odd primitive character with conductor q. If h(d) =1, then

LK(()?XON) = QLK((Q)voaon)

1
= — Y x(C*+3nCD+nD?

e
0<C,D<g—1
(=2D? +9D*n +4Dq + 4AcpDg — 9Dngq
— 3¢% — 6AC7Dq2 +3ng® + 9AC,an2 + 9A207an2
— 4Dscp +4qsc.p + 4Acpqsep — INgsep
— 18Ac¢.pngsc,p — 25t p + st p)

where s¢p = —3C — D — 3q[_3§—q_D] and Acp = [SC;D],

Proof: If h(d) =1 then {(q), (qu2)} is a complete representatives of
narrow ideal class group of K, since the fundamental unit € has norm
1. And

x o N([p2]) = x(=Nk(p2)) = —1.

Thus form Proposition 2.2 we have

LK(vaoN) :QLK(((]),O,XON)

If © =09(j) — sgf +Zandy= DBquj then

g(x +ye) =C+ Dw (mod q).
Thus
N(q(z + ye)) = Ni(q(x + ye)) = C* + 3nCD +nD? (mod q).

Now from the equation (1), Lemma 3.1 and Lemma 3.5, we can prove
the theorem. 0

Corollary 3.7. Let q be a positive rational integer and K = Q(v/d),
where d = 9n? —4n is a positive square free integer. Let x : (Z/qZ)* —
C* be a odd primitive character with conductor q. If h(d) = 1 and
n=qk+r for0<r <gq, then

Li(0,x 0 N) = 6iq2<FX<r>k + Ey(r),
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E(r) = Z X(C? +3rCD +rD?)

0<C,D<q—1

(—2D* + 9D* + 4Dq + 4Ac pDq — 9Drq
— 3¢ — 6Acpq® +3rq* + 9Ac prg® + 9A207D7"q2
— 4Dscp +4qgscp +4Acpqscep — Irqsce,p

— 18Ac,prasc,p — 2s¢p + 9Irsgp)

() = Z x(C? 4+ 3rCD +rD?

0<C,D<g—1
(9D%q — 9D¢”* + 3¢° + 9Ac,pq” + 9AZ g
— 9¢%scp — 18Ac.pq*scp + 9@15%,17)
Proof: Since y has a conductor ¢, we have for n = ¢k + r
X(C? +3nCD +nD?) = x(C* + 3rCD + rD?).
Thus Corollary 3.7 follows from Theorem 3.6. U

4. q—p

Let x be an odd primitive character with conductor ¢ with (¢,d) =1
and L, a field over Q generated by the values of x(a) fora=1,2,---¢
and m, :=>7_ ax(a).

Condition(*): The integer q is odd, p is an odd prime, and there is an
odd prime character x with conductor ¢ and a prime ideal I of L, lying
over p such that m, € I and the residue field of I is a prime field.

We will denote by p — ¢ that g, p satisfy Condition(*). From Section
4 in [2], we have
175 — 61, 61 — 1861, 175 — 1861.
And from Section 4 in [10], we have
175 — 601.
To prove Theorem 1.2, we need the following another p — g¢.

Lemma 4.1. 175 — 271.
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Proof: Consider the function fo5 : (Z/25Z)* — 7Z/20Z for which
2/2(0) = ¢ (mod 25) and the function g : (Z/7Z)* — Z/6Z for which
397 = @ (mod 7). Above two functions are well defined, since (Z/257)*
[resp. (Z/77)*] is a cyclic group generated by 2 [resp. 3]. Define
X5 : (Z/175Z)* — C by

la) = G e,

where a = ags (mod 25), a = a; (mod 7) and (3 is a primitive 30-th
root of unity. Then x5 is an odd primitive character with a conductor
175. Since the order of 214 modulo 271 is 30, I5 = (271, (30 — 214) is

the prime ideal in L,, = Q((30) lying over rational prime 271 of degree
1 (See page 97 in [2]). From

(30 =214  (mod I5),
we find that
My, =0 (mod I).

So we obtain
175 — 271.

5. RESIDUES OF n

5.1. K = Q(v9n?+4n). Let d = 9n® + 4n be a positive square free

integer. Let K be the real quadratic field K = Q(v/d) and h(d) its

class number. We assume that h(d) = 1. If integers ¢ and p satisfy

the Condition(*), then for r such that B, (r) &€ I, there exists a unique

T, (r) € {0,1,2,---p — 1} such that

qAx(T)
By (r)

+r+I1=T(r)+1.

Thus we have

n=T,(r) (modp) forn=qk+r.
We define the functions 7}, (r) as follows:
Ax(r)
'B
where the characters y; and ideals I; are defined in Example 1, Example
3 and Example 2 of Section 4 in [2], respectively for i = 1,2, 3, x4 and

I are in section 4 in [10], x5 and [; are in Lemma 4.1 and ¢; is the
conductor of ;.

+7“+[l = TXi(r) +[7,
xi ()
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For a residue ay75 modulo 175 with B,, (a175) € I1[resp. By, (air5) &
I3], we define bg;[resp. dise1] by residues modulo 61[resp. 1861] for
which

ber = Ty, (a17s)

dige1 = TX3 (a175).

And for a residue bg; modulo 61 with B,,(bs1) & I, we define 1561 by
a residue modulo 1861 such that

C1861 = sz (b61)-

We define Ny75(9n% + 4n) := {n € Z* | (9n* + 4n,175) = 1}. By
computer work, we find that for ay75 € Ni75(9n2 + 4n) we have

By, (ai75) & I, By,(a175) € I3

and for ay75 € Nyi75(9In? + 4n) with ai75 # 16,132, we have

By, (T, (a175)) & I5.

Thus we have the following table for ay75 € Ny75(9n? + 4n).
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arrs ber ciser diser airs ber ciser digser airs b1 Cise1  disel

1 1 1 1 2 2 2 2 3 3 3 3
6 3 3 1608 8 51 31 1807 11 11 11 11
13 18 1179 485 16 47 1572 17 14 1210 382
18 49 1062 1646 22 17 1842 1669 23 43 386 617
27 12 175 383 31 22 238 838 32 41 1241 1056
36 35 1733 1357 37 60 1860 406 38 5 5 1712
41 12 175 542 43 16 456 96 46 48 1317 334
48 59 1859 1159 51 13 566 810 52 38 1355 1025
53 58 1858 1216 57 36 1010 660 58 20 620 1476
62 49 1062 154 66 16 456 161 67 34 1187 1628
71 4 947 604 T2 31 5 1119 73 38 1355 1309
76 7 222 1108 78 49 1062 1829 81 37 1297 950
83 24 1106 160 &6 20 620 227 &7 7 222 1607
88 30 1196 51 92 6 510 1195 93 22 258 1008
97 34 1187 575 101 23 1392 329 102 54 1854 875
106 26 1302 1577 107 29 1685 532 108 8 1036 49
111 34 1187 406 113 37 1297 49 116 40 1240 1084
118 32 14 1314 121 24 1106 838 122 5 5 79
123 7 222 102 127 26 1302 1090 128 7 222 730
132 47 190 136 6 510 171 137 35 1733 910
141 8 1036 2 142 24 1106 142 143 1 1 710
146 20 620 1386 148 58 1858 1208 151 44 911 1199
153 15 1400 392 156 23 1392 1333 157 2 2 1781
158 32 14 65 162 30 1196 1637 163 52 1044 1091
167 39 424 362 171 57 1857 1547 172 58 1858 171

52. K = Q(v/9n? —4n). Let d = 9n® — 4n be a positive square free
integer. Let K be the real quadratic field K = Q(v/d) and h(d) its
class number. We assume that h(d) = 1. If integers ¢ and p satisfy
the Condition(*), then for r such that F)(r) ¢ I, there exists a unique
Sy(r) € {0,1,2,---p — 1} such that

E\(r)

S A I= I.
qFX<T) +T+ SX(T)+

Thus we have
n=.5(r) (modp) forn=qgk+r.
And we define the functions S,,(r) as follows:

E, (r
LRy
xi(7)
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where the characters y; and ideals [; are defined in Example 1, Example
3 and Example 2 of Section 4 in [2], respectively for i = 1,2, 3, x4 and
I are in section 4 in [10], x5 and I5 are in Lemma 4.1 and ¢; is the
conductor of x;.

For a residue a;75 modulo 175 with F\, (a175) & Ii[resp. Fy,(airs) &
I3], we define bg;[resp. dise1] by residues modulo 61[resp. 1861] for
which

be1 = le (a175)

dige1 = Sxa(a175)-

And for a residue bg; modulo 61 with F),(bs1) & I, we define c1561 by
a residue modulo 1861 such that

C1861 = sz (bﬁl)-

We define Ny75(9n? — 4n) := {n € Z* | (9n* — 4n,175) = 1}. By
computer work, we find that for ay75 € Ny75(9n* — 4n) we have

Fy(ai75) € I, Fy(airs) € Is
and for airs € N175(9n2 — 47?,) with airs % 43, 159, we have

FX2 (SX1 (a175)) Q 12'

Thus we have the following table for ay75 € Ny75(9n? — 4n).
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arrs ber ciser diser airs ber ciser digser airs b1 Cise1  disel

3 3 3 3 4 4 4 4 8§ 22 1437 1819
12 9 817 663 13 31 665 1547 17 29 1847 1534
18 59 1839 140 19 38 469 1371 22 46 461 1231
24 17 950 724 27 3 3 1023 29 41 1241 363
32 60 1860 1169 33 37 755 1779 34 53 825 1303
38 26 128 1841 39 55 1351 1737 43 14 616
47 54 1639 442 48 35 559 1529 52 54 1639 834
53 56 1856 1842 54 37 755 713 57 29 1847 1680
59 21 621 1134 62 24 564 1705 64 27 674 1451
67 53 825 1004 68 32 176 1389 69 35 559 293
3T 7 15 74 38 469 1299 78 27 674 833
82 39 1603 684 83 55 1351 837 &7 31 665 369
88 54 1639 314 89 41 1241 309 92 37 755 985
94 24 564 198 97 12 799 944 99 54 1639 25

102 23 506 242 103 30 1856 802 104 57 914 295
108 27 674 1222 109 45 1405 497 113 12 799 1197
117 41 1241 123 118 25 851 544 122 3 3 1183
123 23 506 896 124 48 1295 1030 127 2 2 1612
129 13 544 1270 132 45 1409 1767 134 49 1686 1081
137 56 1856 78 138 1 1 1515 139 26 128 1028
143 20 620 71 144 39 1603 1415 148 49 1686 602
152 18 1475 934 153 44 19 847 157 12 799 1509
158 47 651 1539 159 14 1338 162 43 682 120
164 50 1850 1387 167 10 1830 1586 169 58 1858 858
172 58 1858 1469 173 59 1859 58 174 60 1860 774

6. PROOF OF THEOREM 1.2

6.1. K = Q(v/9n2 +4n). Let d = 9n® + 4n be a positive square free
integer. Let K be the real quadratic field K = Q(v/d) and h(d) its
class number. From [Corollary 3.20, 4] (in [Corollary 3.20, 4], r|n — ¢

should be corrected by r fn —t and r(mT2 —k*—k—1)+ 1 should be

corrected by r(%) + 1), we have the following lemma.

Lemma 6.1. Let d = 9n® + 4n be a positive square free integer and

n:%. Then
9n? 1,

hid)=1 < T%—n—z—x —z(0<z<t,z#t—n) and
2n+1 are primes.
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Proposition 6.2. If5 or 7 or 61 divide d = 9n?+4n for an odd integer
n then h(d) > 1.

Proof: If 5 divides 9n? + 4n, then 5 divides n or 9n + 4. If 5 divides
n then n = 5, since n is a prime number. But the class number of
Q(+/245) is not 1. Thus 5 must divide (9n + 4). Since 5 # 9n + 4
for any prime n, we have 9n + 4 = 5k for some integer k£ > 1. Thus
9n? + 4n has at least 3 prime factors and h(d) > 1.

In this way, we can prove that if 7 or 61 divide 9n? + 4n for an odd
integer n then h(d) > 1. O

Proposition 6.3. Ifn #1,2,3,11 (mod 175) then h(d) > 1.

Proof: For n & Ny75(9n% + 4n), we find that h(d) > 1, from Proposi-
tion 6.2.

Now we consider n € Ny75(9n? + 4n). Let n = 16,132 (mod 175) €
Ni75(9n? + 4n) and h(9n? + 4n) = 1. Then from the table in section
5.1, we find that

n =47 (mod 61).
If n = 47 (mod 61), 61 divides 9n* + 4n. By Proposition 6.2, it is
impossible.

Let n #1,2,3,11,16,132 (mod 175) € Ni75(9n? + 4n) and h(9n? +
4n) = 1. Then from the table in section 5.1, we find that

C1861 7é d1861-

It is a contradiction. And this completes the proof. 0J

Proposition 6.4. If n is an odd integer with n = 1 (mod 175) and

h(d) =1 then [/ 22 +n — 1] < 36661.

Proof: From the table in section 5.1, we have

(2) n=1 (mod 61).
Since Ty, (1) = 1, we also have
(3) n=1 (mod 601).

If = 366611 + 28890 then form (2), we find that 22 + z — (22 4n— 1)

is a multiple of 61 and from (3), we also find that 22+ z — (% +n—1)

is a multiple of 601. Thus 22 +2 — (22 + n — 1) is a multiple of 36661

for x = 366611 + 28890. We note that x = 36661/ + 28890 can not be
equal to t —n because t —n = 0 (mod 61) from (2). Thus from Lemma

6.1, if t = [/ 2 +n — 1] > 36661, then h(d) > 1. O



RABINOWITSCH POLYNOMIALS 17

Proposition 6.5. If n is an odd integer with n = 2 (mod 175) and

h(d) =1, then [/ 2> +n — 1] < 35.

Proof: If x =35[+1, then 2% +x — (% +n — 1) is a multiple of 35.

We note that x = 35/ + 1 can not be equal to t — n because t —n =3

(mod 5). Thus from Lemma 6.1, if t = [{/2° +n — 1] > 35, then

h(d) > 1. 0

Proposition 6.6. If n is an odd integer with n = 3 (mod 175) and

h(d) =1, then [/22> +n — 1] < 13027.

Proof: From the table in section 5.1, we have
(4) n=3 (mod 1861).

If x = 130271 + 8079 then form n = 3 (mod 7), we find that x> +
x — (% +n — 1) is a multiple of 7 and from (4), we also find that

4

22 4a— (22 4+ n—1) is a multiple of 1861. Thus 2 +2— (2" +n—1)isa

multiple of 13027 for x = 13027]+8079. We note that x = 13027/4-8079
can not be equal to t —n because t —n = 1 (mod 1861) from (4). Thus

from Lemma 6.1, if t = [/2° +n — 1] > 13027, then h(d) > 1. O

Proposition 6.7. If n is an odd integer with n = 11 (mod 175) and
h(d) =1, then [/ 22 +n — 1] < 162871.
Proof: Since T),(11) = 11, we have

(5) n=11 (mod 601).
And from T,,(11) = 11, we also have
(6) n=11 (mod 271).

If x = 1628711+ 5152 then form (5), we find that 2%+ z — (% +n—1)

is a multiple of 601 and from (6), we also find that z*+x — (% +n—1)

is a multiple of 271. Thus 2>+ x — (% +n— 1) is a multiple of 162871
for z = 1628711 + 5152. We note that x = 162871/ 4+ 5152 can not
be equal to t — n because t — n = 5 (mod 601) from (5). Thus from

Lemma 6.1, if ¢ = [{/ 22 + n — 1] > 162871, then h(d) > 1. O

By combining Proposition 6.3-6.7, we have the following theorem:

Theorem 6.8. Let d = 9n?+4n be a positive square-free integer. Then
h(d) > 2 if n > 162871.
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6.2. K = Q(v9n? —4n). Let d = 9n® — 4n be a positive square free
integer. Let K be the real quadratic field K = Q(v/d) and h(d) its
class number. From [Corollary 3.21, 4] (in [Corollary 3.21, 4], rjn — ¢
should be corrected by r fn —t and 7’(%2 — k? —k —1) — 1 should be

m2—k2—k—1

) — 1), we have the following lemma.

corrected by r(

Lemma 6.9. Let d = 9n® + 4n be a positive square free integer and

n:%. Then

9In? 1 9
h(d)=1 < - ThTyF —2z(0<z<t,x#t—n) and

2n —1 are primes.

Proposition 6.10. If 5 or 7 or 61 divide 9n® — 4n for an odd integer
n, then h(d) > 1 except for d = 413.

Proof: If 7 divides 9n? — 4n, then 7 divides n or 9n — 4. If 7 divides
n then n = 7, since n is a prime number and d = 413. We note that
h(413) = 1. If 7 divides (9n — 4), then since 7 # 9n — 4 for any prime
n, we have 9n — 4 = Tk for some integer k > 1. Thus 9n? — 4n has at
least 3 prime factors and h(d) > 1.

In this way, we can prove that if 5 or 61 divide 9n? + 4n for an odd
integer n then h(d) > 1. O

Proposition 6.11. Ifn # 3,4 (mod 175) then h(d) > 1.

Proof: For n & Ni75(9n% — 4n), we find that h(d) > 1, from Proposi-
tion 6.10.

Now we consider n € Ny75(9n? — 4n). Let n = 43,159 (mod 175) €
Ni75(9n% — 4n) and h(9n* — 4n) = 1. Then from the table in section
5.2, we find that

n =14 (mod 61).
If n = 14 (mod 61), 61 divides 9n? — 4n. By Proposition 6.10, it is
impossible.

Let n # 3,4,43,159 (mod 175) € Ny75(9n? — 4n) and h(9n? —4n) =
1. Then from the table in section 5.2, we find that

C1861 7é dys61-

It is an contradiction. And this completes the proof. O

Proposition 6.12. If n is an odd integer with n = 3 (mod 175) and

h(d) =1, then [/22> —n — 1] < 3005.
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Proof: Since S,,(3) = 3, we also have
(7) n=3 (mod 601).

If x = 3005/+ 1411 then form (7), we find that x2+x—(%—n—i) is a

multiple of 601. Since n = 3 (mod 10), we also find that z? —i—x (922 -
n—1) is amultiple of 5 for z = 3005/+1411. Thus 2?+z— (% —n—z) is
a multiple of 3005 for x = 3005+ 1411. We note that x = 3005/ + 1411
can not be equal to ¢ —n because t —n =1 (mod 601) from (7). Thus

from Lemma 6.9, if t = [y/2 + n — 1] > 3005, then A(d) > 1. O

Proposition 6.13. If n is an odd integer with n = 4 (mod 175) and

h(d) =1, then [\/% —n — 1] <4207

Proof: Since S,,(4) = 4, we also have
(8) n=4 (mod 601).

If z = 42071+ 3018 then form (8), we find that 2%+ — (2~ L n— 1) is
multiple of 601. Since n = 11 (mod 14), we also find that x*+z— (9L -

”_Z) is a multiple of 7 for x = 42071 +3018. Thus z?+x — (—— -1

is a multiple of 4207 for x = 42071 + 3018. We note x = 42071 + 3018
that can not be equal to t —n because t —n = 302 (mod 601) from (8).

Thus from Lemma 6.9, if ¢ = [/2° 4+ n — 1] > 4207, then h(d) > 1

0J

By combining Proposition 6.11-6.13, we have the following theorem:

Theorem 6.14. Let d = 9n? — 4n be a positive square-free integer.
Then h(d) > 2 if n > 4207.

Proof of Theorem 1.2: Theorem 1.2 follows from Theorem 6.8 and 6.14.
O
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