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A NOTE ON SUMS OF PRODUCTS OF BERNOULLI NUMBERS

MIN-SOO KIM

Abstract. In this paper we obtain new approach to closed expressions for

sums of products of Bernoulli numbers by using the relation of values at non-
positive integers of the important representation of the multiple Hurwitz zeta-

function in terms of the Hurwitz zeta-function.

1. Introduction and preliminaries

Let n be a positive integer and x ∈ R+ = {x ∈ R | x > 0}.
Let ζn(s, x) denote the multiple Hurwitz zeta-function defined by

(1.1) ζn(s, x) =
∞∑

k1,...,kn=0

1
(x+ k1 + · · ·+ kn)s

, Re (s) > n

and for Re (s) ≤ n; s 6= 1, 2, . . . , n by their analytic continuations. Then, in terms
of the familiar higher-order Bernoulli polynomials B(n)

k (x) defined by means of the
generating function

(1.2)
(

t

et − 1

)n

ext =
∞∑

k=0

B
(n)
k (x)

tk

k!
, n ≥ 1

it is known that

(1.3) ζn(−k, x) = (−1)n k!
(k + n)!

B
(n)
k+n(x)

for k = 0, 1, . . . . (cf. [2, 5, 14]). In particular we have B(n)
k (0) = B

(n)
k , the higher-

order Bernoulli numbers. When n = 1, ζ1(s, x) = ζ(x, s) is the well known Hur-
witz zeta-function. The multiple Hurwitz zeta-function ζn(s, x) at positive integers
which is greater than or equal to n is closely related the multiple gamma func-
tions as a extension of the classical Euler gamma functions Γ(x) (to be introduced
below), the so-called Barnes multiple gamma functions Γn(x) with the parameter
x is defined by Γn(x) = exp( ∂

∂sζn(s, x)|s=0) =
∏∞

k1,...,kn=0(x + k1 + · · · + kn)−1

(cf. [14]). The multiple gamma function, originally introduced over 100 years ago,
has significant applications in the connection with the Riemann Hypothesis (cf.
[14, 15]).

From (1.2), we easily obtain

(1.4) B
(n+1)
k =

(
1− n

k

)
B

(n)
k − kB(n)

k−1;
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(1.5) B
(n)
k = −k

n

k∑

i=1

(−1)i

(
k

i

)
BiB

(n)
k−i;

(1.6) B
(n)
k (x) = (−1)kB

(n)
k (n− x);

(1.7) B
(n)
k (x) =

∑

k1,...,kn≥0
k1+···+kn=k

(
k

k1, . . . , kn

)
Bk1(x1) · · ·Bkn

(xn),

where x = x1 + · · ·+ xn.
Set

(1.8) x(x+ 1) · · · (x+ n− 1) =
n∑

j=0

[
n
j

]
xj ,

where
[
n
j

]
are the Stirling cycle numbers, defined recursively by

[
n
j

]
= (n− 1)

[
n− 1
j

]
+
[
n− 1
j − 1

]
,

[
n
0

]
=

{
1, n = 0
0, n 6= 0.

Then
(
k + n− 1
n− 1

)
=

n−1∑

l=0

pn,l(x+ n)(x+ n+ k)l,

where pn,l(x+ n) is a polynomial in x defined by (see, for details, [14])

(1.9) pn,l(x+ n) =
1

(n− 1)!

n−1∑

j=l

(−1)j−l(x+ n)j−l

(
j

l

)[
n

j + 1

]
.

By above equations, the multiple Hurwitz zeta-function defined by (1.1) may be
expressed by means of the Hurwitz zeta-function

(1.10) ζn(s, x+ n) =
n−1∑

l=0

pn,l(x+ n)ζ(s− l, x+ n), x ≥ 0,

which due to Mellin [8], Choi [2], Vardi [15] and Kanemitsu et al [5].
A well-known relation among the Bernoulli numbers is (for n ≥ 2)

(1.11)
k−1∑

i=1

(
2k
2i

)
B2iB2k−2i = −(2k + 1)B2k, k ≥ 2.

This was found by many authors, including Euler; for references, see, e.g., [3, 6, 7,
9, 10, 11, 12, 13].

Eie [4] and Sitaramachandrarao and Davis [13] considered the sum of products
of 3 and 4 Bernoulli numbers.
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Dilcher [3] established the following interesting sums of product of Bernoulli
numbers

(1.12)

∑

r1,...,rn≥0
r1+...+rn=r

(
2r

2r1, . . . , 2rn

)
B2r1 · · ·B2rn

=





(2r)!
(2r − n)!

[ n−1
2 ]∑

k=0

b
(n)
k

B2r−2k

2r − 2k
, 2r > n

(2r)!
4r

+
r−1∑

k=0

(2r)!
2r − 2k

b
(2r)
k B2r−2k, 2r = n

(−1)n−1(n− 2r − 1)!(2r)!b(n)
r , 0 ≤ r ≤

[
n− 1

2

]
,

where (
2r

2r1, . . . , 2rn

)
=

(2r)!
(2r1)! · · · (2rn)!

is the multinomial coefficient and b
(n)
k is the sequence of rational number defined

by

b
(1)
0 = 1, b

(n+1)
k = − 1

n
b
(n)
k +

1
4
b
(n−1)
k−1

with

b
(n)
k = 0

(
k < 0 or k >

[
n− 1

2

])
.

Here [n] denotes the integer part of n.
In a recent series of two papers, Petojević [9, 10] has given several new formulas

for the sums of the products of Bernoulli numbers.
In [11], Petojević and Srivastava derived several formulas for the evaluation of

Euler’s type and Dilcher’s type sums of products of Bernoulli numbers.
In this paper, we consider the special values at non-positive integers of the impor-

tant representation of the multiple Hurwitz zeta-function in terms of the Hurwitz
zeta-function (see (1.10) above). These special values imply closed expressions for
sums of products of Bernoulli numbers of the form

∑

r1,...,rn≥0
r1+...+rn=r

(
r

r1, . . . , rn

)
Br1 · · ·Brn .

2. Proofs of (1.4)–(1.7)

Let us put Fn(t) =
(

t
et−1

)n

. Then Fn(t) is the generating function of higher-

order Bernoulli numbers B(n)
k . The derivative F ′n(t) = d

dtFn(t) of Fn(t) is equal
to (

1
t
− et

et − 1

)
nFn(t) =

n

t
Fn(t)− nFn(t)− n

et − 1
Fn(t),

and tF ′n(t) = nFn(t)− ntFn(t)− nFn+1(t), so we have

B
(n)
k

(k − 1)!
= n

B
(n)
k

k!
− n

B
(n)
k−1

(k − 1)!
− nB

(n+1)
k

k!
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for k ≥ 1. This formula can be written as

B
(n+1)
k =

(
1− n

k

)
B

(n)
k − kB(n)

k−1.

Thus, we can deduce (1.4).
To see (1.5), note that B(n+1)

k =
∑k

i=0

(
k
i

)
BiB

(n)
k−i. Therefore from (1.4), we

obtain
∑k

i=1

(
k
i

)
BiB

(n)
k−i = −n

kB
(n)
k − kB(n)

k−1. Since all Bernoulli numbers with odd
index, except B1, equal zero, we obtain

−n
k
B

(n)
k =

k∑

i=2

(
k

i

)
BiB

(n)
k−i +

k

2
B

(n)
k−1 =

k∑

i=1

(
k

i

)
(−1)iBiB

(n)
k−i.

Thus (1.5) follows.
Note that

∞∑

k=0

B
(n)
k (n− x)

(−t)k

k!
=

(−t)ne(x−n)t

(e−t − 1)n
=

tnext

(et − 1)n
=
∞∑

k=0

B
(n)
k (x)

tk

k!
.

Equating coefficients of tk on both sides of the above identity we obtain the desired
formula (1.6).

From (1.2), we have the expression for B(n)
k (x),

B
(n)
k (x) = (1B(x1) + · · ·+ nB(xn))k,

where in the multinomial expansion of this identity we mean that

(iB(xi))j (the jth power of iB(xi))=Bj(xi),

which is the result (1.7) (cf. [12, Theorem 8]).

3. Main results

To derive our main theorem, we need the following lemmas.

Lemma 3.1. Let x ∈ R and n ≥ 1. Then
n−1∑

l=0

pn,l(n)xl =
1

(n− 1)!

n∑

i=1

[
n
i

]
(x− n)i−1.

In particular, if n = 1, p1,0(1) =
[
1
1

]
= 1.

Proof. Note that

pn,l(n) =
1

(n− 1)!

n−1∑

j=l

(
j

l

)[
n

j + 1

]
(−n)j−l

for l ≥ 0. Thus we find

(n− 1)!
n−1∑

l=0

pn,l(n)xl =
n−1∑

j=0

[
n

j + 1

]
(−n)j +

n−1∑

j=1

(
j

1

)[
n

j + 1

]
(−n)j−1x

+ · · ·+
n−1∑

j=n−1

(
j

n− 1

)[
n

j + 1

]
(−n)j−n+1xn−1.
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Here we need to rearrange the result slightly, to
[

n
j + 1

]
, j = 1, . . . , n, and then

note that

(n− 1)!
n−1∑

l=0

pn,l(n)xl =
[
n
1

]
+
[
n
2

] 1∑

j=0

(
1
j

)
(−n)1−jxj

+ · · ·+
[

n
n− 1

] n−2∑

j=0

(
n− 2
j

)
(−n)n−2−jxj

+
[
n
n

] n−1∑

j=0

(
n− 1
j

)
(−n)n−1−jxj ,

which is the desired equality. �

Lemma 3.2. Let n > 1. Then
n−1∑

l=0

pn,l(n)kl = 0, k = 1, . . . , n− 1.

Proof. Using Lemma 3.1 we note that

(3.1)
n−1∑

l=0

pn,l(n)xl =
1

(n− 1)!

n∑

i=1

[
n
i

]
(x− n)i−1.

Setting x = k in (3.1) with 1 ≤ k ≤ n− 1. From (1.8), we have
n−1∑

l=0

pn,l(n)kl =
1

(k − n)(n− 1)!

n∑

i=1

[
n
i

]
(k − n)i

= 0.

This completes the proof. �

Next we shall turn to Dilcher’s type sums of products of Bernoulli numbers (cf.
[3]).

Theorem 3.3.
∑

r1,...,rn≥0
r1+···+rn=r

(
r

r1, . . . , rn

)
Br1 · · ·Brn

=





(−1)n+r+1 r!
(r − n)!

n−1∑

l=0

pn,n−l−1(n)
Br−l

r − l , r > n

r!pr,0(r)B1 − r!
r−2∑

l=0

pr,r−l−1(r)
Br−l

r − l , r = n

(−1)rr!(n− r − 1)!pn,n−r−1(n), 0 ≤ r ≤ n− 1.

Proof. Case (I): r > n. From the definition (1.1) of the multiple Hurwitz-zeta
function, we have

ζn(s, n) =
∞∑

k1,...,kn=1

(k1 + · · ·+ kn)−s.
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In (1.3) we replace x by n with k = r − n (r > n) and using (1.6), this function
immediately gives

(3.2) ζn(n− r, n) = (−1)n (r − n)!
r!

B(n)
r (n) = (−1)n+r (r − n)!

r!
B(n)

r .

On the other hand, we use (1.10) so that

ζn(n− r, n) =
n−1∑

l=0

pn,l(n)ζ(n− r − l, n).

Indeed, the well-known difference equation Bi(x+ 1)− Bi(x) = ixi−1 if i ≥ 2 and
ζ(−k, x) = −Bk+1(x)/(k + 1) if k ≥ 0 (cf. [1]) implies

(3.3)

ζn(n− r, n) = −
n−1∑

l=0

pn,l(n)
Br+l−n+1(n)
r + l − n+ 1

= −
n−1∑

l=0

pn,l(n)

(
Br+l−n+1(1)
r + l − n+ 1

+
n−1∑

k=1

kr+l−n

)
,

because Bi(n) = Bi(1) + i
∑n−1

k=1 k
i−1 for i ≥ 2. Using Lemma 3.2, we see that

(3.4)
n−1∑

l=0

pn,l(n)
n−1∑

k=1

kr+l−n =
n−1∑

k=1

(
n−1∑

l=0

pn,l(n)kl

)
kr−n = 0.

Therefore, applying the known formula ζ(1− r, 1) = −Br(1)/r = −Br/r (r > n ≥
1) and (3.4) to the identity (3.3), we deduce that

(3.5)

ζn(n− r, n) = −
n−1∑

l=0

pn,l(n)
Br+l−n+1

r + l − n+ 1

= −
n−1∑

l=0

pn,n−l−1(n)
Br−l

r − l .

From (1.7), (3.2) and (3.5), Case (I) is now established.
Case (II): r = n. For k ≥ 0, we know that

(3.6) ζ(−k) = −Bk+1(1)
k + 1

=

{
B1, k = 0
−Bk+1

k+1 , k ≥ 1.

Setting r = n in (3.2), we obtain

(3.7) ζr(0, r) =
(−1)r

r!
B(r)

r (r) =
1
r!
B(r)

r .

Also, by (3.4) and (3.5), we have

(3.8)

ζr(0, r) = −
r−1∑

l=0

pr,r−l−1(r)
Br−l(1)
r − l

= pr,0(r)B1 −
r−2∑

l=0

pr,r−l−1(r)
Br−l

r − l ,

because Br = Br(1) if r ≥ 2. Now, combining (1.7), (3.7) and (3.8) gives Case (II).
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Case (III): 0 ≤ r ≤ n − 1. The multiple Hurwitz zeta-function ζn(s, x) having
the only singularities at s = k (k = 1, 2, . . . , n) which are all simple poles with the
residues

(3.9) Res
s=k

ζn(s, n) =
(−1)n−k

(k − 1)!(n− k)!
B

(n)
n−k(n)

(cf. [2, 5]). Moreover, using (1.10), we note that

(3.10)
Res
s=k

ζn(s, n) = Res
s=k

n−1∑

l=0

pn,l(n)ζ(s− l, n)

= pn,k−1(n)

for k = 1, 2, . . . , n, since ζ(s, n) has only simple pole at s = 1 with residue 1. From
(3.9) and (3.10), we have

(3.11) B(n)
r (n) = (−1)rr!(n− r − 1)!pn,n−r−1(n), 0 ≤ r ≤ n− 1.

From (1.7) and (3.11), we can deduce Case (III). �

Example 3.4. As a special case we state formulas for sums of products of two,
respectively three, Bernoulli numbers.

(1) Consider ζ2(s, 2) =
∑∞

k1,k2=1(k1 + k2)−s. In (3.2) we replace n by 2. One
immediately gives

ζ2(2− r, 2) = (−1)r 1
r(r − 1)

B(2)
r

= (−1)r 1
r(r − 1)

r∑

i=0

(
r

i

)
BiBr−i.

Also we use (3.3) with n = 2 so that

ζ2(2− r, 2) = ζ(1− r, 2)− ζ(2− r, 2)

= −Br(2)
r

+
Br−1(2)
r − 1

= −Br(1) + r

r
+
Br−1(1) + r − 1

r − 1

= −Br

r
+
Br−1

r − 1
for s = r − 2 and r > 2. Therefore, one gets the classical identity

(3.12)
r−2∑

i=2

(
r

i

)
BiBr−i = ((−1)r + 1)rBr−1 − ((−1)r(r − 1) + 2)Br (r ≥ 4),

which is also known in its equivalent form

(3.13)
m−1∑

k=1

(2m)!
(2k)!(2m− 2k)!

B2iB2m−2k = −(2m+ 1)B2m (m ≥ 2).

This was found by many authors, including Euler (cf. [3, 4]). Dilchler remarked in
[3] that it may be of interest to find formulas of the above type for sums of products
of generalized Bernoulli numbers.
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(2) Consider the multiple zeta functions ζ3(s, 3) =
∑∞

k1,k2,k3=1(k1 + k2 + k3)−s.

From (3.2) we have

ζ3(3− r, 3) =
(−1)r+1

r(r − 1)(r − 2)

∑

i1,i2,i3≥0
i1+i2+i3=r

(
r

i1, i2, i3

)
Bi1Bi2Bi3

for r > n = 3. Also we use (3.3) with n = 3 so that

ζ3(3− r, 3) =
1
2

(ζ(1− r, 3)− 3ζ(2− r, 3) + 2ζ(3− r, 3))

= −1
2
Br(3)
r

+
3
2
Br−1(3)
r − 1

− Br−2(3)
r − 2

= −1
2
Br

r
+

3
2
Br−1

r − 1
− Br−2

r − 2
,

since Br(3) = Br + r(1 + 2r−1). Therefore for r > 3 we have the sum of product of
3 Bernoulli numbers:

∑

i1,i2,i3≥0
i1+i2+i3=r

(
r

i1, i2, i3

)
Bi1Bi2Bi3

= (−1)rr(r − 1)(r − 2)
(

1
2
Br

r
− 3

2
Br−1

r − 1
+
Br−2

r − 2

)
.
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