
GENUS FIELD OF REAL BIQUADRATIC FIELDS II

SUNGHAN BAE AND QIN YUE

Abstract. Let K = Q(
√

p,
√

d) be a real biquadratic field with p ≡ 1 mod 4 or p = 2

and d a squarefree positive integer. The Hilbert genus field is described explicitly by Yue

([15]) in the case that p ≡ 1 mod 4 and d ≡ 3 mod 4. In this article we give the Hilbert

genus field of K explicitly for the remaining cases. We also consider the function field

analogue of this problem.

1. Introduction

Let K be a number field and let H be the Hilbert class class field of K, i.e. the maximal

abelian unramified extension of K. Let G = Gal(H/K) be the Galois group of H/K and

let C(K) be the class group of K, then there is a canonical isomorphism:

φH/K : C(K) → Gal(H/K),

where φH/K is the map induced by the Artin map (see [8]). Let E be the fixed field of G2.

Then

C(K)/C(K)2 ∼= G/G2 ∼= Gal(E/K).

Hence

E = K(
√

∆), K∗2 ⊂ ∆ ⊂ K∗. (1.1)

If K is the real biquadratic field Q(
√

p,
√

d) with p ≡ 1 mod 4 a prime and d a squarefree

positive integer prime to p, then E is the relative genus field of the extension K/K0, where

K0 = Q(
√

p).

In this paper, we will find a set of representatives of the set ∆/K∗2, when K is a real

biquadratic field

Let K = Q(
√

d) be a real quadratic field, then by [6] or [4] we know the genus field E of

K explicitly. In fact, let d = q1 · · · qn, where q1, · · · , qn are distinct primes,
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1) If qj ≡ 1 mod 4 for all 1 ≤ j ≤ n− 1, then

E = Q(
√

q1,
√

q2, · · · ,
√

qn);

2) If q1 ≡ 3 mod 4, then

E = Q(
√

d,
√

q∗2 , · · · ,
√

q∗n),

where

q∗j =





qj if qj ≡ 1 mod 4

qjq1 if qj≡ 3 mod 4

qjq1 if qj = 2 and d/2 ≡ 3 mod 4

qj if qj = 2 and d/2 ≡ 1 mod 4

, j = 2, · · · , n.

Let K = Q(
√

p,
√

d) be a real biquadratic field, where p is a prime number and d is a

squarefree positive integer prime to p. When p ≡ 1 mod 8 and d ≡ 3 mod 4, P. Sime ([10])

used Herglotz’s results ([5]) to give the Hilber genus field of K, under the condition that

2-Sylow subgroups of the class groups of K0 = Q(
√

p), K1 = Q(
√

d), K2 = Q(
√

pd) are

elementary. Later Q. Yue ([15]) improved Sime’s result to p ≡ 1 mod 4, d ≡ 3 mod 4 and

without the condition on the class groups. Recently Fouvry and Klüners [3] touched upon

the genus field of K and gave strong evidence in the direction of a Stevenhagen’s conjecture

([11]).

In this paper, we extend Yue’s result to all real biquadratic number fields K = Q(
√

p,
√

d)

with p ≡ 1 mod 4 or p = 2, and a positive squarefree integer d prime to p. The assumption

on p is to assure the existence of a fundamental unit ε ∈ K0 whose norm is −1.

In the final section we consider the analogous problem in the function field case, that is,

we find the genus field of k(
√

P ,
√

D), where k = Fq(T ), P a monic irreducible polynomial

of even degree and D a monic squarefree polynomial in Fq[T ].

Notations:

OL := the ring of integers of a number field L

UL := the unit group of OL

C(L) := the class group of L

h(L) := the class number of L

vp(x) := the normalized valuation at a prime p of L

A2 := 2-Sylow subgroup of an abelian group A

2A := the subgroup of elements of order ≤ 2 of A

r2(A) := 2-rank of an abelian group A
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2. Basic Facts

In this section we recall some facts from [15] which will be used later. Let K0 = Q(
√

p),

K = Q(
√

p,
√

d), K1 = Q(
√

d) and K2 = Q(
√

pd). Let E be the Hilbert genus field of K.

Then E can be expressed as

E = K(
√

∆), K∗2 ⊂ ∆ ⊂ K∗.

Define

DK := {x ∈ K∗|vp(x) ≡ 0 mod 2 for all finite primes p of K},
D+

K := {x ∈ DK |x totally positive}.

Lemma 2.1. ([15, Lemma 2.1]) If x ∈ D+
K , then all non-dyadic primes of K are unramified

in K(
√

x). Moreover, ∆ ⊂ D+
K .

Let S be a finite set consisting of all infinite primes and the finite primes of K0, which

are ramified in K. Let US
K0

be the group of S-units of K0 and let US+
K0

be the subgroup of

all S-units that are positive at all real infinite primes of K0.

Lemma 2.2. ([15, Lemma 2.2], or [13])There is an exact sequence

0 → Z/2 → US+
K0

/(US
K0

)2 → D+
K/K∗2 → 1.

Moreover,

r2(D+
K/K∗2) = s− 1,

where s is the cardinality of all finite primes in S.

Let UK0 be the group of units in K0 and NK the image of K under the norm map NK/K0 .

Lemma 2.3. ([15, Lemma 2.3], or [7]) Let Am(K/K0) be the subgroup of C(K) consisting

of all ambiguous ideal classes. Then

r2(C(K)) = r2(Am(K/K0)) = s− 1− r2(UK0/UK0 ∩NK).

Proposition 2.1. ([15, Proposition 2.1]) There is a decomposition of the multiplicative

group

D+
K/K∗2 = ∆/K∗2 ×A,

where r2(A) = r2(UK0/UK0 ∩NK).

In the following, we give some results of 2-adic local fields.

Lemma 2.4. let F = Q2(
√−3) be an extension over the local field Q2 and U the unit group

of F . Then

i) U/U2 = (3)× (1 + 2w)× (1 + 4w), where w = −1+
√−3
2 is the third primitive unit root.
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ii) F (
√

3,
√

1 + 2w)/F is a totally ramified extension, F (
√

1 + 4w)/F is an unramified ex-

tension.

Note: 3 · (1 + 2w) ≡ 1 + 2w2 mod 4 and F (
√

1 + 2w2)/F is ramified. Moreover, if a ∈ U

and a ≡ w · x or a ≡ w2 · x mod 4, x ≡ 1 mod 2, then F (
√

a)/F is unramified extension if

and only if x ≡ 1 mod 4.

Lemma 2.5. In the local field Q2(
√−3),

i) If a prime p ≡ 13 mod 16, then
√

p ≡ √−3 mod 8.

ii) If a prime p ≡ 5 mod 16, then
√

p ≡ √−3 + 4 mod 8.

Proof. Since p ≡ 5 mod 8,
√

p ∈ Q2(
√−3). In the local field Q2(

√−3), we consider the

root of polynomial f(x) = x2− p. By Newton’s method (see [12, P. 76]), a0 =
√−3 satisfies

the relation

v2(
f(a0)

f ′(a0)2
) = v2(

−3− p

4
) = r > 0,

Then we can construct the sequence

ai+1 = ai − f(ai)
f ′(ai)

, a0 =
√−3, i = 0, 1, 2, · · · ,

which converges to a root
√

p of f(x), i.e. limx→∞ ai =
√

p. Moreover v2(ai+1 − ai) ≥ 2ir.

If p ≡ 13 mod 16, then r ≥ 2 and

a1 = a0 − f(a0)
f ′(a0)

=
√−3− −3− p

2
√−3

≡ √−3 mod 8,

Hence v2(
√

p− a1) ≥ 21 · 2 = 4 and
√

p ≡ a1 ≡
√−3 mod 8.

If p ≡ 5 mod 16, then r = 1 and v2(a3 − a2) ≥ 22 · 1 = 4,

a1 = a0 − f(a0)
f ′(ao)

=
√−3− −3− p

2
√−3

=
√−3 +

3 + p

2
√−3

=
p− 3
2
√−3

,

a2 = a1 − f(a1)
f ′(a1)

=
p− 3
2
√−3

+
(p + 3)2

√−3
12(p− 3)

≡ p− 3
2
√−3

mod 8,

Hence, v2(
√

p− a2) ≥ 4 and by
√−3 = 1 + w · 2,

√
p ≡ a2 ≡

√−3 +
p + 3
2
√−3

≡ √−3 + 4 mod 8.¥

Lemma 2.6. Let p be a prime and q a positive integer prime to p with p ≡ q ≡ 1 mod 4.

Suppose that the Diophantine equation qz2 = x2 − py2 has a relatively prime and positive

integral solution (x0, y0, z0). Take α = x0 +
√

py0 if 26 |z0 and α = x0+
√

py0

2 if 2|z0.

i) If 26 |z0, then α ≡ x0 + y0 mod 4.

ii) If p ≡ 5 mod 8 and 2|z0, then in the local field Q2(
√

p), α ≡ w(−x0) or w2(−x0) mod 4,

where w = −1+
√−3
2 .
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iii) If p ≡ 1 mod 8 and 2|z0, then α ≡ x0 mod D′2 and α ≡ 2e · x0 mod D2, where D and

D′ are dyadic primes of K0 = Q(
√

p) and e is an even integer.

Proof. i) If 2 6 |z0, then 2 6 |x0 and 2|y0. Hence

α = x0 + y0 +
−1 +

√
p

2
· 2y0 ≡ x0 + y0 mod 4.

ii) If p ≡ 5 mod 8 and 2|z0, then 2||z0. Suppose first that p ≡ 13 mod 16, then
√

p−√−3 ≡
0 mod 8. Hence

α− wy0 =
x0 +

√
py0

2
− −1 +

√−3
2

· y0 =
x0 + y0

2
+
√

p−√−3
2

y0 ≡ x0 + y0

2
mod 4.

Since x2
0 − py2

0 = qz2
0 ≡ 4 mod 16 and p ≡ 13 mod 16, x2

0 ≡ y2
0 mod 16. If x0 ≡ −y0 mod 8,

then x0+y0
2 ≡ 0 mod 4 and α ≡ wy0 ≡ w(−x0) mod 4; if x0 ≡ y0 mod 8, then x0+y0

2 ≡ y0

mod 4 and α ≡ (1 + w)y0 = w2(−y0) ≡ w2(−x0) mod 4.

Suppose that p ≡ 5 mod 16. Then
√

p−√−3 ≡ 4 mod 8. Hence

α− wy0 =
x0 + y0

2
+
√

p−√−3
2

· y0 ≡ x0 + y0

2
+ 2y0 ≡ x0 + y0

2
+ 2 mod 4,

since y0 is odd. Since x2
0 − py2

0 = qz2
0 ≡ 4 mod 16 and p ≡ 5 mod 16, x2

0 ≡ y2
0 + 8 mod

16. If x0 ≡ −y0 + 4 mod 8, then x0+y0
2 ≡ 4

2 ≡ 2 mod 4 and α ≡ wy0 ≡ w(−x0) mod 4; if

x0 ≡ y0 + 4 mod 8, then x0+y0
2 ≡ y0 + 2 mod 4 and α ≡ (1 + w)y0 = w2(−y0) ≡ w2(−x0)

mod 4.

iii) If p ≡ 1 mod 8 and 2|z0, then 4|z0 and

x0 + y0
√

p

2
· x0 − y0

√
p

2
=

z2
0

4
≡ 0 mod 4.

Let D = (2,
x0+

√
py0

2 ) and D′ = (2,
x0−√py0

2 ) be two dyadic primes of K0 = Q(
√

p), then

α = x0+y0
√

p

2 ∈ D2, α′ = x0−y0
√

p

2 ∈ D′2, and

α =
x0 + y0

√
p

2
= x0 −

x0 − y0
√

p

2
≡ x0 mod D′2,

also α′ ≡ x0 mod D2. Let 2e||z0, e ≥ 2, then by α · α′ · 2−2(e−1) = z2
0

22e ≡ 1 mod D2,

α · 2−2(e−1) ≡ (α′)−1 ≡ x0 mod D2.¥

An element α of OK0 is called primary if X2 ≡ α mod D2 is solvable for any dyadic

prime D of K0. By Lemma 2.6, we get the following result.

Corollary 2.1. The assumptions are as in Lemma 2.6.

i) Suppose that α = x0 +
√

py0 with 26 |z0, then α is primary if and only if x0 + y0 ≡ 1

mod 4.

ii) Suppose that α = x0+
√

py0

2 with 2|z0, then α is primary if and only if x0 +z0 ≡ 1 mod 4.

Moreover, we have that α is not primary if and only if α · 3 is primary. ¥
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Proposition 2.2. Let p, q be distinct primes with p ≡ q ≡ 1 mod 4 and (p
q ) = 1 and let

ε be a fundamental unit of K0 = Q(
√

p). If (x0, y0, z0) is a relatively prime and positive

integral solution of the Diophantine equation qz2 = x2 − py2, set α = x0 +
√

py0 if 26 |z0 or

α = x0+
√

py0

2 if 2|z0. Then 2|h(Q(
√

p,
√

q)) if and only if q ∈ NK0(
√

ε)/K0
(K0(

√
ε)) if and

only if the local Hilbert symbol (ε, q)Q = 1, where QQ′ = qOK0 , if and only if α is primary.

Proof. Let K = Q(
√

p,
√

q) and K0 = Q(
√

p), then by Lemma 2.3 r2(C(K)) =

2− 1− r2(UK0/(UK0 ∩NK)). It is clear that −1 ∈ NK. Hence we conclude that 2|h(K) if

and only if ε ∈ NK if and only if q ∈ NK0(
√

ε)/K0
(K0(

√
ε)) if and only if the local Hilbert

symbol (ε, q)Q = 1, where QQ′ = qOK0 (see [2, Lemma 21.8]).

Let α = x0 +
√

py0 if 2 6 |z0 (or α = x0+
√

py0

2 if 2|z0), then α ∈ D+
K . By Proposition 2.1 and

Lemma 2.1, we conclude that 2|h(K) if and only if K(
√

α)/K is an unramified extension if

and only if K(
√

α)/K is an unramified extension at all dyadic primes of K if and only if α

is a primary element by Lemma 2.6. ¥
Let K0 = Q(

√
p) and K = Q(

√
p,
√

q), where p ≡ q ≡ 1 mod 4 be distinct primes with

(p
q ) = −1. Let ε be a fundamental unit of K0 = Q(

√
p). Then, by Lemma 2.3, r2(C(K)) = 0,

and thus, ε ∈ NK/K0(K), which implies that q ∈ NK0(
√

ε)/K0
(K0(

√
ε)),

For the rest of the paper we write d = ε
n∏

j=1

qj , where qj ’s are distinct odd primes and

ε ∈ {1, 2}. By rearranging the primes, we let m ≤ n be an integer so that
(

p

qj

)
= 1 for 1 ≤ j ≤ m and

(
p

qj

)
= −1 for m + 1 ≤ j ≤ n.

3. The case p ≡ 1 mod 4 and d ≡ 1 mod 4

In this section, let K0 = Q(
√

p) and K = Q(
√

p,
√

d), where p ≡ 1 mod 4 and d =
n∏

j=1

qj ≡ 1 mod 4. Then no dyadic primes are unramified in K/K0, and so m + n finite

primes are ramified in K/K0. Thus by Lemma 2.3

r2(C(K)) = m + n− 1− r2(UK0/UK0 ∩NK). (3.1)

Lemma 3.1. Suppose that p ≡ 1 mod 4 and d =
n∏

j=1

qj ≡ 1 mod 4.

i) If qi ≡ 1 mod 4 for all i ≤ n, and qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) for 1 ≤ j ≤ m, then

r2(UK0/UK0 ∩NK) = 0.

ii) If either qi ≡ 1 mod 4 for all 1 ≤ i ≤ n and qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)) for some j ≤ m,

or qj ≡ 1 mod 4 for 1 ≤ j ≤ m and qn ≡ 3 mod 4, then

r2(UK0/UK0 ∩NK) = 1.
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iii) If q1 ≡ 3 mod 4 and ( q1
p ) = 1, then

r2(UK0/UK0 ∩NK) = 2.

Proof. i) Since qj ≡ 1 mod 4 for 1 ≤ j ≤ n, the local Hilbert symbol (−1, d)Q = 1 at

all primes Q of K0. Hence −1 ∈ NK. For 1 ≤ j ≤ m, let QjQ
′
j = qjOK0 , the local Hilbert

symbol (ε, d)Qj = (ε, qj)Qj = 1 by Proposition 2.2; for m + 1 ≤ j ≤ n, let Qj = qjOK0 , the

local Hilbert symbol (ε, d)Qj
= 1 by [14, Lemma 3.3]. Hence −1, ε ∈ NK.

ii) By the conditions and [14, Lemma 3.3], we know−1 ∈ NK. If q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)),

then by Proposition 2.2 the local Hilbert symbol (ε, d)Q1 = −1, where Q1Q
′
1 = q1OK0 . If

qn ≡ 3 mod 4 and ( p
qn

) = −1, then (ε, d)Qn
= −1 by [14, Lemma 3.3], where Qn = qnOK0 .

Hence ε /∈ NK.

iii) If q1 ≡ 3 mod 4 and ( q1
p ) = 1, then the local Hilbert symbol (−1, d)Q1 = (−1

q1
) = −1,

where Q1Q
′
1 = q1OK0 ; and −1 = (−1, d)Q1 = (ε, d)Q1(ε

′, d)Q1 = (ε, d)Q1(ε, d)Q′1 , where ε′ is

the complex conjugate of ε. Hence −1, ε /∈ NK. ¥
Let, for 1 ≤ j ≤ m and qj ≡ 1 mod 4, (xj , yj , zj) be a relatively prime and positive

integral solution of Diophantine equation qjz
2 = x2 − py2, and let αj = xj +

√
pyj if 2 6 |zj

or αj = xj+
√

pyj

2 if 2|zj .

Theorem 3.1. Let K = Q(
√

p,
√

d) with p ≡ 1 mod 4 and d =
n∏

j=1

qj ≡ 1 mod 4.

i) If qi ≡ 1 mod 4 for all i ≤ n and qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) for 1 ≤ j ≤ m, then the

genus field E of K is given by

E = Q(
√

p,
√

q1, · · · ,
√

qn,
√

α1, · · · ,
√

αm).

ii) If qi ≡ 1 mod 4 for all 1 ≤ i ≤ n and qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)) for some j ≤ m, say,

j = 1, then the genus field E of K is given by

E = Q(
√

p,
√

q1, · · · ,
√

qn,
√

α∗2, · · · ,
√

α∗m),

where

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjα1 if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)).

iii) If qj ≡ 1 mod 4 for all 1 ≤ j ≤ m and qn ≡ 3 mod 4, then the genus field E of K

is given by

E = Q(
√

p,
√

q∗1 , · · · ,
√

q∗n−1,
√

α∗1, · · · ,
√

α∗m),

where, for 1 ≤ j ≤ m

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjqn if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)),
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and, for 1 ≤ i ≤ n− 1

q∗i =

{
qi if qi ≡ 1 mod 4

qiqn if qi ≡ 3 mod 4.

iv) If q1 ≡ 3 mod 4 and ( q1
p ) = 1, then the genus field E of K is given by

E = Q(
√

p,
√

q∗2 , · · · ,
√

q∗n,
√

α∗2, · · · ,
√

α∗m),

where

q∗i =

{
qi if qi ≡ 1 mod 4

q1qi if qi ≡ 3 mod 4,

for 2 ≤ j ≤ m, αj = xj +
√

pyj if 26 |zj (or αj = xj+
√

pyj

2 if 2|zj), (xj , yj , zj) a relatively

prime and positive integer solution of a Diophantine equation q∗j z2 = x2 − py2, and

α∗j =

{
αj if αj is primary

q1αj if αj is not primary.

Remark 3.1. By Corollary 2.1 and Proposition 2.2, it is easy to determine whether either

qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) or αj is primary.

Proof. i) By Lemma 3.1 and Proposition 2.1, r2(UK0/UK0∩NK) = 0, and so D+
K/K∗2 =

∆/K∗2. Hence r2(C(K)) = m + n− 1 = r2(∆/K∗2) = r2(D+
K/K∗2). It is clear that

{q2, · · · , qn, α1, · · · , αm}

is a subset of D+
K . In order to prove that this set is a set of representatives of D+

K/K∗2, we

need to verify that its elements are independent modulo K∗2.

Let K2 = Q(
√

pd). Consider β =
u∏

k=1

qik

v∏
l=1

αil
, where {qi1 , · · · , qiu} ⊂ {q2, · · · , qn} and

{αi1 , · · · , αiv} ⊂ {α1, · · · , αm}. If v = 0 and u ≥ 1, then β =
u∏

k=1

qik
/∈ K2. Suppose that

v ≥ 1 and β ∈ K2, then

NK/K2(β) = a2
v∏

l=1

qil
∈ K2

2 , a ∈ K2,

which is a contradiction. Therefore it is a set of representatives of D+
K/K∗2. Hence E is the

genus field of K.

ii) By Lemma 3.1 and Proposition 2.1, we know that r2(UK0/UK0 ∩ NK)) = 1, and so

r2(D+
K/K∗2) = r2(∆/K∗2)+1 = m+n−1. By Lemma 2.6 and Proposition 2.2, we conclude

that αj is not primary if and only if α1 ≡ a2 · 3 mod D2, a ∈ K0 and D any dyadic ideal

of K0, if and only if q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)) if and only if K(

√
α1)/K is ramified at a

dyadic prime D. Hence by construction, α∗j ≡ 1 mod D2 for 1 ≤ j ≤ m and

{q2, · · · , qn, α∗2, · · · , α∗m}
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is a set of representatives of ∆/K∗2. So E is the genus field of K.

iii) Similarly, we know that r2(UK0/UK0∩NK)) = 1 and r2(D+
K/K∗2) = r2(∆/K∗2)+1 =

m + n − 1. By construction, we know that q∗j ≡ 1 mod 4 for 1 ≤ j ≤ n − 1 and α∗j ≡ a2

mod D2 for 1 ≤ j ≤ m, where a ∈ K0 and D is a dyadic prime of K0. Hence the set

{q∗2 , · · · , q∗n−1, α
∗
1, · · · , α∗m}

is a set of representatives of ∆/K∗2 and E is the genus field of K.

iv) In this case r2(UK0/UK0∩NK)) = 2, and so r2(D+
K/K∗2) = r2(∆/K∗2)+2 = m+n−1.

For 2 ≤ j ≤ m, we can see easily that α∗j ≡ a2 mod D2 by Lemma 2.6, where a ∈ K0 and

D is a dyadic prime of K0. Thus K(
√

α∗j )/K is an unramified extension. Hence

{q∗2 , · · · , q∗n−1, α
∗
2, · · · , α∗m}

is a set of representatives of D/K∗2 and E is the genus field of K. ¥

4. The case p = 2

In this section, let K0 = Q(
√

2), K = Q(
√

2,
√

d), d =
n∏

j=1

qj with

qj ≡ ±1 mod 8, 1 ≤ j ≤ m, qj ≡ ±5 mod 8,m + 1 ≤ j ≤ n.

Let ε = 1 +
√

2 be the fundamental unit of K0. Note that, if d ≡ 1 (resp. 3) mod 4, m + n

(resp. m + n + 1) primes are ramified in K/K0. For a prime q ≡ 1 mod 8, there exist

positive integers u,w such that

q = u2 − 2w2,

and u is odd, w ≡ 0 mod 4 by multiplying the totally positive unit 3 + 2
√

2, if necessary.

Lemma 4.1. Let q ≡ 1 mod 8 be a prime and let ε1 be the fundamental unit of L = Q(
√

q).

Then the following statements are equivalent

i) q = a2 + 32b2 for some a, b ∈ Z, which we denote by q ∈ A+;

ii) q = u2 − 2w2, u, w ∈ N, u ≡ 1 mod 4, w ≡ 0 mod 4;

iii) the local Hilbert symbol (1 +
√

2, q)Q = 1, where QQ′ = qOK0 , K0 = Q(
√

2);

iv) the local Hilbert symbol (ε1, 2)D = 1, where DD′ = 2OL.

Proof. We know from [1] that i), ii), iii) are equivalent conditions. Now we prove that

iii) is equivalent to iv). Consider F = Q(
√

2,
√

q). Let ε = 1 +
√

2 and ε1 a fundamental

unit of L. By Lemma 2.3 and [2, Theorem 10.3], we conclude that the local Hilbert symbol

(1 +
√

2, q)Q = 1 in L if and only if 1 +
√

2 ∈ NF/K0(F ) if and only if 2|h(F ) if and only if

ε1 ∈ NF/L(F ) if and only if the local Hilbert symbol (ε1, 2)D = 1 in L, where DD′ = 2OL.

¥
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Lemma 4.2. Let p = 2, d =
n∏

j=1

qj, K0 = Q(
√

2), K = Q(
√

2,
√

d).

i) If qi ∈ A+ for all 1 ≤ i ≤ m and qj ≡ 5 mod 8 for all m + 1 ≤ j ≤ n, then

r2(UK0/UK0 ∩NK)) = 0.

ii) If either qj ≡ 1 mod 4 for all 1 ≤ j ≤ n, q1 ≡ 1 mod 8 and q1 /∈ A+, or qj ≡ 1 mod 8

for all 1 ≤ j ≤ m and qn ≡ 3 mod 8, then

r2(UK0/UK0 ∩NK)) = 1.

iii) If q1 ≡ 7 mod 8, then

r2(UK0/UK0 ∩NK)) = 2.

Proof. i) It is clear from the conditions that −1 ∈ NK. By Lemma 4.1, we know

that the local Hilbert symbol (ε, d)Qj
= 1, where ε = 1 +

√
2 and QjQ

′
j = qjOK0 for

1 ≤ j ≤ m. By [14, Lemma 3.3], we know that the local Hilbert symbol (ε, d)Qj
= 1, where

Qj = qjOK0 , for m + 1 ≤ j ≤ n. By Minkowski-Hasse theorem, we have ε ∈ NK. Hence

r2(UK0/UK0 ∩NK)) = 0.

ii) In this case we easily see that −1 ∈ NK. If q1 ≡ 1 mod 8 and q1 /∈ A+, then the local

Hilbert symbol (ε, d)Q1 = −1, where Q1Q
′
1 = q1OK0 by Lemma 4.1. If qn ≡ 3 mod 4, then

the local Hilbert symbol (ε, d)Qn = −1, Qn = qnOK0 by [14, Lemma 3.3]. Hence ε /∈ NK.

iii) Since q1 ≡ 7 mod 8, the local Hilbert symbol (−1, d)Q1 = (−1
q1

) = −1, where Q1Q
′
1 =

q1OK0 , so −1 /∈ NK. On the other hand, −1 = (−1, d)Q1 = (±ε, d)Q1(±ε, d)Q′1 , so ±ε /∈
NK. ¥

Let, for qj ≡ 1 mod 8, (xj , yj) be positive integers satisfying x2
j − 2y2

j = qj and 4|yj . Let

αj = xj + yj

√
2.

Theorem 4.1. Let K = Q(
√

2,
√

d) with d =
n∏

i=1

qi.

i) If qj ∈ A+ for all 1 ≤ j ≤ m and qj ≡ 5 mod 8 for all m + 1 ≤ j ≤ n, then the genus

field E of K is given by

E = Q(
√

2,
√

q1, · · · ,
√

qn,
√

α1, · · · ,
√

αm).

ii) If qi ≡ 1 mod 4 for all 1 ≤ i ≤ n and q1 ≡ 1 mod 8 with q1 /∈ A+, then the genus field

E of K is given by

E = Q(
√

2,
√

q1, · · · ,
√

qn,
√

α∗2, · · · ,
√

α∗m),

where

α∗j =

{
αj if qj ∈ A+

αjα1 if qj /∈ A+.
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iii) If qj ≡ 1 mod 8 for all 1 ≤ j ≤ m and qn ≡ 3 mod 8, then the genus field E of K is

given by

E = Q(
√

2,
√

q∗1 , · · · ,
√

q∗n−1,
√

a,
√

α∗1, · · · ,
√

α∗m),

where

q∗j =

{
qj if qj ≡ 1 mod 4

qjqn if qj ≡ 3 mod 4,
a =

{
qn if d ≡ 3 mod 4

1 if d ≡ 1 mod 4,
α∗j =

{
αj if qj ∈ A+

αjqn if qj /∈ A+.

iv) If q1 ≡ 7 mod 8, then the genus field E of K is given by

E = Q(
√

2,
√

a,
√

q∗2 , · · · ,
√

q∗n,
√

α∗2, · · · ,
√

α∗m),

where, for 2 ≤ i ≤ n,

a =

{
q1 if d ≡ 3 mod 4

1 if d ≡ 1 mod 4,
q∗i =

{
qi if qi ≡ 1 mod 4

qiq1 if qi ≡ 3 mod 4,

and, for 2 ≤ j ≤ m, αj = xj + yj

√
2, positive integers (xj , yj) satisfying q∗j = x2

j − 2y2
j with

4|yj, and

α∗j =

{
αj if xj ≡ 1 mod 4

αjq1 if xj ≡ 3 mod 4.

Proof. i) By conditions, d ≡ 1 mod 4 and the dyadic prime of K0 is unramified in K.

Hence by Lemma 4.2 and Proposition 2.1, we know that r2(UK0/UK0 ∩ NK)) = 0, m + n

primes of K0 are ramified in K, r2(D+
K/K∗2) = r2(∆/K∗2) = m + n − 1. By the similar

process of the proof of Theorem 3.1, we see that the set

{q2, · · · , qn, α1, · · · , αm}

is a set of representatives of D+
K/K∗2 and E is the genus field of K.

ii) By Lemma 4.2 and Proposition 2.1, we see that r2(UK0/UK0∩NK)) = 1, m+n primes

of K0 are ramified in K, and r2(D+
K/K∗2) = r2(∆/K∗2)+ 1 = m+n− 1. As before, we see

that the set

{q2, · · · , qn, α1, · · · , αm}
is a set of representatives of D+

K/K∗2. By Lemma 4.1, we have that q1 /∈ A+ if and only if

α1 ≡ 3 mod 4 if and only if K(
√

α1)/K is ramified at dyadic prime. By construction, we

have that α∗j ≡ 1 mod 4 for 2 ≤ j ≤ m and the set

{q2, · · · , qn, α∗2, · · · , α∗m}

is a set of representatives of D+
K/K∗2. Hence E is the genus field of K.

iii) Suppose that d ≡ 1 mod 4 and qn ≡ 3 mod 4, then dqe
n = q∗1 · · · q∗n−1, e even, where

q∗j = qj if qj ≡ 1 mod 4 and q∗j = qjqn if qj ≡ 3 mod 4, and the dyadic prime of K0 is

unramified in K. By Lemma 4.2 and Proposition 2.1, r2(UK0/UK0 ∩ NK)) = 1, m + n
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primes of K0 are ramified in K, and r2(D+
K/K∗2) = r2(∆/K∗2) + 1 = m + n − 1. We see

that the set

{q1, · · · , qn−2, qn−1, α1, · · · , αm}

is a set of representatives of D+
K/K∗2. By construction, we have that α∗j ≡ 1 mod 4 for

1 ≤ j ≤ m and the set

{q∗1 , · · · , q∗n−2, α
∗
1, · · · , α∗m}

is a set of representatives of D+
K/K∗2. Hence E is the genus field of K.

Suppose that d ≡ 3 mod 4 and qn ≡ 3 mod 4, then dqe
n = q∗1 · · · q∗n−1, e odd, and

the dyadic prime of K0 is ramified in K. By Lemma 4.2 and Proposition 2.1, we have

that r2(UK0/UK0 ∩ NK) = 1, m + n + 1 primes of K0 are ramified in K, r2(D+
K/K∗2) =

r2(∆/K∗2) + 1 = m + n. We see that the set

{2, q1, · · · , qn−1, α1, · · · , αm}

is a set of representatives of D+
K/K∗2. Hence by construction,

{q∗1 , · · · , q∗n−1, α
∗
1, · · · , α∗m}

is a set of representatives of ∆/K∗2. So E is the genus field of K.

iv) Suppose that d ≡ 1 mod 4 and q1 ≡ 7 mod 8, then dqe
1 = q∗2 · · · q∗n, e even, where

q∗j = qj if qj ≡ 1 mod 4 and q∗j = qjq1 if qj ≡ 3 mod 4, and the dyadic prime of K0 is

unramified in K. By Lemma 4.2 and Proposition 2.1, we see that r2(UK0/UK0 ∩NK) = 2,

m+n primes of K0 are ramified in K, and r2(D+
K/K∗2) = r2(∆/K∗2)+2 = m+n− 1. We

see that the set

{q1, q
∗
2 , · · · , q∗n−1, α1, α2, · · · , αm}

is a set of representatives of D+
K/K∗2, where α1 = x1 +

√
2y1 with positive integers (x1, y1)

satisfying x2
1 − 2y2

1 = q1, and for 2 ≤ j ≤ m, αj = xj +
√

2yj with positive integers (xj , yj)

satisfying q∗j = x2
j − 2y2

j with 4|yj . By construction, we know that α∗j ≡ 1 mod 4 for

2 ≤ j ≤ m. Hence the set

{q∗2 , · · · , q∗n−1, α
∗
2, · · · , α∗m}

is a set of representatives of ∆/K∗2. So E is the genus field of K.

Suppose d ≡ 3 mod 4 and q1 ≡ 7 mod 8, then dpe
1 = p∗2 · · · p∗n, e odd, and the dyadic

prime of K0 is ramified in K. By Lemma 4.2, r2(UK0/UK0 ∩NK) = 2, m + n + 1 primes of

K0 are ramified in K, and r2(D+
K/K∗2) = r2(∆/K∗2) + 2 = m + n. We see that the set

{2, q∗2 , · · · , q∗n, α1, α2, · · · , αm}



HILBERT GENUS FIELD 13

is a set of representatives of D+
K/K∗2, where q∗j and αj are defined as above. Since αj ≡ xj

mod 4 for 2 ≤ j ≤ m, the set

{q∗2 , · · · , q∗n, α∗2, · · · , α∗m}

is a set of representatives of ∆/K∗2 and E is the genus field of K. ¥

5. The case p ≡ 1 mod 4 and d ≡ 2 mod 4

In this section, let K0 = Q(
√

p) and K = Q(
√

p,
√

d), a prime p ≡ 1 mod 4 and d =

2
n∏

j=1

qj with

(
p

qj

)
= 1 for 1 ≤ j ≤ m (5.1)

(
p

qj

)
= −1 for m + 1 ≤ j ≤ n. (5.2)

Note that m+n odd primes are ramified in K/K0. If p ≡ 1 mod 8, then two dyadic primes

are ramified in K/K0; if p ≡ 5 mod 8, then one dyadic prime is ramified in K/K0. Let

p ≡ 1 mod 8, then u2 − 2w2 = p, u,w ∈ N, w ≡ 0 mod 4, and set α0 = u+
√

p

2 .

Lemma 5.1. Let p ≡ 1 mod 4 and d = 2
n∏

j=1

qj ≡ 2 mod 4. Let ε be a fundamental unit

of K0.

i) If either p ∈ A+ or p ≡ 5 mod 8, all qi ≡ 1 mod 4 for 1 ≤ i ≤ n and all qj ∈
NK0(

√
ε)/K0

(K0(
√

ε)) for 1 ≤ j ≤ m, then

r2(UK0/UK0 ∩NK) = 0.

ii) If one of the following four conditions holds,

(1) p ≡ 1 mod 8, all qj ≡ 1 mod 4 for 1 ≤ j ≤ n, and either p /∈ A+ or q1 /∈
NK0(

√
ε)/K0

(K0(
√

ε));

(2) p ≡ 5 mod 8, all qj ≡ 1 mod 4 for 1 ≤ j ≤ n, and q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε));

(3) d/2 ≡ 1 mod 4, qj ≡ 1 mod 4 for 1 ≤ j ≤ m, and qn ≡ 3 mod 4;

(4) p ≡ 5 mod 8, d/2 ≡ 3 mod 4, all qj ≡ 1 mod 4 for 1 ≤ j ≤ m;

then

r2(UK0/UK0 ∩NK) = 1.

iii) If either p ≡ 1 mod 8, d/2 ≡ 3 mod 4, qj ≡ 1 mod 4 for all 1 ≤ j ≤ m, or q1 ≡ 3

mod 4 and ( q1
p ) = 1, then

r2(UK0/UK0 ∩NK) = 2.
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Proof. i) Suppose that p ∈ A+ and qi ≡ 1 mod 4 for any 1 ≤ i ≤ n, and qj ∈
NK0(

√
ε)/K0

(K0(
√

ε)) for all 1 ≤ j ≤ m. Then −1 ∈ NK. Since p ∈ A+, by Lemma 4.1 the

local Hilbert symbol (ε, d)D = (ε, 2)D = 1, where D is any dyadic prime of K0. From the

fact that qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) for 1 ≤ j ≤ m and Proposition 2.2, the local Hilbert

symbol (ε, d)Qj
= (ε, qj)Qj

= 1, where QjQ
′
j = qjOK0 . For m + 1 ≤ j ≤ n, by [14, Lemma

3.3] the local Hilbert symbol (ε, d)Qj
= 1, where Qj = qjOK0 . Hence ε ∈ NK.

Suppose that p ≡ 5 mod 8, by [14, Lemma 3.3] the local Hilbert symbol (ε, d)D = 1,

where D is a dyadic prime of K0. Similarly, we get ε ∈ NK.

ii)-(1) It is clear that −1 ∈ NK. Suppose that p /∈ A+, then the local Hilbert symbol

(ε, d)D = (ε, 2)D = −1 by Lemma 4.1, where D is a dyadic prime of K0. Suppose that

q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)), then the local Hilbert symbol (ε, d)Q1 = −1 by Proposition 2.2,

where Q1Q
′
1 = q1OK0 . Hence ε /∈ NK.

Similarly, we can get the results in cases (2), (3), (4).

iii) suppose that p ≡ 1 mod 8, d/2 ≡ 3 mod 4, qj ≡ 1 mod 4 for all 1 ≤ j ≤ m.

Since d/2 ≡ 3 mod 4 and p ≡ 1 mod 8, the local Hilbert symbol (−1, d)D = −1, where

DD′ = 2OK0 . Similarly we can prove that ε /∈ NK.

Now Suppose that q1 ≡ 3 mod 4 and ( q1
p ) = 1. Since q1 ≡ 3 mod 4 and ( q1

p ) = 1, the

local Hilbert symbol (−1, d)Q1 = −1, where Q1Q
′
1 = q1OK0 . Similarly, we can prove that

ε /∈ NK. ¥.

Let, for 1 ≤ j ≤ m and qj ≡ 1 mod 4, (xj , yj , zj) be a relatively prime and positive

integral solution of Diophantine equation qjz
2 = x2 − py2, and let αj = xj +

√
pyj if 2 6 |zj

or αj = xj+
√

pyj

2 if 2|zj . Let p ≡ 1 mod 8, then u2 − 2w2 = p, u,w ∈ N, w ≡ 0 mod 4, and

set α0 = u+
√

p

2 .

Theorem 5.1. Let K = Q(
√

p,
√

d) with p ≡ 1 mod 4 and d = 2
n∏

j=1

qj ≡ 2 mod 4.

i) If either p ∈ A+ or p ≡ 5 mod 8, all qj ≡ 1 mod 4 for 1 ≤ j ≤ n and all qj ∈
NK0(

√
ε)/K0

(K0(
√

ε)) for 1 ≤ j ≤ m, then

E = Q(
√

p,
√

2,
√

q1, · · · ,
√

qn,
√

a,
√

α1, · · · ,
√

αm),

where

a =

{
α0 if p ∈ A+

1 if p ≡ 5 mod 8.

ii) If p ≡ 1 mod 8, all qj ≡ 1 mod 4 for 1 ≤ j ≤ n, and either p /∈ A+ or q1 /∈
NK0(

√
ε)/K0

(K0(
√

ε)), then

E = Q(
√

p,
√

2,
√

q1, · · · ,
√

qn,
√

a,
√

α∗2, · · · ,
√

α∗m),
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where

a =





α0 if p ∈ A+

α1 if q1 ∈ NK0(
√

ε)/K0
(K0(

√
ε))

α0α1 if p /∈ A+, q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)),

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjb if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)),

b =

{
α1 if p ∈ A+

α0 if p /∈ A+.

iii) If p ≡ 5 mod 8, all qj ≡ 1 mod 4 for 1 ≤ j ≤ n, and q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)), then

E = Q(
√

p,
√

2,
√

q1, · · · ,
√

qn,
√

α∗2, · · · ,
√

α∗m),

where

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjα1 if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)),

iv) If d/2 ≡ 1 mod 4, qj ≡ 1 mod 4 for 1 ≤ j ≤ m, and pn ≡ 3 mod 4, then

E = Q(
√

p,
√

2,
√

q∗1 , · · · ,
√

q∗n−1,
√

α∗0,
√

α∗1, · · · ,
√

α∗m),

where

q∗j =

{
qj if qj ≡ 1 mod 4

qjqn if qj ≡ 3 mod 4
for 1 ≤ j ≤ n− 1,

α∗0 =





1 if p ≡ 5 mod 8

α0 if p ∈ A+

α0qn if p /∈ A+ and p ≡ 1 mod 8,

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjqn if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε))

for 1 ≤ j ≤ m.

v) If p ≡ 5 mod 8, d/2 ≡ 3 mod 4, qj ≡ 1 mod 4 for 1 ≤ j ≤ m, then

E = Q(
√

p,
√

q∗1 , · · · ,
√

q∗n,
√

α∗1, · · · ,
√

α∗m),

where

q∗j =

{
qj if qj ≡ 1 mod 4

2qj if qj ≡ 3 mod 4,
α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

2αj if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)).

vi) If p ≡ 1 mod 8, d/2 ≡ 3 mod 4, all qj ≡ 1 mod 4 for 1 ≤ j ≤ m, then

E = Q(
√

p,
√

q∗1 , · · · ,
√

q∗n,
√

α∗1, · · · ,
√

α∗m),

where each q∗j and α∗j are defined as Case v).
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vii) If q1 ≡ 3 mod 4 and ( q1
p ) = 1, then

E = Q(
√

p,
√

a,
√

q∗2 , · · · ,
√

q∗n,
√

b,
√

α∗2, · · · ,
√

α∗m),

where

a =

{
2 if d/2 ≡ 1 mod 4

2q1 if d/2 ≡ 3 mod 4,
q∗i =

{
qi if qi ≡ 1 mod 4

q1qi if qi ≡ 3 mod 4,

b =





α0 if p ∈ A+

q1α0 if p /∈ A+ and p ≡ 1 mod 8

1 if p ≡ 5 mod 8,

for 2 ≤ j ≤ m, αj = xj +
√

pyj if 26 |zj (or αj = xj+
√

pyj

2 if 2|zj), (xj , yj , zj) a relatively

prime and positive integral solution of a Diophantine equation q∗j z2 = x2 − py2, and

α∗j =

{
αj if αj is primary

q1αj if αj is not primary.

Proof. i) Suppose that p ∈ A+ and d ≡ 2 mod 4, two dyadic primes of K0 are ramified

in K. By the conditions and Lemma 5.1, we know that r2(UK0/UK0 ∩NK) = 0, m + n + 2

primes of K0 are ramified in K, r2(D+
K/K∗2) = r2(∆/K∗2) = m+n+1. Hence we see that

the set

{2, q1, · · · , qn−1, α0, α1, · · · , αm}
is a set of representatives of D+

K/K∗2. Hence E is the genus field of K.

Suppose p ≡ 5 mod 8 and d ≡ 2 mod 4, then the dyadic prime of K0 is ramified in K.

By conditions and Lemma 5.1, we know that r2(UK0/UK0 ∩NK) = 0, m + n + 1 primes of

K0 are ramified in K, r2(D+
K/K∗2) = r2(∆/K∗2) = m + n. Hence we see that the set

{2, q1, · · · , qn−1, α1, · · · , αm}

is a set of representatives of D+
K/K∗2 and E is the genus field of K.

ii) Since p ≡ 1 mod 8 and d ≡ 2 mod 4, two dyadic primes of K0 are ramified in K. By

conditions and Lemma 5.1, we know that r2(UK0/UK0 ∩NK) = 1, m + n + 2 primes of K0

are ramified in K, r2(D+
K/K∗2) = r2(∆/K∗2) + 1 = m + n + 1. Hence we see that the set

{2, q1, · · · , qn−1, α0, α1, · · · , αm}

is a set of representatives of D+
K/K∗2.

Suppose that p ∈ A+ and q1 /∈ NK0(
√

ε)/K0
(K0(

√
ε)). Let p = u2 − 2w2, u, w ∈ N, w ≡ 0

mod 4. By Lemma 4.1 we have that p ∈ A+ if and only if u ≡ 1 mod 4. Let D = (2,
u−√p

2 ),

D′ = (2,
u+
√

p

2 ) be dyadic primes of K0. Since w ≡ 0 mod 4,

u +
√

p

2
· u−√p

2
=

w2

4
≡ 0 mod 4
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and α′0 = u−√p

2 ∈ D2. Hence

α0 =
u +

√
p

2
= u− u−√p

2
≡ u mod D2.

Let w2

4 = 2e · f2, e, f ∈ N, 2 6 |f, e even, then α0 · α′0/2e ≡ f2 mod D2 and α′0/2e ≡ u

mod D2, i.e. α0/2e ≡ u mod (D′)2, where α′0 = u−√p

2 . Hence we see that the set

{2, q1, · · · , qn−1, α0, α
∗
2, · · · , α∗n}

is a set of representatives of ∆/K∗2, where α∗j = αj if qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) and

α∗j = αj · α1 if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)). Similarly we can prove other cases.

iii), iv) They are clear from ii).

v) Since p ≡ 5 mod 8 and d/2 ≡ 3 mod 4, one dyadic prime of K0 is ramified in K

and d2e = q∗1 · · · q∗n, e even, where for 1 ≤ j ≤ n, q∗j = qj if qj ≡ 1 mod 4 and q∗j = 2qj if

qj ≡ 3 mod 4. By Lemma 5.1 and Proposition 2.1, we know that r2(UK0/UK0 ∩NK) = 1,

m + n + 1 primes of K0 are ramified in K, r2(D+
K/K∗2) = r2(∆/K∗2) + 1 = m + n. Hence

we see that the set

{2, q1, · · · , qn−1, α1, · · · , αm}

is a set of representatives of D+
K/K∗2. Thus by construction,

{q∗1 , · · · , q∗n−1, α
∗
1, · · · , α∗m}

is a set of representatives of ∆/K∗2, where each q∗j and α∗j are defined as above. Hence E

is the genus field of K.

vi) It is clear from v).

vii) Suppose that p ≡ 1 mod 8, d/2 ≡ 1 mod 4 and q1 ≡ 3 mod 4, then two dyadic

primes of K0 are ramified in K and dqe
1 = q∗2 · · · q∗n, e even. By Lemma 5.1 and Proposition

2.1, we know that r2(UK0/UK0 ∩ NK) = 2, m + n + 2 primes of K0 are ramified in K,

r2(D+
K/K∗2) = r2(∆/K∗2) + 2 = m + n + 1. Hence we see that the set

{2, q1, q
∗
2 , · · · , q∗n−1, α0, α1, α2, · · · , αm}

is a set of representatives of D+
K/K∗2. By the same process of proving Theorem 3.1 iii), we

see that the set

{2, q∗2 , · · · , q∗n−1, α
∗
0, α

∗
2, · · · , α∗m}

is a set of representatives of ∆/K∗2. Hence E is the genus field of K. Similarly, we can

prove the other case. ¥
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6. Function Fields

In this section we study the case of function fields. Let q be a power of an odd prime p

and Fq be a finite field with q elements. Let k = Fq(T ), A = Fq[T ] and A+ be the subset

of A consisting of monic polynomials. Let ∞ be the place associated to the place ( 1
T ). By

a function field K we mean a finite extension of k. The places of K lying over ∞ are called

the infinite places. The Hilbert class field of K is defined to be the maximal unramified

abelian extension HK of K, in which the infinite places of K splits completely. For more

details for genus fields of function fields, we refer to [9].

Let P ∈ A+ be an irreducible polynomial of even degree, and D =
∏n

i=1 Qi be a squarefree

monic polynomial with Qi ∈ A+ irreducible. In this section we are going to describe the

genus field E of K = k(
√

P ,
√

D) over K0 = k(
√

P ) explicitly. We will see that the case that

deg D is odd (resp. even) corresponds to the case that d ≡ 3 mod 4 (resp. d ≡ 1 mod 4)

in the number field case.

Let k∞ := Fq(( 1
T )) and sgn be the usual sign function on k∞. For a finite extension L

of k and a place v lying over ∞, sgnv is defined to be sgn ◦Nv, where Nv is the local norm

map from Lv to k∞. Let

sgnv := sgn
q−1
2

v .

An element a ∈ L∗ is said to be positive at v if sgnv(a) = 1, and is called totally positive if

it is positive at every infinite place v of L. Let πv be the uniformizer of Lv. For a ∈ L, the

degree of a at v, written degv(a), is defined to be i if a = π−i
v u, where u is a local unit at v.

Let K0 = k(
√

P ). Then there exists a fundamental unit ε with Nε = γ, where N is the

norm map from K0 to k and γ is a generator of F∗q . Assume that
(

Qj

P

)
= 1 for 1 ≤ j ≤ m

and
(

Qj

P

)
= −1 for m + 1 ≤ j ≤ n. Define

DK := {x ∈ K∗|vp(x) ≡ 0 mod 2 for all finite places p of K},

D+
K := {x ∈ DK |x totally positive},

and

∆ := {x ∈ D+
K : degv(x) is even for every infinite place v of K}.

Then we clearly have the genus field E of K is K(
√

∆).

We can show that the function field analogues of Lemma 2.2, 2.3 and Proposition 2.1

remain true. We remark that for x ∈ D+
K , K(

√
x)/K is unramified at all places, but the

infinite places can be inert, that is, may not split. If x ∈ ∆ then the infinite places of K

splits in K(
√

x)/K. For
(

Qj

P

)
= 1, there exist (xj , yj , zj) ∈ A3 such that αj := xj + yj

√
P

is totally positive. Let v1 and v2 be the infinite places of K0. In the case deg Qj is odd, we
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put an additional condition that degv1
(αj) is even and degv2

(αj) is odd, which is possible

because

degv1
(αj) + degv2

(αj) = degv1
(αj) + degv1

(α′j) = deg(Qjz
2
j ),

which is odd. Here α′ means the conjugate of α in K0 over k.

Remark 6.1. In the case of function field no dyadic primes arise, and this fact makes

the situation easier than number field case. But one needs to deal the infinite places more

carefully, because, for an infinite place v to split in K(
√

α), α should be positive at v and

degv(α) should be even.

Theorem 6.1. Suppose that deg D is odd. Then the genus field of K = Fq(
√

P ,
√

D) is

given by

Fq(
√

P ,
√

Q1, . . . ,
√

Qn,
√

α1, . . . ,
√

αm).

Proof. Since degD is odd, ∞ is ramified in K. Thus degv(αj) is even for every infinite

place v of K. The rest are the same as in the number field case. (See [15]) ¥
To consider the case when deg D is even we need the following analogue of Proposition

2.2, whose proof is similar.

Proposition 6.1. Let P,Q be a monic primes of even degree. Assume that (P
Q ) = 1 and let

ε be a fundamental unit of K0 = k(
√

P ). If (x0, y0, z0) ∈ A3 is a relatively prime solution of

the Diophantine equation Qz2 = x2 − Py2 so that α = x0 +
√

Py0 is totally positive. Then

2|h(k(
√

P ,
√

Q)) if and only if Q ∈ NK0(
√

ε)/K0
(K0(

√
ε)) if and only if degv(α) is even for

every infinite place v of K.

Note that degv(α) is even for every infinite place v of K is equivalent to degv(α) is even

for some infinite place v of K, since deg Q is even. We also need the following analogue of

Lemma 3.1.

Lemma 6.1. Suppose that deg P and deg(D =
∏n

i=1 Qi) are even.

i) If deg Qi is even for every i ≤ n, and Qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) for 1 ≤ j ≤ m, then

r2(UK0/UK0 ∩NK) = 0.

ii) If either deg Qi is even for every 1 ≤ i ≤ n and Qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)) for some

j ≤ m, or deg Qj is even for every 1 ≤ j ≤ m and deg Qn is odd, then

r2(UK0/UK0 ∩NK) = 1.

iii) If deg Q1 is odd and (Q1
P ) = 1, then

r2(UK0/UK0 ∩NK) = 2.
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We finally get;

Theorem 6.2. Let K = k(
√

P ,
√

D) with deg P and deg D even.

i) If deg Qi is even for every 1 ≤ i ≤ n and Qj ∈ NK0(
√

ε)/K0
(K0(

√
ε)) for 1 ≤ j ≤ m, then

the genus field E of K is given by

E = k(
√

P ,
√

Q1, · · · ,
√

Qn,
√

α1, · · · ,
√

αm).

ii) If deg Qi is even for every 1 ≤ i ≤ n and Qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)) for some j ≤ m,

say, j = 1, then the genus field E of K is given by

E = k(
√

P ,
√

Q1, · · · ,
√

Qn,
√

α∗2, · · · ,
√

α∗m),

where, for 2 ≤ j ≤ m,

α∗j =

{
αj if qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjα1 if qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)).

iii) If deg Qj is even for every 1 ≤ j ≤ m and deg Qn is odd, then the genus field E of K

is given by

E = k(
√

P ,
√

Q∗1, · · · ,
√

Q∗n−1,
√

α∗1, · · · ,
√

α∗m),

where, for 1 ≤ j ≤ m,

α∗j =

{
αj if Qj ∈ NK0(

√
ε)/K0

(K0(
√

ε))

αjQn if Qj /∈ NK0(
√

ε)/K0
(K0(

√
ε)),

and, for 1 ≤ i ≤ n

Q∗i =

{
Qi if deg Qi is even

QiQn if deg Qi is odd.

iv) If deg Q1is odd and (Q1
P ) = 1, then the genus field E of K is given by

E = k(
√

P ,
√

Q∗2, · · · ,
√

Q∗
n,

√
α∗2, · · · ,

√
α∗m),

where

Q∗i =

{
Qi if deg Qi is even

Q1Qi if deg Qi is odd

and for 2 ≤ j ≤ m,

α∗j =





αj if deg Qj is even and Qj ∈ NK0(
√

ε)/K0
(K0(

√
ε))

Q1αj if deg Qj is even and Qj 6∈ NK0(
√

ε)/K0
(K0(

√
ε))

α1αj if deg Qj is odd.
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Proof. The proof is almost the same as that of Theorem 3.1, except the last assertion.

This comes from our choice of αj so that α1αj has even degree at every infinite place of K.

¥
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