GENUS FIELD OF REAL BIQUADRATIC FIELDS II

SUNGHAN BAE AND QIN YUE

ABSTRACT. Let K = Q(/p, V/d) be a real biquadratic field with p =1 mod 4 or p = 2
and d a squarefree positive integer. The Hilbert genus field is described explicitly by Yue
([15]) in the case that p=1 mod 4 and d =3 mod 4. In this article we give the Hilbert
genus field of K explicitly for the remaining cases. We also consider the function field

analogue of this problem.

1. INTRODUCTION

Let K be a number field and let H be the Hilbert class class field of K, i.e. the maximal
abelian unramified extension of K. Let G = Gal(H/K) be the Galois group of H/K and

let C'(K) be the class group of K, then there is a canonical isomorphism:
¢/ : C(K) — Gal(H/K),

where ¢/ is the map induced by the Artin map (see [8]). Let E be the fixed field of G2.
Then

C(K)/C(K)? =2 G/G? = Gal(E/K)

Hence
E=K(/A), K?cAcK*" (1.1)

If K is the real biquadratic field Q(/p, \/&) with p =1 mod 4 a prime and d a squarefree
positive integer prime to p, then E is the relative genus field of the extension K /Ky, where
Ko = Q(/p)-

In this paper, we will find a set of representatives of the set A/K *2 when K is a real
biquadratic field

Let K = Q(+/d) be a real quadratic field, then by [6] or [4] we know the genus field E of
K explicitly. In fact, let d = q1 - - - qn, Where q1,- - , qn are distinct primes,
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1)Ifgj =1 mod4forall<j<n-—1,then

E=QWVa, Va2, v4,);

2) If ¢ =3 mod 4, then

E:Q(VE?\/gV"u q';kl)7

where

qj ifg; =1 mod 4
gjq1 if ¢;=3 mod 4
giq1 ifgi=2and d/2=3 mod 4
q; ifgi=2and d/2=1 mod4

q;: aj:2a"'7n'

Let K = Q(,/p, \/&) be a real biquadratic field, where p is a prime number and d is a
squarefree positive integer prime to p. When p =1 mod 8 and d =3 mod 4, P. Sime ([10])
used Herglotz’s results ([5]) to give the Hilber genus field of K, under the condition that
2-Sylow subgroups of the class groups of Ky = Q(,/p), K1 = Q(Vd), Ky = Q(\/pd) are
elementary. Later Q. Yue ([15]) improved Sime’s result to p =1 mod 4, d =3 mod 4 and
without the condition on the class groups. Recently Fouvry and Kliiners [3] touched upon
the genus field of K and gave strong evidence in the direction of a Stevenhagen’s conjecture
([11).

In this paper, we extend Yue’s result to all real biquadratic number fields K = Q(,/p, Vd)
with p =1 mod 4 or p = 2, and a positive squarefree integer d prime to p. The assumption
on p is to assure the existence of a fundamental unit ¢ € Ky whose norm is —1.

In the final section we consider the analogous problem in the function field case, that is,
we find the genus field of k(v/P,v/D), where k = F,(T), P a monic irreducible polynomial
of even degree and D a monic squarefree polynomial in F[T].

Notations:

Oy, := the ring of integers of a number field L

Ur, := the unit group of Of,

C(L) := the class group of L

h(L) := the class number of L

vp(x) := the normalized valuation at a prime p of L

Ay := 2-Sylow subgroup of an abelian group A

oA := the subgroup of elements of order < 2 of A

ro(A) := 2-rank of an abelian group A
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2. Basic Facts

In this section we recall some facts from [15] which will be used later. Let Ko = Q(/p),
K = Q(/p,Vd), K1 = Q(Vd) and K> = Q(v/pd). Let E be the Hilbert genus field of K.

Then FE can be expressed as
E=K(A), K?cAcK*
Define
D :={x € K*|vp(x) =0 mod 2 for all finite primes p of K},
D} == {z € Dg|z totally positive}.

Lemma 2.1. ([15, Lemma 2.1]) Ifz € D}, then all non-dyadic primes of K are unramified
in K(\/x). Moreover, A C DF.

Let S be a finite set consisting of all infinite primes and the finite primes of Ky, which
are ramified in K. Let UIS([J be the group of S-units of Ky and let Uf}: be the subgroup of

all S-units that are positive at all real infinite primes of Kj.

Lemma 2.2. ([15, Lemma 2.2], or [13]) There is an exact sequence
0—2Z/2— Ut /(UE,)? = DE/K™? — 1.
Moreover,
ro(Dy /K*?) = s — 1,
where s is the cardinality of all finite primes in S.

Let Uk, be the group of units in Ky and N K the image of K under the norm map Nk, -
Lemma 2.3. ([15, Lemma 2.3], or [7]) Let Am(K/Ky) be the subgroup of C(K) consisting
of all ambiguous ideal classes. Then

ro(C(K)) = ro(Am(K/Ky)) =s—1—ro(Uk,/Uk, N NK).
Proposition 2.1. ([15, Proposition 2.1]) There is a decomposition of the multiplicative

group
DE/K** = AJK*? x A,

where r2(A) = ro(Uk, /Uk, N NK).
In the following, we give some results of 2-adic local fields.

Lemma 2.4. let F' = Q2(1/—3) be an extension over the local field Qo and U the unit group
of F'. Then
i) UJU? = (3) x (1 +2w) x (1 + 4w), where w = _1%‘/:9’ is the third primitive unit root.
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ii) F(v3,v/1+2w)/F is a totally ramified extension, F(v/1+ 4w)/F is an unramified ex-

tension.

Note: 3- (1 +2w) =1+ 2w? mod 4 and F(v/1 + 2w?)/F is ramified. Moreover, if a € U
and a = w -z or a = w? -z mod 4, z = 1 mod 2, then F(y/a)/F is unramified extension if

and only if z = 1 mod 4.

Lemma 2.5. In the local field Q2(v/—3),
i) If a prime p = 13 mod 16, then \/p = v/—3 mod 8.
i) If a prime p =5 mod 16, then \/p = /=3 + 4 mod 8.

Proof. Since p=5mod 8, \/p € Q2(v/—3). In the local field Q2(v/—3), we consider the
root of polynomial f(z) = 2% — p. By Newton’s method (see [12, P. 76]), ag = v/—3 satisfies

the relation

f(ao) —3—-p
= = 0
Flag?) ~ )T
Then we can construct the sequence
f(ai) —
ai+1:ai_f/(ai)7a0: _3722071727"'7
which converges to a root /p of f(z), i.e. limy_.oo a; = \/p. Moreover va(a;11 — a;) > 2.
If p =13 mod 16, then r > 2 and
f ( ) 2\/ a
Hence va(y/p —a1) >2'-2=4 and \/p = a1 = /-3 mod 8.
If p =5 mod 16, then r = 1 and vq(asg — (12) >22.1=4,
f(ao) 34p _p-3
ap = ag — =Vv-3- =v-3+ = —,
LT ) 2\/ 2W—3 2/-3
fla) p=3  (p+3?*V=3 _ p-3
Fla) 2/ 3 12p—-3) ~2/3
Hence, va(\/p —az) >4 and by V-3 =1+ w -2,
+3
VP=ax =V — +§*f\/ 344 mod 8.1

Lemma 2.6. Let p be a prime and q a positive integer prime to p with p = q =1 mod 4.

’UQ(

=+v—3 mod 8,

as = ay — mod 8,

Suppose that the Diophantine equation qz%> = x2 — py? has a relatively prime and positive
integral solution (xo,Yo,20). Take o = xo + \/pyo if 2 fz0 and o = % if 2|zo.

i) If 2 fz0, then a = x¢ + yo mod 4.

i) If p =5 mod 8 and 2|z, then in the local field Qz(\/p), a = w(—zo) or w?(—x0) mod 4,

where w = _1% V=3,
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iit) If p = 1 mod 8 and 2|z, then o = x¢ mod D'? and o = 2¢ - xo mod D?, where D and
D' are dyadic primes of Ko = Q(\/p) and e is an even integer.

Proof. i) If 2 fzy, then 2 fzy and 2|yo. Hence
“1tvp

a=z0+yo+ — 5

ii) If p = 5 mod 8 and 2|z, then 2||z. Suppose first that p = 13 mod 16, then \/p—v/—3 =
0 mod 8. Hence
xo++PYo —14++-3 _wotyo  VP—V—3 _ xo+%
— Yo = + Yo =
2 2 2 2 2
Since 22 — py2 = qz2 = 4 mod 16 and p = 13 mod 16, 22 = y2 mod 16. If g = —yo mod 8,

- 2y0 = x9 + yo mod 4.

mod 4.

a — WwWYo =

then onm =0 mod 4 and a = wyy = w(—x0) mod 4; if zy = yo mod 8, then on-S-yo =
mod 4 and a = (1 + w)yo = w?(—yo) = w?(—x() mod 4.
Suppose that p =5 mod 16. Then /p — v/—3 = 4 mod 8. Hence
—v-3
Ozfﬂwyo:xO;FyOJr\/]5 5 'yozixo;ry0+2 ozxo;ry0+2mod4,

since yo is odd. Since z3 — py3 = ¢z5 = 4 mod 16 and p = 5 mod 16, 22 = 33 + 8 mod
16. If 29 = —yo + 4 mod 8, then % = % = 2 mod 4 and a = wyy = w(—xo) mod 4; if
To = yo + 4 mod 8, then % =yo+2mod 4 and a = (1+w)yy = w?(—yo) = w?(—xz0)
mod 4.

iii) If p = 1 mod 8 and 2|zg, then 4|zp and

$o+y0\/]3'$o—yo\/157ﬁ:0mod4
2 2 4 '

Let D = (2, %) and D' = (2, W) be two dyadic primes of Ko = Q(y/p), then
o= wo-‘rlzlo\/f) c DQ, o — Io—’!2/0\/17 c D/Q, and

:x0+yox/15:m0_wo—yo\/ﬁ:momodD,z
2 2 - ’

also o = 29 mod D?. Let 2¢||z9, e > 2, then by a - o/ - 272(¢=1) = 2252’6 =1 mod D?,

o272 = (o/)7! = 25 mod D>

An element « of Ok, is called primary if X? = a mod D? is solvable for any dyadic

prime D of Ky. By Lemma 2.6, we get the following result.

Corollary 2.1. The assumptions are as in Lemma 2.6.

i) Suppose that o = xg 4 \/pyo with 2 [z, then o« is primary if and only if xo +yo = 1
mod 4.

it) Suppose that a« = % with 2|zg, then « is primary if and only if xo+20 =1 mod 4.

Moreover, we have that o is not primary if and only if a -3 is primary. B
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Proposition 2.2. Let p,q be distinct primes with p = q = 1 mod 4 and (%) =1 and let
€ be a fundamental unit of Ko = Q(\/p). If (x0,y0,20) is a relatively prime and positive
integral solution of the Diophantine equation qz°> = 2% — py?, set a = xo + VPYo if 2 fzo or
a = % if 2[20. Then 2|h(Q(\/p,\/q)) if and only if ¢ € Ny, (. /e)/K,(Ko(\/€)) if and
only if the local Hilbert symbol (€,q)q = 1, where QQ'" = qOk,, if and only if o is primary.

Proof. Let K = Q(\/p,\/q) and Ky = Q(y/p), then by Lemma 2.3 r(C(K)) =
2—1-ry(Uk,/(Ux, N NK)). It is clear that —1 € NK. Hence we conclude that 2|h(K) if
and only if € € NK if and only if ¢ € Ny, (/e)/x,(Ko(v/€)) if and only if the local Hilbert
symbol (¢, ¢q)q = 1, where QQ’ = ¢Ok, (see [2, Lemma 21.8]).

Let o = wo+/pyo if 2 fzo (or @ = M if 2|29), then o € D}.. By Proposition 2.1 and
Lemma 2.1, we conclude that 2|h(K) if and only if K(y/a)/K is an unramified extension if
and only if K(y/a)/K is an unramified extension at all dyadic primes of K if and only if o
is a primary element by Lemma 2.6. ll

Let Ko = Q(/p) and K = Q(\/p, /q), where p = ¢ = 1 mod 4 be distinct primes with
(B) = —1. Let € be a fundamental unit of Ko = Q(,/p). Then, by Lemma 2.3, r2(C(K)) = 0,
and thus, € € Ng/, (K), which implies that ¢ € Ny, (&), (Ko(Ve)),

For the rest of the paper we write d = ¢ ﬁ gj, where g;’s are distinct odd primes and

j=1
e € {1,2}. By rearranging the primes, we let m < n be an integer so that

(p>:1for1<j<m and (p>:—1form+1<j<n.

q; 4q;
3. The case p=1 mod4 and d=1 mod 4

In this section, let Ko = Q(y/p) and K = Q(/p, Vd), where p = 1 mod 4 and d =

Il ¢ =1 mod 4. Then no dyadic primes are unramified in K /Ky, and so m + n finite
j=1
primes are ramified in K/Kj. Thus by Lemma 2.3

TQ(C(K)):m—i—n—l—rQ(UKo/UKOﬁNK). (31)
Lemma 3.1. Suppose that p=1 mod 4 andd = [] ¢; =1 mod 4.

j=1
i) If ¢ =1 mod 4 for alli <n, and q; € N, (/e)/k,(Ko(v/€)) for 1 < j < m, then
ro(Uk, /U, N NK) = 0.

i) If either g =1 mod 4 for all 1 <i <n and q; ¢ N, (/e)/k,(Ko(V/€)) for some j <m,
orgi =1 mod 4 for1 <j<m and ¢, =3 mod 4, then

TQ(UKO/UKO NNK)=1.
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)

it1) If g =3 mod 4 and (L) =1, then

|

ro(Uky Uk, N NK) = 2.

Proof. i) Since ¢; =1 mod 4 for 1 < j < n, the local Hilbert symbol (—1,d)g =1 at
all primes @ of Ky. Hence —1 € NK. For 1 < j <m, let QjQ;» = ¢;Ok,, the local Hilbert
symbol (¢,d)q, = (€,¢;)q, = 1 by Proposition 2.2; for m +1 < j < n, let Q; = ¢;Ok,, the
local Hilbert symbol (¢, d)g, = 1 by [14, Lemma 3.3]. Hence —1,e € NK.

ii) By the conditions and [14, Lemma 3.3], we know —1 € NK. If g1 ¢ Ng, (/e k, (Ko(V/€)),
then by Proposition 2.2 the local Hilbert symbol (¢,d)g, = —1, where Q1Q] = ¢10xk,. If
¢n =3 mod 4 and () = —1, then (e,d)q, = —1 by [14, Lemma 3.3], where Qn, = ¢, Ok,
Hence € ¢ NK.

iii) If ¢ =3 mod 4 and (%) = 1, then the local Hilbert symbol (~1,d)q, = () = 1,
where Q1Q7 = 10k,; and —1 = (—1,d)q, = (¢,d)q, (€', d)q, = (6,d)q, (¢, d)q;, where € is
the complex conjugate of . Hence —1,e ¢ NK. W

Let, for 1 < j < m and ¢; = 1 mod 4, (z;,y;,2;) be a relatively prime and positive
integral solution of Diophantine equation ¢;z% = 2? — py?, and let a; = z; + /py; if 2 Jz;

C— TtVPYs )
or aj = == if 2|z;.

Theorem 3.1. Let K = Q(,/p,Vd) withp=1 mod 4 andd= ][ ¢; =1 mod 4.
j=1

i) If ¢ =1 mod 4 for all i < n and q; € Ny, (/e)/Kx,(Ko(Ve)) for 1 < j < m, then the
genus field E of K is given by

E:Q(\/ﬁa\/q7M ’m’ Va1, a\/am)-
i) If ¢ =1 mod 4 for all 1 <i <n and q; ¢ Ng,(/e)/k, Ko(\Ve)) for some j < m, say,
j =1, then the genus field E of K is given by

E=QWp Vi Van, Vs, ag),
where
of = { a; if 4 € Nk () /Ko (Ko(V/e€))
ajon if g5 & Niy(ve) ko (Ko(Ve)).
i) If ¢; =1 mod 4 for all 1 < j <m and g, =3 mod 4, then the genus field E of K

is given by

E:Q(\/ﬁv\/ﬁv"'7\/q:171’\/07{7'”7\/a:n)7

where, for 1 <j<m

of = { @ if 45 € Nieo(ye) /i (Ko(V6))
ajdn U 45 & Niy(yo/x, (Eo(Ve)),
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and, for1 <i<n-—1

. {qi ifg; =1 mod4
q; =

¢qn if ¢ =3 mod 4.
w) If ¢ =3 mod 4 and (%) =1, then the genus field E of K is given by

E=QWp Va5 VG Vo5 Vo),

where
. qi ifg; =1 mod 4
q4; = )
@1qi  if ¢ =3 mod 4,
for2 <j<m, aj = a5+ By if 2z (or ay = BN if Q\Zj), (xjaijzj) a relatively
prime and positive integer solution of a Diophantine equation g} 22 =22 —py?, and
. o if o s primary
o, =
Qo if aj is not primary.
Remark 3.1. By Corollary 2.1 and Proposition 2.2, it is easy to determine whether either
4j € Ng,(ve)/ Ko (Ko(V€)) or a; is primary.
Proof. i) By Lemma 3.1 and Proposition 2.1, r9(Uk, /Ux, "\NK) = 0, and so D}, /K** =
A/K*?. Hence ro(C(K)) =m +n —1=ry(A/K*?) = ro( D} /K*?). Tt is clear that

{QQa"' s Qn, Q1,0 aam}

is a subset of DJr In order to prove that this set is a set of representatives of D; /K *2 we

need to verify that its elements are 1ndependent modulo K*?.
Let K2 Q(V ) Consider 5 H 4qiy, H Qs where {q“?"' 7Qiu} C {qQ7 o ,Qn} and
=1

{ag,, a5, Clar, -+ ,am}. fv=0and u>1, then 3 = [] ¢;,, ¢ K. Suppose that
k=1
v>1and 3 € K?, then

v
Nk, (8) = a® [ [ ¢ € K30 € Ky,
=1

which is a contradiction. Therefore it is a set of representatives of D} /K *2_ Hence E is the
genus field of K.

ii) By Lemma 3.1 and Proposition 2.1, we know that r9(Uk,/Uk, N NK)) = 1, and so
ro(Df/K*?) = ro(A/K*?)41 = m+n—1. By Lemma 2.6 and Proposition 2.2, we conclude
that «; is not primary if and only if oy = a’?-3 mod D?, a € Ky and D any dyadic ideal
of Ko, if and only if ¢1 & Ny (/e)/k, (Ko(v/€)) if and only if K(,/ar)/K is ramified at a
dyadic prime D. Hence by construction, aj =1 mod D? for 1 <j<m and

{QQa"' 7Qnaa§7"' aa:n}
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is a set of representatives of A/K*z. So F is the genus field of K.
iii) Similarly, we know that r2(Us, /U, "NK)) = 1 and ro(D} /K*?) = ro(A/K*?)+1 =
m +n — 1. By construction, we know that ¢ =1 mod4 for1 <j <n-—1andaj = a?

mod D? for 1 < j < m, where a € Ky and D is a dyadic prime of Ky. Hence the set

{QS7 te 7q:;—1,a>‘1<7' o ,Oé;(n}
is a set of representatives of A/K*? and E is the genus field of K.
iv) In this case 7o (Us, /Ux,ANK)) = 2, and so 7o (D} /K*?) = ro(A/K*?)4+2 = m4n—1.
For 2 < j <'m, we can sce easily that o = ¢ mod D* by Lemma 2.6, where a € Ky and
D is a dyadic prime of K. Thus K(,/a})/K is an unramified extension. Hence

* * * *
{Q27"' yAp—1,CQgs " * 7am}

is a set of representatives of D/K*? and FE is the genus field of K. W

4. The case p=2

In this section, let Ky = Q(v2), K = Q(v/2,Vd), d = [] ¢; with
j=1
gi=+1 mod8,1<j<m,qg;=£5 mod8m+1<j<n

Let € = 1 4+ /2 be the fundamental unit of Ky. Note that, if d =1 (resp. 3) mod 4, m +n
(resp. m + n + 1) primes are ramified in K/K,. For a prime ¢ = 1 mod 8, there exist
positive integers u, w such that

g =u?— 2u?,

and v is odd, w =0 mod 4 by multiplying the totally positive unit 3 + 21/2, if necessary.

Lemma 4.1. Let ¢ =1 mod 8 be a prime and let €, be the fundamental unit of L = Q(,/q)-
Then the following statements are equivalent

i) ¢ = a® + 32b% for some a,b € Z, which we denote by q € A™T;

ii) ¢ = u® — 2w, u,w € Nyu =1 mod 4, w =0 mod 4;

iii) the local Hilbert symbol (1 +/2,q)g = 1, where QQ' = qOk,, Ko = Q(v/2);

iv) the local Hilbert symbol (€1,2)p = 1, where DD' = 20y,.

Proof. We know from [1] that i), ii), iii) are equivalent conditions. Now we prove that
iif) is equivalent to iv). Consider F' = Q(v'2,/g). Let € = 1+ /2 and ¢; a fundamental
unit of L. By Lemma 2.3 and [2, Theorem 10.3], we conclude that the local Hilbert symbol
(1+v2,9)g = 1in L if and only if 1 + 2 € Np/k, (F) if and only if 2|h(F) if and only if
€1 € Np/(F) if and only if the local Hilbert symbol (e1,2)p = 1 in L, where DD" = 20p,.
|
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Lemma 4.2. Letp=2,d = ﬁ g, Ko = Q(W2), K = Q(v/2,V4d).
j=1

i) If g € AT for all1 <i<m and g; =5 mod 8 for allm+1 < j <n, then
TQ(UKU/UKO ﬂNK)) =0.

i) If either g; =1 mod 4 for all1 <j<mn,q =1 mod 8 and ¢; ¢ A", or ¢; =1 mod 8
forall1 < j <m and q, =3 mod 8, then

TZ(UKU/UKO ﬂNK)) =1.

iit) If ¢ =7 mod 8, then
TQ(UKU/UKO ﬂNK)) = 2.

Proof. i) It is clear from the conditions that —1 € NK. By Lemma 4.1, we know
that the local Hilbert symbol (¢,d)q, = 1, where ¢ = 1 + V2 and Q;Q) = ¢;0k, for
1 <j <m. By [14, Lemma 3.3], we know that the local Hilbert symbol (¢, d)q, = 1, where
Q; = ¢;Ok,, for m +1 < j < n. By Minkowski-Hasse theorem, we have ¢ € NK. Hence
ro(Uk,/Uk, N NK)) = 0.

ii) In this case we easily see that —1 € NK. If ¢y =1 mod 8 and q; ¢ AT, then the local
Hilbert symbol (e,d)q, = —1, where Q1Q} = ¢1Ok, by Lemma 4.1. If ¢, =3 mod 4, then
the local Hilbert symbol (e,d)q, = —1, Qn = ¢,Ok, by [14, Lemma 3.3]. Hence ¢ ¢ NK.

ii1) Since g1 = 7 mod 8, the local Hilbert symbol (—1,d)g, = (;—11) = —1, where Q1 Q] =
710rK,, so =1 ¢ NK. On the other hand, —1 = (=1,d)q, = (F¢,d)q, (+e€,d)q;, so e ¢
NK. 1

Let, for ¢; =1 mod 8, (z;,y;) be positive integers satisfying x? — 2y]2. = ¢; and 4|y;. Let
a; =z +y; V2.

Theorem 4.1. Let K = Q(v/2,Vd) with d = ]_n[ qi-
i) Ifq; € AT forall1 <j<mand g =5 Hzl_oldeor allm+1 < j <n, then the genus
field E of K is given by

E:Q(\/ivﬁ"" 7\/q>nv\/071"" ’M)

i) If ¢ =1 mod 4 for all1 <i<mn and gt =1 mod 8 with q; ¢ AT, then the genus field
FE of K is given by

E:Q(ﬁvm""7@7@>""\/@)a

where

J

" Qa; if q; € AT
a, =
ajar;  if g ¢ AT
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ii) If ¢; =1 mod 8 for all1 < j < m and ¢, =3 mod 8, then the genus field E of K is
given by

E:Q(\/ia\/qiikf"a q;-laﬁaM7"'a\/ajn)a

where

: ¢  ifg;=1 mod4 ¢n ifd=3 modd o ifq e AT
“ :{ 4iqn i ¢ =3 mod 4, a:{ 1  ifd=1 mod 4, “ :{ ajqn  ifq ¢ AT
) If 1 =7 mod 8, then the genus field E of K is given by

E:Q(\/ia\/&a\/ga"'aJQE7\/07§a"'7\/a;1)a
where, for 2 <i<mn,

¢ ifd=3 mod4 Qi ifg; =1 mod 4
o= _
1 ifd=1 mod 4,

¢iq1 if¢ =3 mod 4,

and, for2<j<m, aj = x; + yj\/i, positive integers (x;,y;) satisfying q = m? - 2y.72. with
4)y;, and
a; =

. o ifz; =1 mod4
ajq1 ifz; =3 mod 4.

Proof. i) By conditions, d =1 mod 4 and the dyadic prime of K| is unramified in K.
Hence by Lemma 4.2 and Proposition 2.1, we know that r3(Uk, /U, N NK)) =0, m +n
primes of Ky are ramified in K, ro(Dj/K*?) = ro(A/K*?) = m +n — 1. By the similar

process of the proof of Theorem 3.1, we see that the set

{QQa"' s Qn, 01,0 - 7047”}

is a set of representatives of D?( /K *2 and F is the genus field of K.

ii) By Lemma 4.2 and Proposition 2.1, we see that ro(Uk,/Uk,NNK)) = 1, m+n primes
of Ky are ramified in K, and ro(Dj/K*?) = ro(A/K*?) +1 = m+n — 1. As before, we see
that the set

(g2, \qn, a1, Q)
is a set of representatives of D}/K*Q. By Lemma 4.1, we have that g; ¢ A" if and only if
a1 =3 mod 4 if and only if K(y/a7)/K is ramified at dyadic prime. By construction, we
have that a; =1 mod 4 for 2 < j < m and the set

{(J27"' 7Qna0437"' aa:n}

is a set of representatives of D} /K**. Hence E is the genus field of K.

iii) Suppose that d =1 mod 4 and ¢, =3 mod 4, then d¢ = ¢f -+ - q};_;, € even, where
q; = q; if ¢ =1 mod 4 and ¢j = g;jg, if ¢ = 3 mod 4, and the dyadic prime of Ky is
unramified in K. By Lemma 4.2 and Proposition 2.1, ro(Uk,/Ux, N NK)) = 1, m +n
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primes of K are ramified in K, and ro(Df/K*?) = ro(A/K*?) +1 =m +n — 1. We see
that the set

{QIa oty qn—2,4n—1,001, " "¢ aanL}

is a set of representatives of D}Q /K *2 By construction, we have that aj =1 mod 4 for
1 < 7 <m and the set

{at, - qpi07,- - 500}
is a set of representatives of D?{ /K *2 Hence E is the genus field of K.

Suppose that d = 3 mod 4 and ¢, = 3 mod 4, then dgf = ¢j---¢q);_;, e odd, and
the dyadic prime of Ky is ramified in K. By Lemma 4.2 and Proposition 2.1, we have
that 7o(Uk, /Uk, N NK) = 1, m + n + 1 primes of Ky are ramified in K, ro(Dj/K*?) =
ro(A/K*?) +1 =m +n. We see that the set

{27Q1a"' yQn—1,Q1, "+ 7am}

is a set of representatives of D} /K *2_ Hence by construction,

* * * *
{qu"' 7qn71,a17"' ,Oém}

is a set of representatives of A/K*2. So F is the genus field of K.

iv) Suppose that d =1 mod 4 and ¢; = 7 mod 8, then d¢§ = ¢ --- ¢, e even, where
q; = ¢; if ¢ =1 mod 4 and ¢; = gjq1 if g; =3 mod 4, and the dyadic prime of Ky is
unramified in K. By Lemma 4.2 and Proposition 2.1, we see that ro(Uk,/Uk, N NK) = 2,
m+n primes of Ky are ramified in K, and ro(D}/K*?) = ro(A/K*?) +2 =m+n—1. We
see that the set

{%7@5’ e 7q':—17 1,009, 7a7n}
is a set of representatives of D}/K*z, where oy = x1 + V/2y; with positive integers (1, y1)
satisfying 22 — 2y? = ¢, and for 2 < j < m, o =5+ ﬁyj with positive integers (z;,y;)
satisfying ¢j = x? — 2y]2- with 4|y;. By construction, we know that aj =1 mod 4 for
2 < 7 < m. Hence the set
{q;7 e 7q:—1705;7 e 705:(n}

is a set of representatives of A/K*z. So E' is the genus field of K.

Suppose d = 3 mod 4 and ¢; = 7 mod 8, then dp§ = p5---p¥, e odd, and the dyadic
prime of Kj is ramified in K. By Lemma 4.2, ro(Uk, /U, N NK) = 2, m + n+ 1 primes of
Ky are ramified in K, and ro(Dj/K*?) = r9(A/K*?) + 2 = m + n. We see that the set

* *
{27(]27"' 3 Qp, X1, Q2,0 ;am}
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is a set of representatives of D} /K *2 where ¢; and o are defined as above. Since o; = x5
mod 4 for 2 < j < m, the set

{q;7 7(1:“043,"' aa:n}

is a set of representatives of A/K *2 and F is the genus field of K. W

5. The case p=1 mod 4 and d =2 mod 4

In this section, let Ko = Q(,/p) and K = Q(/p, Vd), a prime p = 1 mod 4 and d =
2 T1 ¢; with
j=1

(p):1f0r1<j<m (5.1)
4

<p>:—1f0rm+1<j<n. (5.2)
4aj

Note that m +n odd primes are ramified in K/Ky. If p=1 mod 8, then two dyadic primes
are ramified in K/Kp; if p =5 mod 8, then one dyadic prime is ramified in K/Ky. Let
p=1 mod 8, then u? — 2w? = p, u,w € Nyw =0 mod 4, and set ag = %‘/ﬁ.

Lemma 5.1. Let p=1 mod 4 and d = 2 ﬁ gj =2 mod 4. Let € be a fundamental unit
of Ky. =

i) If either p € AT orp =5 mod8, all ¢ = 1 mod4 for 1 < i < n and all q; €
Nico(ve) ko (Ko(Ve)) for 1 < j <m, then

T‘Q(UKO/UKO ﬂNK) =0.

it) If one of the following four conditions holds,
(1) p =1 mod38, all g =1 mod4 for 1 < j < n, and either p ¢ AT or q1 ¢
Niko(ve)/ Ko (Ko(VE));
(2)p=5 mod 8, all g =1 mod 4 for 1 < j<mn, and q1 & Nk, /e)/x,(Ko(V/€));
(3)d/2=1 mod 4, ¢gj =1 mod4 for1 <j<m, and ¢, =3 mod 4;
(4)p=5 mod8,d/2=3 mod4, allg; =1 mod 4 for1 <j<m;
then

T2<UK0/UKO ﬁNK) =1.
i4i) If either p =1 mod 8, d/2 =3 mod4, ¢ =1 mod4 foralll <j<m, orqg =3
mod 4 and (L) =1, then

ro(Uk, /Uk, N NK) = 2.
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Proof. i) Suppose that p € A" and ¢; = 1 mod 4 for any 1 < i < n, and ¢; €
Nio(ve) ko (Ko(y/e)) for all 1 < j <m. Then —1 € NK. Since p € A*, by Lemma 4.1 the
local Hilbert symbol (e,d)p = (¢,2)p = 1, where D is any dyadic prime of Kj. From the
fact that ¢; € Ny, (e, (Ko(v€)) for 1 < j < m and Proposition 2.2, the local Hilbert
symbol (¢,d)q, = (€,q;)q, = 1, where QjQ;» = ¢;Ok,. For m+1 < j <n, by [14, Lemma
3.3] the local Hilbert symbol (¢, d)g, = 1, where Q; = ¢;Ok,. Hence e € NK.

Suppose that p = 5 mod 8, by [14, Lemma 3.3] the local Hilbert symbol (e,d)p = 1,
where D is a dyadic prime of Ky. Similarly, we get ¢ € NK.

ii)-(1) It is clear that —1 € NK. Suppose that p ¢ AT, then the local Hilbert symbol
(e,d)p = (¢,2)p = —1 by Lemma 4.1, where D is a dyadic prime of K. Suppose that
@1 & Nk, (ye)/ K, (Ko(\/€)), then the local Hilbert symbol (e,d)q, = —1 by Proposition 2.2,
where Q1Q] = ¢10k,. Hence e ¢ NK.

Similarly, we can get the results in cases (2), (3), (4).

iii) suppose that p = 1 mod 8, d/2 = 3 mod 4, ¢;j = 1 mod 4 for all 1 < j < m.
Since d/2 =3 mod 4 and p = 1 mod 8, the local Hilbert symbol (—1,d)p = —1, where
DD’ = 20k,. Similarly we can prove that € ¢ NK.

Now Suppose that ¢; = 3 mod 4 and (%) = 1. Since ¢; = 3 mod 4 and (%) =1, the
local Hilbert symbol (—1,d)o, = —1, where @Q1Q’ = ¢10k,. Similarly, we can prove that
c¢ NK. B,

Let, for 1 < j < m and ¢; = 1 mod 4, (x;,y,,%;) be a relatively prime and positive
integral solution of Diophantine equation ¢;z? = z* — py?, and let a; = x; + /py; if 2 fz;
or a; = % if 2|2z;. Let p=1 mod 8, then u? —2w? = p, u,w € Nyw =0 mod 4, and

set ap = %‘/ﬁ.

Theorem 5.1. Let K = Q(,/p, Vd) with p=1 mod 4 and d =2 [] g; =2 mod 4.

j=1
i) If either p € AT orp =5 mod 8, all ¢ = 1 mod 4 for 1 < j < n and all q; €
NKO(ﬁ)/KO(KO(\/E)) for1 < j <m, then

E:Q(\/ﬁv\/ﬁa\/av"' ’Jq:vﬁaﬁv"' >M)7

where

ag  ifpe AT
a =
1 if p=5 mod 8.

W) If p =1 mod 8, all ¢ = 1 mod 4 for 1 < j < n, and either p ¢ A" or q1 ¢
Nico(ve) /Ko, (Ko(Ve)), then

E:Q(ﬁvﬁ;m7"'7\/%’\/5’\/a>§7"'7@%
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where
ag ifpe AT
a=4 o if 1 € Nio(ye) k. (Ko(Ve))
aoen  ifp ¢ AT a1 & Nio(yey ko (Ko(Ve)),

. { o; if g5 € Ngy (e, (EKo(Ve)) b { o ifpe AT
a;b if 4 ¢ Nieo (o) x, (EKo(Ve)), ag  ifpg At

ii) If p="5 mod 8, all g; =1 mod 4 for 1 < j <mn, and q1 ¢ N, (/e)/x, (Ko(V¢€)), then

E:Q(\/ﬁvﬁv\/‘ﬂv'” 7@7\/@7"'5\/@)»

where
. { a; i s € Nigyyaym (Ko(v/e)
ajarif 45 ¢ Ny (o) x, (Eo(Ve)),

J
w) Ifd/2=1 mod 4, ¢j =1 mod 4 for 1 < j <m, and p, =3 mod 4, then
E:Q(\/ﬁa \/57 V C]T7 ) \/q;;—h V O[é, V Oéf,"' » 'V a:n)v

where

i if g; =1 mod 4
=4 @ T fori<j<n—1,
q;qn  ifq; =3 mod 4

1 if p=>5 mod 8
ay =< ag ifpc AT
agqn  ifpg AT and p=1 mod 8,

@jqn  if 45 & Nio(ye)/x,(Ko(Ve))
v) Ifp=>5mod 8, d/2 =3 mod 4, g; =1 mod 4 for 1 < j < m, then

E:Q(\/ﬁa\/ﬁa"'7\/ﬁ7\/a?'”7\/@)7

o = { @ if 4 € Nio(ye) 1o (Ko(Ve)) forl<j<m.

where

;= { 4G g =1modd { aj if g € Niy(ye) i, (Ko(v6))
’ 20; if qj ¢ Nigy(ve) 0 (Ko(1/6)).

vi) If p=1 mod 8, d/2 =3 mod 4, all ¢; =1 mod 4 for 1 < j < m, then

E:Q(fa\/ﬁv"’7\/&7\/@7"'3\/04%)7

where each ¢; and o are defined as Case v).

2q; ifg; =3 mod 4,

15
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vit) If ¢ = 3 mod 4 and (%) =1, then

EZQ(\/@\/@\/EW' 7\/&7\/57@7"'7\/0‘:1)’
where

{2 ifd/2=1 mod4 {qi ifg; =1 mod 4
a =

2¢1  ifd/2=3 mod 4, B a1¢;  if ¢ =3 mod 4,

a ifpe AT
b=4¢ qao ifpg AT andp=1 mod 8
1 ifp=5 mod 8§,

for2 <j<m, o =x; +/py; if 2fz; (or aj = % if 2|z5), (z;,y;,%;) a relatively

prime and positive integral solution of a Diophantine equation q;.“z2 =22 — py?, and

. { o if o s primary
aj =

Qo if aj is not primary.

Proof. i) Suppose that p € AT and d =2 mod 4, two dyadic primes of K, are ramified
in K. By the conditions and Lemma 5.1, we know that ro(Uk,/Ux, "NK) =0, m+n+2
primes of K are ramified in K, ro(Djc/K*?) = ro(A/K*?) = m +n+ 1. Hence we see that
the set

{Qafha e 1, Q, QU1 7Olm}
is a set of representatives of D}, /K**. Hence E is the genus field of K.

Suppose p = 5 mod 8 and d = 2 mod 4, then the dyadic prime of Ky is ramified in K.
By conditions and Lemma 5.1, we know that 72 (Uk,/Uk, N NK) =0, m +n + 1 primes of
Ky are ramified in K, ro(Dj/K*?) = ro(A/K*?) = m + n. Hence we see that the set

{2aq17"' yQn—1,001, " - 7a'm}

is a set of representatives of D /K*? and E is the genus field of K.

ii) Since p = 1 mod 8 and d = 2 mod 4, two dyadic primes of K are ramified in K. By
conditions and Lemma 5.1, we know that ro(Ug,/Urx, NNK) =1, m + n+ 2 primes of K
are ramified in K, ro(Dj/K*?) = ro(A/K*?) + 1 = m +n + 1. Hence we see that the set

{2aQI7"' ydn—1, 000, 1, "+ * 7am}

is a set of representatives of D} /K *2
Suppose that p € A" and ¢; ¢ Nio(ve) ko (Ko(Ve)). Let p= u? = 2w u,w eN,w=0

mod 4. By Lemma 4.1 we have that p € A% if and only if u = 1 mod 4. Let D = (2, U_Q‘/E),

— (9 utVvP
Dl - (2a 2

) be dyadic primes of Kj. Since w =0 mod 4,

u+p u—p w?
. =— = d4
5 5 1 0 mo
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and o) = H_T‘/ﬁ € D?. Hence

ao=u+2\/]3=u—u_2\/ﬁzu mod D2

Let sz =2¢f2 e, f € N, 2/f, e even, then ap - af/2° = f? mod D? and «f/2¢

mod D? ie. ag/2° =u mod (D’)?, where o)) = #. Hence we see that the set

Il
IS

* *
{27(]1"' ‘5 qn—1,00,09," " aan}

is a set of representatives of A/K*?, where of = aj if ¢; € Nk, /e)/Kx, Ko(Ve)) and
o = aj - o if ¢; ¢ Ni(/e)/K,(Ko(\/€)). Similarly we can prove other cases.

iii), iv) They are clear from ii).

v) Since p = 5 mod 8 and d/2 = 3 mod 4, one dyadic prime of Ky is ramified in K
and d2¢ = ¢j ---qy,, € even, where for 1 < j <n, ¢; =¢; if ¢; =1 mod 4 and ¢ = 2¢; if
¢; =3 mod 4. By Lemma 5.1 and Proposition 2.1, we know that ro(Ug,/Ux, NNK) =1,
m+n+ 1 primes of K are ramified in K, ro(D}j/K*?) = ro(A/K*?) + 1 = m + n. Hence

we see that the set
{2aq17' s Qn—1,01," 7am}

is a set of representatives of Df( /K *2 Thus by construction,
{QT7 e 7q:;—1,ax1<7 e ,Oé;(n}

is a set of representatives of A/K *2 where each ¢; and o] are defined as above. Hence £
is the genus field of K.

vi) Tt is clear from v).

vii) Suppose that p = 1 mod 8, d/2 =1 mod 4 and ¢; = 3 mod 4, then two dyadic
primes of K are ramified in K and dqf = ¢5 - - ¢, e even. By Lemma 5.1 and Proposition
2.1, we know that r2(Ug,/Uk, N NK) = 2, m + n + 2 primes of K, are ramified in K,
ro(DE/K*?) = ro(A/K*?) + 2 =m +n+ 1. Hence we see that the set

* *
{27Q17q27"' ydp—1,00, 1,02, " ,Oém}

is a set of representatives of D} /K *2 By the same process of proving Theorem 3.1 iii), we

see that the set
{27(];’ e aq:,fla CYE;, 0437 e 704:;7,}

is a set of representatives of A/K *2 Hence F is the genus field of K. Similarly, we can

prove the other case. B



18 SUNGHAN BAE AND QIN YUE

6. Function Fields

In this section we study the case of function fields. Let g be a power of an odd prime p
and F, be a finite field with ¢ elements. Let k = Fy(T), A = F,[T] and AT be the subset
of A consisting of monic polynomials. Let co be the place associated to the place (%) By
a function field K we mean a finite extension of k. The places of K lying over oo are called
the infinite places. The Hilbert class field of K is defined to be the maximal unramified
abelian extension Hg of K, in which the infinite places of K splits completely. For more
details for genus fields of function fields, we refer to [9].

Let P € AT be an irreducible polynomial of even degree, and D = H?:l Q); be a squarefree
monic polynomial with Q; € A" irreducible. In this section we are going to describe the
genus field E of K = k(v/P, /D) over Ky = k(v/P) explicitly. We will see that the case that
deg D is odd (resp. even) corresponds to the case that d =3 mod 4 (resp. d =1 mod 4)
in the number field case.

Let koo := Fy((%)) and sgn be the usual sign function on k.. For a finite extension L
of k and a place v lying over oo, sgn,, is defined to be sgn o N,,, where N, is the local norm

map from L, to ko. Let

qg—1
5gM, = Sgny > .

An element a € L* is said to be positive at v if sgn,(a) = 1, and is called totally positive if
it is positive at every infinite place v of L. Let 7, be the uniformizer of L,. For a € L, the
degree of a at v, written deg,(a), is defined to be i if a = 7, *u, where u is a local unit at v.

Let Ko = k(v/P). Then there exists a fundamental unit ¢ with Ne = ~, where N is the
norm map from Ky to k and v is a generator of F. Assume that (%) =lfor1<j<m

and (%) = —1 for m+ 1 < j <n. Define

Dk :={zx € K*|vp(x) =0 mod 2 for all finite places p of K},

D} := {z € Dg|z totally positive},
and
A :={z € D}, : deg,(z) is even for every infinite place v of K}.
Then we clearly have the genus field F of K is K(vVA).

We can show that the function field analogues of Lemma 2.2, 2.3 and Proposition 2.1
remain true. We remark that for z € D}, K(y/z)/K is unramified at all places, but the
infinite places can be inert, that is, may not split. If z € A then the infinite places of K
splits in K(y/z)/K. For (%) = 1, there exist (z;,y;,2;) € A3 such that o := 2 + y;VP
is totally positive. Let v; and vy be the infinite places of Ky. In the case deg @); is odd, we
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put an additional condition that deg, («;) is even and deg,,(;) is odd, which is possible

because
degvl (aj) + degvg (aj) = degvl (aj) + degvl (Oé;) = deg(Q] zj2)7

which is odd. Here o' means the conjugate of o in Ky over k.

Remark 6.1. In the case of function field no dyadic primes arise, and this fact makes
the situation easier than number field case. But one needs to deal the infinite places more
carefully, because, for an infinite place v to split in K(y/a), a should be positive at v and
deg, («) should be even.

Theorem 6.1. Suppose that deg D is odd. Then the genus field of K = F,(v/P,V/D) is
given by

Fy(VP, A/ Qy sV Q, Ly -y /).

Proof. Since degD is odd, oo is ramified in K. Thus deg,(c; ) is even for every infinite
place v of K. The rest are the same as in the number field case. (See [15]) W
To consider the case when deg D is even we need the following analogue of Proposition

2.2, whose proof is similar.

Proposition 6.1. Let P,Q be a monic primes of even degree. Assume that (g) =1 and let
€ be a fundamental unit of Ko = k(v/P). If (z0,y0, 20) € A® is a relatively prime solution of
the Diophantine equation Qz* = x> — Py? so that a = xzo + v/ Pyq is totally positive. Then

2[h(k(VP,/Q)) if and only if Q € Ni, (/e /r, (Ko(\/€)) if and only if deg,(a) is even for
every infinite place v of K.

Note that deg, () is even for every infinite place v of K is equivalent to deg, () is even
for some infinite place v of K, since deg () is even. We also need the following analogue of

Lemma 3.1.

Lemma 6.1. Suppose that deg P and deg(D =[]}, Q;) are even.
i) If deg Q; is even for every i <n, and Q; € Nk (/) K, (Ko(\/€)) for 1 < j <m, then

TQ(UKO/UKOQNK) =0.

i) If either degQ; is even for every 1 < i < n and Q; ¢ Ng,(/e) Kk, Ko(/e€)) for some
J <m, ordegQ; is even for every 1 < j < m and deg @Q,, is odd, then

TQ(UKO/UKO QNK) =1.
iii) If deg Q1 is odd and (%) =1, then

ro(Uk, /Uk, N NK) = 2.
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We finally get;

Theorem 6.2. Let K = k(v/P,v/D) with deg P and deg D even.
i) If deg Q; is even for every 1 <i <mn and Q; € Ny, (/e)/k,(Ko(v/€)) for 1 < j < m, then
the genus field E of K is given by

E:k(ﬁ’\/@a""\/@7M7"';m).

i) If deg Q; is even for every 1 < i <n and Q; ¢ Nk, (/o) K, (Ko(\e)) for some j < m,
say, j =1, then the genus field E of K is given by

E:k(\/ﬁv\/@a"'v\/@a\/@f"7\/@)v

where, for 2 < 7 < m,
ot = { R if 45 € Nico(ve) i, (Ko(Ve))
ajorif 45 & Niy (/o) (Eo(Ve))-

J
iii) If deg Q; is even for every 1 < j < m and deg Q,, is odd, then the genus field E of K

s given by

E:k(\/ﬁa\/@a"'7\/Q;717m7”'a\/0‘;{n)a

where, for 1 < j < m,

of = { & if Qi € Nigy(ye) K, EKo(Ve))
’ a;Qn  if Q; & Niey (o) 0 (Ko(V6)),

and, for 1 <i<n

)

QiQn  if degQ; is odd.
iv) If deg Quis odd and () = 1, then the genus field E of K is given by

E=k(VP,\/Q5, - Qa3 \/ag,),

. { Q; if deg Q; is even

where

QF = Qi if deg Q; is even
T Qs if deg Qs is odd

and for 2 < 7 <m,

Q; if deg Q; is even and Q; € Ny (/e)/ K, (Ko(V/€))
a; =4 Qo if degQ; is even and Q; & NKO(\/E)/KO(KO(\/E))
ara;  if degQ; is odd.
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Proof. The proof is almost the same as that of Theorem 3.1, except the last assertion.

This comes from our choice of o; so that a;c; has even degree at every infinite place of K.
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