ON RAY CLASS ANNIHILATORS OF CYCLOTOMIC FUNCTION FIELDS

SUNGHAN BAE AND HWANYUP JUNG*

ABSTRACT. Let \mathcal{K} be a cyclotomic function field over a global function field k with Galois group G. In this paper we define an ideal $S_{\mathfrak{d}}$ of $R = \mathbb{Z}[G]$ and show that it annihilates the \mathfrak{d} -ray class group $\mathcal{C}_{\mathfrak{d}}$ of \mathcal{K} . We also investigate the relation between the index $(R^- : S_{\mathfrak{d}}^-)$ and the order of $\mathcal{C}_{\mathfrak{d}}^-$.

1. INTRODUCTION

Let $K = \mathbb{Q}(\zeta_n)$ be the *n*-th cyclotomic field with Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$. Stickelberger introduced an ideal S (called the Stickelberger ideal of K) of $R = \mathbb{Z}[G]$ which annihilates the ideal class group C of K. In [Si], Sinnott showed that the index of the minus part of S in the minus part of R is equal to the minus class number of K up to a power of 2. For any integer $d \geq 1$, Schmidt ([Sc]) introduced an ideal S_d (called the *d*-Stickelberger ideal of K) of R which annihilates the *d*-ray class group C_d of K and showed that the index of the minus part of S_d in the minus part of Ris equal to the order of the minus part of C_d up to a power of 2. In this paper we consider the analogous problem in function fields. We first introduce some notations.

Let k be a global function field over the finite field \mathbb{F}_q with q elements of characteristic p. Fix a place ∞ of k of degree 1 and fix a sign function sgn : $k_{\infty} \to \mathbb{F}_q$ with sgn(0) = 0, where k_{∞} is the completion of k at ∞ . We call $x \in k$ positive if sgn(x) = 1, and write $x \gg 0$. Let A be the Dedekind subring of k consisting of the functions regular away from ∞ . Let \mathfrak{e} be the unit ideal of A and $K_{\mathfrak{e}}$ the Hilbert class field of (k, ∞) , and $G_{\mathfrak{e}} = \operatorname{Gal}(K_{\mathfrak{e}}/k)$. We denote by T_0 the set of all non-zero integral ideals of A and $T_0^* = T_0 \setminus \{\mathfrak{e}\}$. For any $\mathfrak{n} \in T_0^*$, we set the followings:

- $K_{\mathfrak{n}} :=$ the cyclotomic function field of the triple $(k, \infty, \operatorname{sgn})$ of conductor \mathfrak{n} .
- $G_{\mathfrak{n}} := \operatorname{Gal}(K_{\mathfrak{n}}/k).$
- J := the inertia group at ∞ in G_n , which we call the sign group. Note that J is naturally isomorphic to \mathbb{F}_q^* .
- $K_{\mathfrak{n}}^+$:= the fixed field of J, which we call the maximal real subfield of $K_{\mathfrak{n}}$.
- |A| := the cardinality of a set A.
- $\phi(\mathfrak{n}) := |(\mathbb{A}/\mathfrak{n})^*|$ = the number of units in \mathbb{A}/\mathfrak{n} .

²⁰⁰⁰ Mathematics Subject Classification. 11R58, 11R60, 11R18, 11R29. *Corresponding author.

This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) (No. R01-2006-000-10320-0).

- $s(A) := \sum_{\sigma \in A} \sigma \in \mathbb{Z}[G_n]$ for a subset A of G_n .
- $\varepsilon^- := 1 s(J)/(q-1) \in \mathbb{Q}[G_n].$

Let \mathcal{O}_{K_n} be the integral closure of \mathbb{A} in K_n . For a non-zero integral ideal \mathfrak{N} of \mathcal{O}_{K_n} , let $\mathcal{I}_{\mathfrak{N}}$ be the group of non-zero fractional ideals of \mathcal{O}_{K_n} prime to \mathfrak{N} and $\mathcal{P}_{\mathfrak{N},1}$ be the subgroup of $\mathcal{I}_{\mathfrak{N}}$ consisting of principal ideals (x) satisfying $x \equiv 1 \mod \mathfrak{N}$. Then $\mathcal{C}_{\mathfrak{N}} = \mathcal{I}_{\mathfrak{N}}/\mathcal{P}_{\mathfrak{N},1}$ is called the \mathfrak{N} -ray class group of K_n . For any $\mathfrak{d} \in T_0$, we write $\mathcal{C}_{\mathfrak{d}} := \mathcal{C}_{\mathfrak{d}\mathcal{O}_{K_n}}$ for simplicity. In this paper we define an ideal $S_{\mathfrak{d}}$ of $R = \mathbb{Z}[G_n]$ by using the Stickelberger elements and show that it annihilates the \mathfrak{d} -ray class group $\mathcal{C}_{\mathfrak{d}}$ of K_n . Our proof relies on the Hayes' proof of Brumer-Stark conjecture for function fields ([Ha]). For any R-module M, set $M^- := \{m \in M : s(J) \cdot m = 0\}$ which we call the minus part of M. We also show that the ℓ -part of the index $(R^- : S_{\mathfrak{d}})$ is equal to the ℓ -part of $|\mathcal{C}_{\mathfrak{d}}^-|$ for any prime number ℓ with $\ell \nmid (q-1)$ assuming that \mathfrak{n} is square free if $\ell = p$.

We fix the following notations.

- $h := |G_{\mathfrak{e}}|$ = the class number of k.
- $N(\mathfrak{a}) := q^{\deg(\mathfrak{a})}$ for any $\mathfrak{a} \in T_0$.
- $(\mathfrak{a}, \mathfrak{b}) :=$ the greatest common divisor of \mathfrak{a} and \mathfrak{b} for any $\mathfrak{a}, \mathfrak{b} \in T_0$.
- N(𝔅) := N(𝔅)/N(𝔅) for any non-zero fractional ideal 𝔅 of 𝔅, where 𝔅 = 𝔅𝔥⁻¹ with 𝔅, 𝔅 ∈ T₀ and (𝔅, 𝔅) = 𝔅.
- $\bar{\mathfrak{a}} := \prod_{\mathfrak{p} \mid \mathfrak{a}} \mathfrak{p}$, where \mathfrak{p} runs over all prime ideals of \mathbb{A} dividing \mathfrak{a} .
- For each prime number ℓ, | · |ℓ denotes the normalized ℓ-adic absolute value,
 i.e., |ℓ|ℓ = 1/ℓ.

From now on we fix $\mathfrak{n} \in T_0^*$ and write $\mathcal{K} := K_\mathfrak{n}, \mathcal{K}^+ := K_\mathfrak{n}^+$ and $G := G_\mathfrak{n}$ for simplicity.

2. Annihilator of Ray Classes

Let $\mathfrak{a}, \mathfrak{b} \in T_0$. We say that \mathfrak{b} is congruent to \mathfrak{a} modulo \mathfrak{n} if there exists $x \in \mathfrak{a}^{-1}\mathfrak{n}$, $1 + x \gg 0$ such that $\mathfrak{b} = (1 + x)\mathfrak{a}$, and write $\mathfrak{a} \sim_{\mathfrak{n}} \mathfrak{b}$. Then $\sim_{\mathfrak{n}}$ is an equivalence relation on T_0 . For more details on the relation $\sim_{\mathfrak{n}}$, we refer to [Y2].

For $x \in k^*$, write $||x|| := N(x\mathbb{A})$. For $\mathfrak{a} \in T_0$, let $\mathfrak{a}_1 = \mathfrak{a}(\mathfrak{n}, \mathfrak{a})^{-1}$ and $\mathfrak{n}_1 = \mathfrak{n}(\mathfrak{n}, \mathfrak{a})^{-1}$. We define for $\operatorname{Re}(s) > 1$

$$Z_{\mathfrak{n}}(s,\mathfrak{a}) := N(\mathfrak{a})^{-s} \sum_{\substack{x \in \mathfrak{a}^{-1}\mathfrak{n} \\ 1+x \gg 0}} ||1+x||^{-s} = N(\mathfrak{n},\mathfrak{a})^{-s} \zeta_{\mathfrak{n}_1}(s,\mathfrak{a}_1),$$

where $\zeta_{\mathfrak{n}_1}(s,\mathfrak{a}_1)$ is the partial zeta function of the class containing \mathfrak{a}_1 in the narrow ray class group of \mathbb{A} modulo \mathfrak{n}_1 . It has meromorphic continuation to the whole complex plane and is holomorphic except for a simple pole at s = 1. For $\mathfrak{a}, \mathfrak{b} \in T_0$, if $\mathfrak{a} \sim_{\mathfrak{n}} \mathfrak{b}$, then we have $Z_{\mathfrak{n}}(s,\mathfrak{a}) = Z_{\mathfrak{n}}(s,\mathfrak{b})$. It is well known that $(q-1)Z_{\mathfrak{n}}(0,\mathfrak{a})$ is an integer.

Define

$$\theta_{\mathfrak{n}} := \sum_{\mathfrak{a} \bmod * \mathfrak{n}} Z_{\mathfrak{n}}(0, \mathfrak{a}) \sigma_{\mathfrak{a}}^{-1} \in \mathbb{Q}[G],$$

$$\theta'_{\mathfrak{f}} := \sum_{\mathfrak{a} \bmod *\mathfrak{n}} Z_{\mathfrak{f}}(0,\mathfrak{a}) \sigma_{\mathfrak{a}}^{-1} \in \mathbb{Q}[G]$$

and

$$\theta_{\mathfrak{f}} := \sum_{\mathfrak{a} \bmod *\mathfrak{f}} Z_{\mathfrak{f}}(0,\mathfrak{a}) \sigma_{\mathfrak{a}}^{-1} \in \mathbb{Q}[G_{\mathfrak{f}}].$$

Then $\theta'_{\mathfrak{f}} = \operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{f}}}(\theta_{\mathfrak{f}})$ and $\operatorname{Res}_{\mathcal{K}/K_{\mathfrak{f}}}(\theta'_{\mathfrak{f}}) = [\mathcal{K} : K_{\mathfrak{f}}]\theta_{\mathfrak{f}}.$

Lemma 2.1. Let \mathfrak{p} be a prime ideal of \mathbb{A} dividing \mathfrak{n} and let $\mathfrak{f} = \mathfrak{n}\mathfrak{p}^{-1}$.

(i)
$$\operatorname{Res}_{\mathcal{K}/K_{\mathfrak{f}}}(\theta_{\mathfrak{n}}) = \begin{cases} \theta_{\mathfrak{f}}, & \text{if } \mathfrak{p}|\mathfrak{f} \\ (1 - \sigma_{\mathfrak{p}}^{-1})\theta_{\mathfrak{f}}, & \text{otherwise.} \end{cases}$$

(ii) Let $H = \operatorname{Gal}(\mathcal{K}/K_{\mathfrak{f}}).$ Then
 $\theta'_{\mathfrak{f}} = \begin{cases} s(H)\theta_{\mathfrak{n}}, & \text{if } \mathfrak{p}|\mathfrak{f}, \\ s(H)\theta_{\mathfrak{n}} + \operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{f}}}(\sigma_{\mathfrak{p}}^{-1}\theta_{\mathfrak{f}}), & \text{otherwise.} \end{cases}$

Here $\sigma_{\mathfrak{p}}$ is the Artin automorphism associated to \mathfrak{p} in $G_{\mathfrak{f}}$.

Proof. (i) Corollary 1.7 and Proposition 1.8 of [T]. (ii) follows immediately from (i). $\hfill \Box$

For any $\mathfrak{c} \in T_0$, define

$$heta_{\mathfrak{n}}(\mathfrak{c}) := (heta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})})^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$$

Then $\theta_{\mathfrak{n}} = \theta_{\mathfrak{n}}(\mathfrak{e})$ and $\theta'_{\mathfrak{f}} = \theta_{\mathfrak{n}}(\mathfrak{n}\mathfrak{f}^{-1})$ for $\mathfrak{f}|\mathfrak{n}$. For $\mathfrak{d} \in T_0$, we define

$$\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c}) := \sum_{\mathfrak{a}|\mathfrak{d}} \mu(\mathfrak{a}) \frac{N(\mathfrak{d})}{N(\mathfrak{a})} \theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c}),$$

where $\mu(\mathfrak{a})$ is 0 if \mathfrak{a} is not square free, and $(-1)^t$ if \mathfrak{a} is the product of t distinct prime ideals of \mathbb{A} . For a prime ideal \mathfrak{p} of \mathbb{A} , we have

$$\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{c}) = N(\mathfrak{p})\theta_{\mathfrak{n}}(\mathfrak{c}) - \theta_{\mathfrak{n}}(\mathfrak{p}\mathfrak{c}) \text{ and } \delta_{\mathfrak{n},\mathfrak{p}^n}(\mathfrak{c}) = N(\mathfrak{p}^{n-1})\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{c}) \text{ for } n \ge 1.$$

It is easy to see that if $\mathfrak{a} \sim_{\mathfrak{n}} \mathfrak{b}$, then $\theta_{\mathfrak{n}}(\mathfrak{a}) = \theta_{\mathfrak{n}}(\mathfrak{b})$ and $\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{a}) = \delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{b})$.

We define an R-ideal

$$S_{\mathfrak{d}} := \Big(\sum_{\mathfrak{c} ext{ mod } \sim_{\mathfrak{n}}} R \cdot \delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c})\Big) \cap R_{\mathfrak{c}}$$

where $\mathfrak{c} \mod \sim_{\mathfrak{n}}$ means that the sum is over the representatives of the classes of T_0 modulo $\sim_{\mathfrak{n}}$, and call it the \mathfrak{d} -Stickelberger ideal of \mathcal{K} . Since $\delta_{\mathfrak{n},\mathfrak{e}}(\mathfrak{c}) = (\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})})^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$,

$$S_{\mathfrak{e}} = \big(\sum_{\mathfrak{c} \bmod \sim_{\mathfrak{n}}} R \cdot \theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}\big) \cap R = \big(\sum_{\mathfrak{f} \mid \mathfrak{n}} R \cdot \theta'_{\mathfrak{f}}\big) \cap R$$

is the Stickelberger ideal of \mathcal{K} defined by Yin in [Y1].

Proposition 2.2. If $\mathfrak{d} \neq \mathfrak{e}$, then $\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c}) \in R$ for all $\mathfrak{c} \mod \sim_{\mathfrak{n}}$.

Proof. Since $(q-1)\theta_{\mathfrak{n}}(\mathfrak{c}) \in R$, it suffices to show that

$$\sum_{\mathfrak{a}|\mathfrak{d}}\mu(\mathfrak{a})\theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c})\in R$$

Let $S' = \sum_{\mathfrak{f}|\mathfrak{n}} R \cdot \theta'_{\mathfrak{f}}$ and let γ be a fixed generator of \mathbb{F}_q^* . The map $\psi : S' \to \mathbb{F}_q^*$ defined by $\psi(\theta) = \gamma^{(q-1)a_1}$, where a_1 is the coefficient of 1 in θ , is a well defined surjective homomorphism with kernel $S' \cap R$ (see the proof of Lemma 4.2 in [ABJ]). Moreover, $\psi(\sigma\theta) = \psi(\theta)$ for any $\theta \in S'$ and $\sigma \in G$. Since $\theta'_{\mathfrak{f}} - N(\mathfrak{n}\mathfrak{f}^{-1})\theta_{\mathfrak{n}} \in R$ for $\mathfrak{f}|\mathfrak{n}$, we have

$$\psi(\theta_{\mathfrak{f}}) = \psi(\theta_{\mathfrak{n}})^{N(\mathfrak{n}\mathfrak{f}^{-1})} = \psi(\theta_{\mathfrak{n}}).$$

Thus

$$\psi\big(\sum_{\mathfrak{a}|\mathfrak{d}}\mu(\mathfrak{a})\theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c})\big)=\psi(\theta_{\mathfrak{n}})^{\sum_{\mathfrak{a}|\mathfrak{d}}\mu(\mathfrak{a})}=1,$$

because $\sum_{\mathfrak{a}|\mathfrak{d}} \mu(\mathfrak{a}) = 0$ if $\mathfrak{d} \neq \mathfrak{e}$. Hence $\sum_{\mathfrak{a}|\mathfrak{d}} \mu(\mathfrak{a})\theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c}) \in R$. This completes the proof.

For an ideal \mathfrak{d} of \mathbb{A} , we write $\delta_{\mathfrak{n},\mathfrak{d}} := \delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{e})$ for simplicity.

Lemma 2.3. For any prime ideal \mathcal{L} of $\mathcal{O}_{\mathcal{K}}$ with $\mathcal{L} \nmid \mathfrak{pn}$, we have

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}} = (x) \text{ with } x \equiv 1 \mod \mathfrak{p}.$$

Proof. Following the idea of Hayes in the end of [Ha, §2], we may assume that \mathcal{L} splits completely in \mathcal{K} . Take the place \mathfrak{l} under \mathcal{L} as the infinite place ∞' of k. Now let ϕ be a sgn-normalized rank one Drinfeld module on $\mathbb{A}_{\infty'}$, which is the ring of functions in k regular away from ∞' . Let $\mathfrak{n}', \mathfrak{p}'$ and \mathfrak{f}' be the ideals of $\mathbb{A}_{\infty'}$ associated to $\mathfrak{n}, \mathfrak{p}$ and \mathfrak{f} , respectively. Let \mathcal{H} be the maximal real subfield of the cyclotomic function field of $(k, \infty', \operatorname{sgn})$ of conductor \mathfrak{n}' . Then \mathcal{K} is contained in \mathcal{H} , and we proceed inside \mathcal{H} , as was done in [Ha, §6]. It is shown by Hayes in [Ha] that $\mathcal{L}^{\theta_n} = (\lambda_{\mathfrak{n}'})$, for some properly chosen primitive \mathfrak{n}' -torsion point $\lambda_{\mathfrak{n}'}$ of ϕ . If $\mathfrak{p} \nmid \mathfrak{n}$, then $\delta_{\mathfrak{n},\mathfrak{p}} = (N(\mathfrak{p}) - \sigma_{\mathfrak{p}})\theta_{\mathfrak{n}}$. Thus we have

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}} = (\lambda_{\mathfrak{n}'}^{N(\mathfrak{p}) - \sigma_{\mathfrak{p}}}) \text{ with } \lambda_{\mathfrak{n}'}^{N(\mathfrak{p}) - \sigma_{\mathfrak{p}}} \equiv 1 \bmod \mathfrak{p},$$

since \mathfrak{p} is unramified in \mathcal{K} .

Now we assume that $\mathfrak{p}|\mathfrak{n}$, and let $\mathfrak{f} = \mathfrak{n}\mathfrak{p}^{-1}$ and $H = \operatorname{Gal}(\mathcal{K}/K_{\mathfrak{f}})$. In this case, by Lemma 2.1 (ii), we have

$$\delta_{\mathfrak{n},\mathfrak{p}} = N(\mathfrak{p})\theta_{\mathfrak{n}} - \theta_{\mathfrak{f}}' = \begin{cases} N(\mathfrak{p})\theta_{\mathfrak{n}} - s(H)\theta_{\mathfrak{n}}, & \text{if } \mathfrak{p}|\mathfrak{f}, \\ N(\mathfrak{p})\theta_{\mathfrak{n}} - s(H)\theta_{\mathfrak{n}} - \operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{f}}}(\sigma_{\mathfrak{p}}^{-1}\theta_{\mathfrak{f}}), & \text{if } \mathfrak{p} \nmid \mathfrak{f}. \end{cases}$$

If $\mathfrak{p}|\mathfrak{f}$, then $\lambda_{\mathfrak{n}'}^{s(H)} = \phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'}) \equiv \lambda_{\mathfrak{n}'}^{N(\mathfrak{p})} \mod \mathfrak{p}'$. Thus $\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}} = (\lambda_{\mathfrak{n}'}^{N(\mathfrak{p})-s(H)}) \text{ with } \lambda_{\mathfrak{n}'}^{N(\mathfrak{p})-s(H)} \equiv 1 \mod \mathfrak{p}'.$ If $\mathfrak{p} \nmid \mathfrak{f}$, then, for any $\sigma \in H$, σ acts on $\lambda_{\mathfrak{n}'}$ as ϕ_a for some $a \in (\mathbb{A}_{\infty'}/\mathfrak{n}')^*$ with $a \equiv 1 \mod \mathfrak{f}'$. Also there is a unique $b \in \mathbb{A}_{\infty'}/\mathfrak{n}'$ with $b \equiv 1 \mod \mathfrak{f}'$ but $b \equiv 0 \mod \mathfrak{p}'$. Write $(b) = \mathfrak{p}'\mathfrak{r}'$. Then $\phi_b(\lambda_{\mathfrak{n}'}) = \phi_{\mathfrak{r}'}(\lambda_{\mathfrak{f}'}) = \lambda_{\mathfrak{f}'}^{\sigma_{\mathfrak{p}'}^{-1}}$. It is easy to see that

$$\prod_{\substack{a \in \mathbb{A}_{\infty'}/\mathfrak{n}' \\ a \equiv 1 \mod \mathfrak{f}'}} \phi_a(\lambda_{\mathfrak{n}'}) = \phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'}).$$

Thus

$$\lambda_{\mathfrak{n}'}^{s(H)} = \phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'}) / \lambda_{\mathfrak{f}'}^{\sigma_{\mathfrak{p}'}^{-1}}$$

As before

$$\phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'}) \equiv \lambda_{\mathfrak{n}'}^{N(\mathfrak{p})} \bmod \mathfrak{p}'.$$

Since $\mathcal{L}^{\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{f}}}(\sigma_{\mathfrak{p}}^{-1}\theta_{\mathfrak{f}})} = (\lambda_{\mathfrak{f}'}^{\sigma_{\mathfrak{p}'}^{-1}})$, we have

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}} = \left(\lambda_{\mathfrak{n}'}^{N(\mathfrak{p})}/\phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'})\right) \text{ with } \lambda_{\mathfrak{n}'}^{N(\mathfrak{p})}/\phi_{\mathfrak{p}'}(\lambda_{\mathfrak{n}'}) \equiv 1 \bmod \mathfrak{p}'$$

This completes the proof.

Lemma 2.4.
$$\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{c}) = \left(\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}}(\delta_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c}),\mathfrak{p}})\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$$

Proof. Note first that

$$\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{c}) = N(\mathfrak{p})(\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})})^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}} - (\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{p}\mathfrak{c})})^{\sigma_{\mathfrak{p}\mathfrak{c}/(\mathfrak{n},\mathfrak{p}\mathfrak{c})}}.$$
(2.1)

Case 1 $\mathfrak{p} \nmid \mathfrak{n}$: In this case $(\mathfrak{n}, \mathfrak{pc}) = (\mathfrak{n}, \mathfrak{c})$, and so (2.1) becomes

$$(N(\mathfrak{p})\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})} - {\theta'}_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}} = \left(\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}}(\delta_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c}),\mathfrak{p}})\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}.$$

Case 2 $\mathfrak{p}|\mathfrak{n}$: In this case (2.1) becomes

$$N(\mathfrak{p})(\theta_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})})^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}} - (\theta_{\mathfrak{f}/(\mathfrak{f},\mathfrak{c})})^{\sigma_{\mathfrak{c}/(\mathfrak{f},\mathfrak{c})}}.$$
(2.2)

Write $\mathfrak{n} = \mathfrak{p}^i \mathfrak{f}'$ and $\mathfrak{c} = \mathfrak{p}^j \mathfrak{c}'$ with $(\mathfrak{p}, \mathfrak{f}' \mathfrak{c}') = \mathfrak{e}$. Then

$$(\mathfrak{n},\mathfrak{c}) = \mathfrak{p}^{\min\{i,j\}}(\mathfrak{f}',\mathfrak{c}'), \qquad (\mathfrak{f},\mathfrak{c}) = P^{\min\{i-1,j\}}(\mathfrak{f}',\mathfrak{c}'),$$
$$\frac{\mathfrak{n}}{(\mathfrak{n},\mathfrak{c})} = \mathfrak{p}^{i-\min\{i,j\}}\frac{\mathfrak{f}'}{(\mathfrak{f}',\mathfrak{c}')}, \qquad \frac{\mathfrak{c}}{(\mathfrak{n},\mathfrak{c})} = \mathfrak{p}^{j-\min\{i,j\}}\frac{\mathfrak{c}'}{(\mathfrak{f}',\mathfrak{c}')},$$
$$\frac{\mathfrak{f}}{(\mathfrak{f},\mathfrak{c})} = \mathfrak{p}^{i-1-\min\{i-1,j\}}\frac{\mathfrak{f}'}{(\mathfrak{f}',\mathfrak{c}')}, \qquad \frac{\mathfrak{c}}{(\mathfrak{f},\mathfrak{c})} = \mathfrak{p}^{j-\min\{i-1,j\}}\frac{\mathfrak{c}'}{(\mathfrak{f}',\mathfrak{c}')}$$

If $j \ge i$, then $\mathfrak{f}/(\mathfrak{f},\mathfrak{c}) = \mathfrak{n}/(\mathfrak{n},\mathfrak{c})$ and $\mathfrak{c}/(\mathfrak{f},\mathfrak{c}) = \mathfrak{pc}/(\mathfrak{n},\mathfrak{c})$. Thus (2.2) becomes

$$\left(N(\mathfrak{p})\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})} - (\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})})^{\sigma_{\mathfrak{p}}}\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}} = \left(\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}}(\delta_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c}),\mathfrak{p}})\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$$

If j < i, then $\mathfrak{f}/(\mathfrak{f}, \mathfrak{c}) = (\mathfrak{n}, \mathfrak{c})/\mathfrak{p}$ and $\mathfrak{c}/(\mathfrak{f}, \mathfrak{c}) = \mathfrak{c}/(\mathfrak{n}, \mathfrak{c})$. Thus (2.2) becomes

$$\left(N(\mathfrak{p})\theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})} - \theta'_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})\mathfrak{p}}\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}} = \left(\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c})}}(\delta_{\mathfrak{n}/(\mathfrak{n},\mathfrak{c}),\mathfrak{p}})\right)^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$$

This completes the proof.

Theorem 2.5. For any $\mathfrak{d} \in T_0$, we have

$$S_{\mathfrak{d}} \subseteq Ann_R(\mathcal{C}_{\mathfrak{d}}).$$

Proof. The case $\mathfrak{d} = \mathfrak{e}$ is proved by Tate-Deligne ([T]) and Hayes ([Ha]). Assume that $\mathfrak{d} \neq \mathfrak{e}$. It suffices to show that, for any prime ideal \mathcal{L} of $\mathcal{O}_{\mathcal{K}}$ with $\mathcal{L} \nmid \mathfrak{dn}$, there exists an element $x \in \mathcal{K}$ such that $\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c})} = (x)$ with $x \equiv 1 \mod \mathfrak{d}$.

Consider first the case $\mathfrak{d} = \mathfrak{p}^n$, a power of prime ideal \mathfrak{p} . For $\mathfrak{f}|\mathfrak{n}$, we have $\mathcal{L}^{\operatorname{Cor}_{\mathcal{K}/K_{\mathfrak{f}}}(\theta)} = N_{\mathcal{K}/K_{\mathfrak{f}}}(\mathcal{L})^{\theta}$ for any $\theta \in \mathbb{Z}[G_{\mathfrak{f}}]$. Thus, by Lemma 2.3 and Lemma 2.4, there exists $y \in \mathcal{K}$ such that

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{c})} = (y) \text{ with } y \equiv 1 \mod \mathfrak{p}.$$

$$(2.3)$$

Raising (2.3) to the $N(\mathfrak{p}^{n-1})$ -power, we find an element $x \in \mathcal{K}$ such that

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}^n}(\mathfrak{c})} = (x) \text{ with } x \equiv 1 \mod \mathfrak{p}^n$$

Next we assume that \mathfrak{d} has at least two distinct prime divisors. Since $\mu(\mathfrak{a}) = 0$ for any $\mathfrak{a}|\mathfrak{d}$ with $\mathfrak{a} \nmid \overline{\mathfrak{d}}$, we have $\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c}) = \frac{N(\mathfrak{d})}{N(\overline{\mathfrak{d}})} \delta_{\mathfrak{n},\overline{\mathfrak{d}}}(\mathfrak{c})$. For any prime ideal $\mathfrak{p}|\mathfrak{d}$, we have

$$\mathcal{L}^{\delta_{\mathfrak{n},\bar{\mathfrak{d}}}(\mathfrak{c})} = \prod_{\mathfrak{a}|\bar{\mathfrak{d}}/\mathfrak{p}} (\mathcal{L}^{\theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c})})^{\mu(\mathfrak{a})\frac{N(\bar{\mathfrak{d}})}{N(\mathfrak{a})}} \times \prod_{\mathfrak{a}|\bar{\mathfrak{d}}/\mathfrak{p}} (\mathcal{L}^{\theta_{\mathfrak{n}}(\mathfrak{p}\mathfrak{a}\mathfrak{c})})^{\mu(\mathfrak{p}\mathfrak{a})\frac{N(\bar{\mathfrak{d}})}{N(\mathfrak{p}\mathfrak{a})}} = \prod_{\mathfrak{a}|\bar{\mathfrak{d}}/\mathfrak{p}} (\mathcal{L}^{\theta_{\mathfrak{n}}(\mathfrak{a}\mathfrak{c})N(\mathfrak{p})-\theta_{\mathfrak{n}}(\mathfrak{p}\mathfrak{a}\mathfrak{c})})^{\mu(\mathfrak{a})\frac{N(\bar{\mathfrak{d}})}{N(\mathfrak{p}\mathfrak{a})}} = \prod_{\mathfrak{a}|\bar{\mathfrak{d}}/\mathfrak{p}} (\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{a}\mathfrak{c})})^{\mu(\mathfrak{a})\frac{N(\bar{\mathfrak{d}})}{N(\mathfrak{p}\mathfrak{a})}} , \text{ where } \mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{p}}(\mathfrak{a}\mathfrak{c})} = (x_{\mathfrak{a}}) \text{ with } x_{\mathfrak{a}} \equiv 1 \mod \mathfrak{p} \\ = (x_{0}), \text{ where } x_{0} = \prod_{\mathfrak{a}|\bar{\mathfrak{d}}/\mathfrak{p}} (x_{\mathfrak{a}})^{\mu(\mathfrak{a})\frac{N(\bar{\mathfrak{d}})}{N(\mathfrak{p}\mathfrak{a})}} \equiv 1 \mod \mathfrak{p}.$$

Thus

$$\mathcal{L}^{\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c})} = (x) \text{ with } x = (x_0)^{\frac{N(\mathfrak{d})}{N(\mathfrak{d})}} \equiv 1 \mod \mathfrak{p}^{\operatorname{ord}_\mathfrak{p}(\mathfrak{d})}$$

for any prime ideal $\mathfrak{p}|\mathfrak{d}$. This completes the proof.

3. The minus part of the ray class groups

Let $\mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+)$ denote the \mathfrak{d} -ray class group of \mathcal{K}^+ and $j_{\mathfrak{d}} : \mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+) \to \mathcal{C}_{\mathfrak{d}}$ be the map induced by the inclusion map on ideals from \mathcal{K}^+ to \mathcal{K} . Let $N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})} : \mathcal{C}_{\mathfrak{d}} \to \mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+)$ be the norm map.

Lemma 3.1. (i) If $\mathfrak{d} \neq \mathfrak{e}$, then $j_{\mathfrak{d}}$ is injective. (ii) The cokernel of $N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})}$ has exponent q - 1, i.e.,

$$\mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+)^{q-1} \subseteq N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})}(\mathcal{C}_{\mathfrak{d}}) \subseteq \mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+).$$

Proof. (i) Let \mathfrak{A} be an ideal of \mathcal{K}^+ and assume $\mathfrak{A} = (z)$ with $z \in \mathcal{K}$ and $z \equiv 1 \mod \mathfrak{d}$. Then $(z^j) = (z)$, where j is a generator of J. Thus $z^{1-j} \in \mathcal{O}_{\mathcal{K}}^*$. For any infinite prime \mathfrak{P}_{∞} of \mathcal{K} , $|z^{1-j}|_{\mathfrak{P}_{\infty}} = 1$. Thus $z^{1-j} \in \mathbb{F}_q^*$ with $z^{1-j} \equiv 1 \mod \mathfrak{d}$. Since $\mathfrak{d} \neq \mathfrak{e}$, $z^{1-j} = 1$ and so $z \in \mathcal{K}^+$. Thus $\mathfrak{A} = (z)$ in \mathcal{K}^+ . Hence $j_{\mathfrak{d}}$ is injective. (ii) For any $\mathfrak{C} \in \mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+)$, we have

$$\mathfrak{C}^{q-1} = \mathfrak{C}^{1+j+\dots+j^{q-2}} = N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})}(\mathfrak{C})$$

Thus we get the result.

Let $\mathcal{O}_{\mathcal{K},\mathfrak{d}}^* = \{x \in \mathcal{O}_{\mathcal{K}}^* : x \equiv 1 \mod \mathfrak{d}\}$ and $\mathcal{O}_{\mathcal{K}^+,\mathfrak{d}}^* = \mathcal{O}_{\mathcal{K}^+}^* \cap \mathcal{O}_{\mathcal{K},\mathfrak{d}}^*$.

Lemma 3.2. If $\mathfrak{d} \neq \mathfrak{e}$, then $\mathcal{O}_{\mathcal{K},\mathfrak{d}}^* = \mathcal{O}_{\mathcal{K}^+,\mathfrak{d}}^*$.

Proof. For any $x \in \mathcal{O}_{\mathcal{K},\mathfrak{d}}^*$, as in the proof of Proposition 1.1 in [Hr], we have $x^{1-j} \in \mathbb{F}_q^*$. But $x^{1-j} \equiv 1 \mod \mathfrak{d}$, so $x^{1-j} = 1$. Thus $x \in \mathcal{O}_{\mathcal{K}^+}^*$. Hence $\mathcal{O}_{\mathcal{K},\mathfrak{d}}^* = \mathcal{O}_{\mathcal{K}^+,\mathfrak{d}}^*$.

Let \widehat{G} be the group of characters of G with values in \mathbb{C}^* . A character χ is called *real* if $\chi(J) = 1$, and *non-real* otherwise. Let \widehat{G}^- denote the set of all non-real characters of G. The conductor \mathfrak{f}_{χ} of a character χ is the smallest integral ideal \mathfrak{m} such that χ factors through $G_{\mathfrak{m}}$. We denote by χ_1 the trivial character. Let \mathfrak{p} be a prime ideal of \mathbb{A} . We define $\chi(\mathfrak{p})$ as follows. If $\mathfrak{p} \nmid \mathfrak{f}_{\chi}$, let $\sigma_{\mathfrak{p}}$ is the Artin automorphism associated to \mathfrak{p} in $G_{\mathfrak{f}_{\chi}}$ and let $\chi(\mathfrak{p}) = \chi(\sigma_{\mathfrak{p}})$. If $\mathfrak{p} \mid \mathfrak{f}_{\chi}$, we put $\chi(\mathfrak{p}) = 0$.

Recall that $\mathcal{C}_{\mathfrak{d}}^- = \{ \mathfrak{c} \in \mathcal{C}_{\mathfrak{d}} : s(J) \cdot \mathfrak{c} = 0 \}$, which is also the kernel of $N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})}$. Set $h_{\mathfrak{d}}^- := |\mathcal{C}_{\mathfrak{d}}^-|$, called the minus \mathfrak{d} -ray class number of \mathcal{K} .

Theorem 3.3. If $\mathfrak{d} \neq \mathfrak{e}$, then

$$h_{\mathfrak{d}}^{-} = h_{\mathfrak{e}}^{-} \left(N(\mathfrak{d})^{\frac{q-2}{q-1}h\phi(\mathfrak{n})} \varrho_{\mathcal{K},\mathfrak{d}}/Q_{0} \right) \prod_{\mathfrak{p}|\mathfrak{d}} \prod_{\chi \in \widehat{G}^{-}} (1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-1}),$$

where $Q_0 = (\mathcal{O}_{\mathcal{K}}^* : \mathcal{O}_{\mathcal{K}^+}^*)$, $\varrho_{\mathcal{K},\mathfrak{d}} = |\operatorname{Coker}(N_{\mathcal{K}/\mathcal{K}^+}^{(\mathfrak{d})})|$ and \mathfrak{p} runs over all prime ideals of \mathbb{A} dividing \mathfrak{d} .

Proof. Following the arguments in [L, Chap VI, §1] with Lemma 3.2, we have

$$\frac{|\mathcal{C}_{\mathfrak{d}}|}{|\mathcal{C}_{\mathfrak{d}}(\mathcal{K}^+)|} = h_{\mathfrak{e}}^{-} \frac{|(\mathcal{O}_{\mathcal{K}}/\mathfrak{d}\mathcal{O}_{\mathcal{K}})^*|}{|(\mathcal{O}_{\mathcal{K}^+}/\mathfrak{d}\mathcal{O}_{\mathcal{K}^+})^*|} \frac{1}{Q_0}.$$

Thus it follows from the exact sequence

$$1 \longrightarrow \mathcal{C}_{\mathfrak{d}}^{-} \longrightarrow \mathcal{C}_{\mathfrak{d}} \xrightarrow{N_{\mathcal{K}/\mathcal{K}^{+}}^{(\mathfrak{d})}} \mathcal{C}_{\mathfrak{d}}(\mathcal{K}^{+}) \longrightarrow \operatorname{Coker}(N_{\mathcal{K}/\mathcal{K}^{+}}^{(\mathfrak{d})}) \longrightarrow 1,$$

that

$$h_{\mathfrak{d}}^{-} = h_{\mathfrak{e}}^{-} \frac{|(\mathcal{O}_{\mathcal{K}}/\mathfrak{d}\mathcal{O}_{\mathcal{K}})^{*}|}{|(\mathcal{O}_{\mathcal{K}^{+}}/\mathfrak{d}\mathcal{O}_{\mathcal{K}^{+}})^{*}|} \frac{\varrho_{\mathcal{K},\mathfrak{d}}}{Q_{0}}.$$

Now, the result follows from the following facts that

$$\frac{|(\mathcal{O}_{\mathcal{K}}/\mathfrak{d}\mathcal{O}_{\mathcal{K}})^*|}{|(\mathcal{O}_{\mathcal{K}^+}/\mathfrak{d}\mathcal{O}_{\mathcal{K}^+})^*|} = N(\mathfrak{d})^{\frac{q-2}{q-1}h\phi(\mathfrak{n})} \frac{\prod_{\mathfrak{P}}(1-N(\mathfrak{P})^{-1})}{\prod_{\mathfrak{P}^+}(1-N(\mathfrak{P}^+)^{-1})}$$

and

$$\frac{\prod_{\mathfrak{P}}(1-N(\mathfrak{P})^{-1})}{\prod_{\mathfrak{P}^+}(1-N(\mathfrak{P}^+)^{-1})} = \prod_{\mathfrak{p}\mid\mathfrak{d}}\prod_{\chi\in\widehat{G}^-}(1-\chi(\mathfrak{p})N(\mathfrak{p})^{-1}),$$

where \mathfrak{P} (resp. \mathfrak{P}^+) runs over all prime ideals of $\mathcal{O}_{\mathcal{K}}$ (resp. $\mathcal{O}_{\mathcal{K}^+}$) dividing \mathfrak{d} and \mathfrak{p} runs over all prime ideals of \mathbb{A} dividing \mathfrak{d} .

4. ℓ -part of the index $(R^-: S_{\mathfrak{d}}^-)$

For a prime ideal \mathfrak{p} of \mathbb{A} , let $T_{\mathfrak{p}}$ be the inertia group of \mathfrak{p} in G and let $F_{\mathfrak{p}} \in G$ be any Frobenius automorphism for \mathfrak{p} , which is well defined modulo $T_{\mathfrak{p}}$. In $\mathbb{Q}[G]$, we define

$$\overline{\sigma}_{\mathfrak{p}} := F_{\mathfrak{p}}^{-1} \cdot \frac{s(T_{\mathfrak{p}})}{|T_{\mathfrak{p}}|}$$

and $\mathcal{U}_{\mathfrak{p}} := R \cdot s(T_{\mathfrak{p}}) + R \cdot (1 - \overline{\sigma}_{\mathfrak{p}})$. We also define $\mathcal{U}_{\mathfrak{s}} := \prod_{\mathfrak{p}|\mathfrak{s}} \mathcal{U}_{\mathfrak{p}}$ at any $\mathfrak{s}|\bar{\mathfrak{n}}$.

Lemma 4.1. For any $\mathfrak{s}|\bar{\mathfrak{n}}$, the index $(\varepsilon^{-}R : \varepsilon^{-}\mathcal{U}_{\mathfrak{s}})$ is a power of q-1.

Proof. It suffices to show that $(\varepsilon^- \mathcal{U}_{\mathfrak{s}} : \varepsilon^- \mathcal{U}_{\mathfrak{sp}})$ is a power of q-1 for $\mathfrak{sp}|\bar{\mathfrak{n}}$, where \mathfrak{p} is a prime ideal of A. Since the multiplication by 1 - j on $\mathbb{Q}[G]^-$ is injective, by Lemma 6.1 in [Si], we have

$$(\varepsilon^{-}\mathcal{U}_{\mathfrak{s}}:\varepsilon^{-}\mathcal{U}_{\mathfrak{sp}})=((1-j)\mathcal{U}_{\mathfrak{s}}:(1-j)\mathcal{U}_{\mathfrak{sp}}),$$

which is a power of q - 1 ([Y1, §6]).

Let e_{χ} be the idempotent element associated $\chi \in \widehat{G}$. Set

$$\omega:=\sum_{\chi_1\neq\chi\in\widehat{G}}L(0,\overline{\chi})e_{\chi},$$

where $L(s,\chi)$ is the Artin L-function attached to χ . For $\mathfrak{f}|\mathfrak{n}$, let $I_{\mathfrak{f}} = \operatorname{Gal}(\mathcal{K}/K_{\mathfrak{f}})$. We also let

$$\alpha_{\mathfrak{f}} := s(I_{\mathfrak{f}}) \prod_{\mathfrak{p}|\mathfrak{f}} (1 - \overline{\sigma}_{\mathfrak{p}}) \quad \text{if } \mathfrak{f} \neq \mathfrak{e}$$

and $\alpha_{\mathfrak{e}} := s(I_{\mathfrak{e}})$. Then we have

Lemma 4.2. For any $\mathfrak{f}|\mathfrak{n}, \varepsilon^{-}\theta_{\mathfrak{n}}(\mathfrak{f}) = \varepsilon^{-}\omega\alpha_{\mathfrak{n}\mathfrak{f}^{-1}}$.

Proof. See the proof of Lemma 6 in [Y3].

In the following we assume that $\mathfrak{d} \neq \mathfrak{e}$ and $\overline{\mathfrak{d}}|\mathfrak{n}$.

Lemma 4.3. $S_{\mathfrak{d}}$ is generated as an *R*-module by $\{\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c}) : \mathfrak{c} | \mathfrak{n}\}$.

Proof. Since $\mathfrak{d} \neq \mathfrak{e}$, $S_{\mathfrak{d}}$ is generated as an *R*-module by $\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c})$ for all $\mathfrak{c} \mod \sim_{\mathfrak{n}}$ by Proposition 2.2. Since $\theta_{\mathfrak{n}}(\mathfrak{c}) = \theta_{\mathfrak{n}}((\mathfrak{n},\mathfrak{c}))^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$, we have

$$\delta_{\mathfrak{n},\mathfrak{d}}(\mathfrak{c}) = \delta_{\mathfrak{n},\mathfrak{d}}((\mathfrak{n},\mathfrak{c}))^{\sigma_{\mathfrak{c}/(\mathfrak{n},\mathfrak{c})}}$$

This completes the proof.

For $\mathfrak{s} \in T_0$, we write

$$\mathfrak{n}_\mathfrak{s} := \prod_{\mathfrak{p}|\mathfrak{s}} \mathfrak{p}^{\mathrm{ord}_\mathfrak{p}(\mathfrak{n})}.$$

Let $\mathfrak{d}_1 = \prod_{\mathfrak{p}|\mathfrak{d}} \mathfrak{p}^{-\mu(\mathfrak{n}_\mathfrak{p})}$. For $\mathfrak{p}|\overline{\mathfrak{d}}/\mathfrak{d}_1$ let $\mathcal{B}_\mathfrak{p}$ be the *R*-module generated by the elements

$$\eta_{\mathfrak{p}} := N(\mathfrak{p})s(I_{\mathfrak{pn/np}})(1-\overline{\sigma}_{\mathfrak{p}}) - s(T_{\mathfrak{p}}) \text{ and } \gamma_{\mathfrak{p},\mathfrak{p}^{i}} := N(\mathfrak{p})s(I_{\mathfrak{n/p}^{i}}) - s(I_{\mathfrak{n/p}^{i+1}})$$

for $0 \leq i \leq \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) - 2$, and for $\mathfrak{p}|\mathfrak{d}_1$ we set $\mathcal{B}_{\mathfrak{p}} := R \cdot \eta_{\mathfrak{p}}$.

Using Lemma 4.2 and Lemma 4.3, we follow exactly the same process as in the classical case ([Sc, §4.2]) to get the following proposition. We remark that S_d (resp. $\mathfrak{d}_d(x)$) in [Sc, Lemma 4.2.2] should be replaced by $\varepsilon^- S_d$ (resp. $\varepsilon^- \mathfrak{d}_d(x)$).

Proposition 4.4.
$$\varepsilon^{-}S_{\mathfrak{d}} = \mathcal{U}_{\overline{\mathfrak{n}}/\overline{\mathfrak{d}}} \cdot \prod_{\mathfrak{p}|\overline{\mathfrak{d}}} \mathcal{B}_{\mathfrak{p}} \cdot \varepsilon^{-} \omega \frac{N(\mathfrak{d})}{N(\overline{\mathfrak{d}})}$$
.

Let ℓ be a prime number. Let $R_{\ell} = \mathbb{Z}_{\ell}[G], S_{\mathfrak{d},\ell} = S_{\mathfrak{d}} \otimes \mathbb{Z}_{\ell}$ and $\mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},\ell} = \mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}}} \otimes \mathbb{Z}_{\ell}$. Note that if $\ell \neq p$, then $S_{\mathfrak{d},\ell} = S_{\bar{\mathfrak{d}},\ell}$. For any prime ideal $\mathfrak{p}|\mathfrak{d}$, set

$$\kappa_{\mathfrak{p}} := s(I_{\mathfrak{pn/n}_{\mathfrak{p}}})(1 - N(\mathfrak{p})(1 - \overline{\sigma}_{\mathfrak{p}})) + s(T_{\mathfrak{p}}) - N(\mathfrak{n}_{\mathfrak{p}}/\mathfrak{p}).$$

Then

$$\kappa_{\mathfrak{p}} = \left(s(I_{\mathfrak{pn}/\mathfrak{n}_{\mathfrak{p}}}) - N(\mathfrak{p})^{\mathrm{ord}_{\mathfrak{p}}(\mathfrak{n}) - 1} \right) - \eta_{\mathfrak{p}}$$

Especially, if $\mathfrak{p}|\mathfrak{d}_1$, then $\kappa_{\mathfrak{p}} = -\eta_{\mathfrak{p}}$, and so $\mathcal{B}_{\mathfrak{p}} = R \cdot \kappa_{\mathfrak{p}}$. For $\mathfrak{p}|\bar{\mathfrak{d}}/\mathfrak{d}_1$, it follows from the definition of $\gamma_{\mathfrak{p},\mathfrak{p}^i}$ that

$$s(I_{\mathfrak{pn/n_p}}) = N(\mathfrak{p})^{\mathrm{ord}_{\mathfrak{p}}(\mathfrak{n})-1} - \sum_{j=0}^{\mathrm{ord}_{\mathfrak{p}}(\mathfrak{n})-2} N(\mathfrak{p})^{\mathrm{ord}_{\mathfrak{p}}(\mathfrak{p})-2-j} \gamma_{\mathfrak{p},\mathfrak{p}^j}.$$

Thus $\kappa_{\mathfrak{p}} \in \mathcal{B}_{\mathfrak{p}}$, and so $R \cdot \kappa_{\mathfrak{p}} \subseteq \mathcal{B}_{\mathfrak{p}}$. Set

$$\kappa := \prod_{\mathfrak{p} \mid \bar{\mathfrak{d}}} \kappa_{\mathfrak{p}}$$

and $\mathcal{B}_{\mathfrak{p},\ell} := \mathcal{B}_{\mathfrak{p}} \otimes \mathbb{Z}_{\ell}$ for any prime ideal $\mathfrak{p}|\mathfrak{d}$.

Proposition 4.5. Let ℓ be a prime number with $\ell \neq p$. Then $\mathcal{B}_{\mathfrak{p},\ell} = R_{\ell} \cdot \kappa_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p}|\mathfrak{d}$, hence

$$\varepsilon^{-}S_{\mathfrak{d},\ell} = \mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},\ell} \cdot \varepsilon^{-}\kappa\omega.$$

Proof. We only need to consider the case $v = \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \geq 2$. Set

$$\epsilon_i := N(\mathfrak{p})^{-i} s(I_{\mathfrak{n}/\mathfrak{p}^i}) \in \mathbb{Z}_\ell[G]$$

for $0 \leq i < v$. It is easy to see that $\epsilon_{v-1} \cdot \kappa_{\mathfrak{p}} = -\eta_{\mathfrak{p}}$, from where we have $\eta_{\mathfrak{p}} \in R_{\ell} \cdot \kappa_{\mathfrak{p}}$. We also have

$$N(\mathfrak{p})^{i+1-\nu}(1-\epsilon_i)\kappa_{\mathfrak{p}} = s(I_{\mathfrak{n}/\mathfrak{p}^i}) - N(\mathfrak{p})^i.$$

Thus we have

$$\begin{aligned} \gamma_{\mathfrak{p},\mathfrak{p}^{i}} &= -\left(s(I_{\mathfrak{n}/\mathfrak{p}^{i+1}}) - N(\mathfrak{p})^{i+1}\right) + N(\mathfrak{p})\left(s(I_{\mathfrak{n}/\mathfrak{p}^{i}}) - N(\mathfrak{p})^{i}\right) \\ &= N(\mathfrak{p})^{i+2-v}(\epsilon_{i} - \epsilon_{i+1})\kappa_{\mathfrak{p}} \in R_{\ell} \cdot \kappa_{\mathfrak{p}}. \end{aligned}$$

This completes the proof.

Lemma 4.6. For any prime ideal $\mathfrak{p}|\mathfrak{n}$ and a character $\chi \in \widehat{G}$, we have

$$|\chi(\kappa_{\mathfrak{p}})|_{\ell} = |1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-1}|_{\ell} \text{ if } \ell \neq p$$

and

$$|\chi(\kappa_{\mathfrak{p}})|_{p} = \begin{cases} N(\mathfrak{n}_{\mathfrak{p}})^{-1}|1-\chi(\mathfrak{p})N(\mathfrak{p})^{-1}|_{p} & \text{if } \chi \text{ is trivial on } I_{\mathfrak{pn}/\mathfrak{n}_{\mathfrak{p}}}, \\ N(\mathfrak{n}_{\mathfrak{p}}/\mathfrak{p})^{-1}|1-\chi(\mathfrak{p})N(\mathfrak{p})^{-1}|_{p} & \text{otherwise.} \end{cases}$$

Proof. If $\mathfrak{p}|\mathfrak{f}_{\chi}$, then $\chi(\mathfrak{p}) = 0$ and χ is non-trivial on $T_{\mathfrak{p}}$. Thus $\chi(s(T_{\mathfrak{p}})) = 0$, and so

$$\chi(\kappa_{\mathfrak{p}}) = \chi(s(I_{\mathfrak{pn/n_p}}))(1 - N(\mathfrak{p})) - N(\mathfrak{n_p/p}),$$

which is equal to $-N(\mathfrak{n}_{\mathfrak{p}})$ or $-N(\mathfrak{n}_{\mathfrak{p}}/\mathfrak{p})$ according as χ is trivial or not on $I_{\mathfrak{pn}/\mathfrak{n}_{\mathfrak{p}}}$.

If $\mathfrak{p} \nmid \mathfrak{f}_{\chi}$, then χ is trivial on $T_{\mathfrak{p}}$ (especially on $I_{\mathfrak{pn/n_p}}$), and so

$$\chi(\kappa_{\mathfrak{p}}) = N(\mathfrak{n}_{\mathfrak{p}}/\mathfrak{p})(N(\mathfrak{p})\chi(\mathfrak{p}) - 1) = N(\mathfrak{n}_{\mathfrak{p}})\chi(\mathfrak{p})^{-1}(1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-1}).$$

This completes the proof.

Theorem 4.7. Let ℓ be a prime number with $\ell \nmid p(q-1)$. For any $\mathfrak{d} \in T_0^*$ with $\overline{\mathfrak{d}}|\mathfrak{n}$, the ℓ -part of $(R^- : S_{\mathfrak{d}}^-)$ is equal to the ℓ -part of $|\mathcal{C}_{\mathfrak{d}}^-|$.

Proof. Note that the ℓ -part of $(R^- : S_{\mathfrak{d}}^-)$ is equal to $(R_{\ell}^- : S_{\mathfrak{d},\ell}^-)$. Thus it suffices to show that $(R_{\ell}^- : S_{\mathfrak{d},\ell}^-)$ is equal to the ℓ -part of $|\mathcal{C}_{\mathfrak{d}}^-|$. By the equation (a) in [Y3], Lemma 4.1 and the fact that $(q-1)\varepsilon^-S_{\mathfrak{d},\ell} \subseteq S_{\mathfrak{d},\ell}^-$, we have

$$(R_{\ell}^{-}:\varepsilon^{-}R_{\ell})=(\varepsilon^{-}R_{\ell}:\varepsilon^{-}\mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},\ell})=(\varepsilon^{-}S_{\mathfrak{d},\ell}:S_{\bar{\mathfrak{d}},\ell})=1.$$

Thus $(R_{\ell}^- : S_{\mathfrak{d},\ell}^-) = (\varepsilon^- \mathcal{U}_{\mathfrak{n}}, \varepsilon^- S_{\mathfrak{d},\ell})$. Now following the same argument as [Sc, Theorem 3] using Theorem 3.3, Proposition 4.5 and Lemma 4.6, we get the result. \Box

To consider the *p*-part of the index $(R^- : S_{\mathfrak{d}}^-)$, we have to compute the index $(\varepsilon^- \mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},p} : \varepsilon^- \mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},p} \prod_{\mathfrak{p}|\bar{\mathfrak{d}}} \mathcal{B}_{\mathfrak{p},p})$. It seems very difficult to compute this index because there may appear more than one $\mathcal{B}_{\mathfrak{p},p}$. Furthermore, the structure of $\mathcal{B}_{\mathfrak{p},p}$ is more complicated, since $I_{\mathfrak{pn}/\mathfrak{n}_p}$ is not cyclic. But when \mathfrak{n} is square free so that $\mathfrak{d} = \mathfrak{d}_1$, then $\mathcal{B}_{\mathfrak{p},p} = R_p \cdot \kappa_p$ for any $\mathfrak{p}|\mathfrak{d}$, and so

$$\varepsilon^{-}S_{\mathfrak{d},p} = \mathcal{U}_{\bar{\mathfrak{n}}/\bar{\mathfrak{d}},p} \cdot \varepsilon^{-}\kappa\omega.$$

By Lemma 4.6, we have

$$|\chi(\kappa_{\mathfrak{p}})|_p = N(\mathfrak{p})^{-1}|1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-1}|_p,$$

and so the same process as in the proof of Theorem 4.7 gives

Theorem 4.8. Assume that \mathfrak{n} is square free. Then the *p*-part of $(R^- : S_{\mathfrak{d}}^-)$ is equal to the *p*-part of $|\mathcal{C}_{\mathfrak{d}}^-|$.

Finally, we follow the same argument in the proof of Corollary 4.5.2 in [Sc] using Theorem 3.3, Theorem 4.7 and Theorem 4.8 to get

Corollary 4.9. Let ℓ be a prime number with $\ell \nmid (q-1)$. Assume that \mathfrak{n} is square free if $\ell = p$. For any $\mathfrak{d} \in T_0^*$ (not necessarily $\overline{\mathfrak{d}}|\mathfrak{n}$), the ℓ -part of $(R^- : S_{\mathfrak{d}}^-)$ is equal to the ℓ -part of $|\mathcal{C}_{\mathfrak{d}}^-|$.

References

- [ABJ] J. Ahn, S. Bae and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields. Trans. Amer. Math. Soc. 355 (2003), 1803-1818.
- [Ha] D. Hayes, Stickelberger elements in function fields. Compositio Math. 55 (1985), 209-235.
- [Hr] F. Harrop, Circular units of function fields. Trans. Amer. Math. Soc. 341 (1994), 405-421.
- [L] S. Lang, Algebraic number theory. GTM, 110. Springer-Verlag, New York, 1994.
- [Sc] C. G. Schmidt, On ray class annihilators of cyclotomic fields. Invent. Math. 66 (1982), no. 2, 215-230.
- [Si] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field. Ann. of Math. (2) 108 (1982), (1978), no. 1, 107-134.
- [T] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s = 0. Progress in Mathematics,
 47. Birkhauser Boston, Inc., Boston, MA, 1984.
- [Y1] L. Yin, Index-class number formulas over global function fields. Compositio math. 109 (1997), 49-66.
- [Y2] L. Yin, Distributions on a global field. J. Number Theory. 80 (2000), 154-167.
- [Y3] L. Yin, Stickelberger ideals and Relative class numbers in function fields. J. Number Theory. 81 (2000), 162-169.

Department of Mathematics, KAIST, Taejon 305-701, Korea *E-mail address*: shbae@kaist.ac.kr

Department of Mathematics Education, Chungbuk National University, Cheongju 361-763, Korea *E-mail address*: hyjung@chungbuk.ac.kr