4-RANKS OF CLASS GROUPS OF QUADRATIC EXTENSIONS OF CERTAIN QUADRATIC FUNCTION FIELDS

SUNGHAN BAE

Abstract

We obtain some density results for the 4 -ranks of class groups of quadratic extensions of quadratic function fields analogous to those results of F. Gerth in the classical case.

1. Introduction

In 1980's F. Gerth studied the structure of Sylow 2-subgroups of the class groups of quadratic number fields $K([3])$, or quadratic extensions K of a certain quadratic number field $F([2],[5],[6])$. More precisely, let R_{K} be the 4 -class rank of the class group of K in the narrow sense when K is a quadratic number field, and in the usual sense when K is a quadratic extension of a certain quadratic number field. Then he presented results which specify how likely it is that $R_{K}=0,1,2, \ldots$.

Let q be a power of an odd prime p. In ([1]), the analogous problem when K is a quadratic extension of $\mathbb{F}_{q}(T)$, which we call quadratic function field, is studied. In this article we study the problem in the case when K is a quadratic extension of a certain quadratic function field.

In the function field case the behavior of ∞ in an extension is much more diverse than number field case, where there are only two cases, real or imaginary. To be consistent with number field case, we only consider the extension fields K of $k=\mathbb{F}_{q}(T)$ such that every embedding of K into a fixed complete algebraically closed field C of $k_{\infty}=\mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right)$ over k is contained in $\mathbb{F}_{q}\left(\left(\sqrt{\frac{-1}{T}}\right)\right.$). For an infinite place ∞ of K, we say that ∞ is real (resp. imaginary) if $K_{\infty}=\mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right)\left(\right.$ resp. $K_{\infty}=\mathbb{F}_{q}\left(\left(\sqrt{\frac{-1}{T}}\right)\right)$).

The case when $q \equiv 1 \bmod 4$ is much different from the classical case, because -1 is a square in this case. This makes getting the limit density much easier. The case when $q \equiv 3 \bmod 4$ is very similar to the classical case. But we have to mention some interesting points compared to the classical case. In the classical case dyadic primes and the signs at archimedean places have effects to determine some Hilbert symbols. In the function field

[^0]case there are no dyadic primes. However, the degrees and signs at infinite places would determine some Hilbert symbols and force to get the same result as in the classical case.

Notations:

$$
\begin{aligned}
& k:=\mathbb{F}_{q}(T), \quad \mathbb{A}:=\mathbb{F}_{q}[T] \\
& \gamma:=\text { a fixed generator of } \mathbb{F}_{q}^{*} \\
& \infty:=\text { the place of } k \text { associated to }\left(\frac{1}{T}\right)
\end{aligned}
$$

Assume that for every extension field K of k, every embedding of K into C is contained in $\mathbb{F}_{q}\left(\left(\sqrt{\frac{-1}{T}}\right)\right)$.
$F:=$ a quadratic function field with odd class number h
$\mathbb{B}:=$ the integral closure of \mathbb{A} in F
$\mathcal{A}:=$ a set of quadratic extensions of F
For $K \in \mathcal{A}$, let C_{K} be the 2-class group of the integer ring O_{K}.
$D_{K}:=$ the discriminant of K / F
$r_{K}:=2$-rank of $C_{K}, \quad R_{K}:=4$-rank of C_{K}.
$B_{t}=\{K \in \mathcal{A}$: exactly t finite primes of F ramify in $K\}$
$B_{t ; n}:=\left\{K \in B_{t}: \operatorname{deg} D_{K}=n\right\}$
$B_{t, j ; n}:=\left\{K \in B_{t ; n}: R_{K}=j\right\}$
$d_{t, j}=\lim _{n \rightarrow \infty} \frac{\left|B_{t, j ; n}\right|}{\left|B_{t ; n}\right|}$
$d_{\infty, j}=\lim _{t \rightarrow \infty} d_{t, j}$

2. F IS REAL

In this section we assume that F is a real quadratic function field with odd class number h. Assume further that the fundamental unit ϵ of \mathbb{B} satisfies $N_{F / k}\left(\epsilon \notin \mathbb{F}_{q}^{* 2}\right.$. Then $F=$ $k(\sqrt{P})$ for some monic irreducible polynomial $P \in \mathbb{A}$ of even degree. Fix a sign function $\operatorname{sgn}: k_{\infty}^{*} \longrightarrow \mathbb{F}_{q}^{*}$. Let ∞_{1}, ∞_{2} be two infinite places of F. Let $\operatorname{sgn}_{\infty_{i}}: F^{*} \rightarrow \mathbb{F}_{q}^{*}$ be the sign function at ∞_{i}, which is defined by

$$
\operatorname{sgn}_{\infty_{i}}(\alpha)=\operatorname{sgn}\left(\sigma_{i}(\alpha)\right)
$$

where σ_{i} is the embedding corresponding to ∞_{i}. An element $\alpha \in F^{*}$ is called positive at ∞_{i} if $\operatorname{sgn_{\infty _{i}}}(\alpha) \in \mathbb{F}_{q}^{2} . \alpha$ is called totally positive if it is positive at every ∞_{i}.

For $0 \neq a \in \mathbb{B}$ and a prime ideal \mathfrak{p} of $\mathbb{B},(a, K / F)_{\mathfrak{p}}$ be the norm residue symbol for K / F. For $0 \neq b \in \mathbb{B}$, define the Hilbert symbol $(a, b)_{\mathfrak{p}} \in\{ \pm 1\}$ by

$$
(a, K / F)_{\mathfrak{p}} \sqrt{b}=(a, b)_{\mathfrak{p}} \sqrt{b},
$$

where $K=F(\sqrt{b})$.
Since $N_{F / k}(\epsilon) \notin \mathbb{F}_{q}^{2}$, we may assume ϵ is positive at ∞_{1} and negative at ∞_{2}.
For $a \in F^{*}, \operatorname{deg}_{i} a$ the order of pole of a at ∞_{i}.

For a totally positive $a \in \mathbb{B}, a$ is said to be of type I (resp. II, III and IV) if ($\left.\operatorname{deg}_{1} a, \operatorname{deg}_{2} a\right)$ is (even,odd) (resp. (odd,even), (odd,odd) and (even,even)). Put, for $q \equiv 3 \bmod 4$,

$$
\tilde{a}= \begin{cases}\epsilon a & \text { if } a \text { is of type I } \\ -\epsilon a & \text { if } a \text { is of type II } \\ -a & \text { if } a \text { is of type III } \\ a & \text { if } a \text { is of type IV }\end{cases}
$$

and for $q \equiv 1 \bmod 4$, put $\tilde{a}=a$. Note that -1 is a square if and only if $q \equiv 1 \bmod 4$. From the properties of norm residue symbols, we see easily that, for $a \in \mathbb{B}$ totally positive, $(\gamma, \tilde{a})_{\infty_{i}}=1$ (resp. -1) if $\operatorname{deg}_{i} a$ is even (resp. odd), and $(\epsilon, \tilde{a})_{\infty_{2}}=1$ (resp. -1) if $\operatorname{deg}_{2} a$ is even (resp. odd). We always have $(\epsilon, \tilde{a})_{\infty_{1}}=1$.

Lemma 2.1. Let \mathfrak{p} be a prime ideal and $\mathfrak{p}^{\mathfrak{h}}=(\mathfrak{a})$ for totally positive $a \in \mathbb{B}$. We have

$$
\begin{aligned}
& (\gamma, \tilde{a})_{\mathfrak{p}}= \begin{cases}1 & \text { if } a \text { is of type III or IV } \\
-1 & \text { if } a \text { is of type I or II }\end{cases} \\
& (\epsilon, \tilde{a})_{\mathfrak{p}}= \begin{cases}1 & \text { if } a \text { is of type II or IV } \\
-1 & \text { if } a \text { is of type I or III }\end{cases}
\end{aligned}
$$

proof From the product formula for Hilbert symbols, we have

$$
(\gamma, \tilde{a})_{\mathfrak{p}}=(\gamma, \tilde{a})_{\infty_{1}}(\gamma, \tilde{a})_{\infty_{2}}
$$

and

$$
(\epsilon, \tilde{a})_{\mathfrak{p}}=(\epsilon, \tilde{a})_{\infty_{1}}(\epsilon, \tilde{a})_{\infty_{2}} .
$$

The result follows from the above consideration.
Let K be a quadratic extension of F, where exactly t finite primes of F are ramified in K, say, $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{\mathfrak{t}}$. Let a_{i} be a totally positive element in \mathbb{B} with $\mathfrak{p}_{\mathfrak{i}}^{\mathfrak{h}}=\left(\mathfrak{a}_{\mathfrak{i}}\right)$. Let

$$
\mu:=a_{1} \cdots a_{t}, \quad \tilde{\mu}=\tilde{a}_{i} \cdots \tilde{a}_{t} .
$$

Then $K=F(\sqrt{\tilde{\mu}})$. Let $M_{K}^{\prime}=\left(m_{i j}^{\prime}\right)$ be the $(t+1) \times(t+2)$ matrix over \mathbb{F}_{2} defined by;

$$
(-1)^{m_{i j}^{\prime}}= \begin{cases}(\gamma, \tilde{\mu})_{\infty_{i}} & \text { for } i=1,2, j=1 \\ (\epsilon, \tilde{\mu})_{\infty_{i}} & \text { for } i=1,2, j=2 \\ \left(a_{j-2}, \tilde{\mu}\right)_{\infty_{i}} & \text { for } i=1,2, j=3, \ldots, t+2 \\ (\gamma, \tilde{\mu})_{\mathfrak{p}_{\mathfrak{i}-2}} & \text { for } i=3, \ldots, t+1, j=1 \\ (\epsilon, \tilde{\mu})_{\mathfrak{p}_{\mathfrak{i}-2}} & \text { for } i=3, \ldots, t+1, j=2 \\ \left(a_{j-2}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{i}-2}} & \text { for } i=3, \ldots, t+1, j=3, \ldots, t+2\end{cases}
$$

Let $M_{K}^{\prime \prime}$ be the $(t+1) \times 2$ matrix consisting of the first two columns of M_{K}^{\prime}. Then from $\S 1$ of [7],

$$
r_{K}= \begin{cases}t+1-\operatorname{rank} M_{K}^{\prime \prime} & \text { if both } \infty_{1} \text { and } \infty_{2} \text { are ramified, i.e. } \mu \text { is of type III } \\ t-\operatorname{rank} M_{K}^{\prime \prime} & \text { if one of } \infty_{1} \text { and } \infty_{2} \text { is ramified, i.e. } \mu \text { is of type I or II } \\ t-1-\operatorname{rank} M_{K}^{\prime \prime} & \text { if both } \infty_{1} \text { and } \infty_{2} \text { split, i.e. } \mu \text { is of type IV }\end{cases}
$$

and

$$
R_{K}= \begin{cases}t+1-\operatorname{rank} M_{K}^{\prime} & \text { if both } \infty_{1} \text { and } \infty_{2} \text { are ramified, i.e. } \mu \text { is of type III } \\ t-\operatorname{rank} M_{K}^{\prime} & \text { if one of } \infty_{1} \text { and } \infty_{2} \text { is ramified, i.e. } \mu \text { is of type I or II } \\ t-1-\operatorname{rank} M_{K}^{\prime} & \text { if both } \infty_{1} \text { and } \infty_{2} \text { split, i.e. } \mu \text { is of type IV. }\end{cases}
$$

Suppose first that μ is of type III. In this case both ∞_{1} and ∞_{2} are ramified in K. It is easy to see that

$$
\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
& * \\
\vdots & \vdots
\end{array}\right]
$$

Thus rank $M_{K}^{\prime \prime}=2$ and $r_{K}=t-1$. Let M_{K} be the matrix obtained from M_{K}^{\prime} by deleting the first two rows and first two columns. Since each a_{j} is totally positive, the first two rows of M_{K}^{\prime} are given by

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

Then $\operatorname{rank} M_{K}^{\prime}=2+\operatorname{rank} M_{K}$ and so,

$$
R_{K}=t-1-\operatorname{rank} M_{K}
$$

By renumbering, we may write $M_{K}=\left(m_{i j}\right)$ with $1 \leq i \leq t-1$ and $1 \leq j \leq t$, where

$$
(-1)^{m_{i j}}=\left(a_{j}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{i}}}
$$

Note that, for $q \equiv 3 \bmod 4$,

$$
(\mu, \tilde{\mu})_{\mathfrak{p}_{\mathfrak{i}}}=(-\tilde{\mu}, \tilde{\mu})_{\mathfrak{p}_{\mathfrak{i}}}=1
$$

and, for $q \equiv 1 \bmod 4$,

$$
(\mu, \tilde{\mu})_{\mathfrak{p}_{\mathfrak{i}}}=(\mu, \mu)_{\mathfrak{p}_{\mathfrak{i}}}=(-1, \mu)_{\mathfrak{p}_{\mathfrak{i}}}(-\mu, \mu)_{\mathfrak{p}_{\mathfrak{i}}}=1
$$

Thus the sum of each row of M_{K} is 0 . We may discard any column of M_{K} without changing the rank, and thus we may consider M_{K} to be a $(t-1) \times(t-1)$ matrix.

Assume first that $q \equiv 1 \bmod 4$. Then

$$
\left(a_{j}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{i}}}=\left(a_{j}, a_{i}\right)_{\mathfrak{p}_{\mathfrak{i}}}=\left(a_{i}, a_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}
$$

by the product formula for Hilbert symbols and the fact that $\left(a_{j}, a_{i}\right)_{\infty_{k}}=1$, since a_{j} is totally positive. Therefore, M_{K} is symmetric if $q \equiv 1 \bmod 4$. Now use [3], Proposition 3.7 to get

$$
d_{\infty, j}=\frac{2^{-\frac{j(j+1)}{2}}}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{i=1}^{\infty}\left(1+2^{-i}\right)}
$$

Now assume that $q \equiv 3 \bmod 4$. Let $\epsilon_{i}:=\tilde{a}_{i} / a_{i}$. Then using product formula and the multiplicativity of Hilbert symbols, we see easily that

$$
\begin{aligned}
\left(a_{i}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{j}}} & =\left(\epsilon_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}\left(\tilde{a}_{i}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{j}}}=\left(\epsilon_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}\left(\tilde{a}_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}} \\
& =\left(\epsilon_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}\left(\tilde{a}_{j}, \tilde{a}_{i}\right)_{\mathfrak{p}_{\mathfrak{i}}}\left(\tilde{a}_{j}, \tilde{a}_{i}\right)_{\infty_{1}}\left(\tilde{a}_{j}, \tilde{a}_{i}\right)_{\infty_{2}} \\
& =\left(\epsilon_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\mathfrak{p}_{\mathfrak{i}}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\infty_{1}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\infty_{2}}\left(a_{j}, \tilde{\mu}\right)_{\mathfrak{p}_{\mathfrak{i}}}
\end{aligned}
$$

since $\left(a_{j}, \tilde{a}_{i}\right)_{\infty_{k}}=1$. Using Lemma 1.1, product formula for Hilbert symbols and noting that $(-1, \tilde{a})_{\mathfrak{p}}=(\gamma, \tilde{a})_{\mathfrak{p}}$, we see that

$$
\left(\epsilon_{i}, \tilde{a}_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\mathfrak{p}_{\mathfrak{i}}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\infty_{1}}\left(\epsilon_{j}, \tilde{a}_{i}\right)_{\infty_{2}}=-1
$$

if and only if the pair (type of a_{i}, type of a_{j}) is $(I, I),(I, I I I),(I I, I I),(I I, I I I),(I I I, I)$ or $(I I I, I I)$. We order a_{1}, \ldots, a_{t-1} so that $a_{1}, \ldots, a_{k_{1}}$ are of type I; $a_{k_{1}+1}, \ldots, a_{k_{1}+k_{2}}$ are of type II; $a_{k_{1}+k_{2}+1}, \ldots, a_{k_{1}+k_{2}+k_{3}}$ are of type III; and $a_{k+k_{2}+k_{3}+1}, \ldots, a_{k_{1}+k_{2}+k_{3}+k_{4}}$ are of type IV. Then M_{K} is of the form

$$
\left[\begin{array}{ccccccc}
M_{1} & \mid & M_{2} & \mid & & \mid & \\
--- & \mid & --- & \mid & M_{4} & \mid & M_{5} \\
M_{2}^{T} & \mid & M_{3} & \mid & & \mid & \\
--- & --- & --- & --- & --- & --- & ---- \\
& M_{4}^{T}+J & & \mid & & & \\
--- & --- & --- & & M_{6} & \\
& M_{5}^{T} & & \mid & & &
\end{array}\right]
$$

where M_{1}, M_{3} are antisymmetric, M_{6} is symmetric and J is the $k_{3} \times\left(k_{1}+k_{2}\right)$ matrix with each entry equal to 1 , which is the same form as in [5], (3.11). Therefore

$$
d_{\infty, j}=\frac{2^{-j^{2}} \prod_{i=1}^{\infty}\left(1-2^{-i}\right)}{\prod_{i=1}^{j}\left(1-2^{-i}\right)^{2}} .
$$

It is not hard to see that for $q \equiv 3 \bmod 4$, the case that μ is of type I or II is the same as the case (ii) of [5] and the case that μ is of type IV is the same as the case (iii) of [5].

Suppose that $q \equiv 1 \bmod 4$ and μ is of type I or II. Then the associated matrix M_{K}, which is obtained from M_{K}^{\prime} by deleting first two rows and first column, is of the form

$$
M_{K}=\left[\begin{array}{c:c}
H_{1} & \\
-- & \\
0_{2} & \\
-- & M \\
H_{3} & \\
-- & \\
0_{4} &
\end{array}\right]
$$

where H_{i} (resp. 0_{i}) is a vector with each component 1 (resp. 0), and M is symmetric. By changing the order, we get

$$
M_{K}=\left[\begin{array}{c:c}
H & \\
-- & M \\
0 &
\end{array}\right]
$$

which is the same matrix as in [6], (3.7). Note that the probability that $H=\phi$ tends to 0 as $t \rightarrow \infty$. Then following [6], we get

$$
d_{\infty, j}=\frac{2^{-j(j+3) / 2}}{\prod_{i=1}^{\infty}\left(1+2^{-i}\right) \prod_{i=1}^{j}\left(1-2^{-i}\right)}
$$

Now suppose that $q \equiv 1 \bmod 4$ and μ is of type IV. Then the associated matrix M_{K}, which is obtained from M_{K}^{\prime} by deleting first two rows, is of the form

$$
M_{K}=\left[\begin{array}{cc:c}
H_{1} & H_{1} & \\
-- & -- & \\
H_{2} & 0_{2} & \\
-- & -- & M \\
0_{3} & H_{3} & \\
-- & -- & \\
0_{4} & 0_{4} &
\end{array}\right]
$$

where H_{i} (resp. 0_{i}) is a vector with each component 1 (resp. 0), and M is symmetric. Let J be $n \times 2$ matrix consisting the first two columns of M_{K}. Let

$$
\begin{gathered}
M_{1}=\left[\begin{array}{ll}
J & M
\end{array}\right] \\
M_{2}=\left[\begin{array}{ccc}
J & M & V \\
\mathbf{u} & V^{T} & v
\end{array}\right],
\end{gathered}
$$

where M is symmetric and $\mathbf{u} \in \mathbb{F}_{\notin}^{\not \neq}$. We get the following lemma, whose proof is almost the same as that of [6], Lemma 3.1.

Lemma 2.2. Suppose that rank $M_{1}=r$. Then of all possible M_{2},
i) $2^{n+1}-2^{r+1}$ have rank $M_{2}=r+2$
ii) $2^{r+1}-2^{r-2}$ have rank $M_{2}=r+1$
iii) 2^{r-2} have rank $M_{2}=r$.

Then we have, using Lemma 1.5 of [4],

$$
d_{\infty, j}=\frac{2^{-\frac{j(j+5)}{2}}}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{i=3}^{\infty}\left(1+2^{-i}\right)} .
$$

We summarize these in the following theorem.

Theorem 2.1. Let F be a real quadratic function field with odd class number.
i) If $\mathcal{A}=\{$ quadratic extensions K of F in which both infinite places of F ramify $\}$, then

$$
d_{\infty, j}=\left\{\begin{array}{lll}
\frac{2^{-j^{2}} \prod_{i=1}^{\infty}\left(1-2^{-i}\right)}{\prod_{i=1}^{j}\left(1-2^{-i}\right)^{2}} & \text { if } q \equiv 3 & \bmod 4 \\
\frac{2^{-\frac{j(j+1)}{2}}}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{i=1}^{\infty}\left(1+2^{-i}\right)} & \text { if } q \equiv 1 & \bmod 4 .
\end{array}\right.
$$

ii) If $\mathcal{A}=$ \{quadratic extensions K of F in which exactly one infinite place of F ramify $\}$, then

$$
d_{\infty, j}=\left\{\begin{array}{lll}
\frac{2^{-j(j+1)} \prod_{i=1}^{\infty}\left(1-2^{-i}\right)}{\Pi_{i=1}^{j}\left(1--^{-i}\right) \prod_{i=1}^{j+1}\left(1-2^{-i}\right)} & \text { if } q \equiv 3 & \bmod 4 \\
\frac{2^{-j(j+3) / 2}}{\prod_{i=2}^{\infty}\left(1+2^{-i}\right) \prod_{i=1}^{j}\left(1-2^{-i}\right)} & \text { if } q \equiv 1 & \bmod 4 .
\end{array}\right.
$$

iii) If $\mathcal{A}=\{$ quadratic extensions K of F in which no infinite place of F ramify $\}$, then

$$
d_{\infty, j}=\left\{\begin{array}{lll}
\frac{2^{-j(j+2)} \prod_{i=1}^{\infty}\left(1-2^{-i}\right)}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{j+2}^{j+2}\left(1-2^{-i}\right)} & \text { if } q \equiv 3 & \bmod 4 \\
\frac{2^{-\frac{(j+5)}{2}}}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{i=3}^{\infty}\left(1+2^{-i}\right)} & \text { if } q \equiv 1 & \bmod 4 .
\end{array}\right.
$$

Remark 2.1. Let F be a real quadratic function field such that Sylow 2-subgroup of the class group C_{F} is elementary and $N \epsilon \notin \mathbb{F}_{\|}^{\nexists}$, and K a quadratic extension of F where both infinite primes of F ramify as in [2]. Then exactly the same method used in this section works in this case too, as in [2].

3. F IS IMAGINARY

In this section we assume that F is imaginary, that is, ∞ ramifies in F. Let K be a quadratic extension of F, where the unique infinite place ∞ of F splits in $K . \mathfrak{p}_{\mathfrak{j}}, \mu$ and a_{j} 's are the same as in the section 1. For an ideal \mathfrak{a} of \mathbb{B}, we define the degree $\operatorname{deg}_{F} \mathfrak{a}$ of \mathfrak{a} with respect to F to be $\operatorname{dim}_{\mathbb{F}_{11}}(\mathbb{B} / \mathfrak{a})$. In fact, for $a \in \mathbb{A}, \operatorname{deg}_{F}(a)=2 \operatorname{deg} a$. Note that $\operatorname{deg}_{F} \mu$ is even and $K=F(\sqrt{\mu})$.

Lemma 3.1.

i) We have

$$
(\gamma, \mu)_{\mathfrak{p}_{\mathfrak{j}}}= \begin{cases}1 & \text { if } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { is even } \\ -1 & \text { if } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { is odd }\end{cases}
$$

ii) For $q \equiv 1 \bmod 4$, we have

$$
\left(-1, a_{j}\right)_{\infty}=\left(a_{j}, a_{k}\right)_{\infty}=1
$$

iii) For $q \equiv 3 \bmod 4$, we have

$$
\begin{gathered}
\left(-1, a_{j}\right)_{\infty}= \begin{cases}1 & \text { if } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { is even } \\
-1 & \text { if } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { is odd }\end{cases} \\
\left(a_{j}, a_{k}\right)_{\infty}= \begin{cases}1 & \text { if } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { or } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{k}} \text { is even } \\
-1 & \text { if both } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \text { and } \operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{k}} \text { are odd. }\end{cases}
\end{gathered}
$$

Proof Note that $(\gamma, \mu)_{\mathfrak{p}_{\mathfrak{j}}}=\left(\gamma, a_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}=\left(\gamma, a_{j}\right)_{\infty}$. Then i) follows from the fact that $\operatorname{deg}_{F} \mathfrak{p}_{\mathfrak{j}} \equiv \operatorname{deg}_{\mathfrak{F}} \mathfrak{a}_{\mathfrak{j}} \bmod 2$, since the class number h of F is odd.
ii) follows from the fact that -1 is a square in this case and that a_{j} is positive.

The first part of iii) is contained in i). Let $a_{j}^{*}:=(-1)^{\operatorname{deg}_{F} a_{j}} a_{j}$ and $\epsilon_{j}=(-1)^{\operatorname{deg}_{F} a_{j}}$. Then

$$
\left(a_{j}, a_{k}\right)_{\infty}=\left(a_{j}, \tilde{a_{k}}\right)_{\infty}\left(a_{j}, \epsilon_{k}\right)_{\infty}=\left(a_{j}, \epsilon_{k}\right)_{\infty}
$$

since $\left(a_{j}, \tilde{a_{k}}\right)_{\infty}=1$. Since $F_{\infty}\left(\sqrt{\epsilon_{k}}\right)=\mathbb{F} \backslash((\nVdash / \mathbb{T}))$ where $r=q$ or q^{2} according to $\epsilon_{k}=1$ or -1 . Now the result follows.

Suppose that $\operatorname{deg}_{F} p_{j}$ is odd for $j=1, \ldots, \ell$ and $\operatorname{deg}_{F} p_{j}$ is even for $j=\ell+1, \ldots, t$. Then, using Lemma 2.1 and the fact that

$$
\left(a_{i}, a_{j}\right)_{\mathfrak{p}_{\mathfrak{j}}}=\left(a_{j}, a_{i}\right)_{\mathfrak{p}_{\mathfrak{i}}}\left(a_{j}, a_{i}\right)_{\infty}
$$

the associated matrix $M_{K}^{\prime}=\left(m_{i j}^{\prime}\right)$ has the form

$$
M_{K}^{\prime}=\left[\begin{array}{ccc}
H & \mid & \\
-- & \mid & M \\
0 & \mid &
\end{array}\right]
$$

where M is a symmetric $(t-1) \times(t-1)$ matrix if $q \equiv 1 \bmod 4$ and

$$
M=\left[\begin{array}{l|l}
M_{1} & \mid \\
M_{2} \\
M_{2}^{T} & M_{3}
\end{array}\right]
$$

with M_{1} anti-symmetric $\ell \times \ell$ matrix, M_{2} arbitrary $\ell \times(t-1-\ell)$ matrix, and M_{3} is symmetric $(t-1-\ell) \times(t-1-\ell)$ matrix if $q \equiv 3 \bmod 4$.

Then following the ideas of Gerth, or $\S 1$, we have the following theorem.

Theorem 3.1. Let F be an imaginary quadratic function field with odd class number. If $\mathcal{A}=\{$ quadratic extensions K of F in which the infinite place of F splits $\}$, then we have
i) for $q \equiv 1 \bmod 4$,

$$
d_{\infty, j}=\frac{2^{-j(j+3) / 2}}{\prod_{i=2}^{\infty}\left(1+2^{-i}\right) \prod_{i=1}^{j}\left(1-2^{-k}\right)}
$$

ii) for $q \equiv 3 \bmod 4$,

$$
d_{\infty, j}=\frac{2^{-j(j+1)} \prod_{i=1}^{\infty}\left(1-2^{-k}\right)}{\prod_{i=1}^{j}\left(1-2^{-i}\right) \prod_{i=1}^{j+1}\left(1-2^{-k}\right)}
$$

References

[1] Bae, S. and Jung, H. ℓ-ranks of class groups of function fields submitted for publication
[2] Costa, A. and Gerth, F., Densities of 4-class ranks of totally complex quadratic extensions of real quadratic fields, J. Number Th. 541995 274-286
[3] Gerth, F., The 4-class ranks of quadratic fields, Invent. Math. 771984 489-515
[4] Limit probabilities for coranks of matrices over $G F(q)$, Linear and Multilinear Algebra 19 1986 79-93
[5] The 4-class ranks of quadratic extensions of certain real quadratic function fields, J. Number Th. 33 1989 18-31
[6] The 4-class ranks of quadratic extensions of certain imaginary quadratic fields, Illinois J. Math., 33 1989 132-142
[7] Halter-Koch, F. Ein Satz über die Geschlechter relativ-zyklischer Zahlkörper von Primzahlgrad und seine Anwendung auf biquadratische-bizyklische Körper, J. Number Th. 41972 144-156
[8] Wittmann, C., ℓ-class groups of cyclic function fields of degree ℓ, Finite Fields and their Applications 132007 327-347

Department of Mathematics, KAIST, Taejon 305-701, Korea
shbaekaist.ac.kr

[^0]: 1991 Mathematics Subject Classification. 11R58.

 * Supported by Basic Science Research Program through NRF of Korea funded by Ministry of Education, Science and Technology (ASARC 2009-0063182).

