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Abstract. We construct infinite families of elliptic curves with given torsion group struc-
tures over quartic number fields. Recently the first two authors and Park [2] determined
all the group structures which occur infinitely often as the torsion of elliptic curves over
quartic number fields. Our result presents explicit examples of their theoretical result.
This paper also presents an efficient way of finding such families of elliptic curves with
prescribed torsion group structures over quadratic or quartic number fields.
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1. Introduction

It is an important research problem to determine all the torsion group structures of elliptic
curves E over a number field and to find an infinite family of elliptic curves with a given
torsion group structure. We briefly introduce some development on this research problem.

Over the rational number field Q, Mazur [8] theoretically characterized all the possible
torsion groups of elliptic curves, showing that the torsion group E(Q)tors of an elliptic
curve E over Q is isomorphic to exactly one of the following 15 types:

(1) Z/NZ, N = 1− 10, 12
Z/2Z⊕ Z/2N ′Z, N ′ = 1− 4.

In fact, each of these groups in Eq. (1) appears infinitely often as a torsion group E(Q)tors

of E over Q. In other words, for each of the groups in Eq. (1) there are infinitely many
absolutely non-isomorphic elliptic curves with such a torsion group structure over Q. This
follows from the fact that the modular curves X1(N) parametrizing elliptic curves with such
a torsion structure are rational, so they have infinitely many Q-rational points. Kubert [7,
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Table 3] explicitly parametrized an infinite family of elliptic curves E with such a torsion
group structure over Q for each of the 15 types in Eq. (1).

Over quadratic number fields, Kamienny and Mazur [4] theoretically determined all the
possible torsion groups of elliptic curves as follows (total 26 types):

(2)

Z/NZ, N = 1− 16, 18
Z/2Z⊕ Z/2N ′Z, N ′ = 1− 6
Z/3Z⊕ Z/3N ′′Z, N ′′ = 1− 2
Z/4Z⊕ Z/4Z.

Again, each of these 26 groups occurs infinitely often as E(K)tors, provided we allow the
quadratic number field K to vary as well.

As mentioned previously, over the rational field or quadratic number fields, there was de-
velopment on characterization of groups which appear infinitely often as torsion groups of
elliptic curves. In this vein, it is very natural to investigate which groups would occur
infinitely often as torsion groups of elliptic curves over quartic fields. Recently, the first
two authors and Park [2] determined which groups occur infinitely often as torsion groups
E(K)tors when K varies over all quartic number fields and E varies over all elliptic curves
over K. They proved that all the group structures occurring infinitely often as torsion
groups E(K)tors are exactly the following 38 types:

(3)

Z/N1Z, N1 = 1− 18, 20, 21, 22, 24
Z/2Z⊕ Z/2N2Z, N2 = 1− 9
Z/3Z⊕ Z/3N3Z, N3 = 1− 3
Z/4Z⊕ Z/4N4Z, N4 = 1− 2
Z/5Z⊕ Z/5Z,
Z/6Z⊕ Z/6Z.

The main goal of this paper is constructing explicit examples of the theoretical result in [2],
that is to say, the construction of infinite families of elliptic curves with the torsion groups
in Eq. (3) over quartic number fields as Kubert did over Q. While the subject of the torsion
of elliptic curves over number fields of higher order has been studied by Kamienny and
Mazur [4], Merel [9], Parent [12, 13], Zimmer et al. [11, 19] and Jeon et al. [2, 3], there
has not been much development for finding elliptic curves with a given torsion group over
number fields of higher order. It is known [3, Lemma 3.4] that if E is an elliptic curve over
Q and E′ an elliptic curve over a quadratic number field k, then for almost all quadratic
number fields K we have E(K)tors = E(Q)tors, and for almost all quadratic number fields L
of k we have E′(L)tors = E′(k)tors. Due to this fact, the group structure that already occurs
over Q (respectively, quadratic number fields k) would appear infinitely often over suitable
quadratic number fields K (respectively, quartic number fields L) without increasing the
torsion.

In order to achieve our goal, according to the fact mentioned in the previous paragraph, it is
sufficient to find infinite families of elliptic curves with prescribed torsion groups which do
not occur over Q (respectively, quadratic number fields) but occur over quadratic number
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fields (respectively, quartic number fields). Therefore, over quadratic number fields, for
each of the following 11 types in Eq. (4), we construct an explicit infinite family of elliptic
curves with such a torsion group:

(4)

Z/NZ, N = 11, 13, 14, 15, 16, 18
Z/2Z⊕ Z/2N ′Z, N ′ = 5, 6
Z/3Z⊕ Z/3Z,
Z/3Z⊕ Z/6Z,
Z/4Z⊕ Z/4Z.

On the other hand, over quartic number fields, for each of the following 12 types in Eq. (5),
we obtain an explicit infinite family of elliptic curves with such a torsion group:

(5)

Z/NZ, N = 17, 20, 21, 22, 24
Z/2Z⊕ Z/2N ′Z, N ′ = 7, 8, 9
Z/3Z⊕ Z/9Z,
Z/4Z⊕ Z/8Z,
Z/5Z⊕ Z/5Z,
Z/6Z⊕ Z/6Z.

We briefly explain the methods used in this paper. Regarding all the cyclic torsion group
cases, we construct families of elliptic curves with the prescribed cyclic torsion by finding
infinitely many quadratic points and quartic points on modular curves X1(N) for N =
11, 13− 18, 20, 21, 22, 24. For achieving this, we need to search for proper forms of defining
equations which yield such quadratic or quartic points. Reichert [14] calculated defining
equations of the modular curves X1(N) for N = 11, 13 − 16, 18 by using the Tate normal
form. Very recently, Sutherland [17] improved Reichert’s result, so he obtained optimized
forms (in terms of degree, number of terms, and coefficient size) for defining equations of
X1(N) for N ≤ 50. For all the cyclic torsion cases we consider except for N = 24, that is,
for N = 11, 13− 18, 20− 22, the defining models X1(N) obtained by Sutherland [17, Table
6] are in proper form to use for our purpose. But, his model for X1(24) is not in proper
form, so in this case of cyclic torsion Z/24Z, we use instead the forgetful map from X1(24)
to X1(12) to construct our family of elliptic curves. On the other hand, for the non-cyclic
torsion cases, we use the Kubert’s families [7, Table 1 and Table 3] and some other methods
such as Theorem 2.1 and Proposition 4.11.

This paper is organized as follows. We begin with some basic notions in Section 2. Section 3
presents infinite families of elliptic curves over quadratic number fields with torsion groups
in Eq. (4), and in Section 4 we find infinite families of elliptic curves over quartic number
fields with torsion groups in Eq. (5).

2. Preliminaries

In this section we introduce some basic notions on elliptic curves, and we can refer to [1, 6,
7, 16] for more details.
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The general normal form of the cubic defining an elliptic curve passing through P = (0, 0)
is the following:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x.

From the calculation of the derivative y′ in the relation

(2y + a1x + a3)y′ = 3x2 + 2a2x + a4 − a1y

we see that the slope of the tangent line at P is a4/a3 on E, so E is not singular at P if
and only if a3 6= 0 or a4 6= 0.

Assume that E is nonsingular. Then P is of order 2 if and only if a3 = 0 (and therefore
a4 6= 0), i.e., E has the following equation:

y2 + a1xy = x3 + a2x
2 + a4x.

If a3 6= 0, then by the admissible change of variables

(x, y) → (X, Y + a−1
3 a4X),

the curve E becomes

Y 2 + (a1 + 2a−1
3 a4)XY + a3Y = X3 + (a2 − a1a

−1
3 a4 − a−2

3 a2
4)X

2,

which can be rewritten as

E′ : y2 + a1xy + a3y = x3 + a2x
2.

We have
−P = (0,−a3), 2P = (−a2, a1a2 − a3)

by the chord-tangent method [6, Chapter III], thus 3P = O (O denotes the point at infinity)
if and only if −P = 2P , which implies that P is of order 3 if and only if a2 = 0. Assume
that P is not of order 2 or 3, that is, a2 6= 0 and a3 6= 0. Under the change of coordinates

(x, y) → (X/u2, Y/u3) with u = a−1
3 a2,

and letting b = −a−2
3 a3

2 and c = 1− a−1
3 a1a2, we obtain the Tate normal form of an elliptic

curve with P = (0, 0) as follows:

E = E(b, c) : y2 + (1− c)xy − by = x3 − bx2,

and this is nonsingular if and only if b 6= 0. On the curve E(b, c) we have the following by
the chord-tangent method:

P = (0, 0),(6)

2P = (b, bc),

3P = (c, b− c),

4P =
(
r(r − 1), r2(c− r + 1)

)
; b = cr,

5P =
(
rs(s− 1), rs2(r − s)

)
; c = s(r − 1),

6P =
(

s(r − 1)(r − s)
(s− 1)2

,
s2(r − 1)2(rs− 2r + 1)

(s− 1)3

)
.
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Table 1. Optimized form of X1(N) : f(u, v) = 0

N f(u, v)

11 v2 + (u2 + 1)v + u
13 v2 + (u3 + u2 + 1)v − u2 − u
14 v2 + (u2 + u)v + u
15 v2 + (u2 + u + 1)v + u2

16 v2 + (u3 + u2 − u + 1)v + u2

17 v4 + (u3 + u2 − u + 2)v3 + (u3 − 3u + 1)v2 − (u4 + 2u)v + u3 + u2

18 v2 + (u3 − 2u2 + 3u + 1)v + 2u
19 v5 − (u2 + 2)v4 − (2u3 + 2u2 + 2u− 1)v3 + (u5 + 3u4 + 7u3 + 6u2 + 2u)v2

−(u5 + 2u4 + 4u3 + 3u2)v + u3 + u2

20 v3 + (u2 + 3)v2 + (u3 + 4)v + 2
21 v4 + (3u2 + 1)v3 + (u5 + u4 + 2u2 + 2u)v2 + (2u4 + u3 + u)v + u3

22 v4 + (u3 + 2u2 + u + 2)v3 + (u5 + u4 + 2u3 + 2u2 + 1)v2

+(u5 − u4 − 2u3 − u2 − u)v − u4 − u3

23 v7 + (u5 − u4 + u3 + 4u2 + 3)v6 + (u7 + 3u5 + u4 + 5u3 + 7u2 − 4u + 3)v5

+(2u7 + 3u5 − u4 − 2u3 − u2 − 8u + 1)v4

+(u7 − 4u6 − 5u5 − 6u4 − 6u3 − 2u2 − 3u)v3

−(3u6 − 5u4 − 3u3 − 3u2 − 2u)v2 + (3u5 + 4u4 + u)v − u2(u + 1)2

24 v5 + (u4 + 4u3 + 3u2 − u− 2)v4 − (2u4 + 8u3 + 7u2 − 1)v3

−(2u5 + 4u4 − 3u3 − 5u2 − u)v2 + (2u5 + 5u4 + 2u3)v + u6 + u5

Very recently, by using the Tate normal form, Sutherland [17] found optimized forms for
defining equations of the modular curves X1(N) for N = 11, 13− 50. We use those defining
equations for N = 11, 13−24, which are given in Table 1. We also need Table 2 for birational
maps for X1(N) for our purpose.
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Table 2. Birational maps ϕ for X1(N) from f(u, v) = 0 to F (r, s) = 0

N ϕ

11 r = 1 + uv, s = 1− u

12 r = 2u2−2u+1
u , s = 3u2−3u+1

u2

13 r = 1− uv, s = 1−uv
v+1

14 r = 1−(u+v)
(v+1)(u+v+1) , s = 1−u

v+1

15 r = 1+(uv+v2)
(u3+u2v+u2)

, s = 1+v
u2+u

16 r = u2−uv+v2+v
u2+u−v−1

, s = u−v
u+1

17 r = u2+u−v
u2+uv+u−v2−v

, s = u+1
u+v+1

18 r = u2−uv−3u+1
(u−1)2(uv+1)

, s = u2−2u−v
u2−uv−3u−v2−2v

19 r = 1+u(u+v)(v−1)
(u+1)(u2−uv+2u−v2+v)

, s = 1+u(v−1)
(u+1)(u−v+1)

20 r = 1+(u3+uv+u)
(u−1)2(u2−u+v+1)

, s = 1+(u2+v+1)
(u−1)(u2−u+v+2)

21 r = 1+(v2+v)(uv+v+1)
(uv+1)(uv−v2+1)

, s = 1+(v2+v)
uv+1

22 r = u2v+u2+uv+v
u3+2u2+v

, s = uv+v
u2+v

23 r = u2+u+v+1
u2−uv

, s = u+v+1
u

24 r = u2+u−v+1
u2+uv−v2+v

, s = u+1
u+v

In fact, the condition NP = O in E(b, c) gives a defining equation for X1(N). For example,
11P = O implies 5P = −6P , so

x5P = x−6P = x6P ,

where xnP denotes the x-coordinate of the n-multiple nP of P . Eq. (6) implies that

(7) rs(s− 1) =
s(r − 1)(r − s)

(s− 1)2
.

Without loss of generality, the cases s = 1 and s = 0 may be excluded. Then Eq. (7)
becomes as follows:

r2 − 4sr + 3s2r − s3r + s = 0,

which is one of the equation X1(11), called the raw form of X1(11). By the coordinate
changes s = 1− u and r = 1 + uv, we get the following equation:

v2 + (u2 + 1)v + u.

The following well-known theorem [6, Theorem 4.2] provides us with the condition for the
divisibility of a given point on E by 2, and this result is very useful for studying torsion
subgroups of the form Z/2Z⊕ Z/2NZ.
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Theorem 2.1. Let E be an elliptic curve defined over a field k of charateristic 6= 2, 3 given
by

y2 = (x− α)(x− β)(x− γ)
with α, β, γ in k. For (x2, y2) in E(k) there exists (x1, y1) in E(k) such that 2(x1, y1) =
(x2, y2) if and only if x2 − α, x2 − β and x2 − γ are squares in k.

3. Torsion subgroups over quadratic number fields

Throughout this section, let K be a quadratic number field. Our goal of this section is
to construct some families of elliptic curves with prescribed torsion over quadratic number
fields which do not occur over Q. Note that by finding the quadratic points of X1(N) we
can find the elliptic curve with N -torsion point over quadratic number fields. For the cases
of cyclic torsion, we obtain families of elliptic curve by calculating the quadratic points
satisfying the equations of X1(N) in Table 1.

3.1. The case E(K)tors = Z/11Z.
Theorem 3.1. Put dt = t4 + 2t2 − 4t + 1 with t ∈ Q. Let E be an elliptic curve defined by
the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b =
t(t− 1)(t2 + 1−√dt)(t3 + t− 2− t

√
dt)

4
,

c =
t(t− 1)(t2 + 1−√dt)

2
.

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/11Z.

Proof. Note that (u, v) = (t, −t2−1+
√

t4+2t2−4t+1
2 ) satisfy the defining equation v2 + (u2 +

1)v + u = 0 of X1(11) in Table 1. From the birational map in Table 2, we know that b and
c are expressed as

b = u(u− 1)v(uv + 1), c = u(u− 1)v.

The result follows from the substitution u = t and v = −t2−1+
√

t4+2t2−4t+1
2 . ¤

3.2. The case E(K)tors = Z/13Z.
Theorem 3.2. Put dt = t6 + 2t5 + t4 + 2t3 + 6t2 + 4t + 1 with t ∈ Q. Let E be an elliptic
curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = − t(t4−t2+t+1−(t−1)
√

dt)(t3+t2+1−√dt)(t4+t3+t+2−t
√

dt)

4(t3+t2−1−√dt)

c = − t(t3+t2+1−√dt)(t4−t2+t+1−(t−1)
√

dt)

2(t3+t2−1−√dt)

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/13Z.
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Proof. By the same method in Theorem 3.1 we are done. ¤

3.3. The case E(K)tors = Z/14Z.

Theorem 3.3. Put dt = t4 + 2t3 + t2− 4t with t ∈ Q. Let E be an elliptic curve defined by
the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = 8(t−1)(t2−t−√dt)(t4+t3−t2−3t+2−(t2−1)
√

dt)

(t2+t−2−√dt)3(t2−t−2−√dt)2
,

c = 4(t−1)(t2−t−√dt)

(t2+t−2−√dt)2(t2−t−2−√dt)
.

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/14Z.

Proof. By the same method in Theorem 3.1 we are done. ¤

3.4. The case E(K)tors = Z/15Z.

Theorem 3.4. Put dt = t4 +2t3− t2 +2t+1 with t ∈ Q. Let E be an elliptic curve defined
by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = (t2+t−1+
√

dt)(t2+t+1−√dt)(t2−t+1−√dt)(2t3+t2+t+1−√dt)

4t5(t+1)(t2−t−1−√dt)2
,

c = − (t2−t+1−√dt)(t2+t+1−√dt)(t2+t−1+
√

dt)

4t3(t+1)(t2−t−1−√dt)
.

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/15Z.

Proof. By the same method in Theorem 3.1 we are done. ¤

3.5. The case E(K)tors = Z/16Z.

Theorem 3.5. Put dt = t6 + 2t5 − t4 − t2 − 2t + 1 with t ∈ Q. Let E be an elliptic curve
defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = t2(t3+t2−t+1−√dt)(t6+2t5−t3−2t2−t+1−(t3+t2−1)
√

dt)(t3+t2+t+1−√dt)

2(t3+3t2+t−1−√dt)2
,

c = (t6+2t5−2t2−t3−t+1−(t3+t2−1)
√

dt)(t3+t2+t+1−√dt)

2(t+1)(t3+3t2+t−1−√dt)
.

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/16Z.

Proof. By the same method in Theorem 3.1 we are done. ¤
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3.6. The case E(K)tors = Z/18Z.

Theorem 3.6. Put dt = t6−4t5 +10t4−10t3 +5t2−2t+1 with t ∈ Q. Let E be an elliptic
curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = − t(t3−t+1−√dt)(t5−4t4+9t3−9t2+4t−(t2−2t+2)
√

dt)(t4−2t3+5t2−5t+2−t
√

dt)

(t−1)4(t6−4t5+9t4−10t3+4t2+t−1−(t3−2t2+2t−1)
√

dt)(t4−2t3+3t2+t−2−t
√

dt)2
,

c = t(t5−4t4+9t3−9t2+4t−(t2−2t+2)
√

dt)(t3−t+1−√dt)

(t−1)2(t6−4t5+9t4−10t3+4t2+t−1−(t3−2t2+2t−1)
√

dt)(t4−2t3+3t2+t−2−t
√

dt)
.

Then the torsion subgroup of E over Q(
√

dt) is equal to Z/18Z.

Proof. By the same method in Theorem 3.1 we are done. ¤

3.7. The case E(K)tors = Z/2Z⊕ Z/10Z.

Theorem 3.7. Put dt = 8t3 − 8t2 + 1 with t ∈ Q. Let E be an elliptic curve defined by the
following equation:

y2 + (1− c)xy − by = x3 − bx2,

where b =
t3(2t2 − 3t + 1)
(t2 − 3t + 1)2

and c = − t(2t2 − 3t + 1)
t2 − 3t + 1

. Then the torsion subgroup of E over

Q(
√

dt) is equal to Z/2Z⊕ Z/10Z.

Proof. The elliptic curve defined by the form in the theorem has a Q-rational torsion point
P = (0, 0) of order 10. By the coordinate changes x → x and y → y + c−1

2 x + b
2 , we get the

following:

y2 = x3 +
(c− 1)2 − 4b

4
x2 +

b(c− 1)
2

x +
b2

4
.

Since 5P is a Q-rational point of order 2, the right hand side of the above equation should
have a linear factor and a quadratic factor over Q. By the simple calculation, one can show
that the quadratic factor splits over the quadratic number field Q(

√
dt). ¤

3.8. The case E(K)tors = Z/2Z⊕ Z/12Z.

Theorem 3.8. Put dt = t2−1
t2+3

with t ∈ Q. Let E be an elliptic curve defined by the following
equation:

y2 + (1− c)xy − (c + c2)y = x3 − (c + c2)x2,

where c =
1− t2

t4 + 3t2
. Then the torsion subgroup of E over Q

(√
dt

)
is equal to Z/2Z⊕Z/12Z.
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Proof. The Tate normal form of an elliptic curve E with Q-rational point (0, 0) of order 6
is the elliptic curve defined by

y2 + (1− c)xy − (c + c2) = x3 − (c + c2)x2.

By the coordinate changes x → x and y → y + (c−1)
2 x + (c2+c)

2 , we get the following form:

y2 = x3 − 3c2 + 3c− 1
4

x2 +
c3 − c

2
x +

c4 + 2c3 + c2

4
.

By substituting c = 10−2α
α2−9

, we have

y2 =
(

x +
2(α− 1)2

(α + 3)2(α− 3)

)(
x +

2(α− 5)
(α− 3)(α + 3)

)(
x +

(α− 5)(α− 1)2

4(α + 3)(α− 3)2

)
.

Note that the point P = (0, c2+c
2 ) is of order 6 of the elliptic curve defined by the above

equation. By Theorem 2.1, for a number field K, there exists a K-rational point Q with
2Q = P if and only if 2

α−3 and α−5
α+3 are square in K. Put α = 2t2 +3. Then c = 1−t2

t4+3t2
, and

2
α−3 = 1

t2
and α−5

α+3 = t2−1
t2+3

are squares in Q
(√

dt

)
. ¤

3.9. The case E(K)tors = Z/3Z⊕ Z/3Z.

A one-parameter family of elliptic curves with points of order 3, called the Hessian Family,
is given as follows [1, Ch. 4, Section 2]:

(8) X3 + Y 3 + Z3 = 3µXY Z,

with µ in Q. From [7, Table 1], we obtain the following:

Theorem 3.9. Let K = Q(
√−3) = Q(ζ3) with a primitive cube root of unity ζ3. Let E be

an elliptic curve defined by the following equation:

X3 + Y 3 + Z3 = 3tXY Z,

where t ∈ Q with t3 6= 1. Then the torsion subgroup of E over K is equal to Z/3Z⊕ Z/3Z.

3.10. The case E(K)tors = Z/3Z⊕ Z/6Z.

For finding a family of elliptic curves with Z/3Z ⊕ Z/6Z as their torsion group, we begin
with the curves in Eq. (8).

Theorem 3.10. Let K = Q(
√−3) = Q(ζ3) with a primitive cube root of unity ζ3. Let E

be an elliptic curve defined by the following equation:

X3 + Y 3 + Z3 = 3µXY Z,

where µ = 2t3+1
3t2

and t ∈ Q with t 6= 0, 1,−1
2 . Then the torsion subgroup of E over K is

equal to Z/3Z⊕ Z/6Z.

Proof. We can refer to [7, Table 1]. ¤
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3.11. The case E(K)tors = Z/4Z⊕ Z/4Z.

Theorem 3.11. Let K = Q(
√−1) and let E be an elliptic curve defined by the following

equation:

y2 + xy − (ν2 − 1
16

)y = x3 − (ν2 − 1
16

)x2,

where ν = t2 and t ∈ Q with t 6= 0,± 1
16 . Then the torsion subgroup of E is equal to

Z/4Z⊕ Z/4Z over K.

Proof. We know that the curve E : y2 +xy− (ν2− 1
16)y = x3−(ν2− 1

16)x2 with a parameter
ν has Z/4Z⊕ Z/2Z as the torsion group over Q from [7, Table 1]. We note that P = (0, 0)
is a point of order 4 and 2P = (ν2 − 1

16 , 0). By Theorem 2.1, for another 2-torsion point

Q = (−1
8 + ν

2 , (4ν−1)2

32 ), there exist a K-rational point R with 2R = Q if and only if

(−1
8 + ν

2 )− (−1
8 − ν

2 ) = ν and (−1
8 + ν

2 )− (ν2− 1
16) = − (4ν−1)2

16 are squares in K. It follows
from taking ν = t2. ¤

4. Torsion subgroups over quartic number fields K

Throughout this section, K denotes a quartic number field. In this section we construct
some families of elliptic curves with prescribed torsion structures given in Eq. (5) over
quartic number fields; those torsion structures do not occur over Q and quadratic number
fields.

A smooth projective curve X over an algebraically closed field is called d-gonal if there
exists a finite morphism f : X → P1 of degree d. For d = 4 we say that the curve is
tetragonal. Also, the smallest possible d is called the gonality of the curve X and we denote
it by Gon(X). Sutherland [17] basically attempted to find a plane model fN (x, y) = 0 of
X1(N) which minimizes the degree d of one of its variables. Noting that Gon(X1(N)) = 3
and Gon(X1(N)) = 4 with N = 17, 21, 22, 24, for the cases N = 17, 20, 21, 22, Sutherland
succeeded in finding plane models fN (x, y) = 0 such that the degree in y of fN (x, y) is equal
to Gon(X1(N)). However, the case N = 24 has not been achieved by Sutherland.

In this section, for N = 17, 21, 22, using Sutherland’s plane models for X1(N), we find
infinite families of elliptic curves over quartic number fields whose torsion is Z/NZ. But,
as mentioned before, for the case N = 24, we need to develop another method for this case,
and this case is resolved in the subsection 4.5. Finally, for the case N = 20, we point out
that we cannot use Sutherland’s plane model for X1(20) since each degree of its variables
in his model is not 4, but 3. We therefore need a proper model of X1(20) where the degree
of one of its variables is exactly equal to 4, and we show how we resolve this case in the
subsection 4.2.

4.1. The case E(K)tors = Z/17Z.
11



Theorem 4.1. Suppose that the polynomial f(x) = x4 + (t3 + t2 − t + 2)x3 + (t3 − 3t +
1)x2 − (t4 + 2t)x + t3 + t2 is irreducible over Q for some t ∈ Q. Let αt be a zero of f(x).
Let E be an elliptic curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where {
b = − (t+1)αt(αt−t)(αt−t2−t)

(αt+t+1)(αt
2−tαt+αt−t2−t)2

,

c = − (t+1)αt(αt−t)
(αt+t+1)(αt

2−tαt+αt−t2−t)
.

Then the torsion subgroup of E over a quartic number field Q(αt) is equal to Z/17Z.

Proof. From Table 1, we note that the points (x, y) = (t, αt) satisfy the following:

f(x, y) = y4 + (x3 + x2 − x + 2)y3 + (x3 − 3x + 1)y2 − (x4 + 2x)y + x3 + x2 = 0

which is an defining equation of X1(17). Also the coefficients b and c of E can be expressed
by the following:

b = − (x + 1)y(x− y)(x2 + x− y)
(x + y + 1)(x2 + xy + x− y2 − y)2

, c = − (x− y)y(x + 1)
(x + y + 1)(x2 + xy + x− y2 − y)

.

The result follows from the substitution x = t and y = αt. ¤

4.2. The case E(K)tors = Z/20Z.

As explained in the beginning of this section, we need to find a plane model of X1(20)
where the degree of one of its variables is equal to 4. For finding it, using the Reichert’s
method [14], we obtain the following:

Proposition 4.2. The modular curve X1(20) has a plane model as follows:

(x2 +2x+1)y4− (x2−1)y3 +(x4 +x3−2x2−3x)y2 +(x4 +4x3 +3x2)y−x5−2x4−x3 = 0.

Applying the same method used for the proof of Theorem 4.1 with the equation given in
Propostion 4.2, we obtain the following result.

Theorem 4.3. Suppose that the polynomial

f(x) = (t2 + 2t + 1)x4− (t2 − 1)x3 + (t4 + t3− 2t2− 3t)x2 + (t4 + 4t3 + 3t2)x− t5− 2t4 − t3

is irreducible over Q for some t ∈ Q. Let αt be a zero of f(x). Let E be an elliptic curve
defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where {
b = αt(αt+1)(αt−t)(αt

2+αt−t)
(tαt+αt−t)2

,

c = αt(αt+1)(αt−t)
(tαt+αt−t) .

Then the torsion subgroup of E over a quartic number field K = Q(αt) is equal to Z/20Z.
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4.3. The case E(K)tors = Z/21Z.

Using the same method given for the proof of Theorem 4.1, we obtain the following result.

Theorem 4.4. Suppose that the polynomial f(x) = x4 +(3t2 +1)x3 +(t5 +t4 +2t2 +2t)x2 +
(2t4 + t3 + t)x + t3 is irreducible over Q for some t ∈ Q. Let αt be a zero of f(x). Let E be
an elliptic curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where {
b = αt(αt+1)(tαt+αt+1)(αt

2+tαt+αt+1)(αt
3+t2αt

2+tαt
2+αt

2+2tαt+αt+1)
(tαt+1)3(αt

2−tαt−1)2
.

c = −αt(αt+1)(tαt+αt+1)(αt
2+tαt+αt+1)

(tαt+1)2(αt
2−tαt−1)

.

Then the torsion subgroup of E over a quartic number field K = Q(αt) is equal to Z/21Z.

4.4. The case E(K)tors = Z/22Z.

We obtain the following result by using the same method used for the proof of Theorem 4.1.

Theorem 4.5. Suppose that the polynomial f(x) = x4 + (t3 + 2t2 + t + 2)x3 + (t5 + t4 +
2t3 + 2t2 + 1)x2 + (t5− t4− 2t3− t2− t)x− t4− t3 is irreducible over Q for some t ∈ Q. Let
αt be a zero of f(x). Let E be an elliptic curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where {
b = αt(t+1)t(tαt−t+αt−t2)(t2αt+t2+tαt+αt)

(t2+αt)(t3+2t2+αt)2
,

c = (tαt−t+αt−t2)tαt(t+1)
(t2+αt)(t3+2t2+αt)

.

Then the torsion subgroup of E over a quartic number field K = Q(αt) is equal to Z/21Z.

4.5. The case E(K)tors = Z/24Z.

In this subsection, we construct an infinite family of elliptic curves over quartic number
fields whose torsion group is Z/24Z. Since there is a forgetful map of degree 4 from X1(24)
to X1(12) which is rational, the points on X1(24) lying above each Q-rational point on
X1(12) are automatically defined over quartic number fields. It means that the elliptic
curve corresponding to each Q-rational point on X1(12) should have a 24-torsion point
over a quartic number field. We explain the computation process explicitly in the proof of
Theorem 4.6.

Theorem 4.6. Put f(x) = c4(t)x4 + c2(t)x2 + c1(t)x + c0(t), where
c4(t) = 16t12 − 192t11 + 1056t10 − 3520t9 + 7920t8 − 12672t7 + 14784t6 − 12672t5 + 7920t4 − 3520t3

+1056t2 − 192t + 16,
c2(t) = 96t14 − 1536t13 + 9888t12 − 36192t11 + 86400t10 − 144096t9 + 174048t8 − 154656t7 + 100984t6

−47472t5 + 15240t4 − 2912t3 + 168t2 + 48t− 8,
c1(t) = −768t14 + 8064t13 − 39040t12 + 115520t11 − 233408t10 + 340544t9 − 369664t8 + 302720t7

−187264t6 + 86528t5 − 29056t4 + 6720t3 − 960t2 + 64t,
c0(t) = 144t16 − 576t15 + 2112t14 − 9696t13 + 34016t12 − 82176t11 + 141936t10 − 181984t9 + 177240t8

−132528t7 + 76096t6 − 33208t5 + 10760t4 − 2480t3 + 376t2 − 32t + 1.
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If f(x) is irreducible over Q for some t ∈ Q. Let αt be a zero of f(x). Let E be an elliptic
curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where {
b = t(2t−1)(3t2−3t+1)(2t2−2t+1)

(t−1)4
,

c = − t(2t−1)(3t2−3t+1)
(t−1)3

.

Then the torsion subgroup of E over a quartic number field K = Q(αt) is equal to Z/24Z.

Proof. The elliptic curve defined as above has a Q-rational torsion point P = (0, 0) of order
12. By the coordinate changes x → x and y → y + c−1

2 x + b
2 , E is changed to the following

form:

(9) y2 = x3 +
(c− 1)2 − 4b

4
x2 +

b(c− 1)
2

x +
b2

4
.

For simplicity, we write the curve in Eq. (9) by

(10) y2 = x3 + Ax2 + Bx + C,

where A = (c−1)2−4b
4 , B = b(c−1)

2 , and C = b2

4 .

Let P = (x0, y0) be a rational 12-torsion point of the curve in Eq. (10). Changing variables
in x, we may assume x0 = 0. Then

y2
0 = c.

Now consider a point (x1, y1) with 2(x1, y1) = (0, y0). Take y = kx + y0 as the line through
(0, y0) tangent at the unknown point (x1, y1). Then the three roots of

(11) x3 + Ax2 + Bx + C − (kx + y0)2

are 0, x1 and x1, i.e., x1 is a double root of Eq (11). Thus

x3 + Ax2 + Bx + C − (kx + y0)2

x
= (x− x1)2,

and hence the discriminant of

(12) x2 + (A− k2)x + (B − 2ky0)

is equal to 0, i.e.,

(13) (A− k2)2 − 4(B − 2ky0) = 0,

which is a quartic equation in k.

Let k0 be a root of Eq. (13) and K a quartic number field containing k0. Then

x1 =
k2

0 −A

2
14



is a double root of Eq. (12) and hence also of Eq. (11). Consequently 2(x1, k0x1 + y0) =
(0,−y0), and 2(x1,−k0x1− y0) = (0, y0). In other words, (x1, y1) is a K-rational 24-torsion
point of E.

The computation process explained as above thus gives our result immediately. ¤

4.6. The case E(K)tors = Z/5Z⊕ Z/5Z.

Theorem 4.7. Let K = Q(ζ5) with ζ5 a primitive fifth root of unity, and let E be an elliptic
curve over K defined by

E : y2 = x3 − ax + b,

where {
a = t20−228t15+494t10+228t5+1

48 ,

b = t30+522t25−10005t20−10005t10−522t5+1
864 ,

with t in Q. Then E(K)tors is equal to Z/5Z⊕ Z/5Z.

Proof. The result follows from [15, Section 1.2]. ¤

4.7. The case E(K)tors = Z/2Z⊕ Z/14Z.

Theorem 4.8. Put dt = t4 + 2t3 + t2− 4t with t ∈ Q. Let E be an elliptic curve defined by
the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = 8(t−1)(t2−t−√dt)(t4+t3−t2−3t+2−(t2−1)
√

dt)

(t2+t−2−√dt)3(t2−t−2−√dt)2
,

c = 4(t−1)(t2−t−√dt)

(t2+t−2−√dt)2(t2−t−2−√dt)
.

Then the torsion subgroup of E over a quartic number field K is equal to Z/2Z ⊕ Z/14Z
where K = Q(

√
At + Bt

√
dt) with

{
At = 2(t2 − 1)2(t8 + 8t7 + 24t6 + 32t5 + 4t4 − 32t3 − 24t2 + 8t + 2),
Bt = 2t(t2 − 1)(t7 + 7t6 + 16t5 + 10t4 − 18t3 − 26t2 + 12).

Proof. The elliptic curve defined by the form in the theorem has a Q-rational torsion point
P = (0, 0) of order 14. By the coordinate changes x → x and y → y + c−1

2 x + b
2 , we get the

following:

y2 = x3 +
(c− 1)2 − 4b

4
x2 +

b(c− 1)
2

x +
b2

4
.

Since 7P is a Q-rational point of order 2, the right hand side of the above equation should
have a linear factor and a quadratic factor over Q. By the simple calculation, one can show
that the quadratic factor splits over the quadratic number field K. ¤
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4.8. The case E(K)tors = Z/2Z⊕ Z/16Z.

Theorem 4.9. Put dt = t6 + 2t5 − t4 − t2 − 2t + 1 with t ∈ Q. Let E be an elliptic curve
defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = t2(t3+t2−t+1−√dt)(t6+2t5−t3−2t2−t+1−(t3+t2−1)
√

dt)(t3+t2+t+1−√dt)

2(t3+3t2+t−1−√dt)2
,

c = (t6+2t5−2t2−t3−t+1−(t3+t2−1)
√

dt)(t3+t2+t+1−√dt)

2(t+1)(t3+3t2+t−1−√dt)
.

Then the torsion subgroup of E over a quartic number field K is equal to Z/2Z ⊕ Z/16Z
where K = Q(

√
At + Bt

√
dt) with





At = 2(t2 + 2t− 1)(t2 − 2t− 1)(t16 + 8t15 + 24t14 + 32t13 + 12t12 − 24t11 − 52t10 − 48t9 − 10t8 + 24t7 + 32t6

+16t5 − 2t4 − 8t3 − 4t2 + 1),
Bt = −2(t + 1)(t2 + 2t− 1)(t2 − 2t− 1)(t4 + 2t3 − 1)(t8 + 4t7 + 4t6 − 2t4 − 4t3 − 2t2 + 1).

Proof. The proof is the same as in Theorem 4.8. ¤

4.9. The case E(K)tors = Z/2Z⊕ Z/18Z.

Theorem 4.10. Put dt = t6 − 4t5 + 10t4 − 10t3 + 5t2 − 2t + 1 with t ∈ Q. Let E be an
elliptic curve defined by the following equation:

y2 + (1− c)xy − by = x3 − bx2,

where 



b = − t(t3−t+1−√dt)(t5−4t4+9t3−9t2+4t−(t2−2t+2)
√

dt)(t4−2t3+5t2−5t+2−t
√

dt)

(t−1)4(t6−4t5+9t4−10t3+4t2+t−1−(t3−2t2+2t−1)
√

dt)(t4−2t3+3t2+t−2−t
√

dt)2

c = t(t5−4t4+9t3−9t2+4t−(t2−2t+2)
√

dt)(t3−t+1−√dt)

(t−1)2(t6−4t5+9t4−10t3+4t2+t−1−(t3−2t2+2t−1)
√

dt)(t4−2t3+3t2+t−2−t
√

dt)

Then the torsion subgroup of E over a quartic number field K is equal to Z/2Z ⊕ Z/18Z
where K = Q(

√
At + Bt

√
dt), where At is given by

At = 2(t− 1)(t2− t +1)(t81− 60t80 + 1823t79− 37283t78 + 575948t77− 7153345t76 + 74270830t75− 661972936t74 +

5162951498t73 − 35748416786t72 + 222220017978t71 − 1251268732638t70 + 6428384983229t69 − 30312842608758t68 +

131851626338239t67−531250231119487t66 +1989823103024944t65−6949508334581021t64 +22691031914247536t63−
69421587124788592t62 + 199398166568254427t61 − 538599074700096200t60 + 1370123432130051153t59

− 3286607755162234569t58 + 7442130833595477585t57 − 15922314702385616367t56 + 32211496441342160295t55

−61658320854407144771t54+111732077832460006205t53−191757358447486495265t52+311783981857223273273t51−
480377955812187198067t50+701460096702393266510t49−970828388582220808403t48+1273499554107320498366t47−
1583214470476057699882t46+1865115992455672404654t45−2081672644416495160786t44+2200653935514819200850t43−
2202900614029732113706t42+2087342688173047087363t41−1871469093808964236066t40+1587010892862821302769t39−
1272297692443572413697t38+963823942575617496446t37−689572852989653464007t36+465685230414220170072t35−
296668110710834337894t34 + 178166673734004537624t33 − 100794853955586974376t32 + 53671606628550181752t31 −
26873929294396454432t30 + 12639178841587420111t29 − 5576323664562001728t28 + 2304415519922916597t27

−890391919078266901t26+320989515486805463t25−107696232645654483t24+33528606629383737t23−9651448544386565t22+

2557905282500493t21−620967067981855t20+137230418386789t19−27398950003547t18+4895941157601t17−773754511787t16+

16



106508074699t15 − 12516444275t14 + 1222390172t13 − 94746133t12 + 5272314t11 − 285040t10 + 36123t9 + 17014t8 −
2203t7 − 2825t6 − 197t5 + 301t4 + 75t3 − 13t2 − 8t− 1),

and Bt is given by

Bt = −2(t− 1)(t2 − t + 1)(t78 − 58t77 + 1704t76 − 33702t75 + 503490t74 − 6046959t73 + 60699920t72 − 522929353t71

+ 3940918563t70 − 26356739261t69 + 158186387740t68 − 859569644802t67 + 4259404814230t66 − 19361594602200t65

+ 81132918428583t64 − 314714160514115t63 + 1134028075395685t62 − 3807324327193293t61 + 11940365012019310t60

− 35056812996275666t59 + 96539555039238846t58 − 249758967163209436t57 + 607888013075773385t56

− 1393565756338056381t55 + 3012092530860805936t54 − 6143427051448922789t53 + 11831916271965320454t52

− 21529969450924825288t51 + 37030874361408910140t50 − 60222036165664943643t49 + 92621203398649851311t48

−134734395934473174400t47 +185382543547282957200t46−241241935747139935962t45 +296869812973936381290t44

−345390717911773880952t43 +379802067053070885010t42−394591051392115015200t41 +387163287527891969172t40

−358580348412681696084t39 +313320640785305093519t38−258133725124201327476t37 +200390095910550691472t36

− 146482677090320791692t35 + 100752870514167716130t34 − 65155408697205999195t33 + 39582254226841158336t32

− 22568926785727839867t31 + 12065466588240181737t30 − 6041011344235745169t29 + 2829101680897337178t28

− 1237413441787086082t27 + 504607238173621602t26 − 191458622895023160t25 + 67425601804317209t24

−21975944178516265t23 +6606041365002714t22−1823904224924193t21 +460205086854590t20−105472707074592t19

+ 21792791183536t18 − 4021810727929t17 + 655195672587t16 − 92814616290t15 + 11201918849t14 − 1118622606t13

+ 89370166t12 − 5641950t11 + 134652t10 + 43891t9 + 19034t8 − 4317t7 − 3356t6 − 9t5 + 384t4 + 70t3 − 20t2 − 9t− 1).

Proof. The proof is the same as in Theorem 4.8. ¤

4.10. The case E(K)tors = Z/3Z⊕ Z/9Z.

We need the following result in [10, Proposition 3.1] for proving Theorem 4.12, which is
useful for finding the divisibility condition of a given point on E by 3.

Proposition 4.11. Let K be a number field whose characteristic is different from 3 and
which contains a primitive third root of unity ζ3. Let E be an elliptic curve over K with full
3-torsion given by E : X3 + Y 3 + Z3 = 3µXY Z, and fS = −27(µ3 − 1) ζ3

2X+ζ3Y +µZ
X+Y +µZ and

fT = 9(µ2 + µ + 1)X+µY +Z
X+Y +µZ with µ3 6= 1. Then for the following injection

E(K)/3E(K) → H1(G,E[3]) ' K∗/K∗3 ×K∗/K∗3,

where H1(G,E[3]) is the Galois cohomology group, G = Gal(K̄/K) and E[3] = E[3](K̄), the
pair (fS , fT ) of rational functions on E gives its image in H1(G,E[3]) ' K∗/K∗3×K∗/K∗3
when evaluated at a point of E(K).

Theorem 4.12. Let K = Q(
√

3t(4− t3),
√−3) with t ∈ Q, and let E be an elliptic curve

defined by the following equation:

X3 + Y 3 + Z3 = 3µXY Z
17



where µ = ζ3 +

(
3t2±

√
3t(4−t3)

)3

72
√−3t3

with µ3 6= 1. Then the torsion subgroup of E over a quartic
number field K is equal to Z/3Z⊕ Z/9Z.

Proof. We use Proposition 4.11. We note that P = (0;−1; 1) is a 3-torsion point from [1,
Ch. 4, Section 2] so that we have fS = −27(µ2+µ+1)(µ−ζ3) and fT = −9(µ2+µ+1) when
fS , fT are evaluated at the point P. From Proposition 4.11, it suffices to find a condition of

µ for which fS and fT are cubic in some quartic number fields. Note that
fS

fT
= 3(µ− ζ3).

Setting −3(µ− ζ3) = x3 and −3(µ− ζ2
3 ) = y3 yields fT = −9(µ− ζ3)(µ− ζ3

2) = (−x)3y3.
We also have x3 − y3 = 3(ζ3 − ζ2

3 ) = 3
√−3, so

(
− x√−3

)3

−
(
− y√−3

)3

= 1.

Let X = − x√−3
and Y = − y√−3

, then we have X3 − Y 3 = 1, and it is enough to show

that the equation X3 − Y 3 = 1 has infinitely many quadratic points. Let X = Y + t then
we have

3tY 2 + 3t2Y + t3 = 1.

Then

Y =
−3t2 ±

√
3t(4− t3)

6t
.

Thus X = Y +t and Y are defined over quadratic number fields K, so the result follows. ¤

4.11. The case E(K)tors = Z/4Z⊕ Z/8Z.

Theorem 4.13. Let K = Q(
√−1,

√
4it2 + 1) with t ∈ Q and t 6= 0,± 1

16 , and let E be an
elliptic curve defined by the following equation:

y2 + xy − (ν2 − 1
16

)y = x3 − (ν2 − 1
16

)x2,

where ν = it2 + 1
4 and t 6= 0,± 1

16 . Then the torsion subgroup of E over K is equal to
Z/4Z⊕ Z/8Z.

Proof. Let E be defined as in subsection 3.11. Then the torsion subgroup of E over Q(i) is
equal to Z/4Z ⊕ Z/4Z. Note that P = (0, 0) is a point of order 4 and 2P = (ν2 − 1

16 , 0).

There are two other 2-torsion points (−1
8 + ν

2 , (4ν−1)2

32 ) and (−1
8 − ν

2 , (4ν−1)2

32 ). Let α =
ν2 − 1

16 , β = −1
8 + ν

2 and γ = −1
8 − ν

2 . By Theorem 2.1, there exist a K-rational point Q

with 2Q = P if and only if 0−α = −(ν2− 1
16), 0−β = −(−1

8 + ν
2 ), and 0− γ = −(−1

8 − ν
2 )

are all squares in K. This follows from taking ν = it2 + 1
4 . ¤
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4.12. The case E(K)tors = Z/6Z⊕ Z/6Z.

Theorem 4.14. Let K = Q(
√−3,

√
8t3 + 1) with t ∈ Q , and let E be an elliptic curve

defined by the following equation:

Eµ : y2 = x3 − 27µ(µ3 + 8)x + 54(µ6 − 20µ3 − 8),

where µ = 2t3+1
3t2

with t 6= 0, 1,−1
2 . Then the torsion subgroup of E over K is equal to

Z/6Z⊕ Z/6Z.

Proof. The curve given in Subsection 3.10 has the following Weierstrass model [15]

Eµ : y2 = x3 − 27µ(µ3 + 8)x + 54(µ6 − 20µ3 − 8).

If µ = 2t3+1
3t2

, then Eµ has Z/6Z⊕Z/6Z as its full torsion group over K = Q(
√−3,

√
8t3 + 1).

We note that Eµ has the following 2-torsion points: ((8t6 +20t3−1±3
√

(8t3 + 1)3)/6t4, 0),
(−(8t6 + 20t3 − 1)/3t4, 0). ¤
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