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Generation of ray class fields by elliptic units

Ho Yun Jung, Ja Kyung Koo and Dong Hwa Shin

Abstract

We show that certain special value of a Siegel function generates the ray class field over the
Hilbert class field for an imaginary quadratic field, from which we settle the Schertz’s conjecture.

1. Introduction

For any pair (r1, r2) ∈ Q2 \ Z2 we define a Siegel function g(r1,r2)(τ) on the complex upper
half plane H by a product of a Klein form and the square of Dedekind eta function, that is,

g(r1,r2)(τ) = k(r1,r2)(τ)η2(τ)

with

η(τ) =
√

2πe
2πi
8 q

1
24
τ

∞∏
n=1

(1− qn
τ ).

Its Fourier expansion is given by

g(r1,r2)(τ) = −q
1
2B2(r1)
τ eπir2(r1−1)(1− qz)

∞∏
n=1

(1− qn
τ qz)(1− qn

τ q−1
z ), (1.1)

where B2(X) = X2 −X + 1
6 is the second Bernoulli polynomial, qτ = e2πiτ and qz = e2πiz with

z = r1τ + r2. Then it is a modular unit in the sense of [7].
Let a be a fractional ideal of an imaginary quadratic field not containing 1 with oriented

basis ω1 and ω2, that is, a = [ω1, ω2] = Zω1 + Zω2 with ω1
ω2
∈ H. Writing 1 = r1ω1 + r2ω2 for

some (r1, r2) ∈ Q2 \ Z2 we define

g(1, [ω1, ω2]) = g(r1,r2)

(
ω1

ω2

)
,

which depends on the choice of ω1 and ω2. When a product of these values becomes a unit, we
call it an elliptic unit([10]). By taking 12-th power the above value depends only on a itself.
So we write g12(1, a) instead of g12(1, [ω1, ω2]).

For later use of Shimura’s reciprocity law we need a criterion to determine the levels of Siegel
functions in a modular function field and transformation formulas. Let N ≥ 2 be an integer
and let FN be the modular function field of level N defined over the N -th cyclotomic field QN .
We say that a family of integers {m(r)}r=(r1,r2)∈ 1

N Z2\Z2 with m(r) = 0 except finitely many r
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satisfies the quadratic relation modulo N if
∑

r

m(r)(Nr1)2 ≡
∑

r

m(r)(Nr2)2 ≡ 0 (mod gcd(2, N) ·N)

∑
r

m(r)(Nr1)(Nr2) ≡ 0 (mod N).

Proposition 1.1. Let {m(r)}r∈ 1
N Z2\Z2 be a family of integers such that m(r) = 0 except

finitely many r. Then a product of Siegel functions
∏
r

gm(r)
r (τ)

belongs to FN , if {m(r)}r satisfies the quadratic relation modulo N and 12 divides gcd(12, N) ·∑
r m(r).

Proof. See [7] Chapter 3.

As its immediate corollary we have

Corollary 1.2. For (r1, r2) ∈ 1
NZ

2 \ Z2 the function g
12N

gcd(6,N)

(r1,r2)
(τ) belongs to FN .

Proposition 1.3. An element α ∈ GL2(Z/NZ)/{±12} ∼= Gal(FN/F1) acts on the func-

tion g
12N

gcd(6,N)

(r1,r2)
(τ) by the rule

(
g

12N
gcd(6,N)

(r1,r2)
(τ)

)α = g
12N

gcd(6,N)

(r1,r2)α
(τ).

In particular,

g
12N

gcd(6,N)

(−r1,−r2)
(τ) = g

12N
gcd(6,N)

(r1,r2)
(τ) = g

12N
gcd(6,N)

(〈r1〉,〈r2〉)(τ),

where 〈X〉 is the fractional part of X ∈ R such that 0 ≤ 〈X〉 < 1.

Proof. See [7].

Let f be a nontrivial integral ideal of an imaginary quadratic field K. And, let

σ : Cl(f) −→ Gal(K(f)/K)

be the Artin map between the ray class group Cl(f) = I(f)/P1(f) and the Galois group of the
ray class field K(f) modulo f over K. For a character χ 6= 1 on Cl(f) we consider the sum

Af(χ) =
1

12N(f)

∑

C∈Cl(f)

χ(C) log
∣∣g12N(f)(1, f)σ(C)

∣∣, (1.2)

where N(f) is the smallest positive integer in f and χ is the character obtained by taking
complex conjugation on χ. When fχ is the conductor of χ, Afχ(χ) appears as a factor in the
value of the L-function L(s, χ) of K at s = 1([9]). Moreover we can factor out the Euler factor
in (1.2), namely

Af(χ) =
w(fχ)
w(f)

( ∏

p|ff−1
χ

(
1− χ(p)

))
Afχ(χ), (1.3)
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where w(f) and w(fχ) denote the number of roots of unity in K congruent to 1 modulo f and
fχ, respectively([11]). Assuming that f is the exact conductor of the extension K(f)/K, Schertz
gave in [11] a criterion for the value g12N(f)n(1, f) with n = 1, 2, · · · being a generator of K(f)
over the Hilbert class field K(1). This criterion seems to cover many cases, however, it is too
theoretic in practical use so that we can hardly check the condition of applying the criterion.
He also found some conditions on f for which there exists a character of Cl(f) such that the
Euler factor in (1.3) does not vanish. Then Af(χ) is not zero because Afχ

(χ) never vanishes.
By slight modification of Af(χ) and Galois theory he proved that K(1)

(
g12N(f)n(1, f)

)
is all of

K(f).
Besides, he conjectured that his theorem holds without any condition on f. To establish

Schertz’s conjecture we observe the expansion formula (1.1) instead. Without a link with L-
series we shall show that for an integer N ≥ 2 there is a universal generator of the ray class
field K(N) modulo NOK over K(1) for all imaginary quadratic fields K 6= Q(

√−1), Q(
√−3).

Since the coefficients of a Siegel function is quite small, its values are dominated by its leading
term in general. Owing to this fact we can show that the conjugates of our candiate for a
primitive generator are all distinct. Precisely, we shall compare their absolute values.

Here we observe that it is not necessary to assume that the exact conductor of the extension
K(N)/K(1) is NOK .

2. Ray class fields of imaginary quadratic fields

Let K 6= Q(
√−1), Q(

√−3) be an imaginary quadratic field with the ring of integers OK =
Z[θ] with θ ∈ H and discriminant dK(≤ −7). Let N ≥ 2 be an integer. By the main theorem
of complex multiplication we have K(1) = K(j(θ)) and K(N) = KFN (θ)([12] or [8]). Letting
irr(θ, Q) = X2 + BX + C we consider a group

WN,θ =
{(

t−Bs −Cs
s t

)
∈ GL2(Z/NZ) | t, s ∈ Z/NZ

}
.

Then by the Shimura’s reciprocity law([12] or [4]) we have a surjection

WN,θ −→ Gal(K(N)/K(1))
α 7−→ α = (h(θ) 7→ hα(θ)) where h ∈ FN is defined and finite at θ (2.1)

with kernel {±12}([4] or [2]).

Throughout this paper we let N ≥ 4 and ζN = e
2πi
N . We shall prove that the value

g
12Nn

gcd(6,N) (1, NOK) for n = 1, 2, · · · generates K(N) over the Hilbert class field K(1). If
we put A = |qθ| 1

N = |e2πiθ| 1
N , then A < 1 and

Ak ≤ A
N
2 = |eπiθ| = e−

√
−dK π

2 ≤ e−
√

7π
2 for all k ≥ N

2
. (2.2)

Lemma 2.1. We have the following inequalities:

(i)
∣∣ 1−ζN

1−ζc
N

∣∣ < 1√
2

for 2 ≤ c ≤ N
2 .

(ii) 1
1−Ak < 1 + Ak−N

2 for all k ≥ N
2 .

(iii) A
N
2 (B2(0)−B2(

a
N ))

∣∣ 1−ζN

1−Aa

∣∣ < 0.9 for 1 ≤ a ≤ N
2 .

Proof. (i) It suffices to show the inequality

2|1− ζN |2 ≤ |1− ζc
N |2.
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Now that

2|1− ζN |2 = 4− 4 cos
2π

N

|1− ζc
N |2 = 2− 2 cos

2cπ

N
≥ 2− 2 cos

4π

N
,

it is enough to prove

4− 4 cos
2π

N
≤ 2− 2 cos

4π

N
.

Observe that

2− 2 cos
4π

N
−

(
4− 4 cos

2π

N

)
= 2

(
− 1− cos

4π

N
+ 2 cos

2π

N

)

= 2
(
− 2 cos2

2π

N
+ 2 cos

2π

N

)
= 4 cos

2π

N

(
− cos

2π

N
+ 1

)
≥ 0

because N ≥ 4.
(ii) The inequality is equivalent to A

N
2 + Ak < 1. But this is obvious from (2.2).

(iii) By the fact A < 1 and the shape of the graph Y = B2(X) on the interval 0 ≤ X ≤ 1
2 , we

get

A
N
2 (B2(0)−B2(

a
N )) ≤ A

N
2 (B2(0)−B2(

1
N )) = A

1
2 (1− 1

N ) ≤ A
3
8 .
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Figure 1. The graph of Y = B2(X)

Hence it follows that

A
N
2 (B2(0)−B2(

a
N ))

∣∣∣∣
1− ζN

1−Aa

∣∣∣∣ ≤ A
3
8
|1− ζN |
1−A

,

from which it suffices to prove

A
3
8
|1− ζN |
1−A

< 0.9.

Since |1− ζN | = 2 sin π
N and

A
3
8

1−A
≤ e−

3
√

7π
8N

1− e−
√

7π
N

by (2.2),

we achieve

A
3
8
|1− ζN |
1−A

≤ 2e−
3
√

7π
8N sin π

N

1− e−
√

7π
N

.
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And, it is routine to check the function

2e−
3
√

7
8 X sin X

1− e−
√

7X
for 0 < X ≤ π

4

is less than 0.9. See the Figure 2(we used MAPLE 8 for the graph):
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Figure 2. The graph of Y = 0.9− 2e
− 3

√
7

8 X
sin X

1−e−
√

7X
for 0 < X ≤ π

4

Furthermore, we have the inequality

1 + X < eX for X > 0. (2.3)

Lemma 2.2. We have the inequality
∣∣g(0, 1

N )(θ)
∣∣ <

∣∣g( a
N , b

N )(θ)
∣∣

for a, b ∈ Z such that a 6≡ 0 (mod N).

Proof. We may assume that 1 ≤ a ≤ N
2 by Proposition 1.3. Observe that

∣∣∣∣
g(0, 1

N )(θ)

g( a
N , b

N )(θ)

∣∣∣∣ =
∣∣∣∣

q
1
2B2(0)

θ (1− ζN )
∏∞

n=1(1− qn
θ ζN )(1− qn

θ ζ−1
N )

q
1
2B2(

a
N )

θ (1− q
a
N

θ ζb
N )

∏∞
n=1(1− q

n+ a
N

θ ζb
N )(1− q

n− a
N

θ ζ−b
N )

∣∣∣∣ by (1.1)

≤ A
N
2 (B2(0)−B2(

a
N ))

∣∣∣∣
1− ζN

1−Aa

∣∣∣∣
∏∞

n=1(1 + ANn)2∏∞
n=1(1−ANn+a)(1−ANn−a)

< 0.9
∞∏

n=1

(1 + ANn)2(1 + ANn+a−N
2 )(1 + ANn−a−N

2 ) by Lemma 2.1(iii) and (ii)

< 0.9
∞∏

n=1

(1 + ANn)2(1 + ANn−N
2 )2 by Lemma 2.1(iii) and 1 ≤ a ≤ N

2

< 0.9
∞∏

n=1

e2ANn+2ANn−N
2 = 0.9 e

2A
N
2

1−A
N
2 by (2.3)

≤ 0.9 e

2e
−
√

7π
2

1−e
−
√

7π
2 < 1 by (2.2).
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This yields the lemma.

Lemma 2.3. We also have ∣∣g(0, 1
N )(θ)

∣∣ <
∣∣g(0, b

N )(θ)
∣∣

for b ∈ Z with b 6≡ 0, ± 1 (mod N).

Proof. The proof is almost the same as that of the previous lemma. We may assume that
2 ≤ b ≤ N

2 . Put A = |qθ| 1
N = |e2πiθ| 1

N , and note that
∣∣∣∣
g(0, 1

N )(θ)

g(0, b
N )(θ)

∣∣∣∣ =
∣∣∣∣
q

1
2B2(0)

θ (1− ζN )
∏∞

n=1(1− qn
θ ζN )(1− qn

θ ζ−1
N )

q
1
2B2(0)

θ (1− ζb
N )

∏∞
n=1(1− qn

θ ζb
N )(1− qn

θ ζ−b
N )

∣∣∣∣ by (1.1)

≤
∣∣∣∣
1− ζN

1− ζb
N

∣∣∣∣
∏∞

n=1(1 + ANn)2∏∞
n=1(1−ANn)2

<
1√
2

∞∏
n=1

(1 + ANn)2(1 + ANn−N
2 )2 by Lemma 2.1(i) and (ii)

<
1√
2

∞∏
n=1

e2ANn+2ANn−N
2 by (2.3)

=
1√
2
e2

(
(1−A

N
2 )−1−1

)
≤ 1√

2
e2

(
(1−e−

√
7π
2 )−1−1

)
< 1 by (2.2).

Theorem 2.4. Let N ≥ 4. For an imaginary quadratic field K 6= Q(
√−1), Q(

√−3) the
value

g
12Nn

gcd(6,N) (1, NOK) = g
12Nn

gcd(6,N)

(0, 1
N )

(θ) for n = 1, 2, · · ·
generates K(N) over K(1). It is a real algebraic integer. So its minimal polynomial over K(1)
has coefficients in Z[j(θ)]. In particular, if N has at least two prime factors, then it is a unit.

Proof. For simplicity, we put m = 12Nn
gcd(6,N) . Let α =

(
t−Bs −Cs

s t

)
be an element of

WN,θ such that
(
gm
(0, 1

N )
(θ)

)α = gm
(0, 1

N )
(θ). Then by (2.1) and Proposition 1.3

(
gm
(0, 1

N )(θ)
)α =

(
gm
(0, 1

N )(τ)
)α(θ) = gm

(0, 1
N )α(θ) = gm

( s
N , t

N )(θ) = gm
(0, 1

N )(θ).

By Lemma 2.2 we obtain s ≡ 0 (mod N), which yields

gm
(0, t

N )(θ) = gm
(0, 1

N )(θ). (2.4)

Now by Lemma 2.3 we get t ≡ ±1 (mod N). Thus α = ±12 ∈ WN,θ, which claims that
K(1)

(
gm
(0, 1

N )
(θ)

)
= K(N).

The functions
{
gm
(r1,r2)

(τ)
}
, indexed by (r1, r2) ∈ 1

NZ
2 with (r1, r2) primitive modulo Z2,

form a Fricke family([7] Chapter 2 §1). Applying [7] Chapter 2 Proposition 1.4 we derive

gm(1, NOK) = gm(1, NOK) = gm(1, NOK),

where − means complex conjugation, which implies that gm(1, NOK) is a real algebraic
number as an evaluation of the modular function gm

(0, 1
N )

(τ) at τ = θ. Since j(θ) is real
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and [K : Q] = 2, we establish [K
(
j(θ), gm

(0, 1
N )

(θ)
)

: K
(
j(θ)

)
] = [Q

(
j(θ), gm

(0, 1
N )

(θ)
)

: Q
(
j(θ)

)
].

Furthermore, we see from [6] §3 that the function gm
(0, 1

N )
(τ) is integral over Z[j(τ)]. Hence the

value gm
(0, 1

N )
(θ) is a real algebraic integer and its minimal polynomial over K(1) = K(j(θ)) has

coefficient in Z[j(θ)]. In particular, if N has at least two prime factors, the function 1/gm
(0, 1

N )
(τ)

is also integral over Z[j(τ)]. Therefore, gm
(0, 1

N )
(θ) is a unit.

Remarks.

(i) Theorem 2.4 holds even in the cases N = 2 and 3. It suffices to prove that |g(0, 1
2 )| 6=

|g( 1
2 , b

2 )| for b = 0, 1, and |g(0, 1
3 )| 6= |g( 1

3 , b′
3 )| for b′ = 0, 1, 2, which is easier than the above

procedures.
(ii) It is also conjectured in [11] that the generators given by Theorem 2.4 are even generators

over quadratic imaginary base field. On the other hand, in the forthcoming paper [5] we

showed that the singular value g
12N

gcd(6,N)

(0, 1
N )

(θ) indeed generates the ray class field K(N) over
the base field K by further analyzing the action of Galois group Gal(K(1)/K).

(iii) The exponent of g
12N

gcd(6,N)

(0, 1
N )

(θ) could be quite high for numerical purposes. So one usually
takes suitable products of Siegel functions with lower exponents(see [1]).

(iv) Note that in order for the singular value g
12N

gcd(6,N)

(0, 1
N )

(θ) to be a unit it suffices N to have more
than one prime ideal factor in K.

Example 1. Let K = Q(
√−19) and N = 4. Then hK = 1([3]), and so K(1) = K. Taking

θ = −1+
√−19
2 we have irr(θ, Q) = X2 + X + 5 and

W4,θ/{±12} =
{ (

1 0
0 1

)
,

(
1 3
1 0

)
,

(
2 3
1 1

)
,

(
3 3
1 2

)
,

(
0 3
1 3

)
,

(
3 2
2 1

) }
.

Hence the minimal polynomial of g24
(0, 1

4 )
(θ) is

irr(g24
(0, 1

4 )(θ),K) =
(
x− g24

(0, 1
4 )(θ)

)(
x− g24

( 1
4 ,0)(θ)

)(
x− g24

( 1
4 , 1

4 )(θ)
)

(
x− g24

( 1
4 , 2

4 )(θ)
)(

x− g24
( 1
4 , 3

4 )(θ)
)(

x− g24
( 2
4 , 1

4 )(θ)
)

= x6 − 885360x5 − 84804816x4 − 2089917952x3

−9283226880x2 − 784074436608x + 4096.

Example 2. Let K = Q(
√−43) and N = 6(= 2 · 3). Then hK = 1([3]) so that K(1) = K.

And, setting θ = −1+
√−43
2 we have irr(θ, Q) = X2 + X + 11 and

W6,θ/{±12} =
{(

1 0
0 1

)
,

(
1 1
1 0

)
,

(
2 1
1 1

)
,

(
3 1
1 2

)
,

(
4 1
1 3

)
,

(
5 1
1 4

)
,

(
0 1
1 5

)
,

(
3 2
2 1

)
,

(
5 2
2 3

)
,

(
1 2
2 5

)
,

(
4 3
3 1

)
,

(
5 3
3 2

)}
.
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Hence the minimal polynomial of g12
(0, 1

6 )
(θ) is

irr(g12
(0, 1

6 )(θ),K) =
(
x− g12

(0, 1
6 )(θ)

)(
x− g12

( 1
6 ,0)(θ)

)(
x− g12

( 1
6 , 1

6 )(θ)
)(

x− g12
( 1
6 , 2

6 )(θ)
)

(
x− g12

( 1
6 , 3

6 )(θ)
)(

x− g12
( 1
6 , 4

6 )(θ)
)(

x− g12
( 1
6 , 5

6 )(θ)
)(

x− g12
( 2
6 , 1

6 )(θ)
)

(
x− g12

( 2
6 , 3

6 )(θ)
)(

x− g12
( 2
6 , 5

6 )(θ)
)(

x− g12
( 3
6 , 1

6 )(θ)
)(

x− g12
( 3
6 , 2

6 )(θ)
)

= x12 − 60x11 + +884737794x10 − 30965791100x9

+153944392815x8 + 782759084947677000x7 − 4267079045220x6

+28203637156200x5 − 12634001239185x4 + 1496984221300x3

−63700846206x2 + 884736660x + 1,

which concludes that g12
(0, 1

6 )
(θ) is a unit.
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