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Abstract. After Zagier proved that the traces of singular moduli are Fourier coefficients of a
weakly holomorphic modular form, various arithmetic properties of the traces of singular values
of modular functions mostly on the full modular group have been found. The purpose of this
paper is to generalize the results for modular functions on congruence subgroups with arbitrary
level.

1. Introduction

Singular moduli are special values of the classical modular invariant j(z) at imaginary qua-
dratic arguments in the upper half plane H which play important roles in number theory. Re-
cently, two papers by Borcherds [3] and Zagier [22] have inspired many works on connecting the
traces of singular moduli to the Fourier coefficients of weakly holomorphic modular forms or
Harmonic Maass forms of half-integral weight. (See [20] for the list of references.)

To describe the works of Borcherds and Zagier, we begin with the definition of the modular
trace of a weakly holomorphic modular function. In this paper, D is always a positive integer
congruent to 0 or 3 modulo 4. For each non-square D, we denote by QD,N the set of positive
definite integral binary quadratic forms

Q(x, y) = [Na, b, c] = Nax2 + bxy + cy2

with discriminant −D = b2−4Nac. The setQD,N is invariant under the action of the congruence
subgroup Γ0(N) ⊆ Γ(1) := PSL2(Z). For a fixed solution β (mod 2N) of β2 ≡ −D (mod 4N),
a smaller set QD,N,β = {[Na, b, c] ∈ QD,N | b ≡ β (mod 2N)} is also invariant under the action
of Γ0(N), and there is a canonical bijection between QD,N,β/Γ0(N) and QD,1/Γ(1) when the
discriminant D is not divisible by the square of any prime divisor of N [12]. For each quadratic
form Q in QD,N,β, the corresponding Heegner point on the modular curve X0(N) is the unique
root in H of Q(x, 1) = 0,

zQ =
−b+ i

√
D

2Na
∈ H.

Denoting the stabilizers of Q in Γ0(N) by Γ0(N)Q, we define the trace of a weakly holomorphic
modular function f on Γ0(N) by

(1.1) tf (D) =
∑

Q∈QD,N,β/Γ0(N)

1
|Γ0(N)Q|

f(zQ).
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In particular, the class number HN (D) is given by

(1.2) HN (D) = t1(D) =
∑

Q∈QD,N,β/Γ0(N)

1
|Γ0(N)Q|

which is the Hurwitz-Kronecker class number H(D) when N = 1.
We define a generalized Hilbert class polynomial HD by

(1.3) HD(X) =
∏

Q∈QD,1/Γ(1)

(X − j(zQ))1/|Γ(1)Q|

that reduces to the Hilbert class polynomial when −D < 0 is a fundamental discriminant. If
q = e2πiz and j1(z) = j(z) − 744 = q−1 + 196884q + 21493760q2 + · · · denotes the normalized
Hauptmodul for Γ(1), then the q-expansion of the polynomial is given by [22, Eq. (11)]

(1.4) HD(j(z)) = q−H(D)(1− tj1(D)q +O(q2)).

In [3, p. 204], [22, Theorem 3], Borcherds proved that

(1.5) HD(j(z)) = q−H(D)
∞∏
n=1

(1− qn)A(n2,D),

where A(d,D) are the Fourier coefficients of a weight 1/2 weakly holomorphic modular form.
More precisely, for D ≥ 0, the set of the functions

fD(z) = q−D +
∑
d>0

d≡0,3 (mod 4)

A(d,D)qd

forms a unique basis of the space of weakly holomorphic modular forms of weight 1/2. Comparing
equation (1.4) with (1.5), we see that tj1(D) = A(1, D) for all D > 0. On the other hand, Zagier
showed that

gd(z) = q−d −
∑
D≥0

D≡0,3 (mod 4)

A(d,D)qD

is a weakly holomorphic modular form of weight 3/2 and the set {gd|d > 0} forms a basis of the
space of weakly holomorphic modular forms of weight 3/2.

Making use of this duality relation between fD(z) and gd(z), Ahlgren and Ono [1] showed
that tj1(p2D) ≡ 0 (mod p) for an odd prime p that splits in Q(

√
−D) and later Osburn [21]

generalized it to a divisibility property of the traces of CM values of Hauptmodul with prime
level of genus zero. In [8, Theorem 1.4], the authors with Choi and Jeon established a Treneer
type congruence relation for the traces of singular moduli with arbitrary level.

A similar duality relation involving traces of the values of Niebur-Poincaré series on Γ(1) was
discovered by Bringmann and Ono [4, Theorems 1.1 and 1.2]. For a non-negative integer m and
complex numbers s and z = x+ iy with y > 0, we define the weight zero mth Niebur-Poincaré
series on a congruence subgroup Γ by

(1.6) Fm(z, s) =
∑

M∈Γ∞\Γ

e(−mReMz)(ImMz)1/2Is−1/2(2πmImMz),
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where Γ∞ ⊂ Γ is the subgroup of translations, e(z) = e2πiz, and Is−1/2 is the modified Bessel
function of the first kind. Niebur [19] observed that every modular function on Γ(1) that is
holomorphic away from the cusp at infinity can be written as a linear sum of these Poincaré
series. This property was utilized by Duke [10] to obtain explicit formulas for the traces of
CM values of Hecke type Faber polynomials jm(z) in terms of Kloosterman sums and the class
number H(D). Applying parallel arguments to a modular function with prime level p, the
authors with Choi and Jeon [9] derived exact formulas for the traces of singular values on Γ0(p).

As the brief review above reveals, most of the published results on arithmetic properties of
the traces of singular moduli hold for the full modular group or Γ0(p) for p prime, and this
motivated us to study results presented in this short note. More specifically, with the goal to
extend the results for the congruence subgroup Γ0(N) for arbitrary N , we first establish exact
formulas for traces of singular values of any modular function that is holomorphic away from
the cusp at infinity and then use these to prove a duality relation and a divisibility property of
the traces. As for the organization of this note, we present our results in the next section and
summarize the proofs for our theorems in the following three sections.

2. statements of results

2.1. Exact formulas for traces of singular moduli on congruence subgroups. Through-
out the rest of the paper, Γ always denotes the group Γ∗0(N) generated by Γ0(N) and all Atkin-
Lehner involutions. Then the set QD,N is invariant under the action of Γ and we can define the
trace of a weakly holomorphic modular function with respect to Γ as

t∗f (D) =
∑

Q∈QD,N/Γ

1
|ΓQ|

f(zQ).

We denote H∗N (D) by the corresponding class number, i.e., t∗1(D). It is easy to see that if a is

the number of prime divisors p of (β,N) such that p -
N

(β,N)
, then

(2.1) t∗f (D) =
1
2a

tf (D).

Let us pause for a moment to note on the Poincaré series representation of a weakly holomor-
phic modular function. The Niebur-Poincaré series Fm(z, s) on Γ in (1.6) converges absolutely
for Re s > 1 and can be analytically continued to the entire s plane and it has no poles at
Re(s) = 1 [19, Theorem 5]. Moreover, it is an eigenfunction for the hyperbolic Laplacian
4 = −y2(∂2

x + ∂2
y) with eigenvalue s(1− s) so that Fm(z, 1) is annihilated by the Laplacian 4

and thus almost holomorphic on H. Niebur showed that any modular function on Γ(1) that is
holomorphic away from the cusp at infinity is a linear combination of the Fm(z, 1) on Γ(1) [19,
Theorem 6]. Using the similar argument in [9, p. 4], we can prove that it is also true for any
modular function f on Γ that is holomorphic away from the cusp at infinity so that we may
write

(2.2) f(z) =
∑̀
m=1

am(2π
√
m)Fm(z, 1) + cm,
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where −cm is the constant term in (2π
√
m)Fm(z, 1). For example, a Faber polynomial jm(z) =

(j − 744)|Tm on Γ(1) satisfies

jm(z) = 2π
√
mFm(z, 1)− 24σ(m),

where |Tm is the weight 0 Hecke operator and σ(m) is the divisor function [22, 10]. If N is a
prime p and pα||m, then we have [9]

f(z) =
∑̀
m=1

am

(
2π
√
mFm(z, 1)− 24

(
−pα+1

p+ 1
σ(m/pα) + σ(m)

))
.

The constant cm for arbitrary level N can be determined explicitly using properties of Ra-
manujan sum.

Theorem 2.1. Let Fm(z, s) be the Poincaré series defined in (1.6). Then the constant term
−cm in (2π

√
m)Fm(z, 1) is given by

(2.3) −cm = 24
m

mN
σ(mN )

∑
e‖N

1
e

∏
p|N
e
δe(p)p1−βe,p

(
(1− pβe,p−αp−2)(1 + p−1)− 1

)∏
p|N (1− p−2)

.

Here αp := ordp(m), βe,p = ordp(Ne ), mN denotes the largest exact divisor of m satisfying
(mN , N) = 1, and δe(p) is defined by

(2.4) δe(p) =
{

1, if βe,p ≤ αp + 1,
0, otherwise.

In particular, if m is relatively prime to N , then

(2.5) cm = −24σ(m)

∑
e||N µ(N/e)e

N2
∏
p|N (1− p−2)

,

where µ(n) is the Möbius function. This implies that

(2.6) cm = σ(m)c1 whenever (m,N) = 1.

As a consequence of (2.2) and Theorem 2.1, we obtain the exact formulas for the traces of
singular values of f .

Theorem 2.2. Suppose that f is a modular function for Γ whose poles are supported only at
∞ and the principal part is given by

∑`
m=1 ame(−mz). Then

(2.7) t∗f (D) =
∑̀
m=1

am

cmH∗N (D) +
∑
c>0

c≡0 (mod 4N)

SD(m, c) sinh

(
4πm
√
D

c

) ,
where −cm is given in (2.3) and

(2.8) SD(m, c) =
∑

x2≡−D(mod c)

e(2mx/c) for any positive integers m and c.
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Example 1. Consider

j∗45 = −1 +
(

η(3z)2η(15z)2

η(z)η(5z)η(9z)η(45z)

)
,

where η(z) is the Dedekind eta function defined by η(z) = q1/24
∏∞
n=1(1− qn). Then j∗45 is the

Hauptmodul for Γ∗0(45) which is of genus 0 and has a Fourier expansion of the form q−1 + 0 +
O(q). Let D = 20. Since the representatives for Q20,45,40/Γ0(45) are given by [405, 40, 1] and
[90,−50, 7], we find from equations (2.1), (2.5) and (2.7) that

j∗45(z[405,40,1]) + j∗45(z[90,−50,7]) = −1 + 2
∑
c>0

c≡0 (mod 180)

S20(1, c) sinh

(
8π
√

5
c

)
.

The left hand side of the equation is known to be −3, and hence the exponential sum on the
right hand side has the value −1.

2.2. Duality and Divisibility for traces of singular moduli on congruence subgroups.
For more arithmetic properties of traces of singular values of Niebur-Poincarè series and modular
functions holomorphic away from the cusp at infinity, we make the Kloosterman sum represen-
tation of traces of the Niebur-Poincarè series at Heegner points. In order to define Kloosterman
sum, we need the extended Kronecker symbol

( c
d

)
and

εd :=
{

1, if d ≡ 1 (mod 4),
i, if d ≡ 3 (mod 4)

that is defined for odd d. For c,m, n, λ ∈ Z with c ≡ 0 (mod 4), the weight k := λ + 1/2
Kloosterman sum Kλ(m,n, c) is defined by

(2.9) Kλ(m,n, c) :=
∑

v (mod c)∗

( c
v

)
ε2λ+1
v e

(
mv̄ + nv

c

)
,

where the sum runs through the primitive residue classes modulo c and vv̄ ≡ 1 (mod c).
Following the method developed in [14], [5], [7], [4] and [18], we construct a half integral weight

Maass-Poincaré series for arbitrary level 4N whose holomorphic coefficients are represented by
the Kloosterman sums: For s ∈ C and y ∈ R− {0}, we define

Ms(y) := |y|−k/2M k
2

sgn(y),s− 1
2
(|y|),

where Mν,µ is the usual M-Whittaker function. And for m ≥ 1 with (−1)λ+1m ≡ 0, 1 (mod 4),
we define

ϕ−m,s(z) :=Ms(−4πmy)e(−mx).

With these notations, we define the Poincaré series for Re(s) > 1 by
Pλ,n(−m, s; z) :=

∑
M∈Γ∞\Γ0(4N)

(ϕ−m,s|kM)(z) where |k is the usual weight k slash operator.

Now as in [4] and [18], we apply Kohnen’s projection operator [16, p. 250] prλ to Pλ,n(−m, s; z)
to obtain a new family of weak Maass forms.
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Pλ,N (−m, z) :=

{
3
2Pλ,n(−m, k2 ; z)|prλ, if λ ≥ 1;

3
2(1−k)Γ(1−k)Pλ,n(−m, 1− k

2 ; z)|prλ, if λ ≤ 0.

The series Pλ,N (−m, z) is a weakly holomorphic modular form of weight λ+ 1/2 and level 4N
satisfying Kohnen plus-condition if λ > 1 and it is a weak Maass form if λ ≤ 1 that has Fourier
expansion

(2.10) Pλ,N (−m, z) = q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ,N (−m,n)qn + P−λ,N (−m, z),

where P−λ,N (−m, z) is the non-holomorphic part. It follows from [18, Theorem 2.1] that if m,n
are positive integers such that (−1)λ+1m, (−1)λn ≡ 0, 1 (mod 4) and N is odd, then the Fourier
coefficients bλ,N (−m,n) of the weak Maass form Pλ,N (−m, z) is given by

bλ,N (−m,n) : = (−1)[λ+1
2

]π
√

2(n/m)
2λ−1

4 (1− (−1)λi)(2.11)

×
∑
c>0
4N |c

Kλ(−m,n, c)
c

δo(c/4)Iλ−1/2

(
4π
√
nm

c

)
,

where δo(d) = 2 if d is odd and 1 otherwise.
Using the Bruinier-Funke theta lift as in [8], one can construct a weight 3/2 Harmonic weak

Maass form GN (z) whose holomorphic part is
∑

DH
∗
N (D)qD. Let

(2.12) P∗1,N (−m, z) := P1,N (−m, z) + (−c1)δ�(m)GN (z).

In addtion, we define

(2.13) P∗0,N (−m, z) := P0,N (−m, z) + c1H
∗
N (m)θ(z)/2,

where θ(z) =
∑

n∈Z q
n2

is the Jacobi theta series. Then by generalizing the duality relation
bλ,1(−m,n) = −b1−λ,1(−n,m) due to Bringmann and Ono [4, Theorem 1.1], we can establish
the following duality relation for the holomorphic coefficients of P∗1,N (−m, z) and P∗0,N (−m, z).

Theorem 2.3. Let P∗1,N (−m, z) and P∗0,N (−m, z) be weak Maass forms defined in (2.12) and
(2.13), respectively, with N odd. Assume for i = 0, 1 that

(2.14) P∗i,N (−m, z) =
∑
n≥0

Bi,N (−m,n)qn + non holomorphic part.

If m is a positive integer that is a square modulo 4N , then for every positive integer n with
−n ≡ � (mod 4N), we have

B1,N (−m,n) = −B0,N (−n,m).

It is straightforward to show that the trace of the values of Niebur-Poincaré series at Heegner
points is a linear sum of B1,N (−m,n) using the exact formula for traces of singular moduli in
Theorem 2.2. We will elaborate on this in Lemma 4.1 below which leads to a divisibility property
of the traces of singular moduli that is a generalization of the results in [1, 11, 13, 15, 21].
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For an integer m ≥ 1, the Hecke operators T (m) defined in [22, 13] act on the space
of weak Maass forms (see [20, p.35]). We denote by B

(m)
0,N (−D,n) the coefficient of qn in

P∗0,N (−D, z)|1/2T (m).

Theorem 2.4. Let −D be a fundamental discriminant that is a square modulo 4N . Suppose
that f is a modular function for Γ with odd level N which is holomorphic away from the cusp
at infinity. If f has the principal part

∑`
m=1 ame(−mz) at ∞ with am ∈ Z such that for all

non-zero am, (m,N) = 1, then for every prime p for which (p,N) = 1 and
(
−D
p

)
= 1,

(2.15) tf (p2nD) = pn
∑̀
m=1

amB
(m)
0,N (−D, p2n).

If we assume a modular function f ∈ Q((q)) satisfies the condition in Theorem 2.4 and both
trace of f and the sum

∑
m amB

(m)
0,N (−D, p2n) are integers, we have the congruence

tf (p2nD) ≡ 0 (mod pn).

Example 2. Consider

f =
(

η(z)
η(37z)

)2

− 2 + 37
(
η(37z)
η(z)

)2

.

Then f is a modular function for Γ∗0(37) which is of genus 1 and has a Fourier expansion of the
form q−3−2q−2−q−1 +0+O(q). When D = 11, the computation from Theorem 2.1, Lemma 3.1
and Theorem 2.2 shows that tf (11) = t3(11) − 2t2(11) − t1(11) = 5 is an integer while t1(11),
t2(11), t3(11) are not integers. Furthermore, tf (p2n · 11) ≡ 0 (mod pn) for a prime p for which(
−11
p

)
= 1. For example, for the first three of such primes 3, 5 and 23, we have

tf (99) = tf (32 · 11) = −6 ≡ 0 (mod 3),

tf (275) = tf (52 · 11) = −75 ≡ 0 (mod 5),

tf (5819) = tf (232 · 11) = 246920364 ≡ 0 (mod 23),

tf (891) = tf (34 · 11) = 2988 ≡ 0 (mod 9),

tf (6875) = tf (54 · 11) = −1966145550 ≡ 0 (mod 25),

tf (8019) = tf (36 · 11) = −15195121128 ≡ 0 (mod 27).

3. Proofs of Exact Formulas for Traces

In this section, we will give the proofs of the explicit formulas for the traces of singular moduli
in Theorems 2.1 and 2.2. We first establish an explicit formula for the traces of the values of
Niebur-Poincarè series at Heegner points without a proof as it can be derived in a very similar
way to [9, Lemma 3].

Lemma 3.1. Let F∗m(z, s) = (2π
√
m)Fm(z, s)+ cm, where Fm(z, s) is defined in (1.6) and −cm

is the constant term in (2π
√
m)Fm(z, 1) which is explicitly given in (2.3). Then the trace of the
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values of F∗m at Heegner points is given by

(3.1) tm(D) :=
∑

Q∈QD,N/Γ

1
|ΓQ|
F∗m(zQ, 1) = cmH

∗
N (D) +

∑
c>0

c≡0 (mod 4N)

SD(m, c) sinh

(
4πm
√
D

c

)
.

Theorem 2.2 follows immediately from Lemma 3.1 and (2.2), and thus it only remains to
evaluate the constant term cm given in Theorem 2.1 in order to complete the proof of exact
formulas for the traces of singular values of a weakly holomorphic modular function on Γ.

Proof of Theorem 2.1. First, we recall that the Niebur-Poincaré series Fm(z, s) in (1.6) has the
following Fourier expansion [19, Theorem 1]; for Re s > 1,

(3.2) Fm(z, s) = e(−mx)y1/2Is−1/2(2πmy) +
∞∑

n=−∞
bn(y, s;−m)e(nx),

where bn(y, s;−m)→ 0 (n 6= 0) exponentially as y →∞. Then the constant term in (2π
√
m)Fm(z, 1)

is

−cm = lim
s→1

2π
√
mb0(y, s,−m)

= lim
s→1

2π
√
m(2πsms−1/2φm(s)/Γ(s))y1−s/(2s− 1) = 4π2m lim

s→1
φm(s).(3.3)

Here φm(s) =
∑

c>0 S(m, 0; c)c−2s and S(m,n; c) is the general Kloosterman sum
∑

0≤d<|c| e((ma+

nd)/c) for ( a ∗c d ) ∈ Γ. As M ∈ Γ∗0(N) if and only if M is of the form
( √

ea b/
√
e

Nc/
√
e
√
ed

)
det=1

for some e‖N with a, b, c, d ∈ Z and (a, Nc/e) = 1, we can identify the sum S(m, 0; c) =∑
0≤d<|c| e(ma/c) with the sum of m-th powers of primitive Nc/e-th roots of unity. Hence if we

denote the Ramanujan sum by un(q), that is the sum of n-th powers of primitive q-th roots of
unity, we find that

φm(s) =
∑
c>0

S(m, 0; c)c−2s =
∑
e‖N

∑
c≥1

(e,c)=1

um(Nc/e)
N−2s

e−s
c−2s

=
∑
e‖N

e−s
∑
c≥1

(e,c)=1

um(Nc/e)(Nc/e)−2s(3.4)

=
∑
e‖N

e−s

∏
p|N
e

∑
k≥ordp(N

e
)

um(pk)p−2sk
∏
p-N

∑
k≥0

um(pk)p−2sk

 ,

where the last equality holds due to the multiplicative property of un(q) as a function of q and
the fact (e, c) = 1. Recall the following known fact on the Ramanujan sum:

(3.5) un(pk) =


0, if pk−1 - n,
−pk−1, if pk−1||n,
ϕ(pk), if pk | n,
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where ϕ(n) is Euler’s totient function. Letting α = αp = ordp(m) and mN be the largest exact
divisor of m satisfying (mN , N) = 1, we deduce from (3.5) that∏

p-N

∑
k≥0

um(pk)p−2sk =
∏
p-N

(1 + ϕ(p)p−2s + ϕ(p2)p−4s + · · ·+ ϕ(pα)p−2αs − pαp−2(α+1)s)

=
∏
p-N

(1− p−2s)(1 + p1−2s + · · ·+ (p1−2s)α)(3.6)

=
ζ(2s)−1∏

p|N (1− p−2s)
σ1−2s(mN ).

Also, if β = βe,p = ordp(Ne ) and δe(p) is defined as in (2.4), then we obtain from (3.5) that∏
p|N
e

∑
k≥β

um(pk)p−2sk =
∏
p|N
e

δe(p)
(
ϕ(pβ)p−2βs + ϕ(pβ+1)p−2(β+1)s + · · ·+ ϕ(pα)p−2αs − pαp−2(α+1)s

)
=

∏
p|N
e

δe(p)(p1−2s)β−1

(
1− (p1−2s)α−β+2

1− p1−2s
(1− p−2s)− 1

)
.(3.7)

Therefore, the theorem follows from (3.3), (3.4), (3.6), and (3.7). �

4. Duality for Traces

We first prove the Kloosterman sum representation of the trace of the values of Niebur-
Poincaré series at Heegner points and then the duality relation given in Theorem 2.3.

Lemma 4.1. Let tm(D) be the trace of the Poincaré series of odd level N at Heegner points in
(3.1). If (m,N) = 1, then

tm(D) = −
∑
ν|m

νB1,N (−ν2, D),

where B1,N (−m,n) is given by

(4.1) B1,N (−m,n) = −c1δ2(m)H∗N (n) + b1,N (−m,n).

Here −c1 is the constant given in (2.5) with m = 1, the function δ2(m) = 1 if m is a square
and zero otherwise, and b1,N (−m,n) is given in (2.11) with λ = 1.

Proof. From Kohnen’s result on the relation between Kloosterman sum and Salié sum given in
[16, Proposition 5] and [18, Proposition 2.2], we can write the sum in the far right side in (3.1)
as ∑

c>0
c≡0 (mod 4N)

SD(m, c) sinh

(
4πm
√
D

c

)
=

∑
c>0
4N |c

∑
d|( c

4
,m)

(1 + i)(c/d)−1/2δo(c/4d)

× K1(−m
2

d2
, D, c/d)

(
2mπ2

√
D

c

)1/2

I1/2

(
4πm
√
D

c

)
.(4.2)
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Since (m,N) = 1 and cm = σ(m)c1 when (m,N) = 1, we deduce from (3.1) and (4.2) that

tm(D) = c1H
∗
N (D)

∑
ν|m

ν +
∑
ν|m

∑
c>0

4νN |c

(1 + i)(c/ν)−1/2δo(c/4ν)

× K1(−m
2

ν2
, D, c/ν)

(
2mπ2

√
D/ν

c/ν

)1/2

I1/2

(
4πm
√
D/ν

c/ν

)
.(4.3)

Replacing c/ν by c and m/ν by ν, we complete the proof. �

We note that B1,N (−m,n) in Lemma 4.1 are holomorphic coefficients of P∗1,N (−m, z).

Proof of Theorem 2.3. According to the Fourier development of Pλ,N (−m, z) computed in [18,
Theorem 2.1], the coefficient b1,N (−m,n) in the holomorphic part of P1,N (−m, z) is given by

b1,N (−m,n) = −π
√

2(n/m)1/4(1 + i)
∑
c>0
4N|c

δo(c/4)
K1(−m,n, c)

c
I1/2

(
4π
√
nm

c

)
.

Applying [4, Proposition 3.1], we may write the right-hand side as

−π
√

2(n/m)1/4(1 + i)
∑
c>0
4N|c

δo(c/4)(−i)K0(−m,n, c)
c

I1/2

(
4π
√
nm

c

)
,

which is the Fourier coefficients −b0,N (−n,m) in the holomorphic part of P0,N (−m, z) by [18,
Theorem 2.1]. Thus

(4.4) b1,N (−m,n) = −b0,N (−n,m).

By the definition of Bλ,N (−m,n), we have

(4.5) B1,N (−m,n) = −c1δ�,mH
∗
N (n) + b1,N (−m,n)

and

(4.6) B0,N (−m,n) = c1δ�,nH
∗
N (m) + b0,N (−m,n).

Now the theorem follows from (4.4), (4.5) and (4.6). �

5. Divisibility for Traces

We start the proof of Theorem 2.4 by showing that the Niebur-Poincaré series Fm(z, 1) is
generated by the action of Hecke operator on F1(z, 1).

Lemma 5.1. For every positive integer m relatively prime to N , we have

(5.1) F∗1 (z, 1)|Tm = F∗m(z, 1).

And for a prime p not dividing N ,

(5.2) F∗m(z, 1)|Tpn =
∑

pi|(m,pn)

piF∗pnm
p2i

(z, 1) =
min(n,s)∑
i=0

piF∗pn+s−2im0
(z, 1),

where m = psm0 with p - m0 and s ≥ 0.
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Proof. As we can easily deduce (5.1) from (5.2), we only prove (5.2). By [2, Lemma 6], [17,
Lemmas 2.5 and 2.6] and [17, Theorem 6.3], F∗m(z, 1)|Tpn is on Γ and has a pole only at ∞.
Since F∗m(z, 1) is harmonic, so is F∗m(z, 1)|Tpn . Now in the case n = 1, if we compare the principal
parts of the functions in both sides of (5.2) and apply [19, Theorem 6], we obtain the result
immediately. If we use induction on n as in [17, Theorem 6.2], we get the assertion. �

By Lemma 4.1, for m and p satisfying (m,N) = 1 and (p,N) = 1, we have

tm0pj (D) = −
j∑
t=0

∑
ν|m0

ptνB1,N (−p2tν2, D) =
j∑
t=0

∑
ν|m0

ptνB0,N (−D, p2tν2)

= B
(m0pj)
0,N (−D, 1). (cf. [22, formula (19)])(5.3)

On the other hand, by the definition of tm(D) and (5.2) (cf. [22, Section 6]),

(5.4)
n∑
i=0

tm(p2iD) =
n∑
i=0

(
−D
pn−i

)
tm(p2iD) =

min(s,n)∑
i=0

pitpn+s−2im0
(D).

It then follows from (5.3) and (5.4) that

n∑
i=0

tm(p2iD) =
min(s,n)∑
i=0

pitpn+s−2im0
(D) =

min(s,n)∑
i=0

piB
(m0pn+s−2i)
0,N (−D, 1)

=
n∑
i=0

piB
(m0ps)
0,N (−D, p2i)

since
min(s,n)∑
i=0

piT (m0p
n+s−2i) = T (m0p

s)T (pn) (cf. [13, p. 155]).

Thus we have
n∑
i=0

tm(p2iD) =
n∑
i=0

piB
(m)
0,N (−D, p2i).

Now induction argument in n ≥ 0 shows that

tm(p2nD) = pnB
(m)
0,N (−D, p2n),

which proves (2.15) since tf (p2nD) =
∑l

m=1 amtm(p2nD).
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