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FREE GROUPS IN THE SECOND BOUNDED
COHOMOLOGY

HEESOOK PARK

Abstract. The second bounded cohomology of a free group of
rank greater than 1 is infinite dimensional as a vector space over
R [4]. For a group G and its n-th commutator subgroup G(n), the

quotient G/G(n) is amenable and the homomorphism Ĥ2(G) →
Ĥ2(G(n)) induced from the inclusion homomorphism G(n) → G is
injective. In this paper, we prove that if G(n) is free of rank greater
than 1 for some finite ordinal n, then G is residually solvable and
its second bounded cohomology is infinite dimensional. We prove
its converse for a group generated by two elements. As for groups
that are not residually solvable, we investigate the dimension of
the second bounded cohomology of a perfect group. Also, some
results on bounded cohomology of a connected CW complex X by
applying a Quillen’s plus construction X+ to kill a perfect normal
subgroup of π1X are given.

1. Introduction

Bounded cohomology was first defined for discrete groups. It ap-
peared in a version of a theorem of Hirsch and Thurston due to P.
Trauber that the bounded cohomology of an amenable group is zero.
Later, M. Gromov [5] defined the bounded cohomology of topological
spaces and applied the theory of bounded cohomology to Riemannian
geometry, thus demonstrating the importance of it.

In [6] N. Ivanov developed the R. Brooks’s approach [2] to the theory
of bounded cohomology from the view of relative homological algebra,
and established the foundation of this theory.

In [2], [8], [4], [3], [9] and many other papers, the bounded cohomol-
ogy groups of some important discrete groups are computed and many
excellent examples are shown.

We review the definition of bounded cohomology.
For a discrete group G and a positive integer n ≥ 1, let Cn(G)

be the space of all real valued functions f : Gn → R, where Gn =
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G×G× · · · ×G︸ ︷︷ ︸
n

. The boundary operator ∂n : Cn(G) → Cn+1(G) for

n ≥ 1 is defined by the formula

∂n(f)(g1, · · · , gn+1) = f(g2, · · · , gn+1)(1.1)

+
n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1f(g1, · · · , gn).

Then it is easy to check ∂n+1∂n = 0.

Definition 1.1. The n-th cohomology of the complex

0
∂−1=0−−−→ R ∂0=0−−−→ C(G)

∂1−→ C2(G)
∂2−→ C3(G)

∂3−→ · · ·

is called the n-th cohomology of G with coefficients R and is denoted
by H∗(G).

Let Bn(G) be the space of all bounded functions f : Gn → R, that
is,

Bn(G) = { f : Gn → R | ‖f‖ <∞},
where ‖f‖ = sup{ |f(g1, · · · , gn)| | (g1, · · · , gn) ∈ Gn }. It is easy to
check that the sequence

(1.2) 0→ R d0=0−−−→ B(G)
d1−→ B2(G)

d2−→ B3(G)
d3−→ · · ·

is a complex, where the boundary operator dn is defined by the same
formula for ∂n as in (1.1).

Definition 1.2. The n-th cohomology of the complex (1.2) is called
the n-th bounded cohomology of G with trivial coefficients R and is

denoted by Ĥn(G).

Similarly, we define bounded cohomology of a topological space X
as follows. Recall that for every n ≥ 0, the real n-dimensional singular
cochain group Cn(X) is defined as the set of all functions f : Sn(X)→
R, where Sn(X) is the set of n-dimensional singular simplices in X. As
it is well known, the sequence

(1.3) 0→ C0(X)
d0−→ C1(X)

d1−→ C2(X)
d2−→ · · ·

is a complex, where d∗ is defined by dnf(σ) =
∑n+1

i=0 (−1)if(∂iσ) and
∂iσ is the i-th face of the singular simplex σ.

Definition 1.3. The cohomology of this complex (1.3) is called the
singular cohomology group of X with coefficients R and denoted by
H∗(X).
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Let Bn(X) ⊂ Cn(X) be the space of the real valued bounded func-
tions f : Sn(X)→ R, that is,

Bn(X) = {f ∈ Cn(X) | ‖f‖ = sup
σ∈Sn(X)

|f(σ)| <∞}.

The space B∗(X) is called the bounded cochain group and its elements
the bounded cochains. It is easy to check that the sequence

(1.4) 0→ B0(X)
d0−→ B1(X)

d1−→ B2(X)
d2−→ · · ·

is a complex, where the boundary operator dn is defined by the same
formula as in (1.3).

Definition 1.4. The cohomology of this complex (1.4) is called the
bounded cohomology of X with trivial coefficients R and is denoted by

Ĥ∗(X).

The first basic result on the theory of bounded cohomology is that
the bounded cohomology of a simply connected space is zero as proved
in [5] and [6].

As an important feature of this theory, N. Ivanov [6] proved the
following.

Theorem 1.1. Let X be a a topological space equipped with a uni-
versal covering. Then the bounded cohomology groups of X and of its
fundamental group π1X are (isometrically) isomorphic.

Notice that Theorem 1.1 makes it possible to study this theory si-
multaneously from two view points: group theory and topology.

Let V denote either a discrete group or a space. Notice that, since

Bn(V ) is a vector space over R for n ≥ 0, Ĥn(V ) carries the structure
of vector space over R. Also, as we saw in the definition, there is a
natural norm ‖ · ‖ on the space Bn(V ) and this natural norm turns it

into a Banach space. Then there is a seminorm on Ĥn(V ) given by

‖[g]‖ = inf‖f‖, where [g] ∈ Ĥn(V ) and the infimum is taken over all
bounded cochains f ∈ ker dn lying in the bounded cohomology class

corresponding to [g]. Thus this vector space Ĥ∗(V ) also carries the
structure of seminormed space over R.

From now on, we will understand the dimension of Ĥn(G) (and of

Ĥ∗(X)) as its dimension as a vector space over R.
Amenable groups play a special role in the theory of bounded co-

homology. Recall that a group G is called amenable if its action on
the space of all bounded functions on G has a right invariant mean.
For example, finite groups, abelian groups, solvable groups, subgroups
and the homomorphic image of an amenable group are amenable. It
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is known that no group which contains a free group on two generators
can be amenable.

In [5] and [6], the following is proved.

Theorem 1.2. If a group G is amenable, then Ĥn(G) is zero for every
n ≥ 1.

From Theorem 1.1 and Theorem 1.2, the bounded cohomology of a
space X is zero if its fundamental group is amenable.

We compute the bounded cohomology in dimensions 0 and 1. By
Theorem 1.1, it is enough for us to compute them for a discrete group
G. From the complex in (1.2), we have

Ĥ0(G) = ker(d0) = R.
Also

ker(d1) = {f ∈ B(G) | d1(f) = 0}
= {f ∈ B(G) | f(g2)− f(g1g2) + f(g1) = 0 for g1, g2 ∈ G}.

Thus ker(d1) is the space of all bounded homomorphisms G→ R. Since
there are no bounded homomorphisms G→ R, we have

Ĥ1(G) = ker(d1) = 0.

Thus, for a discrete group G or a topological space X, the second
bounded cohomology of G or X should be investigated first.

One of the notable differences between ordinary cohomology and
bounded cohomology also follows from a free group F of rank greater
than 1 as well as an amenable group. Recall that an amenable group
does not contain a free group of rank 2 and its bounded cohomology is
zero for every dimension. Also recall that Hn(F ) is zero for all n ≥ 2.
In particular, H2(F ) is zero. On the other hand, we have the following.

Theorem 1.3. Let F be a free group of rank greater than 1. Then

Ĥ2(F ) is infinite dimensional as a vector space over R.

R. Brooks [2] constructed infinitely many generators for Ĥ2(F ). In
[4] Grigorchuk proved Theorem 1.3 by constructing explicitly the infin-
itely many linearly independent generators based on pseudocharacters.

In [3] Fujiwara conjectured that the second bounded cohomology of
a discrete group is either zero or infinite dimensional. However, S.
Matsumoto and S. Morita [8] proved that

Ĥ2(Homeo+(S1)) ∼= Ĥ2 (SL(2,R)) ∼= R,
where Homeo+(S1) is the group of the orientation preserving homeo-
morphisms on S1 (both Homeo+(S1) and SL(2,R) are considered as
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discrete groups). Notice that the groups Homeo+(S1) and SL(2,R)
shown as counterexamples to Fujiwara’s conjecture are perfect. Also
notice that free groups are not perfect, and any commutator subgroup
of a perfect group can not be free of rank greater than 1. Hence the
relationship between the dimension of the second bounded cohomology
of a group without nontrivial perfect normal subgroups and free groups
of rank greater than 1 is interesting.

Now we describe the content of the paper. As the second bounded
cohomology of a free group of rank greater than 1 is infinite dimen-
sional, it seems natural to ask if there is some relationship between a
free group and a group whose second second bounded cohomology is
infinite dimensional. We see some relationship between them in Section
2 in terms of their commutator subgroups. We prove that if the n-th
commutator subgroup G(n) E G of a group G for some finite ordinal n

is free of rank greater than 1, then G is residually solvable and Ĥ2(G)
is infinite dimensional (Theorem 2.7). In particular, a group generated
by two elements is our special interest (Theorem 2.8). In Section 3,
we investigate the dimension of the second bounded cohomology of a
finitely presented uniformly perfect group. Also, we see that the dimen-
sion of its second bounded cohomology is closely related to H2(G,Z),
which is called the Schur multiplier of G (Theorem 3.6). In Section
4, we survey how Quillen’s plus construction X+ of a connected CW
complex X for killing a perfect normal subgroup of π1X is related to
the bounded cohomology of X.

In the rest of this paper, G denotes a discrete group.

Acknowledgment This research was supported by Basic Science
Research Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Education, Science and Technol-
ogy (2010-0001651)

2. Free groups in the second bounded cohomology

First, we consider Homeok(Rn) the group of all homeomorphisms of
Rn with compact support. It is known that this group contains a free
group of rank 2, so that it is not amenable [4]. In [8] it is proved that

Ĥn(Homeok(Rn)) = 0 for every n ≥ 1. Thus there is a nonamenable
group whose second bounded cohomology is zero and the converse of
the Theorem 1.2 is not true. Also this example shows that, in general,
even if a group contains a free group of rank greater than 1, its second
bounded cohomology is not necessarily infinite dimensional.
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In this section, we will investigate the relationship between free
groups and the dimension of the second bounded cohomology of a resid-
ually solvable group.

Definition 2.1. A group G is said to be residually solvable if for each
g ∈ G with g 6= e there is a normal subgroup N of G such that g /∈ N
and the quotient G/N is solvable.

Residually solvable groups are explained in terms of their commuta-
tor subgroups.

Definition 2.2. The derived series of a group G is the family of sub-
groups defined inductively,

G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(n) ⊇ G(n+1) ⊇ · · · ,
where G(n) is the commutator subgroup of G(n−1) for n ≥ 1 so that

G(n) = [G(n−1), G(n−1)] =
(
G(n−1)

)′
.

The transfinite derived series of G is an extension of its derived series
to higher ordinals defined by the rules

G(α) = [G(α−1), G(α−1)] and G(λ) =
⋂
β<λ

G(β),

where α ≥ 1 is a nonlimit ordinal and λ is a limit ordinal.

Theorem 2.1. A group G is residually solvable if and only if G(ω) =
∩n<ωG(n) is trivial, where ω is the first limit ordinal.

Proof. This is Theorem 3.3 in [11]. �

Corollary 2.2. For a group G, either G or the quotient group G/G(ω)

is always residually solvable.

Proof. If G(ω) is trivial, then G is residually solvable by Theorem 2.1.
Suppose G(ω) is not trivial. Then

(G/G(ω))(n) = G(n)G(ω)/G(ω) = G(n)/G(ω).

Hence (G/G(ω))(ω) is trivial, so that G/G(ω) is residually solvable by
Theorem 2.1. Thus, either G or the quotient group G/G(ω) is always
residually solvable. �

Remark 2.1. If G is a solvable group, then G(n) is trivial for some
finite ordinal n. Hence G(ω) = ∩n<ωG(n) is trivial. Thus by Theorem
2.1 solvable groups are residually solvable. The free groups F of rank
greater than 1 are residually solvable, but not solvable [11].

Notice that, since a solvable group is amenable, a free group is solv-
able if and only if its rank is 1 by Theorem 1.2 and Theorem 1.3.
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Recall that a group presentation G =< X |R >= F/K means that
F is a free group on X and K is the normal closure of the set of defining
relators R in F . Also the abelianization of G, denoted by Gab, is that
Gab = G/[G,G].

Let Sg,r be an orientable compact surface that has genus g ≥ 1 and r
boundary components, where r > 0. Recall that its fundamental group
has a presentation

π1(Sg,r) =< a1, b1, · · · , ag, bg, c1, · · · , cr |
g∏
i=1

[ai, bi]
r∏
j=1

cj > .

Then, from Tietze transformations, it is known that π1(Sg,r) is free of
rank 2g + r − 1 ≥ 2 by omitting one of the generators and the single
defining relator. Thus π1(Sg,r) is residually solvable by Remark 2.1

and also Ĥ2(π1(Sg,r)) is infinite dimensional by Theorem 1.3. Also,

by Theorem 1.1, Ĥ2(Sg,r) is isomorphic to Ĥ2(π1(Sg,r)) and so infinite
dimensional.

As in the ordinary cohomology, a five-term exact sequence for bounded
cohomology holds.

Theorem 2.3. Let N E G be a normal subgroup of G. Then there is
an exact sequence

0→ Ĥ2(G/N)→ Ĥ2(G)→ Ĥ2(N)G/N → Ĥ3(G/N)→ Ĥ3(G),

where Ĥ2(N)G/N is the vector space of G/N-invariants of Ĥ2(N).

Proof. This is Theorem 12.4.2 in [9] �

Recall that, for k ≥ 2, there is an exact sequence

1→ SL(k,R)→ GL(k,R)→ GL(k,R)/SL(k,R)→ 1.

As it is well known, since SL(k,R) is a commutator subgroup ofGL(k,R),
the quotient GL(k,R)/SL(k,R) is abelian and so amenable. Hence by
Theorem 1.2 and Theorem 2.3 there is an isomorphism

Ĥ2(GL(k,R)) ∼= Ĥ2(SL(k,R)GL(k,R)/SL(k,R).

Similarly, recall that PGL(k,R) = GL(k,R)/Z(GL(k,R)) and also
PSL(k,R) = SL(k,R)/Z(SL(k,R)), where Z(·) denotes the center of
(·). Since the center is abelian and so amenable, there are isomorphisms

Ĥ2(GL(k,R)) ∼= Ĥ2(PGL(k,R)) and Ĥ2(SL(k,R)) ∼= Ĥ2(PSL(k,R)).

Remark 2.2. Let G = F/K for a free group F . Recall that, for every
finite ordinal n, we have

G(n) = F (n)K/K = F (n)/(F (n) ∩K).
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Similarly, as shown in [11], for the first limit ordinal ω we have

G(ω) = (∩n<ωF (n)K)/K.

Hence G(n) for every finite ordinal n and G(ω) induce the following exact
sequences respectively:

• Exact(G(n)) : 1→ K → F (n)K → F (n)K/K → 1,
• Exact(G(ω)) : 1→ K → ∩n<ωF (n)K → (∩n<ωF (n)K)/K → 1.

Definition 2.3. An exact sequence of groups 1 → A
i−→ B

p−→ C → 1
is said to be trivial if either A or C is trivial or the sequence splits.

Proposition 2.4. Let G = F/K for a free group F . The exact se-
quence

Exact(G(n)) : 1→ K → F (n)K → F (n)K/K → 1

is trivial for some finite ordinal n if and only if either G is solvable or
the n-th commutator subgroup G(n) is free of rank greater than 1.

Proof. If F is free of rank 1, then it is abelian. Hence its quotient F/K
and so G is abelian. So G is solvable.

Now we assume that F is free of rank greater than 1. Suppose n is
the smallest finite ordinal such that the exact sequence

Exact(G(n)) : 1→ K → F (n)K → F (n)K/K → 1

is trivial. Then by Definition 2.3 either K or G(n) is trivial, or the
sequence Exact(G(n)) splits. If K is trivial, then G = F and so G free
of rank greater than 1. If G(n) is trivial, then G is solvable.

Now, let the sequence Exact(G(n)) split. Then F (n)K is a semidirect
product of K and F (n)K/K. So there is a subgroup Q of F (n)K such
that Q ∼= F (n)K/K, F (n)K = QK and K ∩ Q is trivial. Since a
subgroup of a free group is free and Q ≤ F (n)K ≤ F , the group Q is
free. Since Q ∼= F (n)K/K = G(n), the n-th commutator subgroup G(n)

is free. In particular, if the rank of G(n) is 1, then G(n) is abelian and
so G(n+1) is trivial. Thus G is solvable. Otherwise, G(n) is free of rank
greater than 1.

Conversely, assume either G is solvable or G(n) is free of rank greater
than 1. If G is solvable, then for some n the n-th commutator subgroup
G(n) is trivial and so F (n)K/K is trivial. Hence Exact(G(n)) is trivial.
If G(n) is free of rank greater than 1, then, as it is well known, the
sequence Exact(G(n)) splits. �

Corollary 2.5. A group G is residually solvable if and only if either
Exact(G(n)) for some finite ordinal n or Exact(G(ω)) is trivial.
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Proof. Let G = F/K for a free group F . If the rank of F is 1, then G
is abelian and so G(1) is trivial. Thus G is solvable (and so residually
solvable) and the exact sequence Exact(G(1)) is trivial.

Let the rank of F be greater than 1. If K is trivial, then G is free
of rank greater than 1. Then G is residually solvable and the exact
sequence

Exact(G(0)) : 1→ K(= 1)→ F
∼=−→ G→ 1

is trivial. Thus, in the rest of this proof, we assume the rank of F is
greater than 1 and K is not trivial.

Suppose G is residually solvable and Exact(G(n)) is not trivial for
every finite ordinal n. Then, since G(ω) is trivial by Theorem 2.1, the
exact sequence Exact(G(ω)) is trivial.

Conversely, we first suppose a sequence Exact(G(n)) is trivial for
some finite ordinal n. Then by Proposition 2.4, either G is solvable or
the n-th commutator subgroup G(n) is free of rank greater than 1. If G
is solvable, then it is residually solvable. If G(n) is free of rank greater
than 1, it is residually solvable (Remark 2.1). So (G(n))(ω) is trivial by
Theorem 2.1. Notice that

(G(n))(ω) = G(n+ω) = G(ω).

Hence G(ω) is trivial and so G is residually solvable. Now, suppose the
exact sequence

Exact(G(ω)) : 1→ K → ∩n<ωF (n)K → G(ω) = (∩n<ωF (n)K)/K → 1

is trivial. It is enough for us to prove that G(ω) is trivial by Theorem
2.1. Since K is not trivial by assumption, the sequence Exact(G(ω))
splits. So there is a subgroup Q ≤ ∩n<ωF (n)K such that Q ∼= G(ω),
QK = ∩n<ωF (n)K and Q ∩ K is trivial. Notice that, since Q ∩ K is
trivial and F (n+1) ≤ F (n), this subgroup Q must lie in F (n) for every
n. Thus Q ⊆ ∩n<ωF (n). Since F is free of rank greater than 1, it is
residually solvable and so ∩n<ωF (n) is trivial by Theorem 2.1. Thus Q
and so G(ω) is trivial. �

Recall that the commutator subgroup F (1) of a free group F of rank
greater than 1 is infinitely generated. Thus, in general, a subgroup of
a finitely generated free group is not necessarily finitely generated.

Proposition 2.6. Let G = F/K for a free group F and K be nontriv-

ial. If Ĥ2(G) is infinite dimensional, then K is infinitely generated.

Proof. Notice that K is a nontrivial normal subgroup of a free group
F . Suppose K is finitely generated. Then, as it is known [7], K either
is trivial or has finite index in F . Since K is nontrivial by assumption,
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|F/K| is finite. Thus G is finite and so amenable. Then Ĥ2(G) must
be zero by Theorem 1.2. Hence K must be infinitely generated. �

Remark 2.3. We consider F (n)K in Proposition 2.4.

(1) Suppose F (n)∩K is trivial. Then F (n)K is a semidirect product
of K and F (n). Also,

G(n) = F (n)K/K = F (n)/(F (n) ∩K) = F (n)

and so G(n) is free of rank greater than 1. In particular, since
F (n)K/F (n) is a subgroup of a solvable group F/F (n) and

F (n)K/F (n) = K/(F (n) ∩K) = K,

the group K is also solvable. Hence K is a free solvable group
and therefore infinite cyclic.

(2) Suppose F (n) ∩ K is nontrivial and finitely generated. Then,
as shown in Proposition 2.6, the subgroup F (n) ∩K is of finite
index in F (n) and so |G(n)| = |F (n)/(F (n) ∩ K)| < ∞. Thus

G(n) is finite and so amenable. Then Ĥk(G(n)) is zero for every

k > 0 and hence Ĥ2(G) is zero by Theorem 2.3.

Theorem 2.7. Let G = F/K for a free group F . If the n-th com-
mutator subgroup G(n) is free of rank greater than 1, then there is an
inclusion

Ĥ2(F ) ⊆ Ĥ2(G).

In particular, the group G is residually solvable and Ĥ2(G) is infinite
dimensional.

Proof. Notice that, if the rank of F is 1, the free group F is abelian.
So its quotient G is also abelian, and so it is solvable. Then, for any
finite ordinal n, the n-th commutator subgroup G(n) of G can not be
free of rank greater than 1. Hence the rank of F must be greater than
1.

Suppose G(n) is free of rank greater than 1. Then, as it is well
known, its commutator subgroup G(n+1) is free of infinite rank. Also
notice that the rank of F (1) is also infinite, because the rank of F is
greater than 1. Recall that the rank of a free group is an invariant
even in the case where it is an infinite cardinal. Hence the free groups
G(n+1) and F (1) are isomorphic. Notice that G(n+1), F (1) and F (n+1) are
the normal subgroups of G, F and F (1), respectively. Their quotients
G/G(n+1), F/F (1) and F (1)/F (n+1) are solvable and so amenable. Hence

Ĥk(G/G(n+1)), Ĥk(F/F (1)) and Ĥk(F (1)/F (n+1)) are all zero for every
k ≥ 1 by Theorem 1.2. Also

G/G(n+1) = (F/K)/(F (n+1)K/K) = F/F (n+1)K.
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Then, by applying Theorem 2.3 to these pairs of groups G(n+1) E G,
F (1) E F and F (n+1) E F (1) repeatedly, we have

Ĥ2(G) ∼= Ĥ2(G(n+1))G/G
(n+1)

∼= Ĥ2(F (1))F/F
(n+1)K

∼= Ĥ2(F (n+1))(F (1)/F (n+1))·(F/F (n+1)K)

∼= Ĥ2(F (n+1))F/F
(n+1)K

⊇ Ĥ2(F (n+1))F/F
(n+1)

∼= Ĥ2(F ),

where the inclusion ⊇ in the second line from the last follows from the
fact that F/F (n+1)K ⊆ F/F (n+1). Thus we have

Ĥ2(F ) ⊆ Ĥ2(G).

Since F is free of rank greater than 1, the dimension of Ĥ2(F ) is infinite

by Theorem 1.3. Hence Ĥ2(G) is also infinite dimensional. Finally, as
we saw in Corollary 2.5, since G(n) is free of rank greater than 1 and
so is residually solvable, we have (G(n))(ω) = G(ω) and so G(ω) is trivial.
Thus G is also residually solvable. �

Now we consider finitely presented groups.

Definition 2.4. A group G is called finitely presented if it has a pre-
sentation with a finite number of generators and of defining relators.

Let G be a surface group, that is, the fundamental group of a closed
orientable surface of genus g greater than 1. A presentation of G is
given by

G = F/K =< a1, b1, a2, b2, · · · , ag, bg |
g∏
i=1

[ai, bi] > .

It is known that the first commutator subgroup G(1) is free of rank
greater than 1. Hence G is residually solvable and also its second
bounded cohomology is infinite dimensional by Theorem 2.7, as it is
also proved in [4].

Theorem 2.8. Let G be generated by two elements. If Ĥ2(G) is not
zero, then its first commutator subgroup G(1) is free of rank greater

than 1. In particular, the group G is residually solvable and Ĥ2(G) is
infinite dimensional.
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Proof. Since G is generated by two elements, every subgroup of G is
either abelian or free of rank greater than 1 [7]. Hence G(1) is either
abelian or free of rank greater than 1. If G(1) is abelian, then G(2) is

trivial and so G is solvable. Thus G is amenable and so Ĥ2(G) is zero
by Theorem 1.2. Hence G(1) must be free of rank greater than 1.

The second statement follows from Theorem 2.7. �

We consider the group SL(2,Z) and the modular group PSL(2,Z).
Recall that

PSL(2,Z) = SL(2,Z)/Z(SL(2,Z)).

Since the center Z(SL(2,Z)) of SL(2,Z) is abelian and so amenable,
by Theorem 1.2 and Theorem 2.3, we have

Ĥ2(SL(2,Z)) ∼= Ĥ2(PSL(2,Z)).

As it is well known, these groups are generated by two elements with
presentations

SL(2,Z) =< x, y | x2y−3, x4 >, where x =

(
0 −1
1 0

)
, y =

(
0 1
−1 1

)
,

and
PSL(2,Z) =< a, b | a2, b3 >,

where a and b are the images of x and y respectively of the surjective
homomorphism SL(2,Z)→ PSL(2,Z). Also

SL(2,Z) ∼= Z4 ∗Z2 Z6 and PSL(2,Z) ∼= Z2 ∗ Z3.

In [3] and [4] it is shown that Ĥ2(SL(2,Z)) and Ĥ2(PSL(2,Z)) are
infinite dimensional. Hence their first commutator subgroups are free
of rank greater than 1 (in fact 2) and also the groups SL(2,Z) and
PSL(2,Z) are residually solvable by Theorem 2.7.

Question. Suppose that G is finitely presented residually solvable

group. If Ĥ2(G) is infinite dimensional, then is some n-th commutator
subgroup G(n) of G free of rank greater than 1 (or does it contain a
free quotient of rank greater than 1)?

3. The second bounded cohomology of a uniformly
perfect group

Notice that a (nontrivial) residually solvable group can not be equal
to its commutator subgroup.

Definition 3.1. A group is said to be perfect if it is equal to its com-
mutator subgroup. A maximal perfect subgroup is a perfect subgroup
which is not contained in any other larger perfect subgroup.
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Recall that if a perfect group G is finite, then this perfect group is

amenable and so Ĥn(G) = 0 for all n ≥ 1. Recall that SL(2,R) is

perfect and Ĥ2(SL(2,R)) = R. Thus Ĥ2(SL(2,R)) has dimension 1.
On the other hand, since the free product of perfect groups is perfect,

the group SL(2,R) ∗SL(2,R) is perfect. And Ĥ2(SL(2,R) ∗SL(2,R))
is infinite dimensional. In general, for nontrivial groups G1 and G2

except for G1 = G2 = Z2, it is proved in [3] that Ĥ2(G1 ∗G2) is infinite
dimensional.

A maximal perfect subgroup of a residually solvable group is trivial.
In this section, contrary to residually solvable groups, we investigate
the dimension of the second bounded cohomology of a perfect group,
in particular, a uniformly perfect group.

First, we recall the Universal Coefficient Theorem [13]:

Theorem 3.1. Let M be a trivial G-module. Then there is a split
exact sequence

0→ Ext1Z(Hn−1(G,Z),M)→ Hn(G,M)→ HomZ(Hn(G,Z),M)→ 0.

Corollary 3.2. For M = R, there is an isomorphism

Hn(G) = Hn(G,R) ∼= HomZ(Hn(G,Z),R).

Proof. Since R is divisible, we have Ext1Z(Hn−1(G,Z),R) = 0. Hence
the isomorphism follows from Theorem 3.1. �

Definition 3.2. A group G is said to be uniformly perfect if there is a
positive integer N such that every element of G can be presented as a
product of at most N commutators.

Uniformly perfect groups are perfect. It is clear that every finite per-
fect group is uniformly perfect. The alternating groups An for n ≥ 5
are uniformly perfect. Also it is proved in [14] that the infinite alter-
nating group A∞ = lim→An is uniformly perfect, in fact, every element
of A∞ is a commutator. For a field F, every element of SL(n,F), for
every n, is a product of at most 2 commutators. In particular, SL(2,R)
is uniformly perfect.

However, as we saw in Section 2, the group SL(2,Z) is residually
solvable. So it is not perfect.

In [8], the following theorem is proved:

Theorem 3.3. If G is uniformly perfect, then homomorphism Ĥ2(G)→
H2(G) is injective.

Remark 3.1. Though a free product of perfect groups is perfect, a free
product of uniformly perfect groups is not necessarily uniformly perfect.



14 HEESOOK PARK

For example, consider the uniformly perfect group G = SL(2,R). The
canonical embedding G ↪→ G ∗G induces homomorphisms

Ĥn(G ∗G)
ϕ−→ Ĥn(G) and Hn(G ∗G)

ψ−→ Hn(G).

Then there is a commutative diagram

Ĥ2(G ∗G)
ϕ−−−→ Ĥ2(G)⊕ Ĥ2(G)

ρ

y ν

y
H2(G ∗G)

ψ−−−→ H2(G)⊕H2(G).

Since G = SL(2,R) is uniformly perfect, the homomorphism ν is injec-
tive. It is known as in [8] that H2(SL(2,R)) = R. As it is well known,
the homomorphism ψ is an isomorphism by Mayer-Vietoris sequence
and so H2(G ∗G) = R⊕R. Recall that the second bounded cohomol-
ogy of free product, except for Z2 ∗ Z2, is infinite dimensional. Thus

Ĥ2(SL(2,R) ∗ SL(2,R)) is infinite dimensional, and so the map ρ can
not be injective. By Theorem 3.3, the group SL(2,R)∗SL(2,R) is not
uniformly perfect.

Remark 3.2. As it is well known, the group H2(G,Z) is called the
Schur multiplier of G. It is an important invariant of a group that has
applications in many areas, especially, for the central extension of a
perfect group which we will see later. If G = F/K with F free, it is a
theorem of Hopf (see [12]) that H2(G,Z) ∼= (K ∩ [F, F ])/[F,K].

We first see how the dimension of the second bounded cohomology
of a finitely presented uniformly perfect group is related to the group
H2(G,Z).

Proposition 3.4. Let G be finitely presented with m generators and n
relators. Also, let r be the rank of Gab. Then H2(G,Z) can be generated
by n−m+ r elements.

We refer the reader to [12] for a proof.

Corollary 3.5. Let G be finitely presented with m generators and n
relators, and r the rank of Gab. Then H2(G) ∼= Rk, where 0 ≤ k ≤
n−m+ r.

Proof. Since G is finitely presented, by Proposition 3.4 the abelian
group H2(G,Z) can be generated by n−m+ r elements. Hence we can
write

H2(G,Z) ∼= Zk ⊕ T,



FREE GROUPS IN THE SECOND BOUNDED COHOMOLOGY 15

where T is its torsion subgroup of and its rank k is that 0 ≤ k ≤
n−m+ r. Then

H2(G) = HomZ(H2(G,Z),R)

∼= HomZ(Zk ⊕ T,R)

∼= Rk,

where the first isomorphism follows from Corollary 3.2. HenceH2(G) ∼=
Rk for 0 ≤ k ≤ n−m+ r. �

Definition 3.3. A finite presentation is called balanced if it has the
same number of generators and defining relators.

Theorem 3.6. Let G be uniformly perfect. If G is finitely presented

with m generators and n relators, then the dimension of Ĥ2(G) is at
most n−m. In particular, if G has a balanced finite presentation, then

Ĥ2(G) = 0.

Proof. Since G is uniformly perfect, it is perfect and so its abelianiza-
tion G/[G,G] is trivial. Then from Corollary 3.5, there is an isomor-
phism H2(G) ∼= Rk for 0 ≤ k ≤ n−m. Also by Theorem 3.3, there is
an injective homomorphism

Ĥ2(G) ↪→ H2(G) ∼= Rk.

Hence the dimension of Ĥ2(G) is less than or equal to n−m.
If a uniformly perfect group G has a balanced finite presentation,

then n = m by definition and so Ĥ2(G) = 0. �

It is known in [1] that a perfect group G with a balanced finite
presentation is the fundamental group of a homology 4-sphere, that is,
G = π1M for a smooth n-dimensional manifold M with H∗(M,Z) ∼=
H∗(S

4,Z). Notice that H1(G) = 0 and also H2(G) = 0 from the
Hurewicz homomorphism. Since a uniformly perfect group is perfect,
a uniformly perfect group G with a balanced finite presentation is also
the fundamental group of a homology 4-sphere M . In this case, by

Theorem 3.6 we have Ĥ2(M) = Ĥ2(G) = 0.
We consider another property of a perfect group. Recall that a cen-

tral extension of a group G is an exact sequence

0→ C → E → G→ 1,

where C lies in the center of E. This central extension is said to be
universal if for any central extension

0→ C ′ → E ′ → G→ 1
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of G, there is a unique homomorphism E → E ′ such that the following
diagram commutes:

0 −−−→ C −−−→ E −−−→ G −−−→ 1y y y =

y y
0 −−−→ C ′ −−−→ E ′ −−−→ G −−−→ 1.

Not every group has a universal central extension in general, but we
have the following:

Theorem 3.7. A group G is perfect if and only if G has a universal
central extension

0→ C → E → G→ 0,

where E is perfect and H2(E,Z) = 0. Furthermore, C ∼= H2(G,Z).

The proof can be found in [13].

Proposition 3.8. Let 0 → H2(G,Z) → E → G → 1 be a universal
central extension of a perfect group G. Then there is an isomorphism
of vector spaces

Ĥ2(G) ∼= Ĥ2(E).

Proof. Let C = H2(G,Z), so that G = E/C. Since C is abelian, it is

amenable and so Ĥn(C) is zero for every n ≥ 1. Hence it follows from
Theorem 2.3. �

As shown in [6], since C is an amenable normal subgroup of E,

Ĥn(E/C) and Ĥn(E) are isomorphic for every n ≥ 1.
Recall that the inclusion homomorphism B∗(G) ↪→ C∗(G) induces a

homomorphism Ĥ∗(G)
Φ−→ H∗(G). It is easy to see that this induced

homomorphism is in general neither injective nor surjective. For ex-
ample, if G is free of rank 1, then it is not surjective. Also if G is free
of rank greater than 1, then it can not be injective.

Definition 3.4. The kernel of Ĥ∗(G)
Φ−→ H∗(G) is called the singular

part of Ĥ∗(G) and denoted by Ĥ∗s (G). Also the image of Φ is called the
bounded part of H∗(G) and denoted by H∗b (G).

The singular part Ĥ2
s (G) plays an important role for the dimension

of Ĥ2(G). There is another description of the singular part of Ĥ2(G).

Definition 3.5. An element f ∈ C(G) is called a pseudocharacter
if ∂1f ∈ B2(G) and also f(gn) = nf(g) for n ∈ Z. The space of
pseudocharacters of G is denoted by PX(G). We also denote by X(G)
the space of characters of G, that is, the space of homomorphisms G→
R.
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Notice that

X(G) = H1(G) = HomZ(H1(G,Z),R).

Theorem 3.9. There are isomorphisms of vector spaces

i) Ĥ∗(G) ∼= Ĥ∗s (G)⊕H∗b (G)

ii) Ĥ2
s (G) ∼= PX(G)/X(G).

Proof. The first is Corollary 1.15 and the second is Theorem 3.5 in
[4]. �

Proposition 3.10. Let G be finitely presented. Suppose Ĥ2(G) is in-
finite dimensional. Then PX(G)/X(G) is infinite dimensional.

Proof. Let G have a finite presentation < X | R >, where |X| and
|R| are finite. If |X| = 1, the group G abelian and so amenable. Then

Ĥ2(G) is zero by Theorem 1.2. Hence we have 1 < |X| < ∞. Then,
by Corollary 3.5, the dimension of H2(G) as a vector space over R
is finite. Then, since Ĥ2(G) is infinite dimensional, the kernel of the

homomorphism Ĥ2(G) → H2(G) is infinite dimensional. Hence, by
Definition 3.4 and Theorem 3.9, the space PX(G)/X(G) is infinite
dimensional. �

Recall that the commutator subgroup of SL(2,Z) is free of rank 2
and of index 12. So the abelianization of SL(2,Z) is isomorphic to
Z12 the cyclic group of order 12, so that its rank is zero. Also recall
that SL(2,Z) has a balanced finite presentation with 2 generators and
2 defining relators. Then by Corollary 3.5, we have H2(SL(2,Z)) = 0.

Thus the homomorphism Ĥ2(SL(2,Z))→ H2(SL(2,Z)) is zero. Hence
from Theorem 3.9, we have

Ĥ2(SL(2,Z)) = Ĥ2
s (SL(2,Z))

= PX(SL(2,Z))/X(SL(2,Z)) = PX(SL(2,Z)),

where the last equality follows from the following fact

X(SL(2,Z)) = H1(SL(2,Z))

= HomZ(H1(SL(2,Z),Z), R)

= HomZ(SL(2,Z)ab, R)

= HomZ(Z12, R) = 0.

Notice that PX(SL(2,Z)) is infinite dimensional.
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Corollary 3.11. Let G be generated by two elements. If there is at

least one pseudocharacter that is not a character, then Ĥ2(G) is in-
finite dimensional. In particular, if G is also finitely related, then
PX(G)/X(G) is infinite dimensional.

Proof. Let α ∈ PX(G) \X(G). Then, since PX(G)/X(G) is not zero,

Ĥ2(G) is not zero either by Theorem 3.9. Hence Ĥ2(G) is infinite
dimensional by Theorem 2.8.

Now suppose G has finitely many defining relators. Then G is finitely
presented and so by Proposition 3.10 the vector space PX(G)/X(G)
is infinite dimensional. �

From Corollary 3.11, if G is a finitely presented group with two gen-
erators, then the existence of only one pseudocharacter that is not a
character guarantees that there are infinitely many linearly indepen-

dent pseudocharacters providing Ĥ2(G) with infinite dimension.

Proposition 3.12. If G is uniformly perfect, then PX(G) = 0.

Proof. Since G is perfect, it is clear that

X(G) = H1(G) = HomZ(H1(G,Z),R) = 0.

Since G is uniformly perfect, the homomorphism Ĥ2(G)
Φ−→ H2(G) is

injective by Theorem 3.3. Hence,

0 = ker Φ = Ĥ2
s (G) ∼= PX(G)/X(G) = PX(G).

�

Remark 3.3. Let 0 → C → E → G → 1 be a universal central
extension of a perfect group G.

(1) Since G and E are perfect, by Corollary 3.2 we have H1(G) =
H1(E) = 0. Also, since H2(E,Z) = 0 by Theorem 3.7, we have
H2(E) = 0.

(2) Since C is an amenable normal subgroup, as shown in [6] there
is an isomorphism

Ĥ∗(E) ∼= Ĥ∗(E/C) = Ĥ∗(G).

(3) Since 0 = H1(E) = X(E) and H2(E) = 0, we have

Ĥ2(G) = Ĥ2(E/C) ∼= Ĥ2(E) = Ĥ2
s (E) ∼= PX(E).

Thus each pseudocharacter of E determines a unique bounded
2-cocycle of G.
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Proposition 3.13. Let

0→ C
i−→ E

p−→ G→ 1

be a universal central extension of a uniformly perfect group G, where
C = H2(G,Z). Then there is an injective homomorphism

PX(E)→ HomZ(H2(G,Z),R).

Furthermore, suppose G is finitely presented. Then the dimension of

Ĥ2(G) is no more than the rank of H2(G,Z).

Proof. Recall that there is a five-term exact sequence of the ordinary
cohomology

0→ H1(G)→ H1(E)→ H1(C)E/C → H2(G)→ H2(E).

Since C is in the center of E, the action of E/C on H∗(C) is trivial, so
that H1(C)E/C = H1(C). Also, since H1(E) = H2(E) = 0 by Remark

3.3.(1), there is an isomorphism H1(C)
∼=−→ H2(G). Also by Remark

3.3.(2) there are isomorphisms

Ĥ2(G) ∼= Ĥ2(E) ∼= PX(E).

Consider the following diagram

Ĥ2(G)
p∗−−−→∼= Ĥ2(E) = PX(E)

Φ

y
H2(G)

d∗←−−−∼= H1(C) = HomZ(H2(G,Z), R).

Since G is uniformly perfect, the homomorphism Φ is injective by The-
orem 3.3. Then from the composition d−1

∗ ◦Φ◦p−1
∗ there is an injective

homomorphism

PX(E)
ρ∗−→ HomZ(H2(G,Z),R).

Suppose G is finitely presented. By Corollary 3.4, we have H2(G) ∼=
Rk, where k is the rank of H2(G,Z) and 0 ≤ k < ∞. Thus the
dimension of H2(G) is k. So, by the injectivity of Φ, the dimension of

Ĥ2(G) is at most k. Hence the dimension of Ĥ2(G) is no more than
the rank of H2(G,Z). �

Corollary 3.14. Let G be a finitely presented uniformly perfect group.

If Ĥ2(G) 6= 0, then H2(G,Z) is not a torsion group.
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Proof. If Ĥ2(G) 6= 0, then the dimension of Ĥ2(G) is at least 1. Also
by Proposition 3.13, the rank of H2(G,Z) is no less than the dimension

of Ĥ2(G). Hence H2(G,Z) has rank at least 1 and so it can not be a
torsion group. �

Let 0 → C → E → G → 0 be a universal central extension of a
uniformly perfect group G, where C = H2(G,Z). Since Ĥ2(C) = 0, we
have

PX(C) = X(C) = H1(C) = HomZ(H2(G,Z), R).

Then from Proposition 3.13, there is an injective homomorphism

ρ∗ : PX(E)→ PX(C).

Let
PX(E,C) = {f ∈ PX(E) | f(x) = 0 for all x ∈ C}.

Then PX(E,C) = ker(ρ∗) = 0. Thus every pseudocharacter vanishing
on C vanishes on E.

4. An application of Quillen’s plus construction

For a connected CW complex X, there is a construction, which is
known as the Quillen’s plus construction, for killing a perfect normal
subgroup of π1X, while preserving the ordinary homology:

Theorem 4.1. Let X be a connected CW complex and N be a perfect
normal subgroup of π1(X). Then there is a new CW complex X+ by
attaching only 2-cells and 3-cells to X, so that the pair (X+, X) satisfies
the following conditions:

(1) The map π1X → π1X
+ induced by the inclusion X → X+ is

the quotient map π1X → π1X/N .
(2) The pair (X+, X) is homologically acyclic.
(3) The space X+ is unique up to homotopy.

For a proof we refer the reader to [13].

Definition 4.1. For a connected CW complex X and a perfect normal
subgroup N of π1X, we call a Quillen’s plus construction X+ such that
π1(X+) = (π1X)/N the Quillen’s space for X relative to N E π1X.

To see how Quillen’s plus construction behaves in bounded cohomol-
ogy, we briefly review the relative bounded cohomology.

In [10], the relative bounded cohomology of any continuous map

Y
f−→ X of spaces X and Y , not necessarily Y ⊂ X, is defined as

the cohomology of mapping cones of B∗(X)
f∗−→ B∗(Y ), that is, as the

cohomology of bounded cochain complex of {Bn(X)
⊕

Bn−1(Y ), dn},
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where the boundary operator dn is defined by the equation dn(α, β) =
(δn(α),−f∗(α)−∂n−1(β)) from boundary operators δ∗ and ∂∗ of B∗(X)

and B∗(Y ) respectively. It is denoted by Ĥ∗(Y
f−→ X). Then for any

continuous map Y
f−→ X, there is a long exact sequence

→ Ĥn−1(Y )→ Ĥn(Y
f−→ X)→ Ĥn(X)

f∗−→ Ĥn(Y )→ .

In particular, for a pair (X, Y ) of spaces with Y ⊂ X, by considering

it as an inclusion Y ↪→ X the group Ĥ∗(Y ↪→ X) is isomorphic to the

usual sense of the relative bounded cohomology Ĥ∗(X, Y ).

Similarly, for any group homomorphismA
ϕ−→ G, the relative bounded

cohomology of A
ϕ−→ G is defined as the cohomology of the complex of

mapping cones {Bn(G) ⊕ Bn−1(A), dn}, and denoted by Ĥ∗(A
ϕ−→ G).

In this manner, for any continuous map of semilocally simply connected

spaces Y
f−→ X it is proved that

Ĥ∗(Y
f−→ X) ∼= Ĥ∗(π1Y

f]−→ π1X).

Also there is a commutative diagram of the long exact sequence

→ Ĥn−1(Y ) −−−−−→ Ĥn(Y
f−→ X) −−−−−→ Ĥn(X) −−−−−→ Ĥn(Y )→

∼=
y ∼=

y ∼=
y ∼=

y (4.1)

→ Ĥn−1(π1Y ) −−−−−→ Ĥn(π1Y
f]−→ π1X) −−−−−→ Ĥn(π1X) −−−−−→ Ĥn(π1Y )→ .

Remark 4.1. The Excision Axiom does not hold in the theory of
bounded cohomology. For example, let X = T be a torus and Y ∼=
D2 ⊂ X, and Z = p be a point in Y . Then X − p is a punctured torus
with π1(X − p) = Z ∗ Z and Y − p deformation retracts to a circle S1.

Recall that Ĥ1(·) = 0. Then we have the long exact sequence

0→ Ĥ2(T,D2)→ Ĥ2(T )→ Ĥ2(D2)→ Ĥ3(T,D2)→ · · · .

Since π1(T ) is amenable, the group Ĥ2(T ) = 0 and hence Ĥ2(T,D2) =

Ĥ2(X, Y ) = 0. However, notice that there is an exact sequence

0→ Ĥ2(T−p,D2−p)→ Ĥ2(T−p)→ Ĥ2(D2−p)→ Ĥ3(T−p,D2−p)→ .

Also π1(D2 − p) = π1(S1) = Z, so that π1(D2 − p) is amenable. Then

Ĥ2(D2 − p) = 0 and

Ĥ2(T − p,D2 − p) ∼= Ĥ2(T − p) = Ĥ2(Z ∗ Z).

Hence Ĥ2(T − p,D2 − p) is infinite dimensional by Theorem 1.3.

Remark 4.2. Let X be a countable connected CW complex.



22 HEESOOK PARK

(1) Suppose π1X is perfect. Then Quillen’s space X+ for X relative
to π1X E π1X is a simply-connected CW complex.

(2) Suppose that π1X has a perfect commutator subgroup, that is,
(π1X)(1) = [π1X, π1X] is perfect. Then the Quillen’s space X+

for X relative to (π1X)(1) E π1X gives

π1(X+) =
π1X

[π1X, π1X]
= (π1X)ab.

Thus π1(X+) is abelian.

In both cases, Hn(X,Z) and Hn(X+,Z) are isomorphic by Theorem
4.1. Hence, by Corollary 3.2, the groups Hn(X;R) and Hn(X+;R) are
also isomorphic, and also Hn(X+, X;R) = 0 for all n ≥ 1.

On the other hand, in both cases π1(X+) are amenable. Hence

Ĥn(X+) = 0 for every n ≥ 1. However, Ĥn(X) may not be zero.

Instead Ĥn(X) and Ĥn+1(X+, X) = Ĥn+1(X ↪→ X+) are isomorphic.
Thus for the theory of bounded cohomology the condition (2) in

Theorem 4.1 does not hold in general.

Remark 4.3. Let X be a countable connected CW complex and N
be a perfect normal subgroup of π1X. Recall that there is a normal
covering Y → X such that π1Y = N , and it induces a homomorphism
π1Y → π1X. Then the fundamental group of Quillen’s space X+ for
X relative to N E π1X is that π1(X+) = π1X/π1Y = π1X/N . Thus
we have an exact sequence

0→ N → π1X → π1X
+ → 0

and it induces a commutative diagram of the five-term exact sequences

Ĥ2(π1X/N) −−−−−→ Ĥ2(π1X) −−−−−→ Ĥ2(N)π1X/N −−−−−→ Ĥ3(π1X/N) −−−−−→ Ĥ3(π1X)

∼=
y ∼=

y ∼=
y ∼=

y ∼=
y

Ĥ2(X+) −−−−−→ Ĥ2(X) −−−−−→ Ĥ2(Y )G/N −−−−−→ Ĥ3(X+) −−−−−→ Ĥ3(X),

where the first arrows in both rows are injective. Notice that the di-

mension of Ĥ2(X) is greater than or equal to the dimension of Ĥ2(X+).

Remark 4.4. Let A be a closed subcomplex of a CW complex X.
Notice that the cone CA on A is contractible. As it is well known, the
map X ∪ CA→ X/A is a homotopy equivalence. Hence we have

X/A = (X ∪ CA)/CA ' X ∪ CA.

In fact, it is a homotopy equivalence of pairs

(X/A, ∗) ' (X ∪ CA,CA) ' (X ∪ CA, v),

where v is the vertex of the cone.
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Hence there are the isomorphisms on the ordinary cohomology

H̃∗(X/A, ∗) ∼= H∗(X ∪ CA,CA) ∼= H∗(X,A),

where H̃∗(·) denotes the reduced ordinary cohomology and the second
isomorphism follows directly from the Excision Axiom by excising the
vertex v of the cone CA.

However, since the Excision Axiom does not hold in the theory of
bounded cohomology as shown in Remark 4.1, we will see that the

groups Ĥ∗(X/A) and Ĥ∗(X,A) are not isomorphic in general.

Proposition 4.2. Let X be a connected CW complex and X+ the
Quillen’s space for X relative to N E π1X. Then there is an isomor-
phism

Ĥ∗(X+/X) ∼= Ĥ∗(X+ ∪ CX).

Proof. Notice that (X+, X) is a CW pair with X as a subcomplex of
X+. Also X+/X = (X+ ∪ CX)/CX. Since CX is contractible, the
quotient map X+∪CX → (X+∪CX)/CX is a homotopy equivalence.

Hence Ĥ∗(X+/X) ∼= Ĥ∗(X+ ∪ CX). �

Theorem 4.3. Let X be a connected CW complex and X+ the Quillen’s
space for X relative to N E π1X. Then π1(X+/X) is trivial. Further-

more, Ĥn(X+/X) = 0 for all n ≥ 1.

Proof. Recall that the spaces X+/X and X+∪CX are homotopy equiv-
alent. Hence it is enough for us to prove that π1(X+ ∪ CX) is trivial.
Since X+ ∩CX = X, we have the following squares such that the first
square of inclusion maps of spaces induces the second commutative
square of groups

X
i−−−→ X+y y

CX −−−→ (X+ ∪ CX)

and

π1X
i∗−−−→ π1(X+)y y

π1(CX) −−−→ π1(X+ ∪ CX).

Notice that the second square is an amalgamation diagram, where all
fundamental groups are computed at a fixed vertex x ∈ X. Then
π1(X+ ∪ CX) = π1(X+) ∗π1X π1(CX). Since CX is contractible,
the group π1(CX) is trivial. Hence π1(X+ ∪ CX) is the quotient of
π1(X+) by the smallest normal subgroup of π1(X+) containing the im-
age i∗π1(X). By Quillen’s plus construction, the homomorphism i∗ is
surjective

π1X
i∗−→ π1X

+ = π1X/N.
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Thus i∗π1X = π1(X+). Then it shows that

π1(X+/X) = π1(X+ ∪ CX) = π1(X+) ∗π1X π1(CX)

= (π1X
+)/(i∗π1X) = π1(X+)/π1(X+) = 1.

Thus π1(X+/X) = 1 and so the quotient space X+/X is a simply

connected CW complex. Hence Ĥn(X+/X) = 0 for all n ≥ 1. �

Remark 4.5. If X is a connected CW complex and X+ is the Quillen’s
space for X relative to N E π1X, the quotient space X+/X is a bou-
quet of, possibly infinitely many, 2-cells and 3-cells. Then from The-
orem 4.3 the fundamental group of a bouquet of, possibly infinitely
many, 2-cells and 3-cells is trivial.

Proposition 4.4. Let X be a connected CW complex and X+ the

Quillen’s space for X relative to N E π1X. Then Ĥ2(X+, X) = 0. In
particular, if π1X itself is perfect, then there is an isomorphism

Ĥn(X) ∼= Ĥn+1(X+, X).

Proof. Recall that Ĥ1(·) = 0. The inclusion map X
i−→ X+ induces a

surjective homomorphism π1X
p−→ π1(X+) = (π1X)/N . Let G = π1X.

As in the diagram (4.1), there is a commutative diagram

0→ Ĥ2(X
i−→ X+) −−−−−→ Ĥ2(X+)

i∗−−−−−→ Ĥ2(X) −−−−−→ Ĥ3(X
i−→ X+)→

∼=
y ∼=

y ∼=
y ∼=

y
0→ Ĥ2(G

p−→ G/N) −−−−−→ Ĥ2(G/N)
p∗−−−−−→ Ĥ2(G) −−−−−→ Ĥ3(G

p−→ G/N)→ .

From Theorem 2.3, the homomorphism p∗ is injective. So the homo-

morphism i∗ is also injective. Hence Ĥ2(X+, X) = Ĥ2(X ↪→ X+) = 0.

Suppose π1X is perfect. ThenX+ is simply connected and so Ĥn(X+)
is zero for every n ≥ 1. Hence there is an isomorphism

Ĥn(X) ∼= Ĥn+1(X+, X).

�

Let X+ be the Quillen’s space for a connected CW complex X rel-
ative to N E π1X for a perfect group N . Notice that by Remark
4.4 we have Hn(X+/X) = Hn(X+, X) = 0 for every n ≥ 1. Also

Ĥn(X+/X) = 0 for all n ≥ 1 by Theorem 4.3. But Ĥn(X+, X) is not
zero for all n ≥ 1 in general.
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