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Abstract. Zagier showed that the Galois traces of the values of j-invariant at CM points are
Fourier coefficients of a weakly holomorphic modular form of weight 3/2 and Bruinier-Funke
expanded his result to the sums of the values of arbitrary modular functions at Heegner points.
In this paper, we identify the Galois traces of real-valued class invariants with modular traces of
the values of certain modular functions at Heegner points so that they are Fourier coefficients
of weight 3/2 weakly holomorphic modular forms.

1. Introduction and the statement of results

Let τ be a value in the complex upper half plane H and q = e2πiτ . Then the classical modular
j-invariant on SL2(Z) is defined by

j(τ) =

(
1 + 240

∑∞
n=1

∑
m|nm

3qn
)3

q
∏∞
n=1(1− qn)24

= q−1 + 744 + 196884q + 21493760q2 + · · ·

and its value at an imaginary quadratic generates an abelian extension of an imaginary quadratic
number field. For positive integer D satisfying D ≡ 0, 3 (mod 4), we let

(1.1) τD :=

{ √
−D
2 , if D ≡ 0 (mod 4),
−1+

√
−D

2 , if D ≡ 3 (mod 4).

Then j(τD) generates the ring class field HD over the imaginary quadratic field K = Q(τD)
with degree [HD : K] = h(−D), the class number of the order OD = Z[τD] of K. The Galois
conjugates of j(τD) under the action of Gal(HD/K) are singular moduli j(τQ), where

(1.2) τQ :=
−b+

√
−D

2a

is a CM point that is a unique root of Q(x, 1) = 0 in H, where

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

is a positive definite integral primitive binary quadratic form with discriminant −D = b2 − 4ac
and the sum of these conjugates is an ordinary integer.

In order to give a nice analytic property to the sum of singular moduli j(τQ), we allow
imprimitive quadratic forms and count them with multiplicities 1/|Γ(1)Q|, where Γ(1)Q is the
stabilizer of Q by Γ(1) := PSL2(Z). Let QD denote the set of positive definite integral binary
quadratic forms of discriminant −D with the usual action of the modular group Γ(1). Following

1



2 DAEYEOL JEON, SOON-YI KANG AND CHANG HEON KIM

D. Zagier, we define the modified trace of the Hauptmodul J(τ) = j(τ)− 744 for index D as

(1.3) tJ(D) :=
∑

Q∈QD/Γ(1)

J(τQ)
|Γ(1)Q|

.

In general, this modified trace is not a Galois trace but a sum of traces that we may write ([17,
Section 2]) as

(1.4) tJ(D) =
∑
O⊇OD

2
ωO

∑
[aO]

J(aO),

where the first sum runs over all imaginary quadratic orders O that contain the order OD of
discriminant −D, ωO is the number of units in O, and the second sum runs over representatives
of the proper O-ideal class. The corresponding generalized class polynomial is then given by
[28],

(1.5) HD(X) :=
∏

Q∈QD/Γ(1)

(X − j(τQ))1/|Γ(1)Q|

and its q-expansion at j(τ) is ([28, Eq. (11)])

(1.6) HD(j(τ)) = q−H(D)(1− tJ(D)q +O(q2)),

where H(D) is the Hurwitz-Kronecker class number. If −D < −4 is a fundamental discriminant,
then tJ(D) and HD(X) are indeed the Galois trace and Hilbert class polynomial, respectively.
For example,

(1.7) H23(X) = X3 + 3491750X2 − 5151296875X + 12771880859375 ∈ Z[X]

and tJ(23) = −3491750, the Galois trace of J(τ23).
One of the significant properties of the modified trace is that they are Fourier coefficients

of a certain weakly holomorphic modular form of weight 3/2 on Γ0(4) [28]. This discovery of
Zagier inspired a great number of works on traces of singular values (see [20, Section 13.1] for
references). In particular, J. H. Bruinier and J. Funke [5] showed that the modular traces of
the values of an arbitrary modular function at Heegner points are Fourier coefficients of the
holomorphic part of a harmonic weak Maass form of weight 3/2 and Bruinier, P. Jenkins, and
K. Ono [6] and W. Duke [10] derived exact formulas of traces of Jm(z) := mJ(z)|Tm, where Tm is
the weight zero m-th Hecke operator, which lead to exact formulas for Hilbert class polynomials.

It is known that the value of every modular function for any congruence subgroup at an
imaginary quadratic lies in a finite abelian extension of an imaginary quadratic field, the so
called ray class field. While the Zagier-Bruinier-Funke modular trace of the value of a modular
function at a Heegner point is naturally its Galois trace, it is not trivial to see whether the
Galois trace of a given algebraic integer is a modular trace and hence a Fourier coefficient of a
certain automorphic form. However, if we restrict our attention to a modular function whose
value at a CM point generates a ring class field of an imaginary quadratic field, we can make
use of Shimura’s reciprocity law to relate the Galois trace with the modular trace. Following H.
Weber [26], we call the value of a modular function f(τD) a class invariant if we have

K(f(τD)) = K(j(τD)).
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The Shimura reciprocity law [24] provides a method of systematically determining whether f(τD)
is a class invariant as well as a description of the Galois conjugates of f(τD) under the action
of Gal(HD/K) in terms of the action of the form class group. This tool is well-illustrated in
several works by R. M. Bröker, A. Gee, and P. Stevenhagen in [4], [11], [12], [13], [25].

In this paper, we identify the Galois traces of several class invariants whose minimal polyno-
mials have integer coefficients with modular traces of the values of certain modular functions at
Heegner points so that they are Fourier coefficients of weight 3/2 weakly holomorphic modular
forms. We begin with the holomorphic cube root γ2 : H → C of the j-function and a modular
function f2 : H → C of level 48. The function values ζ3γ2(τ23) and ζ48f2(τ23) are both class
invariants and these values have minimal polynomials

Hζ3γ223 (X) = X3 + 155X2 + 650X + 23375 ∈ Z[X]

and
Hζ48f2

23 (X) = X3 −X − 1 ∈ Z[X].

Compared with the Hilbert class polynomial in (1.7), the minimal polynomials of class invariants
above produce much smaller coefficients.

The holomorphic cube root γ2 of j is a modular function of level 3. It is well known that
if D > 4 and 3 - D and if B = 0 for D even and B = 1 otherwise, then ζB3 γ2(τD) is a class
invariant. Using the Shimura reciprocity, we deduce the following theorem.

Theorem 1.1. Suppose −D is an imaginary quadratic discriminant such that 3 - D. We let
τD = −B+

√
−D

2 as defined in (1.1) and let τQ = −b+
√
−D

2a be the CM point associated with a
primitive quadratic form Q = [a, b, c] of discriminant −D. The action of the form class group
on ζB3 γ2(τD) is given by the formula

(1.8) (ζB3 γ2(τD))[a,−b,c] =


ζab3 γ2(τQ), if 3 - a,
ζ−bc3 γ2(τQ), if 3 | a and 3 - c,
γ2(τQ), if 3 | a and 3 | c.

Of the three cases in (1.8), we are particularly interested in the last, where both a and c are
multiples of 3, and discriminant −D is congruent to a square modulo 36. In general, for −D
that is congruent to a square modulo 4N2 and β modulo 2N2, we let

(1.9) QD,(N),β = {[Na, b,Nc] ∈ QD | b ≡ β (mod 2N2)}

on which Γ0
0(N) = {

(
a b
c d

)
∈ Γ(1) | b ≡ c ≡ 0 (mod N)} acts. Then the associated Heegner

points are of the form τQ =
−b+

√
−D

2aN
and τD is not a Heegner point unless N = 1. If

p2 - −D for any prime divisor p of N , then there is a canonical bijection between QD/Γ(1) and
QD,(N),β/Γ0

0(N), as to be shown later in Lemma 5.1. Let GTf (D) denote the modified Galois
trace of a class invariant f(τD). By means of Theorem 1.1, the modified Galois trace of ζB3 γ2(τD)
for discriminant −D which is congruent to a square modulo 36 but not divisible by 3 is given
by

(1.10) GTζB3 γ2
(D) =

∑
Q∈QD,(3),β/Γ0

0(3)

γ2(τQ).
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The sum of the traces given on the right-hand side of equation (1.10) is a constant multiple
of the Bruinier-Funke modular trace of γ2 at a Heegner point. To state the relation more
precisely, we introduce some notations. For a weakly holomorphic modular function f on a level
N congruence subgroup Γ, we consider a lattice L such that the group Γ acts with finitely many
orbits on Lh,m := {X ∈ L+ h | q(X) = m}, where h is in the dual lattice of L, m ∈ Q>0, and
q(X) := det(X). We denote the modular trace function of f for positive index m with respect
to L by MTL

f (h,m). If we use the lattice

(1.11) L1 =
{
X =

(
b 2Nc

2Na −b

) ∣∣∣a, b, c ∈ Z
}

with q(X) = det(X) and the associated bilinear form (X,Y ) := −tr(XY ) in the construction of
the Bruinier-Funke modular trace and apply some properties of the function γ2, we obtain the
following theorem.

Theorem 1.2. For imaginary quadratic discriminant −D which is congruent to a square modulo
36 and not divisible by 3,

(1.12) GTζB3 γ2
(D) =

1
4

MTL1
γ2 (0, D).

Moreover, the generating series of GTζB3 γ2
(D),

q−1 +
∑
D>0

−D≡� (mod 36)

GTζB3 γ2
(D)qD

is a weakly holomorphic modular form of weight 3/2 on Γ0(36).

Example 1. Let −D = −23 ≡ 72 (mod 36) and β = 7. Then Q23/Γ(1) is given by

Q23/Γ(1) = {[1, 1, 6], [2, 1, 3], [2,−1, 3]}

and thus the Galois trace of j(τ23) is j(τ[1,1,6]) + j(τ[2,1,3]) + j(τ[2,−1,3]). By Theorem 1.1, we find
that the Galois trace of ζ3γ2(τ23) is equal to

ζ3γ2(τ[1,1,6]) + ζ2
3γ2(τ[2,1,3]) + ζ−2

3 γ2(τ[2,−1,3]).

However, by the discussion above and the fact

Q23,(3),7/Γ
0
0(3) = {[6, 25, 27], [9, 25, 18], [3, 7, 6]},

we may also write the Galois trace of ζ3γ2(τ23) as

γ2(τ[6,25,27]) + γ2(τ[9,25,18]) + γ2(τ[3,7,6])

so that the corresponding minimal polynomial has Heegner divisors:

(1.13) Hζ3γ223 (X) =
∏

Q∈Q23,(3),7/Γ
0
0(3)

(X − γ2(τQ))

Likewise as above, we discover similar results for the Weber functions f and f2 of level 48.
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Theorem 1.3. For imaginary quadratic discriminant −D which is congruent to a square modulo
9216 but not divisible by 2 or 3,

GTζ48f2(D) =
1
8

MTL1
f (0, D).

Moreover, there is a finite principal part A(τ) =
∑

n≤0 a(n)qn for which

A(τ) +
∑
D>0

−D≡� (mod 9216)

GTζ48f2(D)qD

is a weakly holomorphic modular form of weight 3/2 on Γ0(9216).

There are generalized Weber functions g0, g1, g2 and g3 of level 72. For these functions, we
choose the lattice

(1.14) L2 =
{
X =

(
Nb c
a −Nb

) ∣∣∣a, b, c ∈ Z
}

with q(X) = det(X) and (X,Y ) = −tr(XY ) that yields

Theorem 1.4. If the imaginary quadratic discriminant −D is congruent to a square modulo
20736 and −D ≡ 1 (mod 12), then (g6

0 +g6
1)(τD) is a real-valued class invariant. And for a fixed

value β (mod 10368) such that β2 ≡ −D (mod 20736), we have

GTg6
0+g6

1
(D) =

{
MTL2

g6
0

(β,D/20736), if β ≡ 7 (mod 12),

MTL2

g6
3

(β,D/20736), if β ≡ 5 (mod 12).

Moreover, there is a finite principal part B(τ) =
∑

n≤0 b(n)qn for which

B(τ) +
∑
D>0

−D≡� (mod 20736)

GTg6
0+g6

1
(D)qD/20736

is a weakly holomorphic modular form of weight 3/2 on Γ(20736).

The organization of this paper is as follows. In Section 2, we summarize Bruinier-Funke’s
construction of a modular trace and illustrate with examples of two lattices that it is a sum of
Zagier type modified traces that depends on the choice of a lattice. In Section 3, we introduce
several class invariants whose minimal polynomials have integral coefficients, then in Section
4, we compute the Galois conjugates of the class invariants presented in Section 3. With the
material presented up to this point, we provide proofs for our results on a cube root of j-function
and the Weber functions of level 48 in Section 5 and in Section 6, we do the same for a new
class invariant of level 72 whose minimal polynomial also has integral coefficients. Finally, we
give a conjectural statement on relation between Galois traces and modular traces in Section 7.

2. Modular trace of a weakly holomorphic modular function

In this section, we state Bruinier and Funke’s generalization of Zagier’s traces of singular
moduli to the traces of the values at CM points of modular functions on groups of arbitrary
genus. The main tool of their proof for modularity of their traces of singular moduli is the
Kudla-Milson theta lift [5]. But we do not discuss anything on theta-lift but briefly recall the
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definition of their modular traces for positive index and prove a couple of lemmas that will be
used later.

We consider the quadratic space (V, q) over Q of signature (1, 2) given by the trace zero 2× 2
matrices with the quadratic form q(X) = det(X) and the associated bilinear form (X,Y ) =
−tr(XY ). We assume the discriminant of (V, q) is 1. The group SL2(Q) acts on V by conjugation
g ·X := gXg−1 for X ∈ V and g ∈ SL2(Q). By assigning each point z = x+ iy ∈ H the positive
line spanned by

X(z) :=
1
y

(
−1

2(z + z̄) zz̄
−1 1

2(z + z̄)

)
,

we identify the complex upper half-plane H with the space of lines in V (R) on which the quadratic
form q is positive definite. Note that q(X(z)) = 1 and g ·X(z) = X(gz) for g ∈ SL2(R). Then
the CM points can be defined as DX = span(X) for X ∈ V (Q) of positive norm so that the
corresponding point in H satisfies a quadratic equation over Q.

Let L ⊂ V (Q) be an even lattice of full rank and write L# for the dual lattice of L. If Γ denotes
a congruence subgroup of Spin(L) which preserves L and acts trivially on the discriminant group
L#/L.

We now define the modular trace function of a weakly holomorphic modular form of weight
0 with respect to Γ. Since the stabilizer SX of X in SL2(R) is isomorphic to SO(2) which is
compact, ΓX = SX ∩ Γ is finite. For m ∈ Q>0 and h ∈ L#, the group Γ acts on

Lh,m = {X ∈ L+ h | q(X) = m}
with finitely many orbits. We define the Heegner divisor of discriminant m on the modular curve
Γ\H by

Z(h,m) =
∑

X∈Γ\Lh,m

1
|ΓX |

DX

and define the modular trace of f for positive index m by

(2.1) MTL
f (h,m) =

∑
X∈Γ\Lh,m

1
|ΓX |

f(DX).

The modular trace of f for zero index is given by a regularized integral [5, Definition 4.3]
and the modular trace of f for negative index is defined in terms of an infinite geodesic in H [5,
Definition 4.3]. Their explicit computations in terms of Fourier coefficients of f are given in [5,
Remark 4.9] and [5, Proposition 4.7], respectively.

The modular trace satisfies the following important analytic property.

Theorem 2.1. [5, Theorem 4.5] Let f be a weakly holomorphic modular function on a congru-
ence subgroup Γ and assume that the constant coefficients of f at all cusps vanish. Then

(2.2)
∑

n�−∞
MTL

f (h, n)qn

is a weakly holomorphic modular form of weight 3/2 for Γ(4N), where 4N is the level of the
lattice L.

Remark 1. If h = 0, then the modular trace is modular on a bigger congruence subgroup
Γ0(4N) [5].
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Suppose we use the lattice L1 in (1.11) and assume that the discriminant −D is congruent to
a square modulo 4N2. For a function f that is modular on Γ0

0(N), we define

(2.3) t(β)
f (D) :=

∑
Q∈QD,(N),β/Γ

0
0(N)

1
|Γ0

0(N)Q|
f(τQ).

Then MTL1
f (0, D) is the sum of t(β)

f (D) given in the lemma below.

Lemma 2.2. Suppose −D is an imaginary quadratic discriminant such that −D ≡ � (mod 4N2).
If f is a weakly holomorphic modular function on Γ0

0(N) and the lattice L1 is given as (1.11),
then the Bruinier-Funke modular trace is given by

MTL1
f (0, D) = 2

∑
β∈Z/2N2Z

t
(β)
f (D).

Proof. This lemma follows from the parallel argument to that in [5, Section 6]. The lattice L1

given in (1.11) has level 4N2 and is stabilized by Γ = Γ0
0(N). Each vectorX =

(
b 2Nc

−2Na −b

)
∈ L1

with q(X) = D > 0 corresponds to the definite integral binary quadratic formQ =
(
Na b/2
b/2 Nc

)
=

1
2

(
0 −1
1 0

)
X

with discriminant −D = b2− 4N2ac = −q(X). Here the Γ0
0(N)-action on L1 corresponds to the

natural right action on quadratic forms and the cycle DX coincides with the CM point τQ (resp.
τ−Q) corresponding to Q (resp. −Q) if Q is positive (resp. negative) definite. Consequently, if
we set QD,(N) = {[Na, b,Nc] ∈ QD} that is stabilized by Γ0

0(N), then the Heegner divisor is

given by Z(0, D) =
∑

Q∈QD,(N)/Γ
0
0(N)

2τQ
|Γ0

0(N)Q|
and hence we have

(2.4) MTL1
f (0, D) = 2

∑
Q∈QD,(N)/Γ

0
0(N)

f(τQ)
|Γ0

0(N)Q|
.

Now, the lemma follows immediately. � �

Example 2. Recall that γ2(τ) = q−1/3 + O(q). Applying [5, Remark 4.9] with transformation
properties of γ2 in (3.1), we find that MTγ2(0, 0) = 0. Also, on account of [5, Proposition 4.7],
we have

MTγ2(0,−m2) = −2m
∑

n∈m
3

Z<0

(a0(n) + a∞(n)),

where a`(n) is the n-th Fourier coefficient of γ2 at cusp `. Hence the only nonzero trace with
negative index is MTγ2(0,−1) = 4, and we see that the generating series of modular traces of γ2

is given by

(2.5)
∑

n∈Z, n�−∞
MTγ2(0, n)qn = 4q−1 +O(q),

which is a weakly holomorphic modular form as asserted in Theorem 2.1.
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Lemma 2.3. Suppose −D is an imaginary quadratic discriminant such that −D ≡ � (mod 4N2).
If f is a weakly holomorphic modular function on Γ0

0(N) and the lattice L2 is given as (1.14),
then the Bruinier-Funke modular trace is given by

MTL2
f (h,D/4N2) = t

(h)
f (D) + t

(−h)
f (D).

Proof The dual lattice L#
2 of the lattice L2 in (1.14) is given by

L#
2 =

{(
Nb c
−a −Nb

) ∣∣∣a, c ∈ Z, b ∈ 1
2N2

Z
}
.

Since L#
2 /L2

∼= Z/2N2Z is cyclic, each coset in L#
2 /L2 is of the form{(

Nb+ h/2N c
−a −Nb− h/2N

) ∣∣∣a, b, c ∈ Z
}

for h ∈ {0, 1, · · · , 2N2 − 1}. It is easy to check that Γ = Γ0
0(N) acts on L2 and acts trivially on

L#
2 /L2. If

X =
(
Nb+ h/2N c
−a −Nb− h/2N

)
∈ L2 + h

is a vector of positive norm D/4N2, then the matrix

Q =
(

Na N2b+ h/2
N2b+ h/2 Nc

)
= N

(
0 −1
1 0

)
X

defines a definite integral binary quadratic form of discriminant −D = (2N2b+ h)2 − 4N2ac =
−4N2q(X). Again, the Γ0

0(N)-action on L2 + h corresponds to the natural right action on
quadratic forms and the cycle DX coincides with the CM point τQ (resp. τ−Q) corresponding
to Q (resp. −Q) if Q is positive (resp. negative) definite. We then see

Z(h,D/N2) =
∑

Q∈QD,(N),h/Γ
0
0(N)

τQ
|Γ0

0(N)Q|
+

∑
Q∈QD,(N),−h/Γ

0
0(N)

τQ
|Γ0

0(N)Q|

and this establishes the lemma. �

3. Class invariants with minimal polynomials in Z[X]

Let FN denote the modular function field of level N defined over Q(ζN ), where ζN is a
primitive N -th root of unity. The second main theorem of complex multiplication tells us that
the value of a modular function f ∈ FN at τD lies in the ray class field of conductor N for the
order OD = Z[τD] of an imaginary quadratic number field K and the ray class field is generated
by the values g(τD) for the functions g ∈ FN with no poles at τD. In particular, j(τD) generates
the ring class field HD, the ray class field of conductor 1. One of many advantages of having a
ring class field over a ray class field is that there is an isomorphism

Gal(HD/K) ' C(D)

between Galois group of HD over K and the form class group of discriminant −D due to class
field theory.

If a level N modular function f also generates the ring class field HD at τD, we follow Weber to
call the value f(τD) a class invariant. A real-valued class invariant f(τD) is especially convenient
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because its minimal polynomial has integral coefficients. The holomorphic cube root γ2 of j on
H is an example of the function that yields such a class invariant. It has an integral Fourier
expansion and it takes on real values at purely imaginary numbers in H. The function γ2 is
modular of level 3 and the generating matrices S, T ∈ Γ(1) given by S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 )
act via

(3.1) γ2 ◦ S = γ2 and γ2 ◦ T = ζ−1
3 γ2.

The following result can be found in quite a lot of places in the literature (for example, [4], [8],
[11], [22], [26]).

Proposition 3.1. Suppose −D is an imaginary quadratic discriminant and τD = −B+
√
−D

2 as
in (1.1). If 3 - D, then ζB3 γ2(τD) is a class invariant and its minimal polynomial has integer
coefficients.

Remark 2. The holomorphic square root γ3 of j − 1728 is a modular function of level 2 and
the action of matrices of S and T is given by

(3.2) γ3 ◦ S = −γ3, γ3 ◦ T = −γ3.

But its minimal polynomial has imaginary coefficients [23, Theorem 3].

While the coefficients of H−71(X) are enormously large (its constant term is as large as 7×1035),
the minimal polynomial of ζ3γ2(τ71) is

Hζ3γ271 (X) = X7 + 6745X6 − 327467x5 + 51857115X4 + 2319299751X3

+41264582513X2 − 307873876442X + 903568991567.(3.3)

As seen in the introduction, however, a Weber function does a better job in producing smaller
coefficients for its minimal polynomial. Define the Weber functions

(3.4) f(τ) = ζ−1
48

η( τ+1
2 )

η(τ)
, f1(τ) =

η( τ2 )
η(τ)

, f2(τ) =
√

2
η(2τ)
η(τ)

,

where the Dedekind-eta function η(τ) = q1/24
∞∏
n=1

(1− qn) is holomorphic and non-zero on H.

These level 48 modular functions, specifically, f, f1,
√

2f2, have integral Fourier coefficients and
the action of matrices S and T is given by

(3.5) (f, f1, f2) ◦ S = (f, f2, f1) and (f, f1, f2) ◦ T = (ζ−1
48 f1, ζ

−1
48 f, ζ2

48f2).

They also satisfy

(3.6) ff1f2 =
√

2 and (X + f8)(X − f81)(X − f82) = X3 − γ2X + 16.

The following has been known for many years as well (see [3], [4], [11], [12], [13], [22], [26] for
example).

Proposition 3.2. Suppose −D is an imaginary quadratic discriminant such that −D ≡ 1
(mod 8) and τD = −1+

√
−D

2 . If 3 - D, then ζ48f2(τD) is a class invariant and its minimal
polynomial has integer coefficients.
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The minimal polynomial of ζ48f2(τ71) is

Hζ48f2
71 (X) = X7 +X6 −X5 −X4 −X3 +X2 + 2X − 1.

One can generalize Weber functions by taking the holomorphic 24-th root of the Siegel function

φ = n12 ∆(Aτ)
∆(τ)

,

where ∆(τ) = η24(τ) is the modular form of weight 12 with no poles or zeros on H and A =
(

1 k
0 n

)
for k ∈ Z and a positive integer n. If n = 2, we have Weber functions and if n = 3, we consider

(3.7) g0(τ) =
η( τ3 )
η(τ)

, g1(τ) = ζ−1
24

η( τ+1
3 )

η(τ)
, g2(τ) =

η( τ+2
3 )

η(τ)
, g3(τ) =

√
3
η(3τ)
η(τ)

.

The Siegel function has a long history [9], [18] and the study on its 24-th root of unity for
arbitrary n can be found in [12], [15], [16]. The functions in (3.7) are modular of level 72 and
the action of S and T again permutes them up to multiplication by some roots of unity:

(3.8) (g0, g1, g2, g3) ◦ S = (g3, ζ
−2
24 g2, ζ

2
24g1, g0), (g0, g1, g2, g3) ◦ T = (g1, ζ

−2
24 g2, g0, ζ

2
24g3)

The relations g0g1g2g3 =
√

3 and

(X + g6
0)(X − g6

1)(X − g6
2)(X − g6

3) = X4 + 18X2 + γ3X − 27

are analogous to Weber’s identities in (3.6).
The values of these functions at an imaginary quadratic were first evaluated by S. Ramanujan

[21] and further studied in [2], [7]. Gee and Stevenhagen [12], [13] found congruence conditions
that imaginary quadratic discriminant −D should satisfy for which gi(τD) (i = 0, 1, 2, 3) is a
class invariant. In particular, they [13] showed that ζ3g

2
0(τ) when τ = τ71 is a class invariant

with the minimal polynomial

Hζ3g2
0

71 (X) = X7 + (2 + 2τ)X5 − (30 + 3τ)X4 + (51− 3τ)X3 − (8− 10τ)X2 − (47 + 2τ) 6∈ Z[X].

We, however, will show that (g6
0 + g6

1)(τD) is a real-valued class invariant for −D ≡ 1 (mod 12)
so that its minimal polynomial has integer coefficients. The minimal polynomial of (g6

0 +g6
1)(τ71)

is

Hg6
0+g6

1
71 (X) = X7−171X6+4535X5−73947X4+606693X3−4397075X2+17581554X−25839143.

We may reduce the size of coefficients of the minimal polynomial by considering (ζ3g
2
0+ζ2

3g2
1)(τ71).

But for discriminants −D satisfying −D ≡ 1 (mod 12) in general, (g6
0 + g6

1)(τD) is the optimal
choice.

Computing Hilbert class polynomials is very important in number theory and its application
to cryptography [1], [8]. Despite a long history of the problem (see [6, p. 378] for the list of a
few of references), one began to treat class invariants in a systemic and algorithmic way only
after Shimura’s reciprocity law became available. We discuss the reciprocity theorem in the next
section.
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4. Shimura reciprocity law and Galois conjugates of class invariants

Let Kab denote the maximal abelian extension of K. For f ∈ FN , if f(τD) lies in HD, then
all automorphisms in Gal(Kab/HD) act trivially on f(τD). Then Shimura reciprocity law states
that the image of f(τD) under the inverse image of the Artin map of Gal(Kab/HD) can be
obtained as the value at τD of a modular function that is conjugate to f over Q(j).

We follow the exposition in [7] that we can easily employ to prove our results. Let Q0
D ⊆ QD

be the subset of primitive quadratic forms and C(D) = Q0
D/Γ(1) denote the form class group

of discriminant −D. One obtains a complete set of representatives in C(D) by choosing the
reduced forms [a, b, c] such that

(4.1) |b| ≤ a ≤ c and b ≥ 0 if either |b| = a or a = c.

The class of [a,−b, c] is the inverse of [a, b, c] in C(D).
Given f ∈ FN with f(τD) ∈ HD, Shimura reciprocity enables one to determine the Galois

action of the class of [a,−b, c] in C(D) with respect to the Artin map as follows ([13], [11,
Theorem 20], [7, Lemma 3.1]):

(4.2) f(τD)[a,−b,c] = fM (τQ),

where fM denotes the image of f under the action of M and M = M[a,b,c] ∈ GL2(Z/NZ) is the
matrix given by

(4.3) M ≡



(
a b−u

2
0 1

)
(mod prp), if p - a,(−b−u

2 −c
1 0

)
(mod prp), if p | a and p - c,(−b−u

2 − a −b+u
2 − c

1 −1

)
(mod prp), if p | a and p | c,

where p runs over all prime factors of N and prp‖N . Here u = 0 when D is even and u = 1
when D is odd.

The action of M depends only on Mpr for all primes p|N where Mm ∈ GL2(Z/mZ) is the re-

duction modulom ofM . EveryMm with determinant x decomposes asMm =
(

1 0
0 x

)
m

(
a b
c d

)
m

for some
(
a b
c d

)
m

∈ SL2(Z/mZ). Since SL2(Z/mZ) is generated by Sm and Tm, it suffices to

find the action of
(

1 0
0 x

)
prp

, Sprp and Tprp on f for all p|N . For
(

1 0
0 x

)
prp

, the action on FN

is given by lifting the automorphism of Q(ζN ) determined by

ζprp 7→ ζxprp and ζqrq 7→ ζqrq

for all prime factors q|N such that q 6= p. In order that the actions of the matrices at different
primes commute with each other, we lift Sprp and Tprp to matrices in SL2(Z/NZ) such that
they reduce to the identity matrix in SL2(Z/qrpZ) for all q 6= p.

Now, we are ready to prove Theorem 1.1. Recall from Proposition 3.1 that ζB3 γ2(τD) is a
class invariant if the discriminant −D is not divisible by 3.
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Proof of Theorem 1.1. Using (4.3), we may write the matrix M ∈ GL2(Z/3Z) that satisfies

(ζB3 γ2(τD))[a,−b,c] = (ζB3 γ2)M (τQ)

as, if D is even,

(4.4) M3 =



(
1 0
0 a

)
ST−aST−aST−a(b+1), if 3 - a;(

1 0
0 c

)
T (b+1)cST cST c, if 3 | a and 3 - c;(

1 0
0 b

)
T b+1ST bST b−1, if 3 | a and 3 | c

and, if D is odd,

(4.5) M3 =



(
1 0
0 a

)
ST−aST−aST−ba, if 3 - a;(

1 0
0 c

)
T (b−1)cST cST c, if 3 | a and 3 - c;(

1 0
0 b

)
T 1−bST bST b−1, if 3 | a and 3 | c.

By applying (3.1) in (4.4) and (4.5), we can easily see that (1.8) holds for both cases. �

For appropriate discriminants −D, γ3(τD) and ζ48f2(τD) are also class invariants by Remark
2 and Proposition 3.2, respectively. Earlier, using the same method with the proof of Theorem
1.1, Gee [11] computed Galois conjugates of them so that she could prove conjectural formulas
made by Morain [19] and Zagier and Yui [27], respectively.

Theorem 4.1. [11, Proposition 21] Suppose −D is an odd imaginary quadratic discriminant.
We let τD = −1+

√
−D

2 and let τQ = −b+
√
−D

2a be the associated CM point to a primitive quadratic
form Q = [a, b, c] of discriminant −D. The action of the form class group on γ3(τD) is given by
the formula

(γ3(τD))[a,−b,c] = (−1)
b+1
2

+ac+a+cγ3(τQ).

Theorem 4.2. [11, Proposition 22] Suppose −D ≡ 1 (mod 8) is an imaginary quadratic dis-
criminant such that 3 - D. We let τD = −1+

√
−D

2 and let τQ = −b+
√
−D

2a be the associated CM
point to a primitive quadratic form Q = [a, b, c] of discriminant −D. The action of the form
class group on ζ48f2(τD) is given by the formula

(ζ48f2(τD))[a,−b,c] =


ζ
b(a−c+a2c)
48 f2(τQ), if 2 - a,
ζ
b(a−c−ac2)
48 f1(τQ), if 2 | a and 2 - c,

(−1)
−D−1

8 ζ
b(a−c+ac2)
48 f(τQ), if 2 | a and 2 | c.

Lastly, we consider the cubic analogues g0, g1, g2, g3 ∈ F72 of the Weber functions, which
are given in (3.7). H. H. Chan, Gee, and V. Tan [7, Theorem 3.2] showed that g12

0 (τD) is a
class invariant when −D ≡ 0 (mod 12) and Gee [12, p.73, Theorem 1] completely determined
the values of τD at which gi(τD) (i = 0, 1, 2) is a class invariant for the case when −D is a
fundamental discriminant of K. For example, if −D ≡ 1 (mod 4) and square-free, she showed
that the value at τD of each function in the table below generates the Hilbert class field over K:
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−D ≡ 1 (mod 9) −D ≡ 4 (mod 9) −D ≡ 7 (mod 9)
ζ3g

2
0, ζ

2
3g2

1 g2
0, g2

1 ζ2
3g2

0, ζ3g
2
1

In fact, for any discriminant −D such that −D ≡ 1 (mod 4), one can easily verify that the value
at τD of each function in the table above generates the ring class field, as the conductor of OD
is prime to 2 and 3. Therefore, we can conclude that g6

0(τD) and g6
1(τD) are class invariants if

−D ≡ 1 (mod 12).
Now we compute the action of a primitive quadratic form Q = [a, b, c] on g6

0(τD) and g6
1(τD)

using (4.2) and (4.3). In either case of m = 8 or 9, the matrix has the following decomposition
due to [11, Lemma 6]:

Mm =



(
1 0
0 a

)
m

SmT
−a−1

m SmT
−a−1

m SmT
b−3
2a
m , if 3 - a,(

1 0
0 c

)
m

T
1−b
2
c

m SmT
c−1

m SmT
c
m, if 3|a and 3 - c,(

1 0
0 a+ b+ c

)
m

T
( 1−b−2a

2
)(a+b+c)

m SmT
(a+b+c)−1

m SmT
(a+b+c−1)
m , if 3|a and 3|c

Also, by means of transformation formulas for gi (i = 0, 1, 2, 3) in (3.8), we derive the following
actions:

g6
0 g6

1 g6
2 g6

3(
1 0
0 x

)
8

g6
0 g6

1 g6
2 g6

3

S8 −g6
0 −g6

1 −g6
2 −g6

3

T8 −g6
0 −g6

1 −g6
2 −g6

3(
1 0
0 x

)
9

, 3|(x− 1) g6
0 g6

1 g6
2 g6

3(
1 0
0 x

)
9

, 3|(x− 2) g6
0 g6

2 g6
1 g6

3

S9 −g6
3 g6

2 g6
1 −g6

0

T9 −g6
1 g6

2 −g6
0 g6

3

Accordingly, the action of M8 on g6
i (for i = 0, 1) is given by

(g6
i )
M8 = (−1)

b+1
2

+ac+a+cg6
i

and the action of M9 on g6
i depends on the values of a, b, c modulo 3. For example, consider

the case when 3|a and 3|c. Then b should be congruent to 1 or 2 modulo 3 and we obtain

(g6
0)M9 =

{
g6

0, b ≡ 1 (mod 3),
−g6

3, b ≡ 2 (mod 3).

We finally establish the following theorem.

Theorem 4.3. Suppose −D ≡ 1 (mod 12) is an imaginary quadratic discriminant. Let τD =
−1+

√
−D

2 and let τQ = −b+
√
−D

2a be the associated CM point to a primitive quadratic form Q =
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[a, b, c] of discriminant −D. The actions of the form class group on g6
0(τD) and g6

1(τD) are given
by the formulas below:

(1) The cases 3 - a.

g6
0(τD)[a,−b,c] =


(−1)

b+1
2

+ac+a+c g6
0(τQ), if b ≡ 1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
1(τQ), if a(b− 1) ≡ −1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
2(τQ), if a(b− 1) ≡ 1 (mod 3),

g6
1(τD)[a,−b,c] =


(−1)

b−1
2

+ac+a+c g6
0(τQ), if b ≡ −1 (mod 3),

(−1)
b+1
2

+ac+a+c g6
1(τQ), if a+ b ≡ −1 (mod 3),

(−1)
b+1
2

+ac+a+c g6
2(τQ), if a− b ≡ 1 (mod 3).

(2) The cases 3|a and 3 - c.

g6
0(τD)[a,−b,c] =


(−1)

b−1
2

+ac+a+c g6
1(τQ), if (b+ 1)c ≡ −1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
2(τQ), if (b+ 1)c ≡ 1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
3(τQ), if b ≡ −1 (mod 3),

g6
1(τD)[a,−b,c] =


(−1)

b+1
2

+ac+a+c g6
1(τQ), if b+ c ≡ 1 (mod 3),

(−1)
b+1
2

+ac+a+c g6
2(τQ), if b− c ≡ 1 (mod 3),

(−1)
b+1
2

+ac+a+c g6
3(τQ), if b ≡ 1 (mod 3).

(3) The cases 3|a and 3|c.

g6
0(τD)[a,−b,c] =

{
(−1)

b+1
2

+ac+a+c g6
0(τQ), if b ≡ 1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
3(τQ), if b ≡ −1 (mod 3),

g6
1(τD)[a,−b,c] =

{
(−1)

b+1
2

+ac+a+c g6
3(τQ), if b ≡ 1 (mod 3),

(−1)
b−1
2

+ac+a+c g6
0(τQ), if b ≡ −1 (mod 3).

It follows from the Galois action given in Theorem 4.3 (3) that if 3|a and 3|c, then

g6
0(τD)[a,−b,c] = g6

1(τD)[a,b,c].

In particular, g6
0(τD) is the complex conjugation of g6

1(τD) and

(4.6) g6
0(τD) + g6

1(τD) = 2Re(g6
0(τD)).

We save proving that (g6
0 +g6

1)(τD) is a class invariant using Theorem 4.3 and (4.6) until Section
6.

5. Modularity of Galois traces of the Weber class invariants

We start this section with a proof of QD/Γ(1) ∼= QD,(N),β/Γ0
0(N).

Lemma 5.1. Assume that D is not divisible as a discriminant by the square of any prime
dividing N . Then there is a canonical bijection between QD/Γ(1) and QD,(N),β/Γ0

0(N) if QD,(N),β

is not empty.
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Proof. For −D which is congruent to a square modulo 4N and β modulo 2N , we define

(5.1) QD,N,β = {[Na, b, c] ∈ QD | b ≡ β (mod 2N)}

on which Γ0(N) = {
(
a b
c d

)
∈ Γ(1) | c ≡ 0 (mod N)} acts. It is known from [14] that there is

a canonical bijection between QD,N,β/Γ0(N) and QD/Γ(1) for D that is not divisible by any
prime divisors of N . Hence, for the discriminant satisfying the condition in the hypothesis,
QD,N2,β/Γ0(N2) ∼= QD/Γ(1). Also, the map from QD,(N),β/Γ0

0(N) to QD,N2,β/Γ0(N2) that

sends Q to Q ◦
(√

N 0
0 1/

√
N

)
is bijective, and therefore the lemma follows. � �

Lemma 5.1 enables one to define modular traces of class invariants that we presented in Section
3. In order to discuss the modularity of Galois traces of the class invariants using Theorem 2.1,
we prove the constant coefficients at all cusps of all functions that produce our class invariants
are zero.

Lemma 5.2. The constant coefficients of γ2, γ3, f, f1, f2, g0, g1, g2, and g3 at all cusps vanish.

Proof. Let f ∈ {γ2, γ3, f, f1, f2, g0, g1, g2, g3}. From the definition of f given in Section 3, we find
that f has a zero constant coefficient at infinity. For other cusp s, we take γ ∈ Γ(1) such that
γ ·∞ = s. As Γ(1) is generated by S and T , it follows from (3.1), (3.2), (3.5) and (3.8) that the
Fourier expansion of f ◦ γ at infinity has also the zero coefficient. � �

Proof of Theorem 1.2 Now, we begin to prove the modularity of the generating series of the
Galois traces of ζB3 γ2(τD) in Theorem 1.2. Firstly, since γ2 is Γ0

0(3)-invariant by (3.1), it follows
from Lemma 2.2 that, for discriminant −D that is congruent to a square modulo 36, the modular
trace of γ2 is given by

MTL1
γ2 (0, D) = 2

∑
β∈Z/18Z

t(β)
γ2 (D),

where t(β)
f (D) is defined in (2.3). But if we assume the discriminant −D is not divisible by the

square of any prime dividing N , then there are exactly 2t(N) choices of β, where t(N) is the
number of distinct prime divisors of N . Considering (1.10), we note that the value t(β)

γ2 (D) is
independent of the choice of β. Thus for the discriminant −D which is not divisible by 3, we
see that

MTL1
γ2 (0, D) = 4

∑
Q∈QD,(3),β/Γ0

0(3)

γ2(τQ).

This together with (1.10) gives Equation (1.12) in Theorem 1.2.
For a discriminant that is a multiple of 3, the modified Galois trace of ζB3 γ2(τD) is not defined,

while the modular trace of γ2 vanishes as shown in the following lemma.

Lemma 5.3. For imaginary quadratic discriminant −D which is congruent to a square modulo
36 and divisible by 3, MTL1

γ2 (0, D) = 0

Proof. Denote QD,N = {[Na, b, c] ∈ QD} that is stabilized by Γ0(N). If D is a multiple of 3,
then the canonical map

φ3 : QD,(3)/Γ
0
0(3)→ QD,3/Γ0(3)
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may not be bijective. We recall that Γ0(N) =
⋃N−1
k=0 T kΓ0

0(N). For each quadratic form Q′ =
[a′, b′, c′] in the range of φ3, we may assume 3|a′ and 3|c′. And for any i, Q′ ◦ T i ∈ QD,(3) and
φ3(Q′ ◦ T i) = Q′. Since τQ◦γ = γ−1τQ for arbitrary γ ∈ Γ(1), we obtain from (2.4) that

MTL1
γ2 (0, D) = 2

∑
Q′∈Imφ3

∑
0≤`<3

γ2(T−`τQ′) = 2
∑

Q′∈Imφ3

2∑
`=0

ζ`3γ2(τQ′) = 0,

where the penultimate equality above follows from (3.1). � �

Finally, it follows from (1.12), Lemma 5.3, (2.5), Lemma 5.2, and Theorem 2.1 that the gen-
erating series of GTζB3 γ2

(D) is a weakly holomorphic modular form of weight 3/2 on Γ0(36).
�Remark 3. Similarly, we can show that if D is an even discriminant, then MTL1

γ3 (0, D) = 0.

Proof of Theorem 1.3 From now, we prove Theorem 1.3 following the steps of the proof of
Theorem 1.2.

Lemma 5.4. f, f21, and f22 are Γ0
0(48)-invariant.

Proof. We know that f, f1, and f2 are Γ(48)-invariant from (3.5). But

Γ0
0(48) =

⋃
a∈(Z/48)∗

σaΓ(48),

where σa ∈ SL2(Z) such that σa ≡
(
a 0
0 a−1

)
(mod 48). Using [11, Lemma 6], we can write

σa = ST−a
−1
ST−aST−a

−1
, which implies f|σa = ζ

2(a−1−a)
48 f = f and f2i |σa = ζ

2(−a−1+a)
48 f2i = f2i for

i = 1, 2. Therefore, f, f21, and f22 are Γ0
0(48)-invariant. � �

It follows from Lemma 2.2 and Lemma 5.4 that, for discriminant −D that is congruent to a
square modulo 9216, the modular trace of f is given by

(5.2) MTL1
f (0, D) = 2

∑
β∈Z/4608Z

t(β)
f (D).

Moreover, if the discriminant satisfies −D ≡ 1 (mod 8) as well, then by Theorem 4.2, ζ48f2(τD)
is a class invariant and its Galois trace is equal to the modular trace in (5.2) up to a constant
multiple. More precisely, as there are 4 choices of β since t(48) = 2, we have

(5.3) 8GTζ48f2(D) = MTL1
f (0, D).

We now show that the modular trace become zero whenever −D that is congruent to a square
modulo 9216 fails to satisfy −D ≡ 1 (mod 8). It occurs when D is a multiple of 2 or 3. This is
an analogous result to Lemma 5.3.

Lemma 5.5. Assume that imaginary quadratic discriminant −D is congruent to a square mod-
ulo 9216. If D is divisible by 2 or 3. Then MTL1

f (0, D) = 0.

Proof. The proof is similar to that of Lemma 5.3. Consider the canonical map

φ : QD,(48)/Γ
0
0(48)→ QD,48/Γ0(48).
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Let Q′ = [a′, b′, c′] ∈ Imφ and g = gcd(b′, 48) > 1. Then for any i which is a multiple of 48/g,
Q′ ◦ T i ∈ QD,(48) and φ(Q′ ◦ T i) = Q′, and hence we may write

(5.4) MTL1
f (0, D) = 2

∑
Q′∈Imφ

∑
48
g
|i

0≤i<48

f(T−iτQ′) =
∑

Q′∈Imφ

g−1∑
`=0

(f ◦ T−
48`
g )(τQ′).

But it follows from (3.5) that for each Q′, if 48/g is even, then

(5.5)
g−1∑
`=0

f(τQ′ −
48`
g

) =
g−1∑
`=0

ζ
48`
g

48 f(τQ′) =
g−1∑
`=0

ζ`gf(τQ′) = 0,

and if 48/g is odd, then
(5.6)
g−1∑
`=0

(f◦T−
48`
g )(τQ′) =

g/2−1∑
`=0

ζ
48(2`)
g

48 f(τQ′)+
g/2−1∑
`=0

ζ
48(2`+1)

g

48 f1(τQ′) =
g/2−1∑
`=0

ζ`g/2(f(τQ′)+ζgf1(τQ′)) = 0.

Therefore, MTL1
f (0, D) = 0. � �

We now have Theorem 1.3 as a consequence of (5.3), Lemma 5.5, Lemma 5.2, and Theorem
2.1. �

6. Proof of Theorem 1.4

By the exactly same argument in the proof of Lemma 5.4, we find that g6
0 and g6

3 are Γ0
0(72)-

invariant. It thus follows from Lemma 2.3 that for discriminant −D that is congruent to a
square modulo 20736, the modular trace of g6

i (i = 0, 3) is given by

(6.1) MTL2

g6
i

(β,D/20736) = t(β)

g6
i

(D) + t(−β)

g6
i

(D)

for a fixed value β ∈ Z/10368Z. On the other hand, both g6
0(τD) and g6

1(τD) are class invariants
if −D ≡ 1 (mod 12) as discussed in Section 5. Hence for discriminant −D that is congruent to
a square modular 20736 and congruent to 1 modular 12, we see from Theorem 4.3 (3) that

(6.2) GTg6
0
(D) =

 t(β)

g6
0

(D), if β ≡ 7 (mod 12),

t(β)

g6
3

(D), if β ≡ 5 (mod 12)

and

(6.3) GTg6
1
(D) =

 t(β)

g6
3

(D), if β ≡ 7 (mod 12),

t(β)

g6
0

(D), if β ≡ 5 (mod 12).

For β (mod 10368) such that β2 ≡ −D (mod 20736) and β ≡ 5, 7 (mod 12), the generating
series of MTL2

g6
i

(β,D/20736) (i = 0, 3) only allows the terms qD/20736 for D ≡ −1 (mod 12).

Therefore, it suffices to prove (g6
0 +g6

1)(τD) is a class invariant to complete the proof of Theorem
1.4. We do this by showing that (g6

0 + g6
1)(τD) is different from all of its Galois conjugates. For

the rest of this section, we assume that the discriminant −D is congruent to a square modular
20736 and congruent to 1 modular 12 unless specified otherwise. This implies D ≥ 23. Recall
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from (4.6) that g6
0(τD) + g6

1(τD) = 2Re(g6
0(τD)) and from Theorem 4.3 that for any primitive

quadratic form [a, b, c] of discriminant −D,

g6
0(τD)[a,b,c] = ±g6

i (τQ) and g6
1(τD)[a,b,c] = ±g6

j (τQ)

for some i, j ∈ {0, 1, 2, 3}. Therefore, if we show that |Re(g6
0(τD))| is greater than |g6

i (τQ)| for
all i = 0, 1, 2, 3 and all the reduced primitive quadratic forms Q = [a, b, c] ∈ QD in which a > 1,
then we are done.

For the purpose, we first compute a lower bound of |Re(g6
0(τD))|.

Lemma 6.1. Let −D ≡ 1 (mod 12) be a discriminant of an order in an imaginary quadratic
field K with D ≥ 23 and let τD = −1+

√
−D

2 . Then∣∣Re(g6
0(τD))

∣∣ > 0.8e
√
Dπ
6 .

Proof. By its definition in (3.7),

(6.4) g0(τD) = ζ72e
√
Dπ
36

∞∏
n=1

an
bn
,

where

(6.5) an = 1− e−
√
Dnπ
3
−nπ

3
i and bn = 1− e−

√
Dnπ−nπi.

Letting r = e−
√
Dπ, we have

1− r
n
3 ≤ |an| ≤ 1 + r

n
3 and 1− rn ≤ |bn| ≤ 1 + rn

so that

(6.6)
∞∏
n=1

(1− r
n
3 )(1− rn) ≤

∞∏
n=1

1− r
n
3

1 + rn
≤
∞∏
n=1

∣∣∣∣anbn
∣∣∣∣ ≤ ∞∏

n=1

1 + r
n
3

1− rn
≤
∞∏
n=1

(1 + r
n
3 )(1 + 1.1rn).

For the far right inequality above, we used the
1

1− x
≤ 1 + αx that holds for α > 1 and suffi-

ciently small x > 0. In fact, this holds if and only if αx ≤ α− 1.
As 1 + x ≤ ex for all x, we obtain from the far right side of (6.6) that

(6.7)
∞∏
n=1

∣∣∣∣anbn
∣∣∣∣ ≤ e1.1

∑∞
n=1 r

n+
∑∞
n=1 r

n
3 +1.1

∑∞
n=1 r

4n
3 = e

1.1r
1−r+ r

1
3

1−r
1
3

+ 1.1r
4
3

1−r
4
3 / 1.006656214,

because the middle is an increasing function of r (0 ≤ r < 1), and thus it has the maximum at
r with D = 23.

For the opposite direction, we apply the inequality 1− x ≥ e−αx that holds for any positive
real number α > 1 and sufficiently small x > 0 into the far left side of (6.6). By taking α = 1.1
and x = rn + r

n
3 − r

2n
3 , we find that

(6.8)
∞∏
n=1

∣∣∣∣anbn
∣∣∣∣ ≥ e−1.1

∑∞
n=1 r

n−1.1
∑∞
n=1 r

n
3 +1.1

∑∞
n=1 r

4n
3 = e

− 1.1r
1−r−

1.1r
1
3

1−r
1
3

+ 1.1r
4
3

1−r
4
3 ' 0.9927290230,
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because the middle is now a decreasing function of r (0 ≤ r < 1), and hence it has the minimum
at r with D = 23. Therefore, if we put

(6.9) g6
0(τD) = zw = (z1 + iz2)(w1 + iw2),

where z = (ζ72e
√
Dπ
36 )6 = ζ12e

√
Dπ
6 and w =

∏
n(an/bn)6, then we have

(6.10) z1 =
√

3
2
e
√
Dπ
6 , z2 =

1
2
e
√
Dπ
6 ,

and

(6.11) 0.9571594985 < |w| < 1.040607789.

Now we compute |w1| and |w2| by estimating the argument of w. For 0 ≤ |θ|, |θn|, |ϕn|, |ψn| ≤ π,
set

∞∏
n=1

an
bn

=

∣∣∣∣∣
∞∏
n=1

an
bn

∣∣∣∣∣ eθi, an
bn

=
∣∣∣∣anbn

∣∣∣∣ eθni,
and

an = |an|eϕni, bn = |bn|eψni.
Then from (6.5), we deduce that

| tan(ϕn)| =

∣∣∣∣∣ sin nπ
3 r

n
3

1− cos nπ3 r
n
3

∣∣∣∣∣ ≤ r
n
3

1− r
n
3

≤ r
n
3 (1 + 1.1r

n
3 ),

| tan(ψn)| =
∣∣∣∣ sinnπrn

1− cosnπrn

∣∣∣∣ ≤ rn

1− rn
≤ rn(1 + 1.1rn),

and further by x ≤ tanx, we obtain that

|θ| =

∣∣∣∣∣
∞∑
n=1

θn

∣∣∣∣∣ ≤
∞∑
n=1

(| tan(ϕn)|+ | tan(ψn)|)

≤
∞∑
n=1

(
r
n
3 + 1.1r

2n
3 + rn + 1.1r2n

)
≤ r

1
3

1− r
1
3

+ 1.1
r

2
3

1− r
2
3

+
r

1− r
+ 1.1

r2

1− r2
.

Since this is increasing with respect to r, it takes its maximum at r with D = 23. Thus we
arrive at

(6.12) |θ| ≤ 0.006681903424.

It follows from (6.9), (6.11), and (6.12) that

(6.13) |w2| = |w|| sin 6θ| ≤ |w||6θ| ≤ 0.04171944449,

and then from (6.9), (6.11), and (6.13) that

(6.14) |w1| =
√
|w|2 − w2

2 ≥ 0.9562498594.

Finally, using (6.10), (6.13), and (6.14), we establish

|Re(g6
0(τD))| = |z1w1 − z2w2| ≥ 0.8072769486e

√
Dπ
6 .



20 DAEYEOL JEON, SOON-YI KANG AND CHANG HEON KIM

� �

Next, we compute an upper bound for |g6
i (τQ)| for i = 0, 1, 2, 3.

Lemma 6.2. Let −D ≡ 1 (mod 12) be a discriminant of an order in an imaginary quadratic
field K with D ≥ 23 and let τQ = −b+

√
−D

2a be the associated CM point to a primitive quadratic
form Q = [a, b, c] of discriminant −D. Then we have

(6.15) |g6
i (τQ)| ≤ 3.4e

√
Dπ
6a (i = 0, 1, 2)

and

(6.16) |g6
3(τQ)| ≤ 1.1e−

√
Dπ
2a .

Proof. Since the same calculation works for all the cases in (6.15) and (6.16), we present the
computation for the upper bound for |g6

0(τQ)| only. From the definition in (3.7),

g6
0(τQ) = e

√
Dπ
6a

∞∏
n=1

(
cn
dn

)6

, where cn = 1− e
−
√
Dπn−bnπi

3a and dn = 1− e
−
√
Dπn−bnπi

a .

If we put s = e−
√
Dπ
a , then s ≤ e−

√
3π, because a ≤

√
D
3 by (4.1). By the same argument used

in (6.5) through (6.7), we have

(6.17)
∞∏
n=1

∣∣∣∣ cndn
∣∣∣∣ ≤ e 1.1s

1−s+ s
1
3

1−s
1
3

+ 1.1s
4
3

1−s
4
3 / 1.2218379.

Therefore, we obtain the following inequality:

|g6
0(τQ)| / 3.327220276e

√
Dπ
6a .

�
�

If discriminant −D is a square modulo 20736 and congruent to 1 modulo 12, then −D =
−23,−47,−71,−95 and so on. For D ≥ 47, it follows from Lemma 6.1 and Lemma 6.2 that

|g6
i (τQ)| ≤ 3.4e

√
Dπ
6a < 0.8e

√
Dπ
6 ≤ |Re(g6

0(τD))|,

where τQ = −b+
√
−D

2a with a > 1 for all i = 0, 1, 2, 3. This implies that (g6
0 + g6

1)(τD) is
different from its Galois conjugates, and hence (g6

0 + g6
1)(τD) generates the ring class field HD

over K = Q(
√
−D). Hence it remains to prove for the case when D = 23. Consider the three

reduced primitive quadratic forms of discriminant −23: [1, 1, 6], [2, 1, 3], [2,−1, 3] For each of

non principal quadratic forms [2, 1, 3] and [2,−1, 3], we may use the value e
−
√

23π
4 for the upper

bound of s instead of e−
√

3π in inequality (6.17) so that we obtain the following inequality

|g6
i (τQ)| ≤ 1.2e

√
23π
12 < 0.8e

√
23π
6 ≤ |Re(g6

0(τ23))|

for all i = 1, 2, 3. Therefore, (g6
0 + g6

1)(τ23) is also a class invariant.
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7. Concluding remarks

So far, we have investigated several real-valued class invariants and found their Galois traces
are equal to the Zagier-Bruinier-Funke modular traces of certain modular functions at Heegner
points. Furthermore, the generating series of their Galois traces are weakly holomorphic modular
forms of weight 3/2. This may be generalized to arbitrary real-valued class invariants as follows:

Conjecture. Suppose −D is an imaginary quadratic discriminant and we let τD = −B+
√
−D

2
as defined in (1.1). For a real-valued class invariant g(τD), there exists a modular function f
and a suitable lattice L such that for some h ∈ L#/L and a positive rational number m,

GT(g(τD)) = MTL
f (h,m).

Moreover, the generating series of GT(g(τD)) is a weakly holomorphic modular form of weight
3/2 up to a finite principal form.

For complex-valued class invariants such as γ3(τD) or g0(τD), the conjecture above may not
hold. For example, if −D is an odd imaginary quadratic discriminant that is congruent to a
square modulo 16, then by Theorem 4.1, the Galois trace of γ3(τD) is given by

GTγ3(τD) = −
∑

Q∈QD,(2),1/Γ0
0(2)

γ3(τQ) =
∑

Q∈QD,(2),3/Γ0
0(2)

γ3(τQ).

But the modular trace of γ3 with respect to the lattices L1 and L2 are both given by

MTL1
γ3 (0, D) = MTL2

γ3 (1, D/16) =
∑

Q∈QD,(2),1/Γ0
0(2)

γ3(τQ) +
∑

Q∈QD,(2),3/Γ0
0(2)

γ3(τQ) = 0.

In fact, as the Bruinier-Funke modular trace always count a positive quadratic form Q with
its negative companion −Q together, no lattice can work for this case. If we define a twisted
modular trace

MTγ3(χ(β), D) =
∑

Q∈QD,(2)/Γ0
0(2)

χ(β)γ3(τQ),

where χ(1) = −1 and χ(3) = 1, then this is equal to 2GTγ3(τD), but we may not determine its
modularity at this point as χ is not a genus character.
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[15] Hart, W., ‘Schläfli modular equations for generalized Weber functions’, Ramanujan J. 15 435–468 (2008)
[16] Hajir, F. and Villegas, F. R., ‘Explicit elliptic units, I’, Duke Math. J. 90 (3) 495–521 (1997)
[17] Kaneko, M., ‘The fourier coefficients and the singular moduli of the elliptic function j(τ)’, Memoirs of the

faculty of engineering and design, Kyoto Institute of Technology 44, 1996
[18] Lang, S., Elliptic functions, 2nd edition, Springer GTM 112, 1987
[19] Morain, F., ‘Primality proving using elliptic curves: An update’, in Algorithmic Number Theory, Springer

LNCS 1423, 111–130 1988
[20] Ono, K., Unearthing the visions of a master: Harmonic Maass forms and number theory, Harvard-MIT

Current Developments in Mathematics, International Press, 2008
[21] Ramanujan, S., The Lost Notebook and other unpublished papers, Narosa, New Delhi, 1988
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