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Abstract. Montgomery-Yang problem predicts that every pseudofree circle action on the 5-
dimensional sphere has at most 3 non-free orbits. Using a certain one-to-one correspondence,
Kollár formulated the algebraic version of the Montgomery-Yang problem: every projective sur-
face S with quotient singularities such that the second Betti number b2(S) = 1 has at most 3
singular points if its smooth locus S0 is simply connected.

We prove the conjecture under the assumption that S has at least one non-cyclic singularity.
In the course of the proof, we classify projective surfaces S with quotient singularities such that
(i) b2(S) = 1, (ii) H1(S

0,Z) = 0, and (iii) S has 4 or more singular points, not all cyclic, and
prove that all such surfaces have π1(S

0) ∼= A5, the icosahedral group.

Mathematics Subject Classification (2000): 14J17

1. Introduction

A pseudofree S1-action on a sphere S2k−1 is a smooth S1-action which is free
except for finitely many non-free orbits (whose isotropy types Zm1 , . . . ,Zmn

have pairwise relatively prime orders).
For k = 2 Seifert [18] showed that such an action must be linear and hence

has at most two non-free orbits. In the contrast to this, for k = 4 Montgomery
and Yang [15] showed that given any pairwise relatively prime collection of
positive integers m1, . . . ,mn, there is a pseudofree S1-action on homotopy 7-
sphere whose non-free orbits have exactly those orders. Petrie [16] proved sim-
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ilar results in all higher odd dimensions. This led Fintushel and Stern to formu-
late the following problem:

Conjecture 1 ([3]). (Montgomery-Yang Problem)
Let

S1 × S5 → S5

be a pseudofree S1-action. Then it has at most 3 non-free orbits.

The problem has remained unsolved since its formulation.
Pseudofree S1-actions on 5-manifolds L have been studied in terms of the

4-dimensional quotient orbifold L/S1 (see e.g., [2], [3]). A manifold is called a
rational homology sphere if it has the same Q-homology groups with a sphere,
i.e., it has the same Betti numbers with a sphere. The following one-to-one cor-
respondence was known to Montgomery, Yang, Fintushel and Stern, and re-
cently observed by Kollár ([11], [12]):

Theorem 1 (cf. [11], [12]). There is a one-to-one correspondence between:

1. Pseudofree S1-actions on 5 dimensional rational homology spheres L with
H1(L,Z) = 0.

2. Smooth, compact 4-manifolds M with boundary such that
(a) ∂M = ∪iLi is a disjoint union of lens spaces Li = S3/Zmi ,
(b) the mi are relatively prime to each other,
(c) H1(M,Z) = 0 and H2(M,Z) ∼= Z.

Furthermore, L is diffeomorphic to S5 iff π1(M) = 1.

We recall that a normal projective surface with the same Betti numbers with
CP2 is called a rational homology projective plane or a Q-homology projective
plane or a Q-homology CP2. When a normal projective surface S has quotient
singularities only, S is a Q-homology CP2 if the second Betti number b2(S) =
1.

It is known that a Q-homology projective plane with quotient singularities
has at most 5 singular points (cf. [4] Corollary 3.4). Recently, the authors have
classified Q-homology projective planes with 5 quotient singularities ([4], also
see [8]).

Using the one-to-one correspondence of Theorem 1.2, Kollár formulated the
algebraic version of the Montgomery-Yang problem as follows:

Conjecture 2 ([12]). (Algebraic Montgomery-Yang Problem)
Let S be a Q-homology projective plane with quotient singularities. Assume that
S0 := S\Sing(S) is simply connected. Then S has at most 3 singular points.

In this paper, we verify the conjecture when S has at least one non-cyclic
singularity. More precisely, we prove the following:
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Theorem 2. Let S be a Q-homology projective plane with quotient singularities
such that π1(S0) = {1}. Assume that S has at least one non-cyclic singularity.
Then |Sing(S)| ≤ 3.

We note that the condition π1(S0) = {1} cannot be replaced by the weaker
condition H1(S

0,Z) = 0. There are infinitely many examples of Q-homology
projective planes with exactly 4 quotient singularities, where three of them are
cyclic and one of them is non-cyclic, such that H1(S

0,Z) = 0 but π1(S0) 6=
{1} ([1] or [12], Example 31). These examples are the global quotients

SIm := CP2/Im = (CP2/Z)/A5,

where Im ⊂ GL(2,C) is the group of order 120m in Brieskorn’s list (see Table
1), an extension of the icosahedral group A5 ⊂ PGL(2,C) by the cyclic group
Z ∼= Z2m, and the action of Im on CP2 is induced from the natural action on
C2. We call SIm a Brieskorn quotient.

On the other hand, it follows from the orbifold Bogomolov-Miyaoka-Yau
inequality that every Q-homology projective plane S with quotient singularities
such that H1(S

0,Z) = 0 has at most 4 singular points(cf. [12], [4]). Therefore,
to prove Theorem 2, it is enough to classify Q-homology projective planes S
with 4 quotient singularities, not all cyclic, such that H1(S

0,Z) = 0. It turns
out that such a surface is deformation equivalent to a Brieskorn quotient.

Theorem 3. Let S be a Q-homology projective plane with 4 quotient singulari-
ties, not all cyclic, such that H1(S

0,Z) = 0. Then the following hold true.

1. S has 3 cyclic singularities of type C2/Z2, C2/Z3, C2/Z5, and one non-
cyclic singularity of type C2/Im, where Im ⊂ GL(2,C) is the 2m-ary icosa-
hedral group of order 120m (in Brieskorn’s notation). Furthermore, the 3
cyclic singularities are of type 1

2(1, 1), 1
3(1, α), 1

5(1, β), if the 3 branches of
the dual graph of the non-cyclic singularity are of type 1

2(1, 1), 1
3(1, 3− α),

1
5(1, 5− β) (see Table 4).

2. −KS is ample.
3. The minimal resolution of S can be obtained by starting with a minimal

rational ruled surface and blowing up inside 3 of the fibres, i.e. the blowing
up starts at three centers, one on each of the 3 fibres.

4. S0 is deformation equivalent to (CP2/Im)0, where Im is determined by the
non-cyclic singularity of S and its action on CP2 is induced by the natural
action on C2. The deformation space has dimension 2.

5. π1(S0) ∼= A5, the alternating group of order 60.

In the proof, we use the orbifold Bogomolov-Miyaoka-Yau inequality (The-
orem 4 and 5) and a detailed computation for (−1)-curves on the minimal reso-
lution S′ of S. The latter idea was used in [7].
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In the cyclic case (where S has cyclic singularities only), Conjecture 1.3 has
been confirmed in a separate paper [5] unless S is a rational surface with KS

ample.

Remark 1. Consider a Brieskorn quotient SIm := CP2/Im = (CP2/Z)/A5.
The cone CP2/Z is the closure of the A5-universal cover of S0

Im
. Note that

the cone has no deformation. Thus the deformation of S0
Im

must correspond to
a deformation of the Im-action on CP2. This was pointed out to us by János
Kollár. It is an interesting problem to describe explicitly such a deformation.

Throughout this paper, we work over the field C of complex numbers.

2. Algebraic surfaces with quotient singularities

2.1. Classification of quotient surface singularities

A singularity p of a normal surface S is called a quotient singularity if the germ
is locally analytically isomorphic to (C2/G,O) for some nontrivial finite sub-
group G of GL2(C) without quasi-reflections. Brieskorn classified such finite
subgroups of GL(2,C) [Bri]. Table 1 summarizes the result. Here we only ex-
plain the notation for dual graph.

< q, q1 > := the dual graph of the singularity of type
1

q
(1, q1)

< b; s1, t1; s2, t2; s3, t3 > := the tree of the form

< s2, t2 >

< s1, t1 > − ◦
−b
− < s3, t3 >

For more information about the table, we refer to the original paper of Brieskorn
[1].

2.2. The orbifold Bogomolov-Miyaoka-Yau inequality

Let S be a normal projective surface with quotient singularities and

f : S′ → S

be a minimal resolution of S. It is well-known that quotient singularities are
log-terminal singularities. Thus one can write

KS′ ≡
num

f∗KS −
∑

p∈Sing(S)

Dp,
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Table 1. Classification of finite subgroups of GL(2,C)

Type G |G| G/[G,G] Dual Graph ΓG

Aq,q1 Cq,q1 q Zq < q, q1 >

0 < q1 < q, (q, q1) = 1

Dq,q1 (Z2m, Z2m;Dq, Dq) 4mq Z2m × Z2 < b; 2, 1; 2, 1; q, q1 >

m = (b− 1)q − q1 odd

Dq,q1 (Z4m, Z2m;Dq, C2q) 4mq Z4m < b; 2, 1; 2, 1; q, q1 >

m = (b− 1)q − q1 even

Tm (Z2m, Z2m;T, T ) 24m Z3m < b; 2, 1; 3, 2; 3, 2 >,m = 6(b− 2) + 1

< b; 2, 1; 3, 1; 3, 1 >,m = 6(b− 2) + 5

Tm (Z2m, Z2m;T,D2) 24m Z3m < b; 2, 1; 3, 1; 3, 2 >,m = 6(b− 2) + 3

< b; 2, 1; 3, 2; 4, 3 >,m = 12(b− 2) + 1

Om (Z2m, Z2m;O,O) 48m Z2m < b; 2, 1; 3, 1; 4, 3 >,m = 12(b− 2) + 5

< b; 2, 1; 3, 2; 4, 1 >,m = 12(b− 2) + 7

< b; 2, 1; 3, 1; 4, 1 >,m = 12(b− 2) + 11

< b; 2, 1; 3, 2; 5, 4 >,m = 30(b− 2) + 1

< b; 2, 1; 3, 2; 5, 3 >,m = 30(b− 2) + 7

< b; 2, 1; 3, 1; 5, 4 >,m = 30(b− 2) + 11

Im (Z2m, Z2m; I, I) 120m Zm < b; 2, 1; 3, 2; 5, 2 >,m = 30(b− 2) + 13

< b; 2, 1; 3, 1; 5, 3 >,m = 30(b− 2) + 17

< b; 2, 1; 3, 2; 5, 1 >,m = 30(b− 2) + 19

< b; 2, 1; 3, 1; 5, 2 >,m = 30(b− 2) + 23

< b; 2, 1; 3, 1; 5, 1 >,m = 30(b− 2) + 29

where Dp =
∑

(ajEj) is an effective Q-divisor supported on f−1(p) = ∪Ej

with 0 ≤ aj < 1 for each singular point p. It implies that

K2
S = K2

S′ −
∑
p

D2
p = K2

S′ +
∑
p

DpKS′ .

Lemma 1. If −KS is ample, then C2 ≥ −1 for any irreducible curve C ⊂ S′

not contracted by f : S′ → S.

Proof. Note thatC(f∗KS) < 0 andC(
∑
Dp) ≥ 0. ThusCKS′ < 0, and hence

C2 ≥ −1. ut
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Also we recall the orbifold Euler characteristic

eorb(S) := e(S)−
∑

p∈Sing(S)

(
1− 1

|Gp|

)
,

where Gp is the local fundamental group of p.
The following theorem, called the orbifold Bogomolov-Miyaoka-Yau in-

equality, is one of the main ingredients in the proof of our main theorem.

Theorem 4 ([17], [14], [10], [13]). Let S be a normal projective surface with
quotient singularities such that KS is nef. Then

K2
S ≤ 3eorb(S).

In particular,
0 ≤ eorb(S).

The weaker inequality holds when −KS is nef.

Theorem 5 ([9]). Let S be a normal projective surface with quotient singulari-
ties such that −KS is nef. Then

0 ≤ eorb(S).

2.3. Divisors on the minimal resolution

Let S be a normal projective surface with quotient singularities and f : S′ → S
be a minimal resolution of S. It is well-known that the torsion-free part of the
second cohomology group,

H2(S′,Z)free := H2(S′,Z)/(torsion)

has a lattice structure which is unimodular. For a quotient singular point p ∈ S,
let

Rp ⊂ H2(S′,Z)free

be the sublattice of H2(S′,Z)free spanned by the numerical classes of the com-
ponents of f−1(p). It is a negative definite lattice, and its discriminant group

disc(Rp) := Hom(Rp,Z)/Rp

is isomorphic to the abelianization Gp/[Gp, Gp] of the local fundamental group
Gp. In particular, the absolute value | det(Rp)| of the determinant of the inter-
section matrix of Rp is equal to the order |Gp/[Gp, Gp]|. Let

R = ⊕p∈Sing(S)Rp ⊂ H2(S′,Z)free
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be the sublattice of H2(S′,Z)free spanned by the numerical classes of the ex-
ceptional curves of f : S′ → S. We also consider the sublattice

R+ 〈KS′〉 ⊂ H2(S′,Z)free

spanned by R and the canonical class KS′ . Note that

rank(R) ≤ rank(R+ 〈KS′〉) ≤ rank(R) + 1.

Lemma 2 ([4], Lemma 3.3). Let S be a normal projective surface with quotient
singularities and f : S′ → S be a minimal resolution of S. Then the following
hold true.

1. rank(R+ 〈KS′〉) = rank(R) if and only if KS is numerically trivial.
2. det(R+ 〈KS′〉) = det(R) ·K2

S if KS is not numerically trivial.
3. If in addition b2(S) = 1 and KS is not numerically trivial, then R + 〈KS′〉

is a sublattice of finite index in the unimodular lattice H2(S′,Z)free, in
particular |det(R+ 〈KS′〉)| is a nonzero square number.

We denote the number |det(R+ 〈KS′〉)| by D, i.e., we define

D := |det(R+ 〈KS′〉)|.

The following will be also used in our proof.

Lemma 3. Let S be a Q-homology projective plane with quotient singularities
such that H1(S

0,Z) = 0. Let f : S′ → S be a minimal resolution. Then

1. H2(S′,Z) is torsion free, i.e. H2(S′,Z) = H2(S′,Z)free,
2. R is a primitive sublattice of the unimodular lattice H2(S′,Z),
3. disc(R) is a cyclic group, in particular, the orders
|Gp/[Gp, Gp]| = |det(Rp)| are pairwise relatively prime,

4. KS is not numerically trivial, i.e. KS is either ample or anti-ample,
5. D = | det(R)|K2

S and D is a nonzero square number,
6. the Picard group Pic(S′) is generated over Z by the exceptional curves and

a Q-divisor M of the form

M =
1√
D
f∗KS +

∑
p∈Sing(S)

bpep

for some integers bp, where ep is a generator of disc(Rp).

Proof. (1), (2) and (3) are easy to see (cf. [6], Proposition 2.3 and Lemma 3.4).
(4) Assume that KS is numerically trivial. Then S′ is an Enriques surface if

all singularities are rational double points, and is a rational surface otherwise.
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If S′ is an Enriques surface, then H1(S
0,Z) 6= 0 since H1(S

′,Z) = Z/2 (cf.
Proposition 2.3 in [6]). Thus S is a rational surface, and

KS′ ≡
num
−

∑
p∈Sing(S)

Dp

with Dp 6≡
num

0 for some p. Note that Dp defines an element of

R∗p := Hom(Rp,Z) and the discriminant group disc(Rp) := R∗p/Rp has order
| det(Rp)|. Thus |det(Rp)|Dp ∈ Rp but Dp /∈ Rp if Dp 6≡

num
0. Now we see

that (∏
p

| det(Rp)|
)
KS′ ∈ R ⊂ H2(S′,Z),

but KS′ /∈ R. Hence the primitive closure R̄ of R in H2(S′,Z) is not equal to
R. Now by Lemma 2.5 in [6], H1(S

0,Z) 6= 0.
(5) follows from (4) and Lemma 2.
(6) Note first that Pic(S′) = H2(S′,Z) and the sublattice R ⊂ H2(S′,Z)

generated by the exceptional curves is a primitive sublattice of corank 1. Let
R⊥ ⊂ H2(S′,Z) be the orthogonal complement of R. Note that R⊥ is positive
definite and of rank 1. Since H2(S′,Z) is unimodular,

det(R⊥) = |det(R)| =
∏

p∈Sing(S)

| det(Rp)|.

Note that f∗KS ∈ R⊥. Thus R⊥ is generated by

v :=
|det(R)|√

D
f∗KS ,

and disc(R⊥) is generated by

1√
D
f∗KS .

Also note that

disc(R⊥ ⊕R) ∼= (Z/|det(R)|)⊕ (Z/|det(R)|).

Thus Pic(S′)/(R⊥ ⊕ R) is an isotropic subgroup of disc(R⊥ ⊕ R) of order
|det(R)|, hence is generated by an element M ∈ disc(R⊥ ⊕ R) of order
|det(R)|. Moreover M is the sum of a generator of disc(R⊥) and a generator
of disc(R), since Pic(S′) is unimodular. By replacing M by kM for a suitable
choice of an integer k, we get M of the desired form

M =
1√
D
f∗KS +

∑
p∈Sing(S)

bpep
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for some integers bp with 0 ≤ bp < |det(Rp)|, where
∑
bpep is a generator of

disc(R). This proves that Pic(S′) is generated over Z by R, v and M . Finally,
note that

| det(R)|M = v (mod R),

i.e., v is generated by M and R. Thus Pic(S′) is generated over Z by R and
M . ut

3. Proof of Theorem 3

Let S be a Q-homology projective plane with 4 or more quotient singularities
with H1(S

0,Z) = 0. By Lemma 3(3), the orders of the abelianized local fun-
damental groups are pairwise relatively prime. Thus by Theorem 5, one can see
that S has 4 singular points and the 4-tuple of orders of the local fundamental
groups must be one of the following:

1. (2, 3, 5, q), q ≥ 7,
2. (2, 3, 7, q), 11 ≤ q ≤ 41,
3. (2, 3, 11, 13).

Table 1 shows that all non-cyclic singularities of type different from Im have
abelianized local fundamental groups of order divisible by 2 or 3.

Assume that one of the singularities is non-cyclic. By Lemma 3(3), it must
be of type Im and the other 3 singularities are cyclic of order 2, 3 and 5, respec-
tively. Here we recall that Im ⊂ GL(2,C) is the 2m-ary icosahedral group of
order 120m. Table 1 shows that there are 8 infinite cases of type Im.

There are two types of order 3, < 3, 2 > and < 3, 1 >; three types of
order 5, < 5, 4 >, < 5, 3 >∼=< 5, 2 > and < 5, 1 >. Thus there are exactly
48 infinite cases for possible combinations of types of singularities. That is,
there are exactly 48 infinite cases for R, the sublattice of Pic(S′) = H2(S′,Z)
generated by all exceptional curves, where f : S′ → S is a minimal resolution.
In each of the 48 cases we computeD = |det(R)|K2

S and check ifD is a square
number (see Lemma 3(5)), using elementary number theoretic arguments. There
remain 8 infinite cases and 2 sporadic cases, as given in Table 2 and Table 3. In
both tables, the entries of the column b are the possible values of b that make D
a square number.

We will explain how to compute D. First note that

| det(R)| = 2 · 3 · 5 ·m = 30m.

To compute K2
S , we use the equality from (2.2)

K2
S = K2

S′ +
∑
p

DpKS′ .
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Note that S′ has H1(S′,OS′) = H2(S′,OS′) = 0. Thus by Noether formula,

K2
S′ = 12− e(S′) = 10− b2(S′) = 9− µ,

where µ is the number of the exceptional curves of f .
For each singular point p, the coefficients of the Q-divisor Dp can be obtained
by solving the equations given by the adjunction formula

DpE = −KS′E = 2 + E2

for each exceptional curve E ⊂ f−1(p). Once we know the coefficients, we can
easily compute the intersection number DpKS′ .

We first rule out the two sporadic cases.

Lemma 4. The case < 2, 1 > + < 3, 2 > + < 5, 4 > + < 8; 2, 1; 3, 2; 5, 3 >
does not occur.

Proof. In this case, m = 30(b− 2) + 7 = 187, so

|det(R)| = 30 · 187.

The number of exceptional curves µ = 13, soK2
S′ = −4, where f : S′ → S is a

minimal resolution. Let p1, p2, p3, p4 be the four singular points. LetE1, . . . , E6

be the components of f−1(p4) such that

−2
E 2 −

−2
E 3 −

−8
E 6 −

−2
E 5 −

−3
E 4

E1
−2

is their dual graph. Solving the equations given by the adjunction formula, we
get

KS′ = f∗KS −
93E1 + 186E6 + 62E2 + 124E3 + 112E4 + 149E5

187
.

It is easy to compute that

K2
S = K2

S′ +
186E6KS′ + 112E4KS′

187
= −4 +

186 · 6 + 112

187
=

480

187
.

Thus
D = | det(R)|K2

S = 1202.

Note that K2
S > 3eorb(S), so −KS is ample by the orbifold Bogomolov-

Miyaoka-Yau inequality. Thus S′ is a rational surface, not minimal. Also note
that the divisor M from Lemma 3(6) takes the form

M =
1

120
f∗KS +

∑
p∈Sing(S)

apep.
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Table 2.

Type of R D = |det(R)|K2
S b

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 4 > 180(5b2 − 50b+ 79) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 3 > 180(5b2 − 36b+ 48) b = 8

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 4 > 180(5b2 − 40b+ 52) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 2 > 180(5b2 − 34b+ 41) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 3 > 180(5b2 − 26b+ 27) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 1 > 180(5b2 − 20b+ 18) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 2 > 180(5b2 − 24b+ 22) none

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 > 900(b− 1)2 b ≥ 2

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 4 > 36(25b2 − 190b+ 277) none

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 3 > 36(25b2 − 120b+ 134) none

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 4 > 36(25b2 − 140b+ 162) none

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 > 36(25b2 − 110b+ 111) none

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 3 > 36(5b− 7)2 b ≥ 2

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 1 > 36(25b2 − 40b+ 8) none

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 > 36(5b− 6)2 b ≥ 2

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 1 > 36(25b2 + 10b− 37) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 4 > 36(25b2 − 130b+ 159) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 3 > 36(25b2 − 60b+ 28) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 > 36(5b− 8)2 b ≥ 2

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 2 > 36(25b2 − 50b+ 17) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 3 > 36(25b2 − 10b− 37) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 1 > 36(25b2 + 20b− 74) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 2 > 36(25b2 − 38) none

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 1 > 36(25b2 + 70b− 99) none

Let C be a (−1)-curve on S′. By Lemma 3(6), C can be written as

C = kM + r

for some integer k and some r ∈ R, hence as

C =
k

120
f∗KS + C(1) + C(2) + C(3) + C(4),
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Table 3.

Type of R D = |det(R)|K2
S b

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 4 > 20(45b2 − 390b+ 593) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 3 > 20(45b2 − 264b+ 326) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 4 > 100(9b2 − 60b+ 74) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 2 > 20(45b2 − 246b+ 275) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 3 > 20(45b2 − 174b+ 157) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 1 > 100(3b− 4)2 b ≥ 2

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 2 > 20(45b2 − 156b+ 124) none

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 > 20(45b2 − 30b− 17) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 4 > 4(225b2 − 1410b+ 1903) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 3 > 4(15b− 26)2 b ≥ 2

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 4 > 4(225b2 − 960b+ 968) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 > 4(15b− 23)2 b ≥ 2

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 3 > 4(225b2 − 330b+ 11) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 1 > 4(225b2 − 60b− 338) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 > 4(225b2 − 240b− 46) none

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 1 > 4(225b2 + 390b− 643) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 4 > 4(15b− 29)2 b ≥ 2

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 3 > 4(225b2 − 240b− 278) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 > 4(225b2 − 420b+ 86) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 2 > 4(225b2 − 150b− 317) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 3 > 4(225b2 + 210b− 763) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 1 > 4(225b2 + 480b− 1076) b = 2

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 2 > 4(225b2 + 300b− 712) none

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 1 > 4(225b2 + 930b− 1201) none

where C(i) is a Q-divisor supported on f−1(pi). Note that

C2 = (
k

120
f∗KS)2 + C(1)2 + C(2)2 + C(3)2 + C(4)2.

Since (f∗KS)C(i) = 0 for all i, we have

(f∗KS)C = (f∗KS)(
k

120
f∗KS) =

k

120
K2

S =
4k

187
.
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Since−KS is ample and C /∈ R, we see that (f∗KS)C < 0, hence k < 0. Note
that KS′C = −1. From the equality

KS′C = (f∗KS)C

−(93E1 + 186E6 + 62E2 + 124E3 + 112E4 + 149E5)C

187
,

we get

(93E1 + 186E6 + 62E2 + 124E3 + 112E4 + 149E5)C = 187 + 4k.

This is possible only if

E6C = E5C = E4C = E3C = 0, E2C = E1C = 1, k = −8.

Since EjC(4) = EjC for j = 1, ..., 6, we obtain the coefficients of C(4) by
solving the equations given by the above intersection numbers.

C(4) = −106E1 + 133E2 + 79E3 + 5E4 + 15E5 + 25E6

187
= E∗1 + E∗2 ,

where E∗j ∈ Hom(Rp4 ,Z) is the dual vector of Ej . Thus

C(4)2 = (E∗1 + E∗2)C(4) = −106 + 133

187
.

Now we have∑
j≤3

C(j)2 = C2 − C(4)2 − (
−8f∗KS

120
)2 = −1 +

239

187
− 32

15 · 187
> 0

which contradicts the negative definiteness of exceptional curves. ut

Lemma 5. The case < 2, 1 > + < 3, 1 > + < 5, 1 > + < 2; 2, 1; 3, 2; 5, 1 >
does not occur.

Proof. The proof is similar to the previous case. In this case, m = 19 and
µ = 8, so |det(R)| = 30 · 19 and K2

S′ = 1. Let B2, B3 be the components of
f−1(p2), f

−1(p3). Let E1, . . . , E5 be the components of f−1(p4) such that

−2
E 2 −

−2
E 3 −

−2
E 5 −

−5
E 4

E1
−2

is their dual graph. Then

KS′ = f∗KS −
B2

3
− 3B3

5
− 9E1 + 6E2 + 12E3 + 15E4 + 18E5

19
,
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K2
S =

28 · 56

15 · 19
, D = | det(R)|K2

S = 562.

Here again by the orbifold Bogomolov-Miyaoka-Yau inequality, −KS is ample
and S′ is a rational surface, not minimal. Let C be a (−1)-curve on S′. Then

C =
k

56
f∗KS + C(1) + C(2) + C(3) + C(4)

for some integer k and some Q-divisor C(i) supported on f−1(pi).
Since (f∗KS)C = 28k

285 < 0, we see that k < 0 and we get

95B2C + 171B3C + 15(9E1 + 6E2 + 12E3 + 15E4 + 18E5)C = 285 + 28k.

This is impossible because k < 0 and EjC ≥ 0, BiC ≥ 0 for every i, j. ut

Lemma 6. For any of the 8 infinite cases, −KS is ample.

Proof. For the 8 infinite cases, we compute K2
S as follows.

Table 4.

Type of R K2
S

< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 > 30(b−1)2

30b−31
≥ 30

29

< 2, 1 > + < 3, 2 > + < 5, 2 > + < b; 2, 1; 3, 1; 5, 3 > 6(5b−7)2

5(30b−43)
≥ 54

85

< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 > 6(5b−6)2

5(30b−37)
≥ 96

115

< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 > 6(5b−8)2

5(30b−49)
≥ 24

55

< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 1 > 10(3b−4)2

3(30b−41)
≥ 40

57

< 2, 1 > + < 3, 1 > + < 5, 2 > + < b; 2, 1; 3, 2; 5, 3 > 2(15b−26)2

15(30b−53)
≥ 32

105

< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 > 2(15b−23)2

15(30b−47)
≥ 98

195

< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 4 > 2(15b−29)2

15(30b−59)
≥ 2

15

In each case, eorb(S) = −1+ 1
2 + 1

3 + 1
5 + 1

120m ≤
5

120 . From the table we see
that K2

S > 3eorb(S), so −KS is ample by the orbifold Bogomolov-Miyaoka-
Yau inequality. ut

This completes the proof of (1) and (2) of Theorem 3. To prove the remaining
parts, we need to analyze (−1)-curves on the minimal resolution S′. Note that
by Lemma 1 S′ contains no (−n)-curve with n ≥ 2 other than the exceptional
curves of f : S′ → S.

The following proposition will be proved case by case in the next section.

Proposition 1. If S has 4 singularities p1, p2, p3, p4 of type < 2, 1 >, < 3, α >,
< 5, β >, < b; 2, 1; 3, 3− α; 5, 5− β >, b ≥ 2, respectively, as in Table 4, then
there are three mutually disjoint (−1)-curves C1, C2, C3 on S′ such that
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1. each Ci intersects exactly 2 components of f−1(p1)∪ f−1(p2)∪ f−1(p3)∪
f−1(p4) with multiplicity 1 each,

2. C1 intersects the component of the branch < 2, 1 > of f−1(p4) and the
component of f−1(p1), C2 intersects the terminal component of the branch
< 3, 3 − α > of f−1(p4) and one end component of f−1(p2), and C3 in-
tersects the terminal component of the branch < 5, 5 − β > of f−1(p4)
and one end component of f−1(p3) which is a (−2)-curve if β = 2 or 4, a
(−3)-curve if β = 3, and a (−5)-curve if β = 1.

Proposition 2. 1. The surface S′ can be blown down to the Hirzebruch surface
Fb. Conversely, S′ can be obtained by starting with Fb and blowing up inside
3 of the fibres, i.e. the blowing up starts at three centers, one on each of the
3 fibres.

2. If two rational homology projective planes S1 and S2 have the same type of
singularities

< 2, 1 > + < 3, α > + < 5, β > + < b; 2, 1; 3, 3− α; 5, 5− β >, b ≥ 2,

then S0
1 and S0

2 are deformation equivalent.

Proof. (1) By Proposition 1 there are three mutually disjoint (−1)-curves C1,
C2, C3 on S′ satisfying (1) and (2) of Proposition 1. By starting with them,
we can blow down S′ to Fb. Furthermore, the blow up process from Fb to S′ is
carried out inside 3 of the fibres of Fb.

(2) The blow up process from Fb to S′ depends on the choice of three fibres,
each with a point marked. The three marked points are the centers of the blowing
up. The choice of three fibres is unique up to automorphisms of Fb, while the
choice of three points, one on each of the fixed three fibres, is not unique up to
automorphisms of Fb, but depends on a 2-dimensional moduli. ut

This completes the proof of (3) of Theorem 3.
The following examples mentioned in Introduction were discussed in [12],

Example 31.

Example 1. Consider the 2m-ary icosahedral group

Im ⊂ GL(2,C)

of order 120m in Brieskorn’s list (Table 1). Let Z ⊂ Im be its center, then
Z ∼= Z2m and Im/Z ∼= A5 ⊂ PGL(2,C), the icosahedral group. Extend the
natural Im-action on C2 to CP2. The center acts trivially on the line at infinity
and CP2/Z is a cone over the rational normal curve of degree 2m = |Z|. Then

SIm := CP2/Im = (CP2/Z)/A5

has 4 quotient singularities, one of type C2/Im at the origin, three of order 2, 3,
5 at infinity. The fundamental group of S0

Im
is A5. By Theorem 3 (1), the types
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of the 3 cyclic singularities are determined by the types of the 3 branches of the
non-cyclic singularity. By Proposition 1 and 2, its minimal resolution S′Im can
be blown down to the Hirzebruch surface Fb. Conversely, S′Im can be obtained
by starting with Fb and blowing up inside 3 of the fibres. Here the 3 centers of
the blowing up lie on a section of Fb.

In Proposition 2, the 3 centers of the blowing up lie on a section of Fb if
and only if the surface S′ is isomorphic to S′Im for some Im. This completes the
proof of (4) and (5) of Theorem 3.

4. Proof of Proposition 1

As before, let p1, p2, p3, p4 be the singular points of S of order 2, 3, 5, 120m, re-
spectively, and let f : S′ → S be a minimal resolution. LetRpi be the sublattice
of H2(S′,Z) generated by all exceptional curves contained in f−1(pi).

Let C be an irreducible curve on S′. By Lemma 3(6), C can be written as
C = kM + r for some integer k and some r ∈ R, hence as

C =
k√
D
f∗KS + C(1) + C(2) + C(3) + C(4), (1)

where C(i) is a Q-divisor supported on f−1(pi) that is of the form

C(i) = aiei + ri

for some integer ai and some ri ∈ Rpi , where ei is a generator of the discrimi-
nant group disc(Rpi).

Lemma 7. Let C be an irreducible curve on S′ of the form (1).

1. C(i)2 = 0 if and only if C(i) = 0 if and only if C does not meet f−1(pi).
2. C(1)2 = −1

2x for some integer x ≥ 0,
C(1)2 = −1

2 if and only if C meets with multiplicity 1 the component of
f−1(p1) .

3. Assume that p2 is of type < 3, 2 >. Then
C(2)2 = −2

3y for some integer y ≥ 0,
C(2)2 = −2

3 if and only if C meets with multiplicity 1 exactly one of the two
components of f−1(p2).

4. Assume that p3 is of type < 5, 4 >. Then
C(3)2 ≤ −4

5 if C(3) 6= 0,
C(3)2 = −4

5 if and only if C meets with multiplicity 1 exactly one of the two
end components of f−1(p3).
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Proof. (1) The first equivalence follows from the negative definiteness of ex-
ceptional curves. Note that EC = EC(i) for any curve E ⊂ f−1(pi).
The curve C does not meet f−1(pi) iff EC = 0 for any curve E ⊂ f−1(pi) iff
EC(i) = 0 for any curve E ⊂ f−1(pi) iff C(i) = 0.

(2) is trivial.
(3) Let E1, E2 be the exceptional curves generating Rp2 . Take

e := −E1 + 2E2

3
= E∗2

as a generator of disc(Rp2). Then C(2) is of the form C(2) = ae+b1E1+b2E2

for some integers a, b1, b2, hence of the formC(2) = se+tE2 for some integers
s, t. We have

C(2)2 = −2

3
(s2 − 3st+ 3t2).

It is easy to see that y := s2− 3st+ 3t2 = (s− 3t/2)2 + 3t2/4 ≥ 0 for all s, t.
C meets exactly one of the two components of f−1(p2) with multiplicity

1 iff (E1C(2), E2C(2)) = (1, 0) or (0, 1) iff C(2) = E∗1 = 2e + E2 or
C(2) = E∗2 = e iff (s, t) = (2, 1) or (1, 0). Both cases satisfy C(2)2 =
−2/3. Conversely, if C(2)2 = −2/3, then there are six solutions (s, t) =
±(1, 0),±(2, 1),±(1, 1) for the equation y = (s − 3t/2)2 + 3t2/4 = 1. Since
EiC(2) = EiC ≥ 0 for i = 1, 2, there remain only two solutions (s, t) =
(1, 0), (2, 1).

(4) Let E1, E2, E3, E4 be the exceptional curves generating Rp3 . Take

e := −E1 + 2E2 + 3E3 + 4E4

5
= E∗4

as a generator of disc(Rp3). Then C(3) is of the form C(3) = ae + b1E1 +
b2E2+b3E3+b4E4 for some integers a, b1, b2, b3, b4, hence of the formC(3) =
se+ uE2 + vE3 + wE4 for some integers s, u, v, w. We have

C(3)2 = −4
5s

2 − 2u2 − 2v2 − 2w2 + 2sw + 2uv + 2vw
= −4

5{(s−
5w
4 )2 + 5

2(u− v
2 )2 + 15

8 (v − 2w
3 )2 + 5

48w
2}.

To prove the first assertion, assume that

(s− 5w

4
)2 +

5

2
(u− v

2
)2 +

15

8
(v − 2w

3
)2 +

5

48
w2 < 1.

We need to show that (s, u, v, w) = (0, 0, 0, 0). The above inequality implies
that w2 ≤ 9, i.e., w = 0,±1,±2,±3. If w = 0, then there is only one solution
(s, u, v, w) = (0, 0, 0, 0) to the inequality. If w = ±1,±2,±3, no solution to
the inequality. This proves the first assertion.

C meets exactly one of the two end components of f−1(p3) with multiplicity
1 iff (E1C,E2C,E3C,E4C) = (1, 0, 0, 0) or (0, 0, 0, 1) iff C(3) = E∗1 =
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4e + E2 + 2E3 + 3E4 or C(3) = E∗4 = e iff (s, u, v, w) = (4, 1, 2, 3) or
(1, 0, 0, 0). Both cases satisfy C(3)2 = −4/5. Conversely, if C(3)2 = −4

5 , then

(s− 5w

4
)2 +

5

2
(u− v

2
)2 +

15

8
(v − 2w

3
)2 +

5

48
w2 = 1.

There are ten solutions to this equation: (s, u, v, w) = ±(1, 0, 0, 0),
±(4, 1, 2, 3), ±(1, 1, 1, 1), ±(1, 0, 1, 1), ±(1, 0, 0, 1).
Since EiC(3) = EiC ≥ 0 for i = 1, 2, 3, 4, there remain only two solutions
(s, u, v, w) = (4, 1, 2, 3), (1, 0, 0, 0). ut

4.1. Case 1: < 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 >, b ≥ 2

In this case, the number of exceptional curves µ = 11, so K2
S′ = −2. Let

E1, . . . , E4 be the components of f−1(p4) such that

−3
E 2 −

−b
E 4 −

−5
E 3

E1
−2

is their dual graph. We compute

KS′ = f∗KS

−(15b− 16)E1 + (20b− 21)E2 + (24b− 25)E3 + (30b− 32)E4

30b− 31
,

(2)

K2
S =

30(b− 1)2

30b− 31
, |det(R)| = 30·(30b−31), D = |det(R)|K2

S = 302(b−1)2.

We also compute the dual vectors,

E∗1 = − 1
30b−31{(15b− 8)E1 + 5E2 + 3E3 + 15E4},

E∗2 = − 1
30b−31{5E1 + (10b− 7)E2 + 2E3 + 10E4},

E∗3 = − 1
30b−31{3E1 + 2E2 + (6b− 5)E3 + 6E4}.

Claim 4.1.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE4 CE3 CE2 CE1 k
(a) 0 0 0 1 −15
(b) 0 0 1 0 −10
(c) 0 1 0 0 −6



Algebraic Montgomery-Yang Problem: the non-cyclic case 19

Proof. We use the same argument as in the proof of Lemma 4. First note that
(f∗KS)C = k√

D
(f∗KS)2 = (b−1)k

30b−31 . Since −KS is ample and C /∈ R,
(f∗KS)C < 0, so k < 0. Intersecting C with (2) we get

C{(15b− 16)E1 + (20b− 21)E2 + (24b− 25)E3 + (30b− 32)E4}
= (b− 1)k + 30b− 31.

This is possible only if C satisfies one of the three cases (a), (b), (c), or the case

(d) CE4 = 1, CE3 = 0, CE2 = 0, CE1 = 0, b = 2, k = −1.

In the last case, we compute C(4) = E∗4 = − 1
29(15E1 + 10E2 + 6E3 + 30E4),

so C(4)2 = E∗4C(4) = −30
29 and hence we get∑

j≤3
C(j)2 = C2 − C(4)2 − (

−1

30
f∗KS)2 = −1 +

30

29
− 1

30 · 29
> 0,

contradicts the negative definiteness of exceptional curves. ut

Claim 4.1.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. one of the two components of f−1(p2), if C satisfies (b),
3. one of the two end components of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(4) = E∗1 , C(4)2 = E∗1C(4) =
− 15b−8

30b−31 ,
C(1)2 + C(2)2 + C(3)2 = C2 − C(4)2 − ( −15

30(b−1)f
∗KS)2 = −1

2 .

By Lemma 7, C(2) = C(3) = 0, C(1)2 = −1
2 , and C does not meet f−1(p2)∪

f−1(p3), but meets the component of f−1(p1) with multiplicity 1.
Assume that C satisfies (b). Then, C(4) = E∗2 , C(4)2 = E∗2C(4) =

− 10b−7
30b−31 ,
C(1)2 + C(2)2 + C(3)2 = C2 − C(4)2 − ( −10

30(b−1)f
∗KS)2 = −2

3 .

By Lemma 7, C(1) = C(3) = 0, C(2)2 = −2
3 , and C does not meet f−1(p1)∪

f−1(p3), but meets one of the two components of f−1(p2) with multiplicity 1.
Assume that C satisfies (c). Then, C(4) = E∗3 , C(4)2 = E∗3C(4) =

− 6b−5
30b−31 ,
C(1)2 + C(2)2 + C(3)2 = C2 − C(4)2 − ( −6

30(b−1)f
∗KS)2 = −4

5 .

By Lemma 7, C(1) = C(2) = 0, C(3)2 = −4
5 , and C does not meet f−1(p1)∪

f−1(p2), but meets one of the end components of f−1(p3) with multiplicity 1.
ut
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Claim 4.1.3. There are three, mutually disjoint, (−1)-curves C1, C2, C3 satis-
fying (a), (b), (c) from Claim 4.1.1, respectively.

Proof. By Lemma 6, S′ is a rational surface. Since K2
S′ < 8, S′ contains a

(−1)-curve and can be blown down to a minimal rational surface Fn or CP2.
Assume that there is no (−1)-curve C ⊂ S′ meeting f−1(p4). Then, since

S′ cannot contain a (−l)-curve with l ≥ 2 other than the exceptional curves of f
(Lemma 1), the configuration of f−1(p4) remains the same under the blow down
process to Fn or CP2. This is impossible, as the configuration would define a
negative definite sublattice of rank 4 inside the Picard lattice of Fn or CP2.

Assume that there is only one (−1)-curve meeting f−1(p4). Then, the 3
components of f−1(p4) untouched by the (−1)-curve remain the same under
the blow down process and define a negative definite sublattice of rank 3 inside
the Picard lattice of Fn or CP2. This is impossible.

If there are only two (−1)-curve meeting f−1(p4). Then the 2 components
of f−1(p4) untouched by the two (−1)-curves would remain the same under the
blow down process and define a negative definite sublattice of rank 2 inside the
Picard lattice of Fn or CP2. Again, this is impossible.

For the mutual disjointness, we note that
C1 = −15

30(b−1)f
∗KS + C1(1) + E∗1 ,

C2 = −10
30(b−1)f

∗KS + C2(2) + E∗2 ,
C3 = −6

30(b−1)f
∗KS + C3(3) + E∗3 .

A direct calculation shows that CiCj = 0 for i 6= j. ut

4.2. Case 2: < 2, 1 > + < 3, 2 > + < 5, 2 > + < b; 2, 1; 3, 1; 5, 3 >, b ≥ 2

In this case, µ = 10, so K2
S′ = −1. Let B1, B2 be the components of f−1(p3),

and E1, . . . , E5 be the components of f−1(p4) such that
−2
B 1 −

−3
B 2

−3
E 2 −

−b
E 5 −

−2
E 4 −

−3
E 3

E1
−2

is their dual graph. Then

KS′ = f∗KS − 1
5(B1 + 2B2)− 1

30b−43{(15b− 22)E1 + (20b− 29)E2

+(18b− 26)E3 + (24b− 35)E4 + (30b− 44)E5},
(3)

K2
S =

6(5b− 7)2

5(30b− 43)
, |det(R)| = 30 · (30b− 43), D = 62(5b− 7)2.

We also compute the dual vectors,

B∗1 = −3B1+B2
5 B∗2 = −B1+2B2

5 ,



Algebraic Montgomery-Yang Problem: the non-cyclic case 21

E∗1 = − 1
30b−43{(15b− 14)E1 + 5E2 + 3E3 + 9E4 + 15E5},

E∗2 = − 1
30b−43{5E1 + (10b− 11)E2 + 2E3 + 6E4 + 10E5},

E∗3 = − 1
30b−43{3E1 + 2E2 + (12b− 16)E3 + (6b− 5)E4 + 6E5}.

Claim 4.2.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE5 CE4 CE3 CE2 CE1 CB2 CB1 k
(a) 0 0 0 0 1 0 0 −15
(b) 0 0 0 1 0 0 0 −10
(c) 0 0 1 0 0 0 1 −6

Proof. First note that (f∗KS)C = k√
D

(f∗KS)2 = (5b−7)k
5(30b−43) . Since −KS is

ample and C /∈ R, we see that k < 0. Intersecting C with (3) we get
(30b−43)C(B1 +2B2)+5C{(15b−22)E1 +(20b−29)E2 +(18b−26)E3 +
(24b− 35)E4 + (30b− 44)E5} = (5b− 7)k + 5(30b− 43) < 5(30b− 43).
This is possible only if C satisfies one of the three cases or the following case

(d) CE5 = 0, CE4 = 1, CE3 = CE2 = CE1 = 0, CB1 = 1, CB2 = 0,
b = 2, k = −1.

In case (d), C(3) = B∗1 and C(4) = E∗4 = − 1
17(9E1 + 6E2 + 7E3 + 21E4 +

18E5), thus C(1)2 +C(2)2 = C2−C(3)2−C(4)2− (−118 f
∗KS)2 = −1+ 3

5 +
21
17 −

1
30·17 > 0, contradicts the negative definiteness of exceptional curves. ut

Claim 4.2.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. one of the two components of f−1(p2), if C satisfies (b),
3. the component B1 of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(3) = 0 and C(4) = E∗1 , so
C(1)2 + C(2)2 = C2 − C(4)2 − ( −15

6(5b−7)f
∗KS)2 = −1

2 .

By Lemma 7, C(2) = 0 and C(1)2 = −1
2 .

Assume that C satisfies (b). Then, C(3) = 0 and C(4) = E∗2 , so
C(1)2 + C(2)2 = C2 − C(4)2 − ( −10

6(5b−7)f
∗KS)2 = −2

3 .

By Lemma 7, C(1) = 0 and C(2)2 = −2
3 .

Assume that C satisfies (c). Then, C(3) = B∗1 = −3B1+B2
5 and C(4) = E∗3 ,

so
C(1)2 + C(2)2 = C2 − C(3)2 − C(4)2 − ( −6

6(5b−7)f
∗KS)2 = 0.

By the negative definiteness, C(1) = C(2) = 0. ut
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By the same proof as in the previous case, we see that there are three, mutu-
ally disjoint, (−1)-curves C1, C2, C3 satisfying (a), (b), (c) from Claim 4.2.1,
respectively.

4.3. Case 3: < 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 >, b ≥ 2

In this case, µ = 10, so K2
S′ = −1. Let B1, B2 be the components of f−1(p3),

and E1, . . . , E5 be the components of f−1(p4) such that

−2
B 1 −

−3
B 2

−3
E 2 −

−b
E 5 −

−3
E 4 −

−2
E 3

E1
−2

is their dual graph. Then

KS′ = f∗KS − 1
5(B1 + 2B2)− 1

30b−37{(15b− 19)E1 + (20b− 25)E2

+(12b− 15)E3 + (24b− 30)E4 + (30b− 38)E5},
(4)

K2
S =

6(5b− 6)2

5(30b− 37)
, |det(R)| = 30 · (30b− 37), D = 62(5b− 6)2.

We also compute the dual vectors,

B∗1 = −3B1+B2
5 B∗2 = −B1+2B2

5 ,
E∗1 = − 1

30b−37{(15b− 11)E1 + 5E2 + 3E3 + 6E4 + 15E5},
E∗2 = − 1

30b−37{5E1 + (10b− 9)E2 + 2E3 + 4E4 + 10E5},
E∗3 = − 1

30b−37{3E1 + 2E2 + (18b− 21)E3 + (6b− 5)E4 + 6E5}.
Claim 4.3.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE5 CE4 CE3 CE2 CE1 CB2 CB1 k
(a) 0 0 0 0 1 0 0 −15
(b) 0 0 0 1 0 0 0 −10
(c) 0 0 1 0 0 1 0 −6

Proof. Since (f∗KS)C = (5b−6)k
5(30b−37) < 0, k < 0. Intersecting C with (4) we get

(30b−37)C(B1 +2B2)+5C{(15b−19)E1 +(20b−25)E2 +(12b−15)E3 +
(24b− 30)E4 + (30b− 38)E5} = (5b− 6)k + 5(30b− 37) < 5(30b− 37).
This is possible only if C satisfies one of the three cases or the following case

(d) CE5 = 0, CE4 = 0, CE3 = 1, CE2 = 0, CE1 = 0, CB1 = 2,
CB2 = 0, k = −6.

In the last case, C(3) = 2B∗1 and C(4) = E∗3 , so C(3)2 = −12
5 and C(4)2 =

−18b−21
30b−37 , hence C(1)2+C(2)2 = C2−C(3)2−C(4)2−( −6

6(5b−6)f
∗KS)2 > 0,

which contradicts the negative definiteness of exceptional curves. ut
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Claim 4.3.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. one of the two components of f−1(p2), if C satisfies (b),
3. the component B2 of f−1(p3), if C satisfies (c).

Proof. Assume thatC satisfies (a). Then,C(3) = 0 andC(4) = E∗1 , soC(1)2+
C(2)2 = −1 + 15b−11

30b−37 − ( −15
6(5b−6)f

∗KS)2 = −1
2 . By Lemma 7, C(2) = 0 and

C(1)2 = −1
2 .

Assume that C satisfies (b). Then, C(3) = 0 and C(4) = E∗2 , so C(1)2 +
C(2)2 = −1 + 10b−9

30b−37 − ( −10
6(5b−6)f

∗KS)2 = −2
3 . By Lemma 7, C(1) = 0 and

C(2)2 = −2
3 .

Assume that C satisfies (c). Then, C(3) = B∗2 and C(4) = E∗3 , so C(1)2 +
C(2)2 = −1+ 2

5 + 18b−21
30b−37−( −6

6(5b−6)f
∗KS)2 = 0. By the negative definiteness,

C(1) = C(2) = 0. ut

The same proof as in the previous cases shows that there are three, mutually
disjoint, (−1)-curves C1, C2, C3 satisfying (a), (b), (c) from Claim 4.3.1, re-
spectively.

4.4. Case 4: < 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 >, b ≥ 2

In this case, µ = 11, so K2
S′ = −2. Let B be the component of f−1(p3), and

E1, . . . , E7 be the components of f−1(p4) such that
−3
E 2 −

−b
E 7 −

−2
E 6 −

−2
E 5 −

−2
E 4 −

−2
E 3

E1
−2

is their dual graph. Then

KS′ = f∗KS − 3
5B −

1
30b−49{(15b− 25)E1 + (20b− 33)E2

+(6b− 10)E3 + (12b− 20)E4 + (18b− 30)E5

+(24b− 40)E6 + (30b− 50)E7},
(5)

K2
S =

6(5b− 8)2

5(30b− 49)
, |det(R)| = 30 · (30b− 49), D = 62(5b− 8)2.

We also compute the dual vectors,

E∗1 = − 1
30b−49{(15b− 17)E1 + 5E2 + 3E3 + 6E4 + 9E5 + 12E6 + 15E7},

E∗2 = − 1
30b−49{5E1 + (10b− 13)E2 + 2E3 + 4E4 + 6E5 + 8E6 + 10E7},
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E∗3 = − 1
30b−49{ 3E1 + 2E2 + (24b− 38)E3 + (18b− 27)E4

+(12b− 16)E5 + (6b− 5)E6 + 6E7}.
Claim 4.4.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE7 CE6 CE5 CE4 CE3 CE2 CE1 CB k
(a) 0 0 0 0 0 0 1 0 −15
(b) 0 0 0 0 0 1 0 0 −10
(c) 0 0 0 0 1 0 0 1 −6

Proof. Since (f∗KS)C = (5b−8)k
5(30b−49) < 0, k < 0. Intersecting C with (5) we get

3(30b− 49)CB + 5C{(15b− 25)E1 + (20b− 33)E2 + (6b− 10)E3 + (12b−
20)E4 +(18b−30)E5 +(24b−40)E6 +(30b−50)E7} = (5b−8)k+5(30b−
49) < 5(30b− 49).
This is possible only ifC satisfies one of the three cases, or one of the two cases:

Case CE7 CE6 CE5 CE4 CE3 CE2 CE1 CB k b
(d) 0 0 0 0 2 0 0 1 −1 2
(e) 0 0 0 1 0 0 0 1 −1 2

In Case (d), C(3) = B∗ = −1
5B and C(4) = 2E∗3 , thus

C(1)2+C(2)2 = C2−C(3)2−C(4)2−(−112 f
∗KS)2 = −1+ 1

5+ 40
11−

1
30·11 > 0.

In Case (e), C(3) = −1
5B and C(4) = E∗4 = − 1

11(6E1 +4E2 +9E3 +18E4 +
16E5 + 14E6 + 12E7), thus
C(1)2+C(2)2 = C2−C(3)2−C(4)2−(−112 f

∗KS)2 = −1+ 1
5+ 18

11−
1

30·11 > 0.
Both contradict the negative definiteness of exceptional curves. ut

Claim 4.4.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity with the component is 1, and the component is
1. the component of f−1(p1), if C satisfies (a),
2. one of the two components of f−1(p2), if C satisfies (b),
3. the component B of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(3) = 0 and C(4) = E∗1 , so
C(4)2 = −15b−17

30b−49 and C(1)2+C(2)2 = C2−C(4)2−( −15
6(5b−8)f

∗KS)2 = −1
2 .

By Lemma 7, C(2) = 0 and C(1)2 = −1
2 .

Assume that C satisfies (b). Then, C(3) = 0 and C(4) = E∗2 , so C(1)2 +
C(2)2 = −1 + 10b−13

30b−49 − ( −10
6(5b−8)f

∗KS)2 = −2
3 . By Lemma 7, C(1) = 0 and

C(2)2 = −2
3 .

Assume thatC satisfies (c). Then,C(3) = −1
5B andC(4) = E∗3 , soC(1)2+

C(2)2 = −1+ 1
5 + 24b−38

30b−49−( −6
6(5b−8)f

∗KS)2 = 0. By the negative definiteness,
C(1) = C(2) = 0. ut



Algebraic Montgomery-Yang Problem: the non-cyclic case 25

Similarly, we see that there are three, mutually disjoint, (−1)-curves C1, C2, C3

satisfying (a), (b), (c) from Claim 4.4.1, respectively.

4.5. Case 5: < 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 1 >, b ≥ 2

In this case, µ = 11, so K2
S′ = −2. Let B be the component of f−1(p2), and

E1, . . . , E5 be the components of f−1(p4) such that
−2
E 2 −

−2
E 3 −

−b
E 5 −

−5
E 4

E1
−2

is their dual graph. Then

KS′ = f∗KS − 1
3B −

1
30b−41{(15b− 21)E1 + (10b− 14)E2

+(20b− 28)E3 + (24b− 33)E4 + (30b− 42)E5},
(6)

K2
S =

10(3b− 4)2

3(30b− 41)
, | det(R)| = 30 · (30b− 41), D = 102(3b− 4)2.

We also compute the dual vectors,

E∗1 = − 1
30b−41{(15b− 13)E1 + 5E2 + 10E3 + 3E4 + 15E5},

E∗2 = − 1
30b−41{5E1 + (20b− 24)E2 + (10b− 7)E3 + 2E4 + 10E5},

E∗4 = − 1
30b−41{3E1 + 2E2 + 4E3 + (6b− 7)E4 + 6E5}.

Claim 4.5.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE5 CE4 CE3 CE2 CE1 CB k
(a) 0 0 0 0 1 0 −15
(b) 0 0 0 1 0 1 −10
(c) 0 1 0 0 0 0 −6

Proof. Since (f∗KS)C = (3b−4)k
3(30b−41) < 0, k < 0. Intersecting C with (6) we get

(30b− 41)CB + 3C{(15b− 21)E1 + (10b− 14)E2 + (20b− 28)E3 + (24b−
33)E4 + (30b− 42)E5} = (3b− 4)k + 3(30b− 41) < 3(30b− 41).
This is possible only if C satisfies one of the three cases, or one of the following
three cases:

Case CE6 CE5 CE4 CE3 CE2 CE1 CB k b
(d) 0 0 0 1 0 0 1 −1 2
(e) 0 0 0 0 2 0 1 −1 2
(f) 0 0 0 0 1 1 0 −6 2
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In Case (d), C(2) = −1
3B and C(4) = E∗3 = − 1

19(10E1 + 13E2 + 26E3 +

4E4 + 20E5), thus C(1)2 + C(3)2 = C2 − C(2)2 − C(4)2 − (−120 f
∗KS)2 =

−1 + 1
3 + 26

19 −
1

30·19 > 0.

In Case (e), C(2) = −1
3B and C(4) = 2E∗2 , thus

C(1)2 + C(3)2 = −1 + 1
3 + 64

19 −
1

30·19 > 0.

In Case (f), C(2) = 0 and C(4) = E∗1 +E∗2 , thus C(1)2 +C(3)2 = −1 + 43
19 −

36
30·19 > 0. All these cases lead to a contradiction. ut

Claim 4.5.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity with the component is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. the component of B of f−1(p2), if C satisfies (b),
3. one of the two end components of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(2) = 0 and C(4) = E∗1 , so
C(4)2 = −15b−13

30b−41 , hence C(1)2 +C(3)2 = C2−C(4)2− ( −15
10(3b−4)f

∗KS)2 =

−1
2 . By Lemma 7, C(3) = 0 and C(1)2 = −1

2 .
Assume that C satisfies (b). Then, C(2) = −1

3B and C(4) = E∗2 , so
C(1)2 + C(3)2 = −1 + 1

3 + 20b−24
30b−41 − ( −10

10(3b−4)f
∗KS)2 = 0. By the nega-

tive definiteness, C(1) = C(3) = 0.
Assume that C satisfies (c). Then, C(2) = 0 and C(4) = E∗4 , so C(1)2 +

C(3)2 = −1 + 6b−7
30b−41 − ( −6

10(3b−4)f
∗KS)2 = −4

5 . By Lemma 7, C(1) = 0 and
C(3)2 = −4

5 . ut

Similarly, we see that there are three, mutually disjoint, (−1)-curves C1, C2, C3

satisfying (a), (b), (c) from Claim 4.5.1, respectively. In this case,
C1 = −15

10(3b−4)f
∗KS + C1(1) + E∗1 , C2 = −10

10(3b−4)f
∗KS + C2(2) + E∗2 ,

C3 = −6
10(3b−4)f

∗KS + C3(3) + E∗4 .

4.6. Case 6: < 2, 1 > + < 3, 1 > + < 5, 2 > + < b; 2, 1; 3, 2; 5, 3 >, b ≥ 2

In this case, µ = 10, soK2
S′ = −1. LetB be the component of f−1(p2),B2, B3

be the components of f−1(p3), and E1, . . . , E6 be the components of f−1(p4)
such that

−2
B 2 −

−3
B 3

−2
E 2 −

−2
E 3 −

−b
E 6 −

−2
E 5 −

−3
E 4

E1
−2
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is their dual graph. Then

KS′ = f∗KS − 1
3B −

1
5(B2 + 2B3)− 1

30b−53{(15b− 27)E1

+(10b− 18)E2 + (20b− 36)E3 + (18b− 32)E4

+(24b− 43)E5 + (30b− 54)E6},
(7)

K2
S =

2(15b− 26)2

15(30b− 53)
, | det(R)| = 30 · (30b− 53), D = 22(15b− 26)2.

We also compute the dual vectors,

B∗2 = −3B2+B3
5 B∗3 = −B2+2B3

5 ,
E∗1 = − 1

30b−53{(15b− 19)E1 + 5E2 + 10E3 + 3E4 + 9E5 + 15E6},
E∗2 = − 1

30b−53{5E1+(20b−32)E2+(10b−11)E3+2E4+6E5+10E6},
E∗4 = − 1

30b−53{3E1 + 2E2 + 4E3 + (12b− 20)E4 + (6b− 7)E5 + 6E6}.

Claim 4.6.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE6 CE5 CE4 CE3 CE2 CE1 CB3 CB2 CB k
(a) 0 0 0 0 0 1 0 0 0 −15
(b) 0 0 0 0 1 0 0 0 1 −10
(c) 0 0 1 0 0 0 0 1 0 −6

Proof. Since (f∗KS)C = (15b−26)k
15(30b−53) < 0, k < 0. Intersecting C with (7) we

get
(30b−53)C(5B+ 3B2 + 6B3) + 15C{(15b−27)E1 + (10b−18)E2 + (20b−
36)E3

+(18b−32)E4+(24b−43)E5+(30b−54)E6} = (15b−26)k+15(30b−53).
This is possible only if C satisfies one of the three cases, or one of the following
five cases:

Case CE6 CE5 CE4 CE3 CE2 CE1 CB3 CB2 CB k b
(d) 0 0 0 0 1 0 0 3 0 −3 2
(e) 0 0 0 0 1 0 1 1 0 −3 2
(f) 0 0 0 0 0 1 0 1 1 −1 2
(g) 0 0 0 0 2 0 0 1 0 −6 2
(h) 0 0 0 1 0 0 0 1 0 −6 2

In Case (d), C(2) = 0, C(3) = 3B∗2 and C(4) = E∗2 , thus
C(1)2 = C2 − C(3)2 − C(4)2 − (−38 f

∗KS)2 = −1 + 27
5 + 8

7 −
9

30·7 > 0.

In Case (e), C(2) = 0, C(3) = B∗2 +B∗3 = −4B2+3B3
5 and C(4) = E∗2 , thus

C(1)2 = C2 − C(3)2 − C(4)2 − (−38 f
∗KS)2 = −1 + 7

5 + 8
7 −

9
30·7 > 0.

In Case (f), C(2) = −1
3B,C(3) = B∗2 and C(4) = E∗1 , thus
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C(1)2 = C2 − C(2)2 − C(3)2 − C(4)2 − (−18 f
∗KS)2

= −1 + 1
3 + 3

5 + 11
7 −

1
30·7 > 0.

In Case (g), C(2) = 0, C(3) = B∗2 and C(4) = 2E∗2 , thus
C(1)2 = C2 − C(3)2 − C(4)2 − (−68 f

∗KS)2 = −1 + 3
5 + 32

7 −
36
30·7 > 0.

In Case (h), C(2) = 0, C(3) = B∗2 and C(4) = E∗3 = −1
7(10E1 + 9E2 +

18E3 + 4E4 + 12E5 + 20E6), thus
C(1)2 = C2 − C(3)2 − C(4)2 − (−68 f

∗KS)2 = −1 + 3
5 + 18

7 −
36
30·7 > 0.

All contradict the negative definiteness of exceptional curves. ut

Claim 4.6.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity with the component is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. the component B of f−1(p2), if C satisfies (b),
3. the component B2 of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(2) = C(3) = 0 and C(4) = E∗1 ,
so C(4)2 = −15b−19

30b−53 , hence C(1)2 = C2−C(4)2− ( −15
2(15b−26)f

∗KS)2 = −1
2 .

Assume thatC satisfies (b). Then,C(2) = −1
3B,C(3) = 0 andC(4) = E∗2 ,

so C(1)2 = −1 + 1
3 + 20b−32

30b−53 − ( −10
2(15b−26)f

∗KS)2 = 0. Hence C(1) = 0.
Assume that C satisfies (c). In this case, C(2) = 0, C(3) = B∗2 and C(4) =

E∗4 , so C(1)2 = −1 + 3
5 + 12b−20

30b−53 − ( −6
2(15b−26)f

∗KS)2 = 0. Hence C(1) = 0.
ut

Similarly, we see that there are three, mutually disjoint, (−1)-curves C1, C2, C3

satisfying (a), (b), (c) from Claim 4.6.1, respectively.

4.7. Case 7: < 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 >, b ≥ 2

In this case, µ = 10, soK2
S′ = −1. LetB be the component of f−1(p2),B2, B3

be the components of f−1(p3), and E1, . . . , E6 be the components of f−1(p4)
such that

−2
B 2 −

−3
B 3

−2
E 2 −

−2
E 3 −

−b
E 6 −

−3
E 5 −

−2
E 4

E1
−2

is their dual graph. Then

KS′ = f∗KS − 1
3B −

1
5(B2 + 2B3)− 1

30b−47{(15b− 24)E1

+(10b− 16)E2 + (20b− 32)E3 + (12b− 19)E4

+(24b− 38)E5 + (30b− 48)E6},
(8)
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K2
S =

2(15b− 23)2

15(30b− 47)
, | det(R)| = 30 · (30b− 47), D = 22(15b− 23)2.

We also compute the dual vectors,

B∗2 = −3B2+B3
5 B∗3 = −B2+2B3

5 ,
E∗1 = − 1

30b−47{(15b− 16)E1 + 5E2 + 10E3 + 3E4 + 6E5 + 15E6},
E∗2 = − 1

30b−47{5E1 + (20b− 28)E2 + (10b− 9)E3 + 2E4 + 4E5 + 10E6},
E∗4 = − 1

30b−47{3E1 + 2E2 + 4E3 + (18b− 27)E4 + (6b− 7)E5 + 6E6}.
Claim 4.7.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE6 CE5 CE4 CE3 CE2 CE1 CB3 CB2 CB k
(a) 0 0 0 0 0 1 0 0 0 −15
(b) 0 0 0 0 1 0 0 0 1 −10
(c) 0 0 1 0 0 0 1 0 0 −6

Proof. Since (f∗KS)C = (15b−23)k
15(30b−47) < 0, k < 0. Intersecting C with (8) we

get
(30b−47)C(5B+ 3B2 + 6B3) + 15C{(15b−24)E1 + (10b−16)E2 + (20b−
32)E3 + (12b − 19)E4 + (24b − 38)E5 + (30b − 48)E6} = (15b − 23)k +
15(30b− 47).
This is possible only if C satisfies one of the three cases, or the case
(d) CE6 = CE5 = 0, CE4 = 1, CE3 = 0, CE2 = 1, CE1 = 0, CB3 = 0,
CB2 = 1, CB = 0, b = 2, k = −3.
In the last case, C(2) = 0, C(3) = B∗2 and C(4) = E∗2 + E∗4 , thus

C(1)2 = C2 −C(3)2 −C(4)2 − (−314 f
∗KS)2 = −1 + 3

5 + 25
13 −

9
30·13 > 0,

which contradicts the negative definiteness of exceptional curves. ut

Claim 4.7.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity with the component is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. the component B of f−1(p2), if C satisfies (b),
3. the component B3 of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(2) = C(3) = 0 and C(4) = E∗1 ,
so C(4)2 = −15b−16

30b−53 , hence C(1)2 = C2−C(4)2− ( −15
2(15b−23)f

∗KS)2 = −1
2 .

Assume thatC satisfies (b). Then,C(2) = −1
3B,C(3) = 0 andC(4) = E∗2 ,

so C(1)2 = −1 + 1
3 + 20b−28

30b−47 − ( −10
2(15b−23)f

∗KS)2 = 0. Hence C(1) = 0.
Assume that C satisfies (c). In this case, C(2) = 0, C(3) = B∗3 and C(4) =

E∗4 , so C(1)2 = −1 + 2
5 + 18b−27

30b−47 − ( −6
2(15b−23)f

∗KS)2 = 0. Hence C(1) = 0.
ut
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Similarly, we see that there are three, mutually disjoint, (−1)-curves C1, C2, C3

satisfying (a), (b), (c) from Claim 4.7.1, respectively.

4.8. Case 8: < 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 4 >, b ≥ 2

In this case, µ = 11, so K2
S′ = −2. Let B,B2 be the components of f−1(p2),

f−1(p3), and E1, . . . , E8 be the components of f−1(p4) such that
−2
E 2 −

−2
E 3 −

−b
E 8 −

−2
E 7 −

−2
E 6 −

−2
E 5 −

−2
E 4

E1
−2

is their dual graph. Then

KS′ = f∗KS − 1
3B −

3
5B2 − b−2

30b−59(15E1 + 10E2 + 20E3 + 6E4

+12E5 + 18E6 + 24E7 + 30E8),
(9)

K2
S =

2(15b− 29)2

15(30b− 59)
, | det(R)| = 30 · (30b− 59), D = 22(15b− 29)2.

We also compute the dual vectors,
E∗1 = − 1

30b−59{(15b−22)E1+5E2+10E3+3E4+6E5+9E6+12E7+15E8},

E∗2 = − 1
30b−59{ 5E1 + (20b− 36)E2 + (10b− 13)E3 + 2E4 + 4E5 + 6E6

+8E7 + 10E8},
E∗4 = − 1

30b−59{ 3E1 + 2E2 + 4E3 + (24b− 46)E4 + (18b− 33)E5

+(12b− 20)E6 + (6b− 7)E7 + 6E8}.

Claim 4.8.1. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then it satisfies one of the following three cases:

Case CE8 CE7 CE6 CE5 CE4 CE3 CE2 CE1 CB2 CB k
(a) 0 0 0 0 0 0 0 1 0 0 −15
(b) 0 0 0 0 0 0 1 0 0 1 −10
(c) 0 0 0 0 1 0 0 0 1 0 −6

Proof. Since (f∗KS)C = (15b−29)k
15(30b−59) < 0, k < 0. Intersecting C with (9) we

get
(30b− 59)C(5B+ 9B2) + 15(b− 2)C{15E1 + 10E2 + 20E3 + 6E4 + 12E5 +
18E6 + 24E7 + 30E8} = (15b− 29)k + 15(30b− 59) < 15(30b− 59).
This is possible only if C satisfies one of the three cases, or the case

(d) CB2 = CB = 1, b = 2, k = −1, (CEi are not determined).

In case (d), C(2) = −1
3B and C(3) = −1

5B2, thus
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C(1)2 + C(4)2 = C2 − C(2)2 − C(3)2 − (−12 f
∗KS)2 = −1

2 .
Also note that in this case the sublattice Rp4 ⊂ H2(S′,Z) generated by the
components of f−1(p4) is a negative definite unimodular lattice of rank 8. In
particular, R∗p4 = Rp4 , so C(4) ∈ Rp4 and C(4)2 is a non-positive even inte-
ger. By Lemma 7, C(4)2 = 0. Thus C does not meet f−1(p4), contradicts the
assumption. ut

Claim 4.8.2. Let C be a (−1)-curve of the form (1). Suppose that C meets
f−1(p4). Then C meets only one component of f−1(p1) ∪ f−1(p2) ∪ f−1(p3),
the intersection multiplicity with the component is 1, and the component is

1. the component of f−1(p1), if C satisfies (a),
2. the component B of f−1(p2), if C satisfies (b),
3. the component B2 of f−1(p3), if C satisfies (c).

Proof. Assume that C satisfies (a). Then, C(2) = C(3) = 0 and C(4) = E∗1 ,
so C(4)2 = −15b−22

30b−59 , hence C(1)2 = C2−C(4)2− ( −15
2(15b−29)f

∗KS)2 = −1
2 .

Assume thatC satisfies (b). Then,C(2) = −1
3B,C(3) = 0 andC(4) = E∗2 ,

so C(1)2 = −1 + 1
3 + 20b−36

30b−59 − ( −10
2(15b−29)f

∗KS)2 = 0. Hence C(1) = 0.
Assume that C satisfies (c). Then, C(2) = 0, C(3) = −1

5B2 and C(4) =

E∗4 , so C(1)2 = −1 + 1
5 + 24b−46

30b−59 − ( −6
2(15b−29)f

∗KS)2 = 0. Hence C(1) = 0.
ut

Similarly, we see that there are three, mutually disjoint, (−1)-curves C1, C2, C3

satisfying (a), (b), (c) from Claim 4.8.1, respectively. ut
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