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Abstract

Let Y be an Enriques variety of complex dimension 2n − 2 with
n ≥ 2 whose fundamental group is cyclic of order n. Assume that
n = 2m for prime m. In this paper we show that Y is the quotient
of a product of a Calabi-Yau manifold of dimension 2m and an irre-
ducible holomorphic symplectic manifold of dimension 2m − 2 by an
automorphism of order n acting freely. We also show that both Y and
its universal cover are always projective.
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1 Introduction and Main results

A compact complex smooth Kähler manifold X is called irreducible sym-
plectic if X is simply connected and H0(X,Ω2

X) is generated by a nowhere
vanishing holomorphic 2-form. It can be considered as a higher dimensional
analogue of K3 surfaces (see [6] for more details). Every automorphism of fi-
nite order on K3 surfaces without fixed points is a non-symplectic involution
and their quotients are known to be the Enriques surfaces (see [1]).

Recently, in their paper [4] Boissière, Nieper-Wisskirchen, and Sarti in-
troduced the notion of an Enriques variety which is a higher dimensional
analogue of the Enriques surface. To be precise, a compact complex smooth
Kähler manifold Y of dimension 2n − 2 with n ≥ 2 is called an Enriques
variety if its canonical divisor KY has order n in the Picard group Pic(Y )
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and the holomorphic Euler characteristic χ(Y,OY ) is equal to 1. Even more
generally, Y is called an intermediate Enriques variety if for some divisor d
of n, KY has order d in Pic(Y ) and χ(Y,OY ) = n/d. As in the paper [9],
the order of the fundamental group π1(Y ) of Y will be called the index of
Y .

The study of automorphisms of K3 surfaces was essentially initiated by
the work [7] of Nikulin, and since then a lot of progress has been made. One
of the primary motivations to consider the Enriques variety as in our paper
is, in fact, to study the automorphisms of irreducible holomorphic symplectic
manifolds (see [2], [3], and [8] for some earlier works). We hope we will have
another chance to deal with more on the study of automorphisms of an
irreducible holomorphic symplectic manifold elsewhere in the near future.

The aim of this paper is to give some more refined results on Enriques
varieties with even index which have been motivated by Theorem 3.1 in the
paper [4] of Boissière, Nieper-Wisskirchen, and Sarti. To be more precise, in
the second version of the paper [4] Boissière, Nieper-Wisskirchen, and Sarti
proved the following theorem (Theorem 3.1 of [4] or Proposition 2.1 of [5]).

Theorem 1.1. Let Y be an Enriques variety of complex dimension 2n− 2
with n ≥ 2.

(a) If n is prime, then Y is the quotient of an irreducible holomorphic
symplectic manifold by a fixed point free automorphism of order n. In
particular, Y is projective and π1(Y ) is cyclic of order n.

(b) If n is odd and π1(Y ) is cyclic of order n, then Y is the quotient of
an irreducible holomorphic symplectic manifold by a fixed point free
automorphism of order n. In particular, Y is projective.

In the same paper [4, 5] , Boissière-Nieper-Wisskirchen-Sarti also gave a
counterexample to Theorem 1.1 (b) in case when n is even. Their counter-
example is a 10-dimensional Enriques variety which is the quotient of a
product of a 6-dimensional Calabi-Yau manifold and a 4-dimensional irre-
ducible holomorphic symplectic manifold by an automorphism of order 6
which splits and acts freely (see Section 5.3 of [4] or Section 4.3 of [5] for
more details). Roughly speaking, results of our paper show that essentially
there can be no other types of counterexample in higher dimensions. More
precisely, our main result is

Theorem 1.2. Let Y be an Enriques variety of complex dimension 2n− 2
with n ≥ 2 whose fundamental group π1(Y ) is cyclic of order n. Assume
that n = 2m for prime m. Then the following assertions hold:
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(a) If m is equal to 2, then Y is either the quotient of an irreducible sym-
plectic holomorphic manifold of complex dimension 6 by an automor-
phism f of order 4 acting freely or the quotient of a product of a
Calabi-Yau manifold of complex dimension 4 and a Calabi-Yau mani-
fold of complex dimension 2 (or a K3 surface) by an automorphism f
of order 4 acting freely.

(b) If m is odd prime, then Y is the quotient of a product of a Calabi-Yau
manifold of complex dimension 2m and an irreducible holomorphic
symplectic manifold of complex dimension 2m−2 by an automorphism
f of order n acting freely.

Remark 1.3. (a) In their paper [9], Oguiso and Schröer defined an En-
riques manifold to be a compact complex manifold that is not simply
connected and whose universal cover is an irreducible holomorphic
symplectic manifold. So an Enriques variety of complex dimension
2n− 2 whose fundamental group π1(Y ) is cyclic of order n = 2m with
odd prime m is not an Enriques manifold in the sense of Oguiso and
Schröer.

(b) Every Enriques variety of dimension 2 is an Enriques surface in the
classical sense (this is Theorem 1.2 with m = 1).

(c) We do not know if the automorphism f in Theorem 1.2 always splits so
that Y decomposes into a product which already contains an Enriques
variety.

In this paper, we also show the following theorem.

Theorem 1.4. Let Y be an Enriques variety of complex dimension 2n− 2
with n ≥ 2 whose fundamental group π1(Y ) is cyclic of order n. Assume
that n = 2m for prime m. Then both Y and its universal cover are always
projective.

We organize this paper as follows. In Section 2, we shall give a proof of
Theorem 1.2. Section 3 is devoted to proving Theorem 1.4.

2 Proof of Theorem 1.2

The goal of this section is to provide a proof of Theorem 1.2.

Proof of Theorem 1.2. Assume first that m is odd prime. Since KY has
order n in Pic(Y ), there exists a finite unramified covering π : X → Y of
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order n so that KX = π∗KY is trivial. By assumption, the fundamental
group π1(Y ) is cyclic of order n. So X is actually the universal covering
of Y . Since KX = π∗KY is trivial, the first Chern class c1(X) is also zero.
Hence, it follows from the Bogomolov decomposition theorem of compact
Kähler manifolds with c1 = 0 that X is isomorphic to a product

(2.1) T ×
∏
i

Vi ×
∏
j

Wj ,

where T is a complex torus, Vi is a Calabi-Yau manifold, and Wj is an
irreducible holomorphic symplectic manifold.

Now note that

n = χ(X,OX) = χ(T,OT )
∏
i

χ(Vi,OVi)×
∏
j

χ(Wj ,OWj ),

where we used χ(X,OX) = n × χ(Y,OY ) = n in the first equality. But, if
dimC Vi is odd, then χ(Vi,OVi) = 0. Hence dimC Vi is even. Moreover, if
dimC T is greater than 1, then χ(T,OY ) = 0. On the other hand, if dimC T
is equal to 1, then the complex dimension of X not only becomes odd but
also is not simply connected. Therefore, there are no complex torus and
no Calabi-Yau manifolds with odd complex dimension in the decomposition
(2.1). Recall also the following well-known fact that

χ(Wj ,OWj ) =
dimCWj

2
+ 1 ≥ 2.

With theses understood, we now obtain

(2.2) n = 2m = χ(X,OX) = 2t
(w1

2
+ 1
)
· · ·
(ws

2
+ 1
)
,

where t denotes the number of Calabi-Yau manifolds of even complex di-
mension in the decomposition (2.1) and wj denotes the complex dimension
of Wj . Since m is assumed to be an odd prime, it follows from (2.2) that
0 ≤ t ≤ 1. If t is equal to 1, then we have

m =
(w1

2
+ 1
)
· · ·
(ws

2
+ 1
)

2n− 2 = 4m− 2 = v1 + w1 + · · ·+ ws,
(2.3)

where vi denotes the complex dimension of Vi. Since m is an odd prime, s
is equal to 1 by the first equation of (2.3), and v1 = 2m and w1 = 2m− 2.
On the other hand, if t is equal to 0, then there exists an i, say 1, such that
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wi
2 + 1 = 2, and s = 2. Moreover, it is easy to obtain that 4m − 4 = w2 =

2m − 2, which implies m = 1. This is a contradiction. This completes the
proof of Theorem 1.2 (b).

Next, we deal with the case when m = 2. To do so, we first consider the
case when t is equal to 2. Then it follows from (2.2) that we have s = 0.
By taking into account the dimension of X, we also have v1 + v2 = 6. Since
t is the number of Calabi-Yau manifolds of even complex dimension, there
are only two possibilities for v1 and v2: either v1 = 2 and v2 = 4 or v1 = 4
and v2 = 2. In either case, Y is the quotient of a product of a Calabi-
Yau manifold of complex dimension 2 (or a K3 surface) and a Calabi-Yau
manifold of complex dimension 4 by an automorphism f of order 4 acting
freely.

On the other hand, if t is equal to 1, we have w1 = 2 by (2.2), and
v1 = 4 by the second equation of (2.3). So Y is the quotient of a product of
a Calabi-Yau manifold of complex dimension 4 and a Calabi-Yau manifold
of complex dimension 2 (or a K3 surface) by an automorphism f of order
4 acting freely. Recall that a Calabi-Yau manifold of complex dimension 2
is the same as an irreducible holomorphic symplectic manifold of the same
dimension, and, in fact, they are all K3 surfaces.

Finally, if t is equal to 0, then it follows from (2.2) that we have two
possibilities for s: either s = 1 or s = 2. If s is equal to 1, then we have w1 =
6 by (2.2). In this case, Y is simply the quotient of an irreducible symplectic
holomorphic manifold of complex dimension 6 by an automorphism f of
order 4 acting freely. If s is equal to 2, then we have w1 = w2 = 2 by (2.2)
and thus w1 +w2 = 4. But this is not equal to the complex dimension of X
that is equal to 6. So this case does not occur. This completes the proof of
Theorem 1.2 (a).

This completes the proof of Theorem 1.2.

3 Proof of Theorem 1.4

In this section, we give a a proof of Theorem 1.4.

Proof of Theorem 1.4. Let hp,q(Y ) = dimCH
q(Y,Ωp

Y ) and let G be the
cyclic group generated by the automorphism f in Theorem 1.2. Then it
is clear that H0(Y,Ωp

Y ) = H0(X,Ωp
X)G. The proof is divided into three

steps:

Step 1: In this step, we first deal with the case that Y is the quotient
of a product of a Calabi-Yau manifold V of complex dimension 2m and
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an irreducible holomorphic symplectic manifold W of complex dimension
2m− 2 by an automorphism f of order n acting freely. We then show that
H0(Y,Ω2

Y ) = 0. This will be a key ingredient in Step 3 to prove that Y and
its universal cover X are projective.

To prove that H0(Y,Ω2
Y ) = 0, note first from the Künneth formula that

we have
H0(X,Ωp

X) =
⊕

r+s=p

H0(V,Ωr
V )⊗H0(W,Ωs

W ).

Recall then that for a Calabi-Yau manifold V , hr,0(V ) = 0 for 0 < r <
dimC V , while for an irreducible holomorphic manifold W , hs,0(W ) = 0 for
odd s with 0 < s < dimCW . Thus, it is easy to obtain that for dimC V ≤
p ≤ dimC V + dimCW = dimCX,

H0(X,Ωp
X) = H0(V,ΩdimC V

V )⊗H0(W,Ωp−dimC V
W )

=

{
C, for even p with dimC V ≤ p ≤ dimC V + dimCW,

0, otherwise.

(3.1)

On the other hand, for 0 ≤ p ≤ dimCW we have

H0(X,Ωp
X) = H0(W,Ωp

W )

=

{
C, for even p with 0 ≤ p ≤ dimCW,

0, otherwise.

(3.2)

The fact that dimC V = dimCW + 2 will also play an important role later.
Next we claim that h2,0(Y ) = h0,2(Y ) = 0. Indeed, it follows from the

equation (3.2) and dimCW ≥ 2 that H0(X,Ω2
X) = H0(W,Ω2

W ). So let σ be
a generator of H0(W,Ω2

W ). Then the following lemma holds.

Lemma 3.1. f is actually non-symplectic.

Proof. To prove it, suppose that, on the contrary, f is not non-symplectic.
Then there would exist some integer i (1 ≤ i ≤ n − 1) such that f i is
symplectic, i.e., (f i)∗σ = σ. Without loss of generality, we assume that i is
equal to 1. Since H0(W,Ωp

W ) is zero for odd p and generated by σp/2 for
even p, it is easy to obtain

(3.3)

dimC W∑
p=0

(−1)ptr
(
f∗|H0(W,Ωp

W )

)
=

dimCW

2
+ 1.
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Now, let ΘV denote a generator of H0(V,ΩdimC V
V ). Then we see from

(3.1) that there exists some x ∈ C such that

f∗(ΘV ) = xΘV .

Since we have
f∗(ΘV ⊗ σk) = xΘV ⊗ σk

for all 0 ≤ k ≤ dimC W
2 , we obtain

dimC V +dimC W∑
p=dimC V

(−1)ptr
(
f∗|

H0(V,Ω
dimC V

V )⊗H0(W,Ω
p−dimC V

W )

)
= x

(
dimCW

2
+ 1

)
.

(3.4)

Now, if we combine two equations (3.3) and (3.4), it is immediate to obtain
the holomorphic Lefschetz number L(f) of f that is equal to

L(f) =

dimC X∑
p=0

(−1)ptr
(
f∗|H0(X,Ωp

X)

)
= (1 + x)

(
dimCW

2
+ 1

)
.

At this point, it is important to notice that the only case of symplectic
f which would give a vanishing holomorphic Lefschetz number is when x is
equal to −1. More precisely, if x is not equal to −1, then the holomorphic
Lefschetz number L(f) of f is not zero. So f would have a fixed point. But,
this contradicts the fact that f acts freely.

Therefore, we assume that x is equal to −1. Then, by using the same
argument as above it is easy to see that the holomorphic Lefschetz number
L(f2) of f2 would be equal to

2

(
dimCW

2
+ 1

)
= dimCW + 2,

which is clearly non-zero. So f2 would have a fixed point. However, again
this contradicts the fact that f acts freely. This completes the proof of
Lemma 3.1.

Consequently, by Lemma 3.1 we have f∗σ = ξσ for some n-th root
of unity ξ. But then clearly σ is not invariant under f . Hence we have
H0(Y,Ω2

Y ) = 0. This completes the proof of Step 1.
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Step 2: In this step, we next consider the case that Y is the quotient of
an irreducible symplectic holomorphic manifold X of complex dimension 6
by an automorphism f of order 4 acting freely. In the same way as in Step
1, we can show that H0(Y,Ω2

Y ) = 0, which enables us to show that Y and
its universal cover X are projective in Step 3.

Indeed, note first that we have

H0(X,Ωp
X) =

{
C, for even p with 0 ≤ p ≤ dimCX = 6,

0, otherwise.

Let σ be a generator of H0(X,Ω2
X). Then it can be shown exactly as in Step

1 that there exists a primitive 4-root of the unity ξ such that f∗(σ) = ξσ,
i.e., f is non-symplectic. This implies that σ is not invariant under f (refer
to Section 3.1 of [4] or Secion 2.2 of [5]). Therefore we have H0(Y,Ω2

Y ) = 0.
This completes the proof of Step 2.

Step 3: Finally we prove that both Y and its universal cover X are
projective. To do so, since h2,0(Y ) = h0,2(Y ) = 0 by Step 1 and Step 2,
note first that the inclusion of H1,1(Y )R into H2(Y,R) is bijective. The fact
that the Kähler cone inside H1,1(Y )R is non-empty and open then implies
that there exists an integral class on Y . Hence it follows from the Kodaira
embedding theorem that the Kähler manifold Y is projective. By pulling
back the integral class on Y , we can also obtain an integral Kähler class on
X, proving that X is also projective.

This completes the proof of Theorem 1.4.
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