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Abstract

Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy K3 sur-
face, and let G be one of the 11 maximal symplectic K3 groups

L2(7), A6, S5, M20, F384, A4,4, T192,H192, N72,M9, T48.

In this paper we show that there are no smooth, effective, and pseudo-
free actions of G on X. Moreover, we also give a simple proof of the
stronger result that the following 6 maximal symplectic K3 groups

M20, F384, A4,4, T192,H192, T48

cannot act smoothly and effectively on X. These results give some
answers to the existence or non-existence questions of smooth actions of
the maximal symplectic K3 groups on the Fintushel-Stern’s homotopy
K3 surfaces which were initiated by the papers of Chen and Kwasik.

1 Introduction and Main results

The goal of this short paper is to prove some non-existence results of the
smooth actions of the maximal symplectic K3 groups on the exotic K3
surfaces constructed by Fintushel and Stern via the knot surgery method.
Such exotic K3 surfaces are homeomorphic, but not diffeomorphic to a K3
surface. Hence there is a locally linear topological action of the maximal
symplectic K3 groups on the homotopy K3 surfaces, once we fix a homeo-
morphism between them. As expected, the results of this paper show that
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a change of smooth structures on a closed oriented smoothable 4-manifold
affects the existence of smooth group actions significantly.

In order to explain our main results, let X(d1, d2, d3) be the closed ori-
ented 4-manifold obtained by performing the knot surgery construction si-
multaneously on three disjoint embedded tori in a Kummer surface repre-
senting three distinct homology classes. Here d1, d2, d3 are pairwise rela-
tive prime integers with 1 < d1 < d2 < d3 which are the highest powers
of three monic A-polynomials. Then each X(d1, d2, d3) is orientation pre-
serving homeomorphic, but not diffeomorphic to a K3 surface, and by the
construction and the theorem of Fintushel and Stern, X(d1, d2, d3) admits
a symplectic structure, but not a complex structure. (See Section 2 or [2]
for more details.)

Recall that a K3 surface is a simply connected complex surface with
the trivial canonical class. A subgroup of the automorphism group which
induces a trivial action on the canonical line bundle is called a symplectic
automorphism group. A finite group G is called a K3 group (resp. symplectic
K3 group) if G can be realized as a subgroup of the automorphism group
(resp. symplectic automorphism group) of a K3 surface. It is known in
[12] that there exist 11 maximal symplectic K3 groups which are all certain
subgroups of the Mathieu group M23 as follows:

(1.1) L2(7), A6, S5, M20, F384, A4,4, T192,H192, N72,M9, T48.

In this paper we show that all 11 maximal symplectic K3 groups on
some specific Fintushel-Stern’s homotopy K3 surfaces cannot act smoothly,
effectively, and pseudo-freely. To be precise, our main result is

Theorem 1.1. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy
K3 surface, and let G be one of the 11 maximal symplectic K3 groups as in
(1.1). Then there are no smooth, effective, and pseudo-free actions of G on
X.

In fact, in case of the following six maximal K3 groups, a version of a
much stronger result than Theorem 1.1 was already established in Theorem
1.7 of [2] by Chen and Kwasik. In this paper we will give a much simpler
proof of the following stronger result, in Section 3.

Theorem 1.2. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy K3
surface, and let G be one of the following 6 maximal symplectic K3 groups

M20, F384, A4,4, T192,H192, T48.

Then there are no effective and smooth actions on X.
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In the proof of Theorem 1.2, the following theorem will play an important
role which is stronger than Theorem 1.7 in [2].

Theorem 1.3. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy
K3 surface, and let G be a finite group whose commutator [G, G] contains
a subgroup isomorphic to Z4

2 or the quaternionic group Q8. Then there are
no effective and smooth actions on X.

We organize this paper as follows. In Subsection 2.1, relatively in detail
we describe an infinite family of the Fintushel-Stern’s homotopy K3 surfaces
which will be used throughout this paper. Then we give a list of maximal
symplectic K3 groups together with the information about their commu-
tator groups in Subsection 2.2. Subsection 2.3 is devoted to reviewing the
definition of spin number and an important non-existence theorem in [10]
which will play a crucial role in the proof of Theorem 3.3. Finally, in Section
3 we provide the proofs of Theorems 1.1, 1.2, and 1.3.

2 Preliminaries

2.1 The Fintushel-Stern’s homotopy K3 surfaces

The aim of this subsection is to describe in infinite family of closed oriented
smooth 4-manifolds constructed by Fintushel and Stern via the knot surgery
technique in [6].

To do so, we need to recall the construction of a Kummer surface as in
[7]. See also Section 2 in [2]. Let S1 be the unit circle in C, and let T 4

denote the 4-torus S1 × S1 × S1 × S1. Let ρ : S1 → S1 denote the complex
conjugation. Then the Kummer surface X can be obtained by resolving 16
singular points in the quotient space T 4/ρ4. To be precise, we first remove a
regular neighborhood of each singular point and then replace it by a regular
neighborhood of of an embedded (−2)-sphere. The resulting 4-manifolds for
different choices of the gluing map are diffeomorphic to each other. Now,
for each j = 1, 2, 3, let

πj : T 4/ρ4 → S1 × S1/ρ2, (z0, z1, z2, z3) 7→ (z0, zj)

be the projection. Then there is a complex structure Jj on T 4 compatible
with the chosen orientation on T 4 such that the projection πj is holomorphic.
Using these three projections πj (j = 1, 2, 3), we can obtain three C∞-elliptic
fibration πj : X → S2, and we use three disjoint tori Tj in X for constructing
the knot surgery which are the regular fibers π−1

j (pj , i) for some distinct
±1 6= pj ∈ S1.
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Now assume that d1, d2, d3 are pairwise relative prime integers with
1 < d1 < d2 < d3, and let Pj(t) be the Laurent polynomial in one variable
given by

Pj(t) = 1− (tdj + t−dj ), j = 1, 2, 3.

Then each polynomial Pj(t) is monic and an A-polynomial. Given three
A-polynomials P1(t), P2(t), and P3(t), we can perform the knot surgeries
simultaneously along the tori T1, T2, and T3 to obtain a simply connected,
oriented 4-manifold X(P1, P2, P3) which is orientation-preserving homeo-
morphic to X and has the Seiberg-Witten invariant

SWX(P1,P2,P3) = P1(t1)P2(t2)P3(t3),

where tj = exp(2[Tj ]) for j = 1, 2, 3. Since all three polynomials Pj are cho-
sen to be monic and an A-polynomial, the 4-manifold X(P1, P2, P3) admits
a symplectic structure compatible with the orientation. In this paper, we
denote by X(d1, d2, d3) the resulting 4-manifold X(P1, P2, P3).

2.2 Maximal symplectic K3 groups

In this section we briefly provide 11 maximal symplectic K3 groups and
their commutators, for the sake of reader’s convenience. See [3] or [13] for
more details and notations.

The list of such maximal symplectic K3 groups G are:

• G = L2(7) is a simple group of order 168 = 3 · 7 · 24 and [G,G] = G.

• G = A6 is a simple group of order 360 and [G,G] = G.

• G = S5 is the symmetric group, [G, G] = A5, and G/[G,G] = Z2.

• G = M20 = Z4
2 oA5 and [G,G] = G.

• G = F384 = Z2
4 o S4, [G, G] = Z2

4 oA4, and G/[G,G] = Z2.

• G = A4,4 = Z4
2 oA3,3, [G,G] = A2

4, and G/[G,G] = Z2.

• G = T192 = (Q8 ∗Q8)×φ S3, [G,G] = (Q8 ∗Q8)×φ Z3, and G/[G,G] =
Z2.

• G = H192 = Z4
2 oD12, [G,G] = Z4

2 o Z3, and G/[G,G] = Z2
2.

• G = N72 = Z2
3 oD8, [G,G] = A3,3, and G/[G, G] = Z2

2.

• G = M9 = Z2
3 oQ8, [G,G] = A3,3, and G/[G,G] = Z2

2.
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• G = T48 = Q8 ×φ S3, [G,G] = T24 = Q8 ×φ Z3, and G/[G,G] = Z2.

The fact that that the following 5 maximal symplectic K3 groups

L2(7), A6, S5, N72, M9

contains an element of order 3 will be used in the proof of Theorem 3.3 in
Section 3.

2.3 Spin numbers

In this subsection we quickly review the definition of spin number which is
the index of the Dirac operator associated to a spin structure, and then we
recall an important non-existence theorem in [10] which will play a crucial
role in the proof of Theorem 3.3. For more details, see Section 3 of [2] and
[10].

For the rest of this subsection, let M be a simply connected closed ori-
ented spin 4-manifold, and let G be a cyclic group of an odd prime order p
acting on M , unless stated otherwise. Then the action of G on M lifts to
the spin structure on M , and the group lifted in such a way, denoted by the
same letter G, is isomorphic to G. Let D be the Dirac operator associated
to the spin structure. Then for each element g ∈ G, we can define the Spin
number Spin(g, M) of g by

Spin(g, M) = tr(g|ker D)− tr(g|coker D).

If we write kerD = ⊕p−1
k=0V

+
k and cokerD = ⊕p−1

k=0V
−
k , where V ±

k is the

eigenspace of the lifted element g with eigenvalue µk
p = e

2πki
p , then we have

(2.1) Spin(g, M) =
p−1∑

k=0

dkµ
k
p,

where dk = dimC V +
k − dimC V −

k is an integer.

Theorem 2.1. Assume further that there are only isolated fixed points of G
and that each isolated fixed point m is type (am, bm) (0 < am, bm < p) Then
the spin number is given by
(2.2)

Spin(g, M) =
∑

m∈{isolated fixed points}
−ε(g,m)

4
csc

(
amπ

p

)
csc

(
bmπ

p

)
,

where the sign ε(g, m) = ±1 depends on the fixed point m and the lifting of
the action of g to the spin structure.
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In general, it is very delicate to determine the sign ε(g, m) in the above
formula (2.2). However, in the case that p is an odd prime, it can be deter-
mined explicitly as in [8], [11], and [2].

If M is a homotopy K3 surface, in the paper [10] we have given some
obstruction to the existence of a periodic diffeomorphism of odd prime order
acting trivially on the self-dual part H2

+(M ;R) in terms of the rationality
and negativity of the spin number. The following theorem (Theorem 1.3 in
[10]) will also play an important role in the proof of Theorem 3.3.

Theorem 2.2. Let M be a homotopy K3 surface, and let g : M → M be a
periodic diffeomorphism of odd prime order p. Assume that the spin number
Spin(g, X) is both rational and negative. Then g cannot act trivially on the
self-dual part H2

+(M ;R) of the second cohomology group.

3 Proofs of Theorems 1.1, 1.2 and 1.3

The aim of this section is to give proofs of Theorems 1.1, 1.2 and 1.3. We
first begin with the following theorem whose statement is much stronger
than Theorem 1.7 in [2], but whose proof is much simpler.

Theorem 3.1. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy
K3 surface, and let G be a finite group whose commutator [G, G] contains
a subgroup isomorphic to Z4

2 or the quaternionic group Q8. Then there are
no effective and smooth actions on X.

Proof. In case that the commutator group [G,G] contains a subgroup iso-
morphic to Z4

2, it has already been shown in Theorem 1.7 of [2] that G
cannot act on X smoothly and effectively. So it suffices to consider the
remaining quaternionic group case.

To do so, let g be an element of order 4 in Q8. Since g lies in the
commutator [G,G] by assumption and g∗([Ti]) = ±[Ti] for all i = 1, 2, 3, g
fixes three homology classes [T1], [T2], and [T3]. Thus it follows from Lemma
4.1 in [2] that b+

2 (X/g) = 3, which implies that b+
2 (X/g2) = 3. Since X is

simply connected and spin, g2 should be an involution of even type with 8
isolated fixed points by the main result in [1] (see also [9]). Thus g has at
most 8 isolated fixed points.

Let s+ (resp. s−) be the number of isolated fixed points whose weights
of the local representation are (1, 3) (resp. (1, 1) or (3, 3)). Then it was
shown in Lemma 5.3 of [2] that s+ = 4 and s− = 0, 2, 4. Hence the number
of isolated fixed points of g is in fact either 4, 6, or 8.
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Recall that the quaternionic group Q8 is given by

Q8 = {i, j, k | i2 = j2 = k2 = −1, ij = k, jk = i, ki = j}.

Then it is easy to see that it suffices to consider only the following possibil-
ities for the triple (p, q, r) consisting of the numbers of isolated fixed points
for i, j, and k, respectively:

(4, 4, 4), (4, 4, 6), (4, 4, 8)
(6, 6, 6), (6, 6, 4), (6, 6, 8)
(8, 8, 8), (8, 8, 4), (8, 8, 6).

Observe that if an isolated point is fixed by i and j (or j and k), then the
point is also fixed by k (or i). So it is easy to see from a simple combinatorial
argument that those cases with (p, q, r) = (6, 6, 8), (8, 8, 4), (8, 8, 6) do not
occur.

Next we want to reduce the above list further to the case (4, 4, 4). To
do so, note first that if the triple (p, q, r) in the above list is different from
(4, 4, 4), then there exists an isolated fixed point of i, j, or k with non-
zero s−. So, we assume without loss of generality that there exists an iso-
lated fixed point P of k whose type is, say, (1, 1). In fact, they are all the
cases in the reduced list except (p, q, r) equal to (4, 4, 4) or (6, 6, 4). Since
jkj−1 = k−1 and the type of k coincides with that of its conjugate jkj−1,
the type of k−1 at the point P is (1, 1) by its choice. But this gives rise to a
contradiction, since the type of k−1 at P would become (3, 3). Therefore we
are now reduced to the case that the triple (p, q, r) is (4, 4, 4). It is, however,
already shown in the proof of Theorem 1.7 in [2] that this case does not
occur, either. Hence we have completed the proof of Theorem 3.1.

Now it is immediate to obtain the following corollary, since the com-
mutator group of all the maximal symplectic K3 groups below contains a
subgroup isomorphic to Z4

2 or Q8.

Corollary 3.2. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy
K3 surface, and let G be one of the following 6 maximal symplectic K3
groups

M20, F384, A4,4, T192,H192, T48.

Then there are no effective and smooth actions of G on X.

Next we give a proof of Theorem 1.1. In view of Corollary 3.2 above, it
suffices to prove the following theorem.
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Theorem 3.3. Let X = X(d1, d2, d3) be the Fintushel-Stern’s homotopy K3
surface, and let G be one of the following 5 maximal symplectic K3 groups

(3.1) L2(7), A6, S5, N72,M9.

Then G cannot act smoothly, effectively, and pseudo-freely on X.

Proof. Note that all the 5 maximal symplectic K3 groups in (3.1) contains
an element g of order 3 in [G,G] ⊂ G. Since g is of odd order or lies in the
commutator [G,G], all the homology classes [Ti] (i = 1, 2, 3) are fixed by g.
Hence it follows from Lemma 4.1 of [2] that b+

2 (X/g) = 3.
Now suppose that there exists a smooth, effective and pseudo-free action

of G on X. Let s+ (resp. s−) be the number of isolated fixed points of H of
type (1, 2) or (2, 1) (resp. (1, 1) or (2, 2)). It is known in [11] that we have
the following possibilities for various topological data, as follows.

|X〈g〉| s+ s− b2(X/〈g〉) b+
2 (X/〈g〉) b−2 (X/〈g〉) σ(X/〈g〉)

6 6 0 10 3 7 −4
12 0 12 14 3 11 −8

Here |X〈g〉| and σ(X/〈g〉) mean the number of the isolated fixed points
of 〈g〉 and the signature of X/〈g〉, respectively. Note also that the results of
Liu and Nakamura in [11] have been established for locally linear topological
actions on a K3 surface, but not a homotopy K3 surface. However, their
results also work for homotopy K3 surfaces.

Recall now that for prime integer p the first Betti number of the fixed
point set with Zp-coefficients is equal to the number of copies of Zp represen-
tations of cyclotomic type in H2(X) (see Proposition 3.1 in [2] or Proposition
2.4 in [4]). Since in our case the action is pseudo-free, there are no copies of
Zp-representations of cyclotomic type in H2(X). In that case, it follows from
Proposition 4.6 in [2] that for p = 3, 5, 7 the intersection form on H2(X,Z)
can be decomposed as 3H ⊕ 2E8 in such a way that each summand H or
E8 is invariant under the Zp action. In particular, the action of Z3 = 〈g〉 on
each summand H is trivial, since the action of 〈g〉 is pseudo-free. Hence the
dimension of the invariant subspace of E8 under the action of 〈g〉 is either
2 or 4 from the above table. It is important to note that this property is
very special in that it applies only to the Fintushel-Stern’s homotopy K3
surface.

Next we show that the dimension of the invariant subspace of E8 un-
der the action of 〈g〉 should be 4. To do so, recall that Aut(E8 ⊕ E8) is
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a semi-direct product of Aut(E8) × Aut(E8) by Z2. Thus there exists a
representation Θ = (Θ1,Θ2) given by

Θ : 〈g〉 → Aut(E8)×Aut(E8) ⊂ Aut(E8 ⊕ E8).

Then it follows from the Lefschetz fixed point theorem (e.g., Theorem 3.4
of [2]) and the above table that we have

(3.2) tr(Θ1(g)) + tr(Θ2(g)) = −2 or 4.

It is well-known (e.g., Lemma 4.5 in [2] or [5]) that the integral representation
of Z3 induced from Z3 in Aut(E8) is either

Z[Z3]⊕ Z5, Z[Z3]2 ⊕ Z2, Z[Z3]⊕ Z[µ3]2 ⊕ Z, or Z[µ3]4.

Since the action of Z3 = 〈g〉 is assumed to be pseudo-free, the last two cases
containing the copies of cyclotomic representations do not occur. Notice
that the group Z3 = 〈g〉 whose integral representation is Z[Z3] ⊕ Z5 or
Z[Z3]2⊕Z2 is conjugate to the subgroup generated by the order three cyclic
permutation or the product of two odd three cyclic permutations. Thus
the trace tr(Θi(g)) (i = 1, 2) is either 5 or 2. Since the sum tr(Θ1(g)) +
tr(Θ2(g)) of two traces is either −2 or 4 by (3.2), we have only one possibility
tr(Θi(g)) = 2 (i = 1, 2). It is the case that the integral representation of
Z3 induced from Z3 in Aut(E8) is Z[Z3]2 ⊕ Z2. So the dimension of the
invariant subspace of E8 under the action of 〈g〉 should be 4. Now, recall
that this case happens only when |X〈g〉| = 12, s+ = 0 and s− = 12 from the
above discussion.

In order to finish the proof, we finally compute the spin number (e.g, see
(2.1) and Theorem 2.1 of the present paper or Theorem 3.7 in [2])

Spin(g, X) =
2∑

k=0

dkµ
k
3

=
∑

m∈{isolated fixed points}
−ε(g, m)

4
csc

(amπ

3

)
csc

(
bmπ

3

)
,

(3.3)

where all the dk’s (k = 0, 1, 2) are integers, µ3 = e
2πi
3 , and each isolated

fixed point m is assumed to be of type (am, bm) (0 < am, bm < 3). For this
computation we first need to determine the sign ε(g,m) of each isolated fixed
point, and in our case the sign turns out to be equal to +1 by an argument
of Liu and Nakamura in Section 3 of [11]. Alternatively, we can also see this
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as follows: if the sign ε(g, m) of each isolated fixed point is −1, then the
spin number

Spin(g, X) =
∑

m∈{isolated fixed points}
−ε(g, m)

4
csc2

(π

3

)
= 4.

Thus it follows from (3.3) that we have d0 − 1
2(d1 + d2) = 4 and d1 = d2.

Since d0 + d1 + d2 = −σ(X)
8 = 2, we have d0 + 2d1 = 2 and so we can obtain

3d0 = 10. This does not make sense.
Hence we can conclude that the spin number Spin(g, X) is −4. In par-

ticular, this implies that the spin number is both rational and negative. But
then it follows from Theorem 2.2 (or Theorem 1.3 of [10]) that g cannot
act trivially on the self-dual part H2

+(X,R), which is a contradiction to
b+
2 (X/g) = 3. This completes the proof of Theorem 3.3.

As a byproduct, the proof of Theorem 3.3 also shows that there are no
smooth, effective, and pseudo-free action of Z3 on a homotopy K3 surface,
not just the Fintushel-Stern’s homotopy K3 surface, which satisfies the con-
ditions |X〈g〉| = 12, s+ = 0, s− = 12, b2(X/〈g〉) = 14, b+

2 (X/〈g〉) = 3, and
b−2 (X/〈g〉) = 11. This enables us to eliminate the so-called A2 case in the
list of Theorem 1.2 of [11] or the second case of the above table. However,
in the first case of the above table the sign ε(g,m) of each isolated fixed
point is −1 and so the spin number is positive. Thus we cannot eliminate
this case, and it is indeed realized by a smooth and pseudo-free action of Z3

on the Fermat quartic surface. Hence we have the following theorem.

Theorem 3.4. Let X be a homotopy K3 surface, and let g : X → X be
a periodic diffeomorphism of order 3 acting pseudo-freely on X. If g acts
trivially on the self-dual part H2

+(M ;R) of the second cohomology group,
then the following holds:

|X〈g〉| = 6, s+ = 6, s− = 0, b2(X/〈g〉) = 10.

Finally, Theorem 1.1 follows immediately from Theorem 3.3 and Corol-
lary 3.2.
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