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Abstract. k denotes a number field. We study the first layers k1 ⊃ k of Zp-
extensions of k. k1 can be described in terms of the norm coherent property
over the cyclotomic Zp-extension of k.
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1. Introduction

We will introduce a theorem which measures the first layers of Zp-extensions of
a number field in terms of the norm coherent property. Firstly, we search possible
candidates of the first layers of Zp-extensions when the ground field contains a
primitive pth root of unity. Secondly, we study general case by adding a primitive
pth root of unity to the ground field and by shifting Zp-extensions of the ground
field to Zp-extensions over this bigger field. This is explained at the end of this
section. Finally, the first layers of Zp-extensions are related to Coleman’s power
series over the p-adic cyclotomic Zp-extension of the completion of the ground field
at a prime lying over p.

The first step is obtained by refining a main result of Bertrandias and Payan
in [1] in which they determine the first layers of Z/pnZ-extensions of a number field
in terms of a certain norm group over the cyclotomic Zp-extension of the ground
field. For a number field k, let Θk be the set of all elements α in k× such that
k(α1/p) is a first layer of a Zp-extension. Let ζpn denote a primitive pnth root of
unity in a fixed algebraic closure kalg of k. Let k∞ be the cyclotomic Zp-extension
of k in kalg with kn its unique subfield of degree pn over k. Let m ≥ 1 denote
the maximum number with ζpm ∈ k. By level-shifting over the the cyclotomic Zp-
extension, we may assume in this paper, without loss of generality, that m = 1,
i.e., k = k(ζp) 6= k(ζp2). Then our kn becomes Bertrandias and Payan’s kn+1. For
each integer n ≥ 1, let τ(ζpn) = ζ1+p

pn . Thus τ defines a topological generator for
G(k∞/k). Let

Λ = Z[[T ]] = lim←−Z[G(kn/k)]

be the inverse limit of Z[G(kn/k)] for which the generator τ satisfies

1 + T = τ.

We will see that Θk can be obtained from certain Λ-modules. Let

lim←−
n≥1

k×n /k×(k×n )T 2−Tp

denote the inverse limit of k×n /k×(k×n )T 2−Tp over n ≥ 1 with respect to the norm
maps and let lim←−n≥1

k×n /k×(k×n )T−p be defined in the same way. Let π be the
1
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natural projection from lim←−n≥1
k×n /k×(k×n )T 2−Tp into k×/(k×)p,

π((anmod k×(k×n )T 2−Tp)) = Nn(an)mod (k×)p

where Nn denotes the norm map from kn to k. We introduce the following conjec-
ture.

Conjecture 1.1. If k is a number field such that k = k(ζp) 6= k(ζp2), then

Θk/(k×)p = π(lim←−
n≥1

k×n /k×(k×n )T 2−Tp).

Evidence for the conjecture can be found in the proof of the following theorem.

Theorem 1.2. If k is a number field such that k = k(ζp) 6= k(ζp2), then we have

π(lim←−
n≥1

k×n /k×(k×n )T 2−Tp) ⊂ Θk/(k×)p ⊂ π(lim←−
n≥1

k×n /k×(k×n )T−p).

We remark here that if k does not contain a primitive pth root of unity, then we
have

Θk/(k×)p = 0.

Next, we move on general case, i.e., when k is an arbitrary number field. If k
contains a primitive pth root of unity then the first layers must be of the form
k(α1/p) for some α in k which was already handled. If k does not contains a
primitive pth root of unity then each first layer is not generated by a pth root of an
element of k. However, in this case we can find possible candidates of first layers
of Zp-extensions of k by shifting k to K = k(ζ1).

K1 = K(α1/p)

¡

¡
k1 K = k(ζ1)

@

@
k

The first layer k1 of a Zp-extension k∞ is linearly disjoint with k(ζ1) since the
degree is prime to p. In this case, the composite K∞ = Kk∞ is a Zp-extension of
K for which we have information about possible candidates of first layers. Since
both k1/k and K/k are abelian with coprime degrees, we have

G(K1/k) ∼= Z/pZ×G(k(ζ1)/k) ∼= Z/p[k(ζ1) : k]Z.

The first layer k1 must be the subfield of K1 fixed by G(k(ζ1)/k) ∼= G(K1/k1)

k1 = K
G(k(ζ1)/k)
1 .

Conversely, every first layers of Zp-extensions of k can be obtained in this way, that
is, they are the fixed fields of the first layers of Zp-extensions of k(ζ1) by G(k(ζ1)/k).

2. Proof of Theorem 1.2

We start with the following definition.

Definition 2.1. For an extension field K/k and a group H, we will say K is H-
extendable over k if there is an extension field F ⊃ K such that F/k is Galois and
its Galois group G(F/k) is isomorphic to H.
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When K/k is a Galois extension, then K is H-extendable over k if and only if there
is a Galois extension F ⊃ K over k which fits into a short exact sequence

0 −→ G(F/K) −→ G(F/k) ∼= H −→ G(K/k) −→ 0

For a field F , F× denotes the multiplicative group of the nonzero elements of F .
Following Bertrandias and Payan, we define two subgroups Θk and Ψk of k×/(k×)p.
Let ζn be a primitive nth root of unity in a fixed algebraic closure of k, and let µn

be the group which is generated by ζn. For a number field k, let Θk be the set of
all elements α in k× such that k(α1/p) is Zp-extendable. If k does not contain ζp,
then trivially

Θk/(k×)p = 0.

For a field k containing ζp, Θk/(k×)p is a finite dimensional Z/pZ-vector space.
Write sk for the dimension. In terms of Iwasawa’s theory, sk is the maximum
number of independent Zp-extensions of k. If δk denotes the difference between the
Z-rank of the global units of k and the Zp-rank of those in its completion at p, then
sk is equal to r2 +1+δk, where r2 denotes the number of complex embeddings of k.
Leopoldt’s conjecture is equivalent to δk = 0 for a number field k. The conjecture is
known to be true for an abelian number field by Brumer. Hence, in abelian number
field k, sk is equal to r2 + 1,

dimZ/pZΘk/(k×)p = r2 + 1.

In their paper, Bertrandias and Payan studied Θk in terms of certain subgroups
of the ground field. Among these subgroups are the group of universal norms, the
group of p-units. We briefly recall a theorem which played a central role in loc.cit.
This theorem is a characterizing of elements whose p-th roots generate Z/pnZ-
extendable fields. Let k∞ be the cyclotomic Zp-extension of k0 = k = k(µp) with
kn its unique subfield of degree pn over k. Let m ≥ 1 denote the maximum number
with ζpm ∈ k. As mentioned in the introduction, by level-shifting over the the
cyclotomic Zp-extension, we may assume, without loss of generality, that m = 1 so
that our kn becomes Bertrandias and Payan’s kn+1. Let Nn denote the norm map
from kn to k.

Theorem 2.2 (=Théorème 1 of loc.cit). Let α ∈ k×. Then k(α1/p) is Z/pnZ-
extendable if and only if α ∈ Nsnk×sn

(k×)p, where sn is n − m if n ≥ m, and 0
otherwise.

Based on Theorem 2.2 above, Ψk is defined as the set of all α ∈ k× such that
k(α1/p) is Z/pnZ-extendable for all n.

Corollary 2.3 (=Corollary of loc.cit).

Ψk =
⋂
n

Nnk×n (k×)p

Using these results, it was shown that an extension k(α1/p) which is Z/pnZ-extendable
for all n need not be Zp-extendable. This was done by providing an example of
abelian number field k such that r2 + 1 = dimZ/pZΘk/(k×)p 6= dimZ/pZΨk/(k×)p,
which is due to Serre(cf. loc.cit). For a notational convention, write ζn for a pnth
root of unity. As defined in the introduction, let τ be a topological generator for
G(k∞/k) defined to be τ(ζn) = ζ1+p

n . Let k̃∞ denote the inverse limits

k̃∞ = lim←−
n≥1

k×n /k×(k×n )T 2−Tp
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with respect to the norm maps. We have the following exact sequence 0 →
lim←−n

k×(k×n )T 2−Tp → lim←−n
k×n → k̃∞ induced from the short exact sequence 0 →

k×(k×n )T 2−Tp → k×n → k×n /k×(k×n )T 2−Tp → 0 by taking inverse limits with respect
to the norm maps. Since lim←−n

k×(k×n )T 2−Tp is trivial, we have

lim←−
n

k×n ↪→ k̃∞.

As defined in the introduction, let π be the natural projection from k̃∞ into
k×/(k×)p, i.e., π((anmod k×(k×n )T 2−Tp)) = Nn(an)mod kp. Note that Nn(an)
is independent of n. Let k̃coh denote the image of π inside k×/(k×)p,

k̃coh = π(k̃∞).

Notice that from the inclusion above, we have also the following inclusion

π(lim←−
n

k×n ) ⊂ k̃coh.

We recall the conjecture as was stated in the introduction.

Conjecture 2.4. If k is a number field such that k = k(ζp) 6= k(ζp2), then

Θk/(k×)p = k̃coh.

Notice that if k does not contain ζp, then Θk is trivial, i.e., Θk = (k×)p. However,
k̃coh may contain nontrivial elements, for example when k = Q,

p mod(k×)p = π((ζn − 1 mod k×(k×n )T 2−Tp)n) ∈ k̃coh.

The conjecture is true for the following cases. Firstly, if there is only one prime p in
k lying over p such that the Sylow p-subgroup of the class group of k is generated by
the class of p, then the conjecture is true. Secondly, if k = Q(ζp) and p is properly
irregular, then the conjecture is true. Hence, under Vandiver’s conjecture, for all p
and k = Q(ζp), the conjecture is true since for a regular prime, the first case above
says the conjecture is true. We do not inquire further into the cases under which
the conjecture is true. Instead, we pose the following theorem.

Theorem 2.5. If k is a number field such that k = k(ζp) 6= k(ζp2), then we have

k̃coh ⊂ Θk/(k×)p ⊂ π(lim←−
n≥1

k×n /k×(k×n )T−p).

Proof. Let α ∈ k̃coh. For s ≥ n, let Ns,n denote the norm map from ks to
kn. There is a sequence {αn}n≥m such that N2(α2) = α and Nn,n−1αn+1 =
αnanβT 2−Tp

n where αn, βn ∈ k×n−1 and an ∈ k. We need the following lemma of
loc.cit.

Lemma 2.6 (=Lemme 1 of loc.cit). For integers n > m ≥ 1, there is an integer
un and a polynomial f ′n(x) in Z[x] such that

1 + x + · · ·+ xpn−m−1 = (x− 1− p)f ′n(x) + (1 + unp)pn−m.

By replacing variable x by x− 1 = y, Lemma 2.6 leads to

1 + (y + 1) + · · ·+ (y + 1)pn−m−1 = (y − p)f ′n(y + 1) + (1 + unp)pn−m.

Write f ′n(y + 1) = fn(y). When m = 1, by plugging in y = T , this leads to

Nn−1 = (T − p)fn(T ) + (1 + unp)pn−1.
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Write also Nn−1,0αn = αρ−p
n where αn ∈ k×n−1 and ρn ∈ k×, and

νn = αfn(T )
n , α′n = ανp

n.

The field L′n = kn−1((α′n)1/pn

) is an abelian extension of k and cyclic extension of
degree pn over kn−1. This fact is contained in the proof of part (b) of THÉORÈME
1 of loc.cit. We briefly recall the argument. From Lemma 2.6, we have α =
ρp

n(α1+unp
n )pn−1

(αfn(T )
n )T−p and hence

αp = (α1+unp
n )pn

(αpfn(T )
n ρ−p

n )T−p = (α1+unp
n )pn

νp(T−p)
n .

It follows that (α′n)T−p = α−pν
p(T−p)
n = (α1+unp

n )pn ∈ kpn

n−1. Let τ̃ be any extension
of τ to L′n. Since

(τ̃((α′n)1/pn

))pn

= τ(α′n) = (α′n)1+pxn,

for some xn ∈ kn, (τ̃((α′n)1/pn

)) ∈ L′n which shows L′n/k is a Galois extension. Let
ζ = σ((α′n)1/pn

)/(α′n)1/pn

). Then G(L′n/k) is abelian if and only if

τ̃σ((α′n)1/pn

)/τ̃((α′n)1/pn

) = στ̃((α′n)1/pn

)/τ̃((α′n)1/pn

).

It follows from τ(σ((α′n)1/pn

)/(α′n)1/pn

)) = (σ((α′n)1/pn

)/(α′n)1/pn

)1+p that the
condition is equal to the condition that ((α′n)1/pn

)1+p/τ̃((α′n)1/pn

) is contained
in kn−1 which is the invariant field by σ. This condition is satisfied since (α′n)T−p

was shown to be a pnth power of kn−1. This shows that L′n = kn−1((ανp
n)1/pn

) is
an abelian extension of k and cyclic extension of degree pn over kn−1. Next, we
claim that

L′n ⊂ L′n+1.

In order to prove the claim, it is enough to show that

νn+1/νn ∈ (k×n )pn−1
.

νn+1

νn
= (

α
fn+1(T )
n+1

(Nn,n−1αn+1anβT 2−Tp
n )fn(T )

) = (
α

fn+1(T )
n+1

(α
∑p

i=1(1+T )pn−1i

n+1 anβT 2−Tp
n )fn(T )

).

We show that the first factor

(
α

fn+1(T )
n+1

(α
∑p

i=1(1+T )pn−1i

n+1 )fn(T )
)

and the other factors
afn(T )

n , β(T 2−Tp)fn(T )
n

are pn−1th powers of k×n . For the first factor it was shown as in loc.cit that

(
α

fn+1(T )
n+1

(α
∑p

i=1(1+T )pn−1i

n+1 )fn(T )
) = (α

(
∑p

i=1(1+T )pn−1i)(1+unp)−p(1+un+1p)
T−p

n+1 )pn−1
.

Since T annihilates an, it follows from Lemma 2.6 that

a−pfn(T )
n = afn(T )(T−p)

n = aNn−1−(1+unp)pn−1

n = aunpn

n .

This shows
afn(T )

n ∈ kpn−1

n .

Finally, the last factor is a pn−1th powers of k×n since

β(T 2−Tp)fn(T )
n = βT (Nn−1−(1+unp)pn−1)

n
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from Lemma 2.6. If k(α1/p) = k2 then trivially α ∈ Θk. Otherwise, k(α1/p) is
linearly disjoint with k2 over k. Then L′∞ is a Zp-extension of k∞ and L′∞/k is
an abelian extension with G(L′∞/k) ∼= Zp ⊕ Zp. In this case, it can be shown that
k(α1/p) is contained in a Zp-extension of k following the same argument of Lemme
2 of loc.cit. More precisely, let σ be a k∞-automorphism of k∞((ανp

n)1/pn

). The
Galois group decomposes into

G(k∞((ανp
n)1/pn

)/k) ∼= 〈σ〉 ⊕ 〈τ〉.
The field k(α1/p) is the fixed field of a subgroup H of G(k∞((ανp

n)1/pn

)/k) of
index p. Hence, H must be of the form 〈σp, τσi〉 for some i, 0 ≤ i < p. Fi-
nally, k(α1/p) is contained in Ln which is the fixed field of 〈τσi〉 with G(Ln/k) ∼=
G(k∞((ανp

n)1/pn

)/k)/〈τσi〉 ∼= Z/pnZ and hence, k(α1/p) is contained in the Zp-
extension lim−→n

Ln of k.
Now, we proceed to the other inclusion. Let α ∈ Θk/(k×)p so that k(α1/p) is

a first layer of a Zp-extension L∞ of k. There are intermediate fields Ln ⊂ Ln+1

and αi such that Ln+1kn = kn(α1/pn+1

n+1 ) and Lnkn−1 = kn−1(α
1/pn

n ). If Ln and kn

are not linearly disjoint over k, then L1 = k(α1/p) = k1 = k(ζ1/p
1 ). In this case,

we can pick an αn = ζn+1 so that (αn)n is contained in lim←− k×n /k×(k×n )T−p since
α = ζ1mod (k×)p. Thus we may assume that Ln and kn are linearly disjoint over
k.

Ln

kn−1(α
1/pn

n )

kn(α1/pn

n )

Ln+1 kn(α1/p)

¡

kn−1(α1/p)

¡

¡

¡
¡

¡

¡

¡

¡
L1 = k(α1/p)

@

@

kn

@

@

@

kn−1

@

@

@
k

⊥

kn(α1/pn+1

n+1 )

Define νi and ξi in k×i−1 as follows. Since αi ∈ α(k×i−1)
p and αi+1 = αi(k×i )pi

, we
can write αi = ανp

i for some νi ∈ k×i−1 and

αn+1 = αnβpn

n+1,

for some βn+1 ∈ k×n . Since ki−1(α
1/pi

i )/k is abelian for i = n, n + 1, it follows that
αT−p

i ∈ (k×i−1)
pi

, i.e.,

αT−p
i = ξ−pi

i ,

for some ξi ∈ k×i−1. Since ξn+1 and βn+1 are defined up to multiples of roots of
unity, we will choose ξn+1 and βn+1 so that they satisfy certain conditions. It
follows from the two equations above that

ξ−pn+1

n+1 = ξ−pn

n β
pn(T−p)
n+1 .
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Applying the norm map Nn,n−1 to the equation above, we have

(1) Nn,n−1(ξ
−pn+1

n+1 ) = ξ−pn+1

n Nn,n−1β
pn(T−p)
n+1 .

Applying the absolute norm Nn−1, we have

Nn−1Nn,n−1(ξ
−pn+1

n+1 ) = Nn−1(ξ−pn+1

n Nn,n−1β
−pn+1

n+1 ).

By taking a pn+1th root in the above equation, we have

Nn−1Nn,n−1(ξn+1) = Nn−1(ξnNn,n−1βn+1)ν,

where ν ∈ µpn+1 ∩ k. Since ν is contained in the image of the norm map, there are
ζ ′ ∈ µn, δn ∈ kn−1 such that

Nn,n−1(ζ ′ξn+1)/ξn = Nn,n−1βn+1δ
T
n .

For a notational convenience, we will denote ζ ′ξn+1 by ξn+1 since ξn+1 is defined
up to a multiple of roots of unity. This leads to

(2) Nn,n−1(ξn+1)/ξn = Nn,n−1βn+1δ
T
n .

It follows from the equations (1) and (2) that

Nn,n−1β
−pn+1

n+1 δ−pn+1T
n = Nn,n−1β

pn(T−p)
n+1 .

This leads to
Nn,n−1δ

−pnT
n = δ−pn+1T

n = Nn,n−1β
pnT
n+1.

It follows that
(Nn,n−1δnβn+1)T = ν1 = νT

2

for some ν1 ∈ µn, ν2 ∈ µn+1. Hence, we have Nn,n−1(δnβn+1)ν−1
2 ∈ k×. This shows

that ν2 ∈ µn, i.e.,

(3) Nn,n−1(δnβn+1) ∈ k×µn.

The following lemma is well known. The proof is left to the reader which is ele-
mentary.

Lemma 2.7. Let (An, fn), (Bn, gn) and (Cn, hn) be inverse systems. If the short
exact sequences

0 −→ An −→ Bn
ρn−→ Cn −→ 0

are commute with respect to fn, gn and hn for all n, then we have

0 −→ lim←−An −→ lim←−Bn

lim←− ρn−→ lim←−Cn −→ Cok(lim←− ρn) −→ 0,

where Cok(lim←− ρn) is the cokernel of lim←− ρn. If fn is surjective for all sufficiently
large n À 0, then

Cok(lim←− ρn) = 0.

The equation (2) leads to

(4) Nn,n−1(ξn+1)/ξn = Nn,n−1βn+1δ
T
n = Nn,n−1(δnβn+1)δT−p

n .

The equations (3) and (4) tell us that

(5) Θk ⊂ π(lim←− k×n /k×µn+1(k×n )T−p).
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It follows from Lemma 2.7 that there is a lifting from lim←− k×n /k×µn+1(k×n )T−p to
lim←− k×n /k×(k×n )T−p since the norm maps are surjective over pnth roots of unity as
n varies. Hence, the equation (5) leads to

Θk ⊂ π(lim←− k×n /k×(k×n )T−p).

This completes the proof of Theorem 2.5. 2

Remark. We write k = F (ζ1) with F/Q is unramified at p and write σp for the
Frobenius element of p. Then kn = F (ζn+1). For each primes pn+1 in kn+1 and pn

in kn with pn+1|pn lying over p, we can identify G(kn+1/kn) with its decomposi-
tion group G(kn+1,pn+1/kn,pn

) since each prime lying over p is totally ramified at
kn+1/kn, where kn,pn denotes the completion of kn at the prime pn and similarly
for kn,pn+1 . Hence we have the following commutative diagram

0 −−−−→ kn+1 −−−−→ Πp′|pk
×
n+1,p′ = (kn+1 ⊗Qp)×

Nn+1,n

y Πp′|pNn+1,n

y
0 −−−−→ kn −−−−→ Πp|pk

×
n,p = (kn ⊗Qp)×

where the horizontal arrow denotes the diagonal embedding k×n ↪→ Πp|pk
×
n,p. By

taking inverse limits, we have

lim←− k×n ↪→ lim←−Πp|pk×n,p = lim←−(kn ⊗Qp)×

since the projective limit is left exact functor. Let OF denote the ring of integers
of F . OF is identified with the diagonal embedding via

OF ↪→ ÔF = Πp|pOFp = OF ⊗ Zp

where OFp is the ring of integers of the completion Fp of F at a primes p lying over
p. We need the following theorem of Coleman.

Theorem 2.8 (Theorem 16 and Corollary 17 of [2]). Let (αn) be an element of
lim←−(kn ⊗ Qp)×, where the inverse limit is taken with respect to the norm maps.
Then there is a unique power series f in ÔF ((X)) such that

f(ζn+1 − 1) = α
σn

p
n and N f = fσp

where N denotes the Coleman’s norm operator.

It follows from the inclusion π(lim←−n
k×n ) ↪→ k̃coh in the previous argument, Theo-

rem 2.5 and Theorem 2.8 that each element α in π(lim←−n
k×n ) produces a Coleman’s

power series f such that kn(f(ζn+1 − 1)1/pn

) generates a pn-extension of kn which
is Zp-extendable for each n. Conversely, each element f in (OF ((X))×)N=σp pro-
duces a pn-extension kn(f(ζn+1 − 1)1/pn

) over kn which is Zp-extendable for each
n.
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