Branch-width and Tangles

Illya V. Hicks*
Department of Computational and Applied Mathematics
Rice University
Houston, Texas 77005-1892, USA.
Sang-il Oum ${ }^{\dagger \ddagger}$
Department of Mathematical Sciences
KAIST
Daejeon, 305-701, Republic of Korea.

September 28, 2009

Abstract

This article describes the notion of branch-width and its dual notion, tangles. Branch-width was introduced by Robertson and Seymour and has been applied to various combinatorial structures.

Keyword: branch-width; carving-width; rank-width; tangle
Branch-width, introduced by Robertson and Seymour 40, is a general concept to describe the difficulty of decomposing finitely many objects into a tree-like structure by partitioning them into two parts recursively, while maintaining each cut to have small connectivity measure. Branch-width normally is defined for graphs or hypergraphs, as discussed by Robertson and Seymour [40] but it is easy to be extended for other combinatorial objects such as matroids and any integer-valued symmetric submodular functions.

Roughly speaking branch-decomposition is a description on a maximal collection of non-overlapping partitions of a finite set E. The width of a branch-decomposition is the maximum "complexity" of each part appearing in the branch-decomposition, where the "complexity" is given by some function on subsets of E. The branch-width is the minimum possible width over all possible branch-decompositions of E. Precise definition will be discussed in the following section.

To show that branch-width is small, we need to illustrate how to decompose nicely; in other words, we need present a branch-decomposition of small width in order to certify that branch-width is small. On the other hand, if we want to certify that branch-width is large, a naive approach would be trying all possible branch-decompositions and that will be too time consuming. For that purpose we use tangles. A tangle is a dual notion of branch-width which certifies why the branch-width is large. It was also defined by Robertson and Seymour in the same paper.

In this article we explain those definitions and list their algorithmic properties.

[^0]
1 Branch-width

Usually branch-width is defined for graphs and hypergraphs. But for the sake of generality, we define it for integer-valued symmetric submodular functions first. We call an integer-valued function f on subsets of a finite set E is symmetric if $f(X)=f(E-X)$ for all subsets X of E and f is called submodular if $f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)$ for all subsets X, Y of E.

Let us now assume that an integer-valued symmetric submodular function f on subsets of a finite set E is given. We call a tree subcubic if every vertex has degree 3 or 1 . A branch-decomposition (T, τ) of f consists of a subcubic tree T and a bijection τ from the set of leaves of T to E. Then the width of an edge e of T is defined to be $f\left(\tau\left(A_{e}\right)\right)$ when $\left(A_{e}, B_{e}\right)$ is a partition of the set of leaves of T given by $T \backslash e$. Notice that this is well-defined because $f\left(\tau\left(A_{e}\right)\right)=f\left(\tau\left(B_{e}\right)\right)$. The width of a branch-decomposition (T, τ) is the maximum width of all edges of T. The branch-width of f, denoted by $\operatorname{bw}(f)$, is the minimum width of all possible branch-decompositions of f. If $|E| \leq 2$, then there are no branch-decompositions and so we just define branch-width to be $f(\emptyset)$.

By choosing an appropriate set E and an integer-valued symmetric submodular function, we can generate various notions of width parameters. Let us present some of them here.

Branch-width of graphs and hypergraphs. Branch-width was first inroduced by Robertson and Seymour 40 for graphs and hypergraphs. For a graph (or a hypergraph) G and a subset X of edges, let $\eta_{G}(X)$ be the number of vertices which are incident with an edge in X as well as an edge in $E(G)-X$. It is straightforward to prove that η_{G} is a symmetric submodular function on subsets of $E(G)$. The branch-width of G, denoted by $\mathrm{bw}(G)$, is defined as the branch-width of η_{G}.

Branch-width of graphs is strongly related to better-known notion, tree-width by the following inequality by Robertson and Seymour 40, (5.2)]: if G is a graph, then

$$
\operatorname{branch}-\operatorname{width}(G) \leq \operatorname{tree}-\text { width }(G)+1 \leq \frac{3}{2} \operatorname{branch}-w i d t h(G)
$$

Rank-width of graphs. Rank-width of graphs was introduced by Oum and Seymour [36]. For a graph G and a subset X of $V=V(G)$, let us consider the $|X| \times|V-X|$ binary matrix M_{X} such that rows and columns of M_{X} are indexed by X and $V-X$, respectively and the entry of M_{X} is 1 if the vertex corresponding to the row is adjacent to the vertex corresponding to the column, and otherwise, the entry is 0 . The cut-rank function $\rho_{G}(X)$ is defined to be the rank of M_{X}, where M_{X} is considered as a matrix over the binary field GF(2). The cut-rank function is symmetric submodular, see 36. The rank-width of a graph is defined as the branch-width of ρ_{G}.

Rank-width was motivated by another useful graph width parameter, clique-width, defined by Courcelle and Olariu [6. They are related in the following sense; if the clique-width of a graph is k, then its rank-width is at most k and conversely if the rank-width of a graph is r, then the clique-width is at most $2^{r+1}-1$ [36]. Oum 34] showed that the rank-width of a graph G is less than or equal to the branch-width of G, unless G has no edges.

Branch-width of matroids. Unlike tree-width, it is natrural to extend the notion of branchwidth of graphs to branch-width of matroids. For a matroid M on a finite set E with the rank function r, the connectivity function of M is given as $\eta_{M}(X)=r(X)+r(E-X)-r(M)+1$. Since r is submodular, η_{M} is symmetric submodular. Branch-width of a matroid M is defined to be the branch-width of η_{M}. It was first studied by Dharmatilake [?] and has played an important role in the development of the matroid structure theory by Geelen, Gerards, and Whittle [15, [16].

If a graph G has at least one cycle of length at least 2 , then G and its cycle matroid $M(G)$ has the same branch-width, shown by Hicks and McMurray Jr. [23] and independently by Mazoit and Thomassé 33 later.

Carving-width of graphs. Carving-width of graphs was introduced by Seymour and Thomas 41]. For a graph G and a subset A of vertices, we write $\delta_{G}(A)$ to denote the set of all edges joining a vertex in A with a vertex in $V(G)-A$. Let $p_{G}(X)=\left|\delta_{G}(A)\right|$. Again p_{G} is symmetric submodular. The carving-width of a graph is the branch-width of p_{G}. Carving-width is a useful tool for the branch-width of a planar graph because the branch-width of a planar graph is exactly half of the carving-width of its medial graph 41.

2 Tangles

Tangles are introduced as a means to certify that the branch-width is large. If we wish to convince that branch-width is small, we can simply present a branch-decomposition of small width. However, we do not want to try all possible branch-decompositions in order to convince that branch-width is big. Tangles play such a role; if a tangle is presented, then no branch-decomposition of small width can exist.

For an integer-valued symmetric submodular function f on subsets of a finite set E, an f-tangle of order $k+1$ is a collection \mathcal{T} of subsets of E satisfying the following three axioms.
(T1) For all $A \subseteq E$, if $f(A) \leq k$, then either $A \in \mathcal{T}$ or $E-A \in \mathcal{T}$.
(T2) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq E$.
(T3) For all $e \in E$, we have $E-\{e\} \notin \mathcal{T}$.
Robertson and Seymour introduced tangles and proved lots of useful properties. The following duality theorem is very useful. The following theorem was implicitly proved by Robertson and Seymour 40, (3.5)]. Geelen et al. [18, Theorem 3.2] rewrote the proof.

Theorem 1. Let f be an integer-valued symmetric submodular function on subsets of E. Then no f-tangle of order $k+1$ exists if and only if the branch-with of f is at most k.

This allows us to define the branch-width from tangles; the branch-width is equal to the maximum k such that a tangle of order k exists. And to show that $\operatorname{bw}(f)=k$ for an integer k, we frequently construct both a branch-decomposition of width at most k for an upper bound on the branch-width and an f-tangle of order k for a lower bound.

Providing a lower bound for the branch-width is generally harder than finding an upper bound. Therefore much of the work to find the exact branch-width is usually devoted to finding a tangle. For the branch-width of the $n \times n$ grid, Kleitman and Saks (in Robertson and Seymour [40]) presented a tangle of order n, thus proving that the branch-width of the $n \times n$ grid is n. Geelen et al. [17] used tangles to prove that the branch-width of the cycle matroid of the $n \times n$ grid is n. For the rank-width of the $n \times n$ grid G, Jelínek [29] presented a ρ_{G}-tangle of order $n-1$, thus certifying that the rank-width of the $n \times n$ grid is $n-1$.

Roughly speaking a set of maximal tangles is used to identify highly connected pieces in a combinatorial structure. Robertson and Seymour 40] (see also Geelen et al. [17]) showed that any symmetric submodular function on E has at most $(|E|-2) / 2$ maximal tangles, which are displayed
by a tree structure. That tree structure has been used to describe and prove the structure of graphs or binary matroids without some fixed minor.

3 Computing branch-width

One of the most natural questions after defining branch-width is the complexity of computing the branch-width of integer-valued symmetric submodular functions on subsets of a finite set E. Since we may need 2^{n} values of f for all subsets of E in order to input f, we will assume that f is given by an oracle so that we can query the oracle to compute $f(X)$ for the input set X at a unit time.

Hardness results. In general, it is hard to decide whether branch-width is at most k for an integer-valued symmetric submodular function f given by an oracle and an input k in time polynomial in n. Seymour and Thomas 41 showed that it is NP-hard to compute branch-width or carving-width of a graph. Kloks et al. 30] proved that computing branch-width is NP-hard even for bipartite graphs or split graphs. Computing branch-width of a matroid given as a matrix representation is also NP-hard and computing rank-width of a graph is also NP-hard, because of the relationship between branch-width of graphs and branch-width of cycle matroids [23, 33].

Exact exponential-time algorithms. For the efficient exact algorithm, Oum 35] found an $O^{*}\left(2^{|E|}\right)$-time algorithm to compute the branch-width of any integer-valued symmetric submodular function f given by an oracle as above. (Here, $O^{*}\left(2^{|E|}\right)$ means $O\left(2^{|E|}|E|^{O(1)}\right)$.) It is not known whether $O^{*}\left(2^{|E|}\right)$ can be improved to $O^{*}\left(c^{|E|}\right)$ for some $1<c<2$. For graphs $G=(V, E)$, branch-width can be computed in time $O^{*}\left((2 \sqrt{3})^{|V|}\right)$, shown by Fomin et al. 13.

Exact polynomial-time algorithms for special classes. When we restrict inputs, the branchwidth can sometimes be computed efficiently. Branch-width can be computed in polynomial time for circular arc graphs 32 and interval graphs 30, 38. For planar graphs, branch-width and carvingwidth can be computed in polynomial time, shown by Seymour and Thomas 41. More precisely their algorithm can decide in time $O\left(n^{2}\right)$ whether a given planar graph has branch-width at most k for a given k and output an optimal decomposition in time $O\left(n^{4}\right)$. Gu and Tamaki [19] improved that result to construct an $O\left(n^{3}\right)$-time algorithm to output an optimal carving-decomposition or an optimal branch-decomposition of n-vertex planar graphs.

Testing branch-width at most k for fixed k. As we discussed above, we can not hope to have a polynomial-time algorithm to test whether branch-width is at most k for an input k. However, if we fix k as a constant, then the situation is different. Oum and Seymour [37] proved that for any fixed constant k, one can answer whether the branch-width is at most k in time $O\left(|E|^{8 k+c}\right)$ where c only depends on $f(\emptyset)$. Moreover one can construct a branch-decomposition of width at most k in time $O\left(|E|^{8 k+c+3}\right)$.

For many applications on fixed-parameter tractable algorithms, it is desirable to have an algorithm which runs in time $O\left(g(k) n^{c}\right)$ for some function g and a constant c independent of k. Such an algorithm is called a fixed-parameter tractable algorithm with parameter k. It is still unknown whether there is a fixed-parameter tractable algorithm to decide whether branch-width of f is at most k when f is an integer-valued symmetric submodular function given as an oracle.

Fortunately fixed-parameter tractable algorithms are known for most interesting classes of integer-valued symmetric submodular functions. Bodlaender and Thilikos 42, 1 constructed a linear-time algorithm to test whether branch-width of an input graph is at most k for fixed k. Thilikos et al. 43] constructed a linear-time algorithm to decide whether carving-width is at most k for fixed k. Hliněný and Oum [28] showed that there exists a cubic-time algorithm to decide whether rank-width of a graph is at most k for fixed k. Their algorithm also works for branch-width of matroids represented over a fixed finite field. All of these algorithms mentioned above can output the corresponding branch-decomposition as well.

Fixed-parameter tractable approximation algorithms. For applications on fixed-parameter tractable algorithms with the branch-width as a parameter, we often need an fixed-parameter tractable algorithm to construct a branch-decomposition of small width in order to use the dynamic programming approach. So far, we do not know the existence of a fixed-parameter tractable algorithm that can output a branch-decomposition of width at most k if such a branch-decomposition exists, for an integer-valued symmetric submodular function given by an oracle. As we discussed above, the best algorithm known runs in time $O\left(|E|^{8 k+c+3}\right)$.

As a workaround, Oum and Seymour [36] constructed the following algorithm: for each fixed k, it runs in time $O\left(|E|^{7} \log |E|\right)$ to either output a branch-decomposition of width at most $3 k+c^{\prime}$ or confirm that the branch-width is larger than k, where c^{\prime} only depends on $f(\emptyset)$ and $\max \{f(\{e\}$: $e \in E\}$. (In fact, the paper [36] only discusses the case when $f(\emptyset)=0$ and $f(\{e\}) \leq 1$ for all $e \in E$. But its argument can be modified to accommodate the case when there is an element $e \in E$ such that $f(\{e\})-f(\emptyset)>1$.) This allows us to construct a branch-decomposition of small width from the given adjacency list of a graph, and this branch-decomposition can be used to solve other algorithmic problems by dynamic programming technique.

There are similar algorithms for branch-width of matroids represented over a finite field [24].
Heuristics. Cook and Seymour [3, 4] gave a heuristic algorithm to produce branch-decompositions of graphs and used it in their work on the ring-routing problem and the traveling salesman problem. Hicks [20] also found another branch-width heuristic that was comparable to the heuristic of Cook and Seymour. Recently, Ma and Hicks 31 found two heuristics to derive near-optimal branch decompositions of linear matroids; one of the heuristics uses classification techniques and the other one is similar to the heuristics for graphs which use flow algorithms.

4 Algorithmic Applications

Branch-width of graphs. There are many graph-theoretic algorithmic problems that are shown to be polynomial-time solvable on the class of graphs of bounded branch-width. Many of them actually run their algorithms based on tree-width. We refer to the section on the tree-width for such applications.

Branch-width is used to design exact subexponential-time algorithms or efficient parameterized algorithms on the class of planar graphs or the class of graphs with no fixed minor [12, $9, ~ 8, ~ 14, ~ 10, ~$ 11.

Branch-width of matroids. Hliněný [25] extended Courcelle's theorem on graphs of bounded tree-width or branch-width to matroids represented over a fixed finite field. Namely, for a fixed
finite field F and a given monadic second-order formula φ on matroids, one can test whether an input F-represented matroid of bounded branch-width satisfies φ in time polynomial in the size of the matroid. The requirement that the matroid has to be represented over a finite field can not be relaxed unless $\mathrm{NP}=\mathrm{P}$, shown by Hliněný [27.

Hliněný [26] also found a fixed-parameter tractable algorithm to evaluate the Tutte polynomial of an input matroid represented over a fixed finite field of bounded branch-width.

Rank-width of graphs. Rank-width is a sibling of better known clique-width, that is a kind of a generalization of tree-width. Many algorithmic properties of tree-width generalizes to graphs of bounded clique-width. We will state theorems in terms of rank-width because for any class of graphs, rank-width is bounded if and only if clique-width is bounded.

Courcelle, Makowsky, and Rotics [5] proved that there is a cubic-time algorithm to decide whether a fixed monadic second-order formula without edge-set quantification is satisfied by an input graph of bounded rank-width.

Practical algorithms. Although theory indicates the fruitful potential of these algorithms, the number of practical algorithms in the literature is scant. Most notable is the work of Cook and Seymour [4] who produced the best known solutions for the 12 unsolved problems in TSPLIB95, a library of standard test instances for the travel salesman problem 39. Hicks also presented a practical algorithm for general graph minor containment 21 and constructing optimal branch decompositions [22. One is also referred to the work of Christian [2]. For practical algorithms involving matroids, Cunningham and Geelen [7] proposed an algorithm to solve integer programming problems using a branch decomposition of the linear matroid of the input matrix if the matrix was nonnegative which may show promise in turns of actually being practical.

References

[1] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In Automata, languages and programming (Bologna, 1997), volume 1256 of Lecture Notes in Comput. Sci., pages 627-637. Springer, Berlin, 1997.
[2] W. Christian. Linear-Time Algorithms for Graphs with Bounded Branchwidth. PhD thesis, Rice University, 2003.
[3] W. Cook and P. Seymour. An algorithm for the ring-router problem. Technical report, Bellcore, 1994.
[4] W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS J. Comput., 15(3):233-248, 2003.
[5] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000.
[6] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Appl. Math., 101(1-3):77-114, 2000.
[7] W. H. Cunningham and J. Geelen. On integer programming and the branch-width of the constraint matrix. In M. Fishetti and D. Williamson, editors, Proceedings of the 13th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, volume 4513 of Lecture Notes in Computer Science, pages 158-166, 2007.
[8] J. S. Dharmatilake. Binary matroids of branch-width 3. PhD thesis, Ohio State University, 1994.
[9] F. Dorn. Dynamic programming and fast matrix multiplication. In Algorithms-ESA 2006, volume 4168 of Lecture Notes in Comput. Sci., pages 280-291. Springer, Berlin, 2006.
[10] F. Dorn, F. V. Fomin, and D. M. Thilikos. Fast subexponential algorithm for non-local problems on graphs of bounded genus. In Algorithm theory-SWAT 2006, volume 4059 of Lecture Notes in Comput. Sci., pages 172-183. Springer, Berlin, 2006.
[11] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms. In Automata, languages and programming, volume 4596 of Lecture Notes in Comput. Sci., pages 15-27. Springer, Berlin, 2007.
[12] F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic programming in H-minor-free graphs. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 631-640, New York, 2008. ACM.
[13] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In Proceedings of the 13 th Annual European Symposium on Algorithms (ESA 2005), volume 3669 of Lecture Notes in Comput. Sci., pages 95-106, 2005.
[14] F. Fomin, F. Mazoit, and I. Todinca. Computing branchwidth via efficient triangulations and blocks. Discrete Appl. Math., 157(12):2726-2736, 2009.
[15] F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput., 36(2):281-309 (electronic), 2006.
[16] J. Geelen, B. Gerards, and G. Whittle. Towards a structure theory for matrices and matroids. In International Congress of Mathematicians. Vol. III, pages 827-842. Eur. Math. Soc., Zürich, 2006.
[17] J. Geelen, B. Gerards, and G. Whittle. Towards a matroid-minor structure theory. In Combinatorics, complexity, and chance, volume 34 of Oxford Lecture Ser. Math. Appl., pages 72-82. Oxford Univ. Press, Oxford, 2007.
[18] J. Geelen, B. Gerards, and G. Whittle. Tangles, tree-decompositions and grids in matroids. J. Combin. Theory Ser. B, 99(4):657-667, 2009.
[19] J. F. Geelen, B. Gerards, N. Robertson, and G. Whittle. Obstructions to branch-decomposition of matroids. J. Combin. Theory Ser. B, 96(4):560-570, 2006.
[20] Q.-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in $O\left(n^{3}\right)$ time. $A C M$ Trans. Algorithms, 4(3):Art. 30, 13, 2008.
[21] I. V. Hicks. Branchwidth heuristics. Congressus Numerantium, 159:31-50, 2002.
[22] I. V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1-9, 2004.
[23] I. V. Hicks. Graphs, branchwidth, and tangles! Oh my! Networks, 45(2):55-60, 2005.
[24] I. V. Hicks and N. B. McMurray Jr. The branchwidth of graphs and their cycle matroids. J. Combin. Theory Ser. B, 97(5):681-692, 2007.
[25] P. Hliněný. A parametrized algorithm for matroid branch-width. SIAM J. Comput., 35(2):259277, loose erratum (electronic), 2005.
[26] P. Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids. J. Combin. Theory Ser. B, 96(3):325-351, 2006.
[27] P. Hliněný. The Tutte polynomial for matroids of bounded branch-width. Combin. Probab. Comput., 15(3):397-409, 2006.
[28] P. Hliněný. On some hard problems on matroid spikes. Theory Comput. Syst., 41(3):551-562, 2007.
[29] P. Hliněný and S. Oum. Finding branch-decompositions and rank-decompositions. SIAM J. Comput., 38(3):1012-1032, 2008.
[30] V. Jelínek. The rank-width of the square grid. Discrete Appl. Math., 2009. doi:10.1016/j.dam.2009.02.007.
[31] T. Kloks, J. Kratochvíl, and H. Müller. Computing the branchwidth of interval graphs. Discrete Appl. Math., 145(2):266-275, 2005.
[32] J. Ma and I. V. Hicks. Branchwidth heuristics for linear matroids. preprint, 2009.
[33] F. Mazoit. The branch-width of circular-arc graphs. In LATIN 2006: Theoretical informatics, volume 3887 of Lecture Notes in Comput. Sci., pages 727-736. Springer, Berlin, 2006.
[34] F. Mazoit and S. Thomassé. Branchwidth of graphic matroids. In A. Hilton and J. Talbot, editors, Surveys in Combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages 275-286. Cambridge Univ. Press, Cambridge, 2007.
[35] S. Oum. Rank-width is less than or equal to branch-width. J. Graph Theory, 57(3):239-244, 2008.
[36] S. Oum. Computing rank-width exactly. Inform. Process. Lett., 109(13):745-748, 2009.
[37] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.
[38] S. Oum and P. Seymour. Testing branch-width. J. Combin. Theory Ser. B, 97(3):385-393, 2007.
[39] C. Paul and J. A. Telle. Branchwidth of chordal graphs. Discrete Appl. Math., 157(12):27182725, 2009.
[40] G. Reinelt. TSPLIB - a traveling salesman library. ORSA Journal on Computing, 3:376-384, 1991.
[41] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B, 52(2):153-190, 1991.
[42] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994.
[43] D. M. Thilikos and H. L. Bodlaender. Constructive linear time algorithms for branchwidth. Technical Report UU-CS 2000-38, Universiteit Utrecht, 2000.
[44] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Constructive linear time algorithms for small cutwidth and carving-width. In Algorithms and computation (Taipei, 2000), volume 1969 of Lecture Notes in Comput. Sci., pages 192-203. Springer, Berlin, 2000.

[^0]: *Partially Supported by National Science Foundation CMMI-0926618
 ${ }^{\dagger}$ sangil@kaist.edu
 ${ }^{\ddagger}$ Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0063183).

