ON RAY CLASS ANNIHILATORS
OF CYCLOTOMIC FUNCTION FIELDS

SUNGHAN BAE AND HWANYUP JUNG*

ABSTRACT. Let KC be a cyclotomic function field over a global function field k£ with
Galois group G. In this paper we define an ideal S; of R = Z[G] and show that it
annihilates the d-ray class group C, of K. We also investigate the relation between
the index (R~ : Sy ) and the order of C; .

1. INTRODUCTION

Let K = Q((,) be the n-th cyclotomic field with Galois group G = Gal(K/Q).
Stickelberger introduced an ideal S (called the Stickelberger ideal of K') of R = Z|G]
which annihilates the ideal class group C of K. In [Si], Sinnott showed that the index
of the minus part of S in the minus part of R is equal to the minus class number of
K up to a power of 2. For any integer d > 1, Schmidt ([Sc]) introduced an ideal S,
(called the d-Stickelberger ideal of K) of R which annihilates the d-ray class group
Cq of K and showed that the index of the minus part of S; in the minus part of R
is equal to the order of the minus part of C; up to a power of 2. In this paper we
consider the analogous problem in function fields. We first introduce some notations.

Let k be a global function field over the finite field F, with ¢ elements of charac-
teristic p. Fix a place oo of k of degree 1 and fix a sign function sgn : ko, — F,
with sgn(0) = 0, where k., is the completion of k£ at co. We call x € k positive if
sgn(z) = 1, and write = > 0. Let A be the Dedekind subring of k consisting of the
functions regular away from oco. Let ¢ be the unit ideal of A and K, the Hilbert class
field of (k, 00), and G, = Gal(K,./k). We denote by Tj the set of all non-zero integral
ideals of A and Ty = To\{e}. For any n € Ty, we set the followings:

e K, := the cyclotomic function field of the triple (k, oo, sgn) of conductor n.

o G, := Gal(K,/k).

e J := the inertia group at oo in GG, which we call the sign group. Note that
J is naturally isomorphic to F}.

e K := the fixed field of J, which we call the maximal real subfield of K.

e |A| := the cardinality of a set A.

e ¢(n) :=|(A/n)*| = the number of units in A/n.
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o 5(A) =3, .40 € Z[G,] for a subset A of G..
e c =1-5(J)/(g—1) € Q[Gy).

Let Ok, be the integral closure of A in K,. For a non-zero integral ideal O of
Ok, , let Iy be the group of non-zero fractional ideals of Ok, prime to 9T and Py
be the subgroup of Zy consisting of principal ideals (x) satisfying z = 1 mod M.
Then Cy = Zsn/Pom is called the M-ray class group of K,. For any 0 € Ty, we write
Cy := Choy, for simplicity. In this paper we define an ideal S, of R = Z[G,] by using
the Stickelberger elements and show that it annihilates the d-ray class group C, of
K,. Our proof relies on the Hayes’ proof of Brumer-Stark conjecture for function
fields ([Ha]). For any R-module M, set M~ := {m € M : s(J)-m = 0} which we call
the minus part of M. We also show that the ¢-part of the index (R~ : Sy ) is equal to
the ¢-part of |Cy | for any prime number ¢ with £ 1 (¢ — 1) assuming that n is square
free if £ = p.

We fix the following notations.

e 1 :=|G,| = the class number of k.

e N(a) := ¢ for any a € Tp.

e (a,b) := the greatest common divisor of a and b for any a,b € Tj.

e N(u) := N(a)/N(b) for any non-zero fractional ideal u of A, where u = ab™"
with a,b € Ty and (a,b) = e.

°qa:= HPI P, where p runs over all prime ideals of A dividing a.

e For each prime number /, | - |, denotes the normalized ¢-adic absolute value,
e, |[llp=1/¢.

From now on we fix n € Tj and write K := K, K" := K and G := G, for simplicity.

2. ANNIHILATOR OF RAY CLASSES

Let a,b € Ty. We say that b is congruent to a modulo n if there exists z € a~!n,
1 4+ 2 > 0 such that b = (1 + z)a, and write a ~, b. Then ~, is an equivalence
relation on Ty. For more details on the relation ~,, we refer to [Y2].

For z € k*, write ||z|| := N(zA). For a € Ty, let a; = a(n,a)”! and n; = n(n,a)"".
We define for Re(s) > 1

Zo(s,a) == N(a)™* Y [[1+z||° = N(n,a) Gy (s, 1),

z€a—1ln
1+2>0

where (y, (s, a1) is the partial zeta function of the class containing a; in the narrow ray
class group of A modulo ny. It has meromorphic continuation to the whole complex
plane and is holomorphic except for a simple pole at s = 1. For a,b € Tj, if a ~, b,
then we have Zy(s, a) = Zy(s,b). It is well known that (¢ — 1)Z,(0, a) is an integer.
Define
Oni= > Zs(0,a)0," € Q[G],

amod *n
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where a mod *n means that the sum is over the representatives of the narrow ray
classes of A modulo n, and o, is the Artin automorphism associated to the ideal a.
For f|n, define

> %(0.0)0," € QG
amod *n

and

> Zi(0,0)0," € Q[GY).

amod *f

Then 0; = Coryk, (0) and Resyk, (0}) = [K : Kj]6}.

Lemma 2.1. Let p be a prime ideal of A dividing n and let f = np™1

(1 —0,")0;, otherwise.
(ii) Let H = Gal(K/Kj). Then

s(H )0, if plf,
s(H)0y + Corg/k, (0, '05),  otherwise.

(1) Resx/x;(0n) =

0; =

Here oy is the Artin automorphism associated to p in Gj.

Proof. (i) Corollary 1.7 and Proposition 1.8 of [T]. (ii) follows immediately from
(i). O

For any ¢ € Ty, define
en(c) = ( ;/(n,c))at/(nyc)'
Then 6, = 64(¢) and 6 = 6,(nf~") for fjn. For d € T, we define
N(o)
On = ———=0y(ac),
7D(c) gu(a) N(Cl) (ClC)

where p(a) is 0 if a is not square free, and (—1)" if a is the product of ¢ distinct prime
ideals of A. For a prime ideal p of A, we have

Snp(c) = N(p)ba(c) — On(pc) and Gy pn(c) = N(p"")dnp(c) for n > 1.

It is easy to see that if a ~y b, then 0,(a) = 0,(b) and d,o(a) = dno(b).
We define an R-ideal

> R-bua(c)) NR,

¢ mod ~y
where ¢ mod ~, means that the sum is over the representatives of the classes of T}
modulo ~,, and call it the 0-Stickelberger ideal of KC. Since dne(c) = (6 )7/,

(> R-Oypo)n ZR o) N R

¢ mod ~p

is the Stickelberger ideal of K defined by Yin in [Yl].
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Proposition 2.2. Ifd # ¢, then d,5(c) € R for all ¢ mod ~,.

Proof. Since (¢ — 1)0,(c) € R, it suffices to show that
> p(a)fa(ac) € R.
alo

Let S" = Zﬂn R-0; and let v be a fixed generator of Fy. The map ¢ : S — [} defined
by ¥(0) = 49~Y% where a; is the coefficient of 1 in 6, is a well defined surjective
homomorphism with kernel S’N R (see the proof of Lemma 4.2 in [ABJ]). Moreover,
P(of) = () for any 0 € S" and o € G. Since 6; — N(nf~')0, € R for fn, we have

D(0]) = P (0) V) = (6,).

Thus
w(zu(a)0n<ac)) = w(en)zuw M(Cl) — ]_7
ald
because Za\ﬁ u(a) = 0if 9 # e. Hence Ea\a pu(a)fy(ac) € R. This completes the
proof. -

For an ideal 0 of A, we write 0,5 := 0no(e) for simplicity.
Lemma 2.3. For any prime ideal L of Ox with L1 pn, we have
Lo = (z) with z = 1 mod p.

Proof. Following the idea of Hayes in the end of [Ha, §2], we may assume that £ splits
completely in KC. Take the place [ under £ as the infinite place oo’ of k. Now let ¢ be
a sgn-normalized rank one Drinfeld module on A/, which is the ring of functions in
k regular away from oo’. Let n’,p’ and ' be the ideals of A, associated to n,p and
f, respectively. Let ‘H be the maximal real subfield of the cyclotomic function field of
(k, o0, sgn) of conductor n’. Then K is contained in H, and we proceed inside H, as
was done in [Ha, §6]. It is shown by Hayes in [Ha] that £% = ()\,), for some properly
chosen primitive n’-torsion point Ay of ¢. If p 1 n, then d,, = (N(p) — 0y)0s. Thus
we have

£ = ANP77) with AYP ™7 = 1 mod p,

since p is unramified in .
Now we assume that pn, and let f = np~! and H = Gal(K/Kj). In this case, by

Lemma 2.1 (ii), we have

/ N(p)ba — s(H)by, if plf,
5'143 = N(p)en - Qf = . .
N(p)ta — s(H)by — Corgyk, (0, 05), ifpif.

If plf, then A7) = 6, (Ay) = AN® mod p’. Thus

Lo — (ATJX(P)—S(H)) with )\IJX(P)—S(H) =1 mod p’.
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If p 1§, then, for any ¢ € H, o acts on \y as ¢, for some a € (A.//n')* with
a =1 mod f. Also there is a unique b € A.//n’ with b = 1 mod f but b = 0 mod p’.
1

Write (b) = p’t/. Then ¢p(Aw) = ¢w(Ay) = )\:,"7 . It is easy to see that

H ¢a()\n’) == d)p’()\n’)-

aEAOO//n’
a=1 mod f/

Thus 1
A = by () /A7
As before
by (Aw) = AP mod p'.

c L;)
Since £/ (7w 07 ()\ ¥ ) we have

L0 = (AN® /6 (Ay)) with AYP /éy (M) = 1 mod p',
This completes the proof. [

Lemma 2.4. 0,(c) = (Cor/C/Kn/(n,o(5n/(nm),p))gc/(n’c>-

Proof. Note first that
Onp(€) = N(P) (O (n0) 7™ — (O upe) 7P/ 0. (2.1)
Case 1 p {n: In this case (n,pc) = (n,¢), and so (2.1) becomes
(N<p) n/(ne) leﬁ(nc >ac/(“’c) = (COIIC/Kn/<n,c)(6\1/(“75)713»06/("’6)'
Case 2 p|n: In this case (2.1) becomes
N(P) (O (n0) 7/ ™0 = (5 1.0) 7/ 0. (2.2)
Write n = p'f and ¢ = p/¢’ with (p,f'¢’) = e. Then
(11, C) _ pmin{i’j}<f/, C/), (f; C) _ Pmin{i—l,j}(f/ C/)

n _ wi—min{s,j} f/ ¢ j—min{é,j}

(o) 7. o )
L _ i~ 1-min{i—1,5} f, ¢ _ Jj—min{i-1,5} *
G 7. Go F 7oy

If j >, then §/(f,¢) = n/(n,¢) and ¢/(f, ¢) = pc/(n, c). Thus (2.2) becomes
(N(p)ea/(n,c) - (‘9:1/(n,c)>gp)ad(n’c> = (COI‘IC/Kn/(n,c)<5n/(n,t)7p>)UC/(“7c>‘
If j <, then f/(f,¢) = (n,¢)/p and ¢/(f,¢) = ¢/(n,¢). Thus (2.2) becomes

<N<p>6:1/("’c) - ;/(H,C)P)U‘/m") = (Cor/C/Kn/(n,()(5n/(n,c),p>)ac/("’c).

This completes the proof. |

Theorem 2.5. For any 0 € Ty, we have
Sy C Anng(Cy).
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Proof. The case 0 = ¢ is proved by Tate-Deligne ([T]) and Hayes ([Ha]). Assume that
0 # e. It suffices to show that, for any prime ideal £ of Ox with £ { on, there exists
an element x € K such that £%°() = (z) with # = 1 mod ?.

Consider first the case 0 = p", a power of prime ideal p. For fln, we have
Lo @) — Ni/k,(L)? for any 0 € Z[Gy]. Thus, by Lemma 2.3 and Lemma 2.4,
there exists y € IC such that

L%+ = (y) with y = 1 mod p. (2.3)
Raising (2.3) to the N(p"~!)-power, we find an element x € K such that
L) = (z) with 2 = 1 mod p".

Next we assume that 0 has at least two distinct prime divisors. Since p(a) = 0 for

any a|d with a9, we have d,5(c) = %5@(@. For any prime ideal p|d, we have
Eénya(c) _ H (£0n(ac))#(a)% % H (Een(pac))#(Pa) 1{}\7(;52)
ald/p ald/p
— H (Lo (@IN ()~ Gn(pac))ﬂ(ﬂ)m o
ald/p
= [ (£hr ey
ald/p
_ ) o) Sup(ac) _ - _
- a a a —
H (4) @o) where £ = (x4) with , = 1 mod p
alo/p
= (xg), where xy = H ()" @N6er = 1 mod p.
ald/p
Thus
Sn.0 (<) : O ordp (2)
Lo28) = () with z = (x0)¥® = 1 mod p°
for any prime ideal p[0. This completes the proof. [

3. THE MINUS PART OF THE RAY CLASS GROUPS

Let Co(K1) denote the d-ray class group of £t and j;, : Co(KT) — Cp be the map
induced by the inclusion map on ideals from K to K. Let N,CD/),C + Gy — Co(KT) be

the norm map.

Lemma 3.1. (i) If o 7é e, then j, is injective.
(ii) The cokernel of N, ,C/,ﬁ has exponent ¢ — 1, i.e.,

Co(KH)™ C NI, (Ca) € Co(K).

Proof. (i) Let 2 be an ideal of KT and assume A = (2) with z € K and z = 1 mod ?.
Then (27) = (2), where j is a generator of J. Thus 2!~/ € Of.. For any infinite prime
Poo of K, |2"7|p, = 1. Thus 2'7 € F; with 2!~/ = 1 mod 0. Since d # ¢, 27 =1
and so z € K*. Thus 2 = (z) in £T. Hence j, is injective.
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(ii) For any € € Co(Kt), we have
)
Thus we get the result. U
Let Ok, = {z € Og : x = 1 mod 0} and Oy, , = Oy N Ok,
Lemma 3.2. If0 # ¢, then O, = Ok, ,.

Proof. For any x € Of,, as in the proof of Proposition 1.1 in [Hr], we have z'~7 € IF;.
But 27 =1mod 9, so 2177 = 1. Thus z € O+ Hence Ok, = Ok, ,. U

Let G be the group of characters of G with values in C*. A character x is called real
if x(J) =1, and non-real otherwise. Let G~ denote the set of all non-real characters
of G. The conductor f, of a character x is the smallest integral ideal m such that
factors through G,. We denote by x; the trivial character. Let p be a prime ideal of
A. We define x(p) as follows. If p { f,, let o, is the Artin automorphism associated
to p in Gy, and let x(p) = x(0y). If p | f,, we put x(p) = 0.

Recall that C; = {c¢ € C, : s(J) - ¢ = 0}, which is also the kernel of N,(Ca/),ﬁ. Set
hy = |Cy |, called the minus d-ray class number of K.

Theorem 3.3. If 0 # ¢, then
By = he (NQ)FWoc0/Q0) TT TT (1= x®)NG) ™),

plo xe@’*
where Qo = (Ok : O1), 0k = |Coker(N,?/),C+)| and p runs over all prime ideals of
A dividing 0.
Proof. Following the arguments in [L, Chap VI, §1] with Lemma 3.2, we have

Gl - [(Ox/00x)" 1T
Co ()| “[(Ox+/00k+)*| Qo

Thus it follows from the exact sequence

(@)
N)C/iC+

1—Cy —Cy == Co(KT) — Coker(N,(CD/)K+) — 1,

that
(O /20k)*| oK.
[(O+/00k+ )| Qo

Now, the result follows from the following facts that

[(Ox /00x)"| =2 g (n) [1p(1 - N(B)™)
|(Ox+/00c+ )| [T+ (1= NP

ho = he

= N(0)

and
— N
Hll‘fg ~N(PH)) 11 H (L= x(p)N(p)™),

plo x€G—
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where P (resp. PT) runs over all prime ideals of Ok (resp. Ok+) dividing 0 and p
runs over all prime ideals of A dividing 0. O

4. (-PART OF THE INDEX (R~ :5;)

For a prime ideal p of A, let T}, be the inertia group of p in G' and let F, € G be

any Frobenius automorphism for p, which is well defined modulo 7,. In Q[G], we
define

_ L s(Ty)
=Ft. P
P

and Uy, .= R - s(T) + R+ (1 —7,). We also define Us := [, .Uy at any s|n.
Lemma 4.1. For any s|n, the index (¢~ R : € Us) is a power of ¢ — 1.

Proof. 1t suffices to show that (¢~Us : € Usy) is a power of ¢ — 1 for sp|n, where p is a
prime ideal of A. Since the multiplication by 1 — j on Q[G]~ is injective, by Lemma
6.1 in [Si], we have

(e U : E_Z/{sp) =((1—g)Us: (1 — j)usp)7
which is a power of ¢ — 1 ([Y1, §6]). OJ

Let e, be the idempotent element associated x € G. Set

wi= Y L(0,X)ey,

x17£x€G

where L(s, x) is the Artin L-function attached to x. For f|n, let I; = Gal(K/Kj). We
also let

ap = s(I) [ [(1—7,) iff#e

plf

and «, := s(I,). Then we have

Lemma 4.2. For any fin, e 0.(]) = ¢~ wap-1.

Proof. See the proof of Lemma 6 in [Y3]. O
In the following we assume that 0 # ¢ and 0|n.

Lemma 4.3. S, is generated as an R-module by {d,(c) : ¢|n}.

Proof. Since 0 # e, S, is generated as an R-module by d,5(¢c) for all ¢ mod ~, by
Proposition 2.2. Since 6,(c) = 0,((n, c))7/) we have

5n70(c) — 51170((117 c))ac/(n,c)‘

This completes the proof. O
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For s € Ty, we write

ng = Hpordp(n)'

pls
Let 0, = prp_“(“"). For p[d/0; let B, be the R-module generated by the elements

Np = N(P)SLpn/m, ) (1 = Tp) — s(Tp) and vy pi == N(p)s(Lajpi) — 5(Ln/pitr)
for 0 <i < ordy(n) — 2, and for p[d; we set B, := R - n,,.
Using Lemma 4.2 and Lemma 4.3, we follow exactly the same process as in the
classical case ([Sc, §4.2]) to get the following proposition. We remark that Sy (resp.
04(x)) in [Sc, Lemma 4.2.2] should be replaced by =S, (resp. € 04(x)).

.- _ _ N
Proposition 4.4. 75, = Uy/s - Hp‘ﬁ B, e wﬁ.

Let ¢ be a prime number. Let Ry = Z[G], Sop = So ® Zg and Ugsz0 = Usss @ Zy.
Note that if ¢ # p, then Sy, = S5,. For any prime ideal p|9, set

fp = 5(Lpn/my, ) (L = N(p)(1 = 7)) + s(Ty) — N(np/p).
Then
Kp = (S(Lpn/n,) — N (p)rdr™=1) — .
Especially, if p[0y, then k, = —n,, and so B, = R - k,. For p[0/0y, it follows from the
definition of 7, , that

ordp (n)—2

$(Lpn/ny) = N (p)o® (=t — Z N (p)orr Gj)i%j%m]’-

§=0
Thus x, € By, and so R - k, C B,. Set
K= H Ky,
plo
and By = By, @ Zy for any prime ideal p|d.
Proposition 4.5. Let { be a prime number with { # p. Then By, = Ry - Ky for any

prime ideal p|0, hence

€ Sou =Unppy - € Kw.
Proof. We only need to consider the case v = ordy(n) > 2. Set
€ = N(p)'s(Lnpi) € Z[G]

for 0 <@ < w. It is easy to see that €,_1 - kK, = —7), from where we have 7, € Ry - k.
We also have

N(p) (1 — €)kp = (L) — N(p)".
Thus we have
Yo = —(8Lyjpir1) = N(p)*') + N(p) (s(Lnp) — N(p)")
= N(p)H_Z_U(Ei — Ez‘—l—l)"’{'p € Ry- Kp.
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This completes the proof. [

Lemma 4.6. For any prime ideal p|n and a character x € CA}, we have

IX(kp)le =11 = x(p)N(p) e if ¢ #p
and
N(ny) 1= x(p)N(p) ), if x is trivial on Ipgm,
x(sp)ly = N(ny/p) 1 = x(0)N(p)~Y,  otherwise.

Proof. 1f p|f,, then x(p) = 0 and x is non-trivial on 7,. Thus x(s(7})) = 0, and so
X(Rp) = X(8(Lpnym, )) (1 = N(p)) — N(np/p),

which is equal to —N(n,) or —N(n,/p) according as x is trivial or not on Iy, .
If p { fy, then x is trivial on T}, (especially on Ipn/m,), and so
X(#p) = N(np/p)(N(p)x(p) = 1) = N(np)x(p) (1 = x(P)N(p) ).
This completes the proof. O

Theorem 4.7. Let { be a prime number with £ 1 p(q—1). For any € T with d|n,
the C-part of (R~ : Sy ) is equal to the (-part of |Cy |.

Proof. Note that the {-part of (R~ : Sy) is equal to (R, : S;,). Thus it suffices to
show that (R, : S;,) is equal to the {-part of |C;|. By the equation (a) in [Y3],
Lemma 4.1 and the fact that (¢ — 1)e~ S, C S, we have

(RZ_ : €_Rg) = (€_Rg : €_Uﬁ/6,z) = (5_531 : SD_,K) =1.
Thus (R, : S;,) = (e Uspe : € Sop). Now following the same argument as [Sc,
Theorem 3] using Theorem 3.3, Proposition 4.5 and Lemma 4.6, we get the result. [J

To consider the p-part of the index (R~ : S; ), we have to compute the index
(e Uspop : € Uspop [ 15 Bpp)- It seems very difficult to compute this index because
there may appear more than one B,,. Furthermore, the structure of B,, is more
complicated, since Iy, is not cyclic. But when n is square free so that 9 = 9,, then
By, = R, - ky for any p|d, and so

€ Sop =Unppp - € Kw.

By Lemma 4.6, we have

(k) = N(p) 1 = X(P)N(p) "I,

and so the same process as in the proof of Theorem 4.7 gives

Theorem 4.8. Assume that n is square free. Then the p-part of (R~ : Sy) is equal
to the p-part of |Cy |.

Finally, we follow the same argument in the proof of Corollary 4.5.2 in [Sc| using
Theorem 3.3, Theorem 4.7 and Theorem 4.8 to get



ON RAY CLASS ANNIHILATORS OF CYCLOTOMIC FUNCTION FIELDS 11

Corollary 4.9. Let ¢ be a prime number with ¢ { (¢ — 1). Assume thal n is square

free if £ = p. For any o € T} (not necessarily 0|n), the {-part of (R~ : Sy) is equal
to the C-part of |Cy |.
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