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Abstract. In this paper we give asymptotic formulas for the number of `-cyclic
extensions of the rational function field k = Fq(T ) with prescribed `-class numbers
inside some cyclotomic function fields, and density results for `-cyclic extensions of
k with certain properties on the ideal class groups.

0. Introduction

Let Q be the field of rational numbers and ` a prime number. In 1980’s F. Gerth

studied extensively the asymptotic behavior of `-cyclic extensions of Q with certain

conditions on the ideal class groups and ramified primes. Let us recall Gerth’s results

more precisely. Write Ns,x for the number of `-cyclic extensions of Q with conductor

≤ x and `-class number `s. In [G2], it is shown that to obtain an asymptotic formula

for Ns,x, it suffices to count the number Ms+1,x of `-cyclic extensions of Q whose

conductor is ≤ x and divisible by exactly s + 1 distinct primes, and whose `-class

number is `s. In [G3], a matrix M over F` is associated to each `-cyclic extension F

of Q with s+1 ramified primes such that the `-class number of F is `n precisely when

rank(M) = s, and an asymptotic formula for Ns,x is given by studying the asymptotic

behavior of the number of such matrices. In [G5], for ` = 2, an effective algorithm

for computing the density dt,e (resp. d′t,e) of the quadratic fields with 4-class rank

e (in the narrow sense) in the set of imaginary (resp. real) quadratic fields with t

ramified primes, and explicit formulas for their limiting densities d∞,e = limt→∞ dt,e

and d′∞,e = limt→∞ d′t,e are given. An explicit formula for the limiting density d∞,e,

which depends only on ` and e, is given in [G7] for arbitrary prime number `. Similar

results for `n-cyclic extensions of Q with prescribed (narrow) genus groups are given

in [G6].

Let k = Fq(T ) be the rational function field over the finite field Fq. Let ` be a

prime number different from the characteristic of k and r be the smallest positive

integer such that `|qr − 1. In this article we study analogous problems for `-cyclic

extensions of k inside some cyclotomic function fields. The content of this paper is as

follows. In §1 we recall several asymptotic formulas in A = Fq[T ], which can be found

in [Kn] and [R]. In §2 we recall the genus theory for function fields [BK] and extend
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some results of Wittmann [W] to the narrow case. In §3.1 we give an asymptotic

formula for the number Ns,rn of `-cyclic extensions F inside some cyclotomic function

fields with `-class number `s and with conductor N of degree rn in the case r > 1.

Similar results of §3.1 in the case r = 1 are given in §3.2. In §4 we give the density

for `-ranks in `-cyclic function fields. In §5 we give a generalization of §4 to `m-cyclic

extensions of k inside some cyclotomic function fields.

1. Some asymptotic formulas in A = Fq[T ]

In this section we recall several asymptotic formulas in A = Fq[T ], which will be

used later in this paper. For the details and proofs we refer to [Kn] and [R].

• P (n):= the set of monic irreducible polynomials in A of degree n, and p(n) =

|P (n)|. Then

p(n) =
qn

n
+ O

(qn/2

n

)
([Kn, Chap. 8], [R, Theorem 2.2]). (1.1)

• P (n, k):= the set of all square-free monic polynomials of degree n with k-

irreducible factors, and p(n, k) = |P (n, k)|. Then

p(n, k) =
qn(log n)k−1

(k − 1)!n
+ O

(qn(log n)k−2

n

)
([Kn, Theorem 9.9]). (1.2)

• Pr(rn, k):= the set of all square-free monic polynomials of degree rn with k-

irreducible factors whose degrees are divisible by r, and pr(rn, k) = |Pr(rn, k)|.
Following the method of [Kn, §9],

pr(rn, k) =
qrn(log n)k−1

(k − 1)!rkn
+ O

(qrn(log n)k−2

n

)
. (1.3)

Intuitively, (1.3) follows from (1.2) and that the probability that a prime whose degree

is divisible by r is 1
r
. For A, M ∈ A, relatively prime,

• P (n, A, M):= the set of monic irreducible polynomials of degree n, which are

congruent to A modulo M , and p(n, A, M) = |P (n, A, M)|. Then

p(n, A, M) =
qn

φ(M)n
+ O

(qn/2

n

)
([R, Theorem 4.8]). (1.4)

Also, for a nontrivial Dirichlet character χ, we have∑
P, deg P=n

χ(P ) = O
(qn/2

n

)
([R, §4 (4), (5)]). (1.5)

From (1.1), we have ∑
P,deg P≤n

deg P

qdeg P
= n + O(1), (1.6)

∑
P, r|deg P≤nr

deg P

qdeg P
= n + O(1), (1.7)
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∑
P,deg P≤n

1

qdeg P
= log n + O(1), (1.8)

∑
P, r|deg P≤nr

1

qdeg P
=

log n

r
+ O(1). (1.9)

From (1.2), (1.3) and the partial summation formula, we have
n∑

d=1

∑
P∈P (d,k)

1

qd
∼ (log n)k

k!
, (1.10)

n∑
d=1

∑
P∈Pr(rd,k)

1

qrd
∼ (log n)k

k!rk
. (1.11)

2. Genus theory for function fields

Write ∞ for the place of k associated to 1/T . Let k∞ be the completion of k at ∞,

i.e., k∞ = k((1/T )). Let C = k∞( q−1
√
−1/T ). We only consider those function fields

which can be embedded into C. For a monic polynomial M of A, kM denotes the

cyclotomic function field of conductor M (see [R, §12]). Any abelian extension F of k

inside C is contained in kM for some M . The smallest such M is called the conductor

of F. From now on we always assume that every extension of k is contained in some

cyclotomic function field. Let ` be a prime number different from the characteristic

of k and r be the smallest positive integer such that ` | qr − 1.

Let F be a `-cyclic extension of k, and write N = NF for the conductor of F. Then

N must be square-free and for each prime divisor P of N , deg P is divisible by r.

Write N = P1 · · ·Pt. It is easy to see that the number of such extensions F with

conductor P1 · · ·Pt is (`− 1)t−1. Write HF for the Hilbert class field of F and GF for

the genus field of F/k. Let Cl(F) be the ideal class group of the integral closure OF

of A in F, and Cl(F)` be its `-part. Let σ be a fixed generator of G = Gal(F/k) and

λi(F) := dimF`

(
Cl(F)

(σ−1)i−1

` /Cl(F)
(σ−1)i

`

)
for i ≥ 1.

It is known that ([BK, §2])

Cl(F)`/Cl(F)σ−1
` ' Cl(F)/Cl(F)σ−1 ' Gal(GF/F).

It is well-known that Cl(F)G
` and Cl(F)`/Cl(F)σ−1

` are elementary abelian group of

rank λ1. Since F is contained in some cyclotomic function field, the inertia degree

f∞ at ∞ should be 1, and the ramification degree e∞ is 1 if r > 1.

Now we consider the narrow case. We define the narrow Hilbert class field H+
F of

F to be the maximal abelian extension of F in C, unramified outside the places over

∞. For each place v of F over ∞ we write Fv to denote the completion of F at v

and Nv be the norm map from Fv to k∞. We define a sign map sgnv : Fv → Fq by

sgnv(x) = sgn(Nv(x)), where sgn is the usaul sign map on k∞. An element x ∈ F is

called totally positive if sgnv(x) = 1 for any v lying over ∞. The narrow ideal class
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group Cl+(F) of F is defined to be the quotient group of fractional ideals modulo

principal fractional ideals generated by totally positive elements of F. The narrow

genus field G+
F of F/k is defined to be the maximal extension of F in H+

F which is the

compositum of F and some abelian extension of k. See [BK] for details on the genus

theory of function fields. Let

λ+
i (F) := dimF`

(
Cl+(F)

(σ−1)i−1

` /Cl+(F)
(σ−1)i

`

)
for i ≥ 1.

Note that if r > 1, then Cl+(F)` = Cl(F)` and so λ+
i (F) = λi(F). We will use the

following lemmas in [W]. The narrow case can be proved by the similar method as

in [W].

Lemma 2.1. ([W, Theorem 2.1]) Let F be as above.

(i) If r > 1, or r = 1 and ` | deg Pi for any i, then λ1(F) = t− 1.

(ii) In all other cases, λ1(F) = t− 2 + log`(e∞f∞).

(iii) λ+
1 (F) = t− 1.

Let pi be the unique prime ideal of F lying above Pi.

Lemma 2.2. ([W, Corollary 2.3, 2.4]) Let F be as above.

(i) If r > 1, then Cl(F)G
` is generated by the classes [p1], . . . , [pt].

(ii) If r = 1, then

Cl(F)G
` = 〈[p1], . . . , [pt]〉,

except the case that ` | deg Pi for any i and NF/k(O∗
F) = (F∗q)`. In this case,

Cl(F)G
` = 〈[p1], . . . , [pt], [a]〉,

where aσ−1 = αOF and NF/k(α) ∈ F∗q \ (F∗q)`.

(iii) Cl+(F)G
` is generated by the classes [p1], . . . , [pt].

Suppose first that r = 1. In this case F = k(
√̀

D), where D = aP e1
1 · · ·P et

t with

1 ≤ ei < ` and a ∈ F∗q. We will determine a. From [A, Lemma 3.2], it is known

that if ` | deg Pi, then k(
√̀

Pi) ⊆ kPi
, and that if ` - deg Pi, then k(

√̀
−P di

i ) ⊆ kPi
,

where di is a positive integer such that di deg Pi ≡ 1 mod `. Thus we see that a can

be taken to be (−1)m, where m =
∑

`-deg Pi
νi and diνi ≡ ei mod `. When ` 6= 2, or

q ≡ 1 mod 4 and ` = 2, −1 is an `-th power in F∗q. Thus one may take a to be 1

in these cases. If q ≡ 3 mod 4 and ` = 2, then we take a = (−1)s, where s is the

number of odd degree Pi’s.

Proposition 2.3. ([W, Theorem 2.5]) Let F = k(
√̀

D) be as above.

(i) G+
F = k(

√̀
(−1)deg P1P1, . . . ,

√̀
(−1)deg PtPt).

(ii) If ` - deg D or ` | deg Pi for any i, then

GF = G+
F = k(

√̀
(−1)deg PiP1, . . . ,

√̀
(−1)deg PtPt).
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(iii) If ` | deg D but ` - deg Pi for 1 ≤ i ≤ s and ` | deg Pj for s + 1 ≤ j ≤ t, then

GF = k(
√̀

P1P
u2
2 , . . . ,

√̀
P1P us

s ,
√̀

Ps+1, . . . ,
√̀

Pt),

where deg P1 + ui deg Pi ≡ 0 mod `.

Let η be a fixed primitive `-th root of unity in Fq. Let (A
P
)` be the `-th power

residue symbol. For a field F as above, we define a t× t matrix MF = (mij) over F`

by, for i 6= j,

ηmij =
( P̄i

Pj

)
`
,

where P̄i = (−1)deg PiPi and mii is defined to satisfy

t∑
i=1

eimij = 0.

Then it can be shown (cf, [W, §3]) that

λ2(F) = t− 1− rank(MF), when ∞ ramifies in F

and

λ+
2 (F) = t− 1− rank(MF), when ∞ splits in F.

Note that, if `| deg Pi for every i, then λ+
2 (F) = λ2(F). In the case (iii) of Proposition

2.3, a (t− 1)× t matrix M ′
F is defined in [W, §3] and was shown that

λ2(F) = t− 2− rank(M ′
F).

Now suppose that r > 1. Let

w =
t∑

i=1

(deg Pi, r),

where (a, b) denotes the greatest common divisor of a and b. A t×w matrix M̃F over

F` is defined in [W, §4] and it is shown that

λ2(F) = t− 2− rank(M̃F).

In fact, this matrix M̃F is essentially the same as the matrix M = MF defined in [G3,

§2].

3. Asymptotic behavior of `-cyclic extensions

with prescribed `-class numbers

3.1. r > 1 case. In this subsection we assume that r > 1. Let

• Ns,n:= the number of `-cyclic extensions F of k with |Cl(F)`| = `s and with

conductor N of degree n,

• Ms,n:= the number of `-cyclic extensions F of k with |Cl(F)`| = `s−1 and with

conductor N of degree n such that N has exactly s distinct prime factors,
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• Gs,n:= the number of `-cyclic extensions F of k with conductor N = P1 · · ·Ps

of degree n such that Pm is an `-th power residue modulo P1, . . . , Pm−2 but

an `-th power nonresidue modulo Pm−1.

Since we know that r must divide the degrees of prime factors of N , we replace n by

rn and write deg Pi = rki.

Let χPi
be a Dirichlet charater of exponent ` of conductor Pi, that is, a character

of Gal(kPi
/k). For a prime Pm 6= P1, ..., Pm−1, let

Wm :=
1

`m−1

( `−1∑
j1=0

χj1
P1

(Pm)
)
· · ·
( `−1∑

jm−2=0

χ
jm−2

Pm−2
(Pm)

)( `−1∑
jm−1=0

ζjm−1χ
jm−1

Pm−1
(Pm)

)
,

(3.1)

where ζ is a primtive `-th root of unity. Then we have

Mt,rn ≥ Gt,rn ≥
∑

W2 · · ·Wt,

where the sum is over the distinct primes P1, ..., Pt with deg(P1 · · ·Pt) = rn and

r | deg Pi. Let yi := 2i
√

n. Then y1 + · · ·+ yt−1 < yt = y. Let

At,rn :=
∑

W2 · · ·Wt−1

∑
Pt, deg Pt=rn−deg P1−···−deg Pt−1

Wt,

where the first sum is over distinct Pi, 1 ≤ i ≤ t − 1 with deg Pi−1 ≤ deg Pi ≤ yi.

Write

Wt =
1

`t−1

(
1 +

∑
J

ζjt−1χj1
P1
· · ·χjt−1

Pt−1
(Pt)

)
,

where J = (j1, ..., jt−1) 6= (0, ..., 0). Then, by (1.1) and (1.5),∑
deg Pt=r(n−k1−···−kt−1)

Wt =
qr(n−k1−···−kt−1)

`t−1r(n− k1 − · · · − kt−1)
+ O

( qr(n−k1−···−kt−1)/2

n− k1 − · · · − kt−1

)
.

For ki ≤ yi, since n− y = n− 2t
√

n > n/2 for large n,

qr(n−k1−···−kt−1)

r(n− k1 − · · · − kt−1)
=

qr(n−k1−···−kt−1)

rn
+

qr(n−k1−···−kt−1)(k1 + · · ·+ kt−1)

rn(n− k1 − · · · − kt−1)

=
qr(n−k1−···−kt−1)

rn
+ O

((k1 + · · ·+ kt−1)q
r(n−k1−···−kt−1)

n2

)
and

qr(n−k1−···−kt−1)/2

(n− k1 − · · · − kt−1)
= O

(qr(n−k1−···−kt−1)

n2

)
.

Thus ∑
deg Pt=r(n−k1−···−kt−1)

Wt =
qr(n−k1−···−kt−1)

`t−1rn
+ O

((k1 + · · ·+ kt−1)q
r(n−k1−···−kt−1)

n2

)
.

From (1.7) and (1.9) we have, for y = yt = 2t
√

n,∑
P1,...,Pt−1

r|deg Pi≤ryi

qrn(deg P1 + · · ·+ deg Pt−1)

n2qdeg P1 · · · qdeg Pt−1
= O

(y(log y)t−2qrn

n2

)
= O

(qrn

n

)
.
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Therefore

At,rn =
1

`t−1

∑
P1,...,Pt−1: distinct

r|deg Pi≤ryi

W2 · · ·Wt−1
qnr

rnqdeg P1 · · · qdeg Pt−1
+ O

(qrn

n

)
.

Now

Wt−1 =
1

`t−2

(
1 +

∑
J

ζjt−1χj1
P1
· · ·χjt−2

Pt−2
(Pt−1)

)
.

Let χQ be a nontrivial character with exponent ` and conductor Q | P1 · · ·Pt−2. Let

SQ(u) :=
∑

deg Pt−1=ru

χQ(Pt−1).

Then, by (1.5)
[yt−1]∑

u=
deg Pt−2

r

SQ(u)

qru
=

[yt−1]∑
u=

deg Pt−2
r

O
( 1

uq
ru
2

)
= O(1).

Continuing the same process, we have

At,rn =
1

`t(t−1)/2

∑
P1,...,Pt−1

qrn

rnqdeg P1 · · · qdeg Pt−1
+ O

(qrn

n
(log y)t−2

)
.

Thus

At,rn = c
qrn(log n)t−1

rn
+ O

(qrn(log n)t−2

n

)
.

From (1.2), we have

Ms,rn = O
(qrn

n
(log n)s−1

)
.

We finally get

Ns,rn = Ms+1,rn + O
(Ms+1,rn

log n

)
.

We will compute Ms+1,rn. As in [G3, §2,§3], one can see easily that the `-cyclic

extension F has `-class number `s precisely when rank(MF) = s, and that the number

of distinct (s + 1)× (s + 1) matrices Γ over F` such that rank(Γ) = s and such that

Γ = MF for some field F is

`
s(s−1)

2 (`− 1)s

s∏
i=1

(`i + · · ·+ ` + 1). (3.2)

Now we consider the number N(Γ) of F with conductor N = P1 · · ·Ps+1 of degree

rn and the corresponding matrix MF = Γ. Let k = Fqrk and Hi be as in §2. Let

Li = kHi. Then Li/k is a Kummer extension Li = k(
√̀

µi) for some µi ∈ k. Then

kF = k(
√̀

µ) with µ = µe1
1 · · ·µes+1

s+1 . Let L′i = k(
√̀

Pi). Define λi(pj) and ωi(pj) as

follows;

(pj, Li/k)(
√̀

µi) = λi(pj)
−1√̀µi, (pj, L

′
i/k)(

√̀
Pi) = ωi(pj)

−1
√̀

Pi.
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Let δ(n(i), m(j), u(i, j), v(j, i)) be defined by 1 if (λ
n(i)
i (pj), ω

m(j)
i (pj)) = (ζu(i,j), ζv(j,i))

and by 0 otherwise. Then we have∑
deg Pj=rm

`−1∑
m(j)=1

j−1∏
i=1

δ(n(i), m(j), u(i, j), v(j, i)) ∼ `− 1

`2(j−1)

qrm

rm
. (3.3)

Note the difference of (3.3) from (3) of [G3]. In the classical case the condition

p ≡ 1 mod ` is imposed instead of deg Pi is divisible by r, and the probability for

a prime to satisfy p ≡ 1 mod ` is 1/(` − 1) by Dirichlet’s theorem on arithmetic

progression.

Following the idea of [G3] and adopting the similar method as above, we get

Theorem 3.1. We have

N(Γ) ∼ (`− 1)s

s!rs+1`s2+s

qrn(log n)s

n
,

and so

Ns,rn ∼
(`− 1)2s

∏s
i=1(`

i + · · ·+ ` + 1)

s!rs+1`(s2+3s)/2

qrn(log n)s

n
.

In the proof we need to replace pi ≡ 1 mod ` by r| deg Pi, which causes to replace

the factor 1
`−1

by 1
r
, and pi < pi+1 ≤ ( x

p1···pi
)

1
s+1−i by deg Pi ≤ deg Pi+1 ≤ 1

s+1−i
(rn −

deg P1 − · · · − deg Pi). We use (1.5) to show∑
P1

· · ·
∑
Ps

η(Ps+1) = O
(qrn(log n)s

n

)
,

and then use (1.11) to get the formula for N(Γ).

3.2. r = 1 case. Now we assume that r = 1, that is ` | q − 1. We consider `-cyclic

extensions F of k with conductor N of degree n and with |Cl(F)`| = `s. We have two

cases. One is real, that is, ∞ splits completely. The other is imaginary, that is, ∞
ramifies. The case that ∞ is inert cannot happen, since we have assumed that the

field is contained in some cyclotomic function field. Let

• NI,s,n:= the number of imaginary `-cyclic extensions F of k with conductor

N of degree n and |Cl(F)`| = `s,

• NR,s,n:= the number of real `-cyclic extensions F of k of degree ` with con-

ductor N of degree n and |Cl(F)`| = `s,

• MI,t,n := the number of imaginary `-cyclic extensions F of k with conductor N

of degree n such that N has exactly t distinct prime factors and |Cl(F)`| = `t−1,

• MR,t,n := the number of real `-cyclic extensions F of k with conductor N of

degree n such that N has exactly t distinct prime factors and |Cl(F)`| = `t−2.

In this case F = k(
√̀

D) with D = αP e1
1 · · ·P et

t , 1 ≤ ei ≤ l − 1. We may assume

that e1 = 1. Here α ∈ F∗q is chosen so that F ⊆ kN , where N = P1 · · ·Pt. If ` divides

deg D, then it is real. If ` does not divide deg D, then it is imaginary. If ` = 2, then

(e1, . . . , et) = (1, . . . , 1). In this case whether F is real or imaginary depends only on
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the parity of deg N . Otherwise, there always exist real fields and imaginary fields

with conductor N . One can follow almost the same process as in the case r > 1 to

get

NI,s,n = MI,s+1,n + O
(MI,s+1,n

log n

)
,

and

NR,s,n = MR,s+2,n + O
(MR,s+2,n

log n

)
.

4. Density for `-ranks of `-cyclic function fields

4.1. r > 1 case. In this subsection we assume r > 1, that is ` - q − 1. Let At be the

set of all `-cyclic extensions F of k such that t finite primes ramify in F/k, and

At;n := {F ∈ At : deg(cond(F)) = n},

At,e := {F ∈ At : λ2(F) = e},

At,e;n := At,e ∩At;n,

where cond(F) denotes the conductor of F. We define the density dt,e by

dt,e := lim
n→∞

|At,e;rn|
|At;rn|

.

For any monic irreducible polynomials P1, . . . , Pt with r| deg Pi, there are (` − 1)t−1

distinct fields F in At with conductor N = P1 · · ·Pt. So by (1.3), we have

|At;rn| = (`− 1)t−1
∑

deg(P1···Pt)=rn
r| deg Pi

1 ∼ (`− 1)t−1

(t− 1)!rt

qrn(log n)t−1

n
. (4.1)

Let MF be the t× t matrix over F` associated to F as in §2. Following the arguments

in [G3, §2, §3], we see that λ2(F) = t−1− rank(MF). Then |At,e;rn| can be estimated

as

|At,e;rn| ∼
∑

Γ
rank(Γ)=t−1−e

∑
deg(P1···Pt)=rn

r| deg Pi

∑
F

cond(F)=P1···Pt

δΓ, (4.2)

where δΓ = 1 if MF = Γ and δΓ = 0 otherwise. Adapting the similar method as in

§3.1, we get

N(Γ) =
∑

deg(P1···Pt)=rn
r| deg Pi

∑
F

cond(F)=P1···Pt

δΓ ∼
(`− 1)t−1

(t− 1)!rt`t(t−1)

qrn(log n)t−1

n
.

It is known ([G4, Proposition 2.1]) that the number N(t, t− 1− e) of t× t matrices

Γ over F` with rank t− 1− e is

N(t, t− 1− e) =

[
t−1−e∏
j=1

(`t − `j−1)

] ∑
k1+···+kt−1−e≤e+1

each ki≥0

( t−1−e∏
s=1

`sks

)
.
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So we have

|At,e;rn| ∼
(`− 1)t−1

(t− 1)!rt`t(t−1)

qrn(log n)t−1

n

[
t−1−e∏
j=1

(`t − `j−1)

] ∑
k1+···+kt−1−e≤e+1

each ki≥0

( t−1−e∏
s=1

`sks

)
,

and

dt,e =
1

`te

[
t−1−e∏
j=1

(
1− 1

`t+1−j

)] ∑
k1+···+kt−1−e≤e+1

each ki≥0

( t−1−e∏
s=1

`sks

)
.

Let d∞,e := limt→∞ dt,e. Then we follow almost the same argument as in [G7, §3] to

get

d∞,e =
`−e(e+1)

∏∞
k=1(1− `−k)∏e

k=1(1− `−k)
∏e+1

k=1(1− `−k)
for e = 0, 1, 2, . . . .

4.2. r = 1 case. Now we assume r = 1. Let At be the set of all `-cyclic extensions

F such that t finite primes and ∞ ramify in F/k, and

At;n := {F ∈ At : deg(cond(F)) = n},

At,e := {F ∈ At : λ2(F) = e},

At,e;n := At,e ∩At;n.

Let Bt be the set of all F as above such that t finite primes ramify and ∞ splits in

F/k, and

Bt;n := {F ∈ Bt : deg(cond(F)) = n},

Bt,e := {F ∈ Bt : λ+
2 (F) = e},

Bt,e;n := Bt,e ∩Bt;n.

Note that λ2(F) = t − 1 − rank(MF) (resp. λ+
2 (F) = t − 1 − rank(MF)) for F ∈ At

(resp. F ∈ Bt).

Consider first the case that q 6≡ 3 mod 4 or ` 6= 2, that is, a = 1 (See §2). It is

shown in [W] that MF = (mij) is given by; mij =
(

Pi

Pj

)
`
, for i 6= j, where (−)` is the `-

th power residue, and mjj is defined by the relation
∑

i eimij = 0. Then from the `-th

power reciprocity, MF is symmetric. There is an algorithm to determine the number

of s× s symmetric matrices with rank r over F` from the following proposition.

Proposition 4.1. Let M be a symmetric u× u matrix of rank r over F`. Let

M1 =

[
M V

V T v

]
,

with V ∈ Fu
` , v ∈ F`. Then among all possible M1,

(i) `r of them have rank r.

(ii) `r(`− 1) of them have rank r + 1.

(iii) `u+1 − `r+1 of them have rank r + 2.
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Let e = (1, e2, . . . , et) with 1 ≤ ei < ` and E the set of all such e’s. Let

It,e,n := {F = k(
√̀

D) : D = P1P
e2
2 · · ·P et

t , deg P1 + · · ·+ deg Pt = n, ` - deg D},

Rt,e,n := {F = k(
√̀

D) : D = P1P
e2
2 · · ·P et

t , deg P1 + · · ·+ deg Pt = n, ` | deg D},

It,e,u,n := {F ∈ It,e,n : rank(MF) = u},

Rt,e,u,n := {F ∈ Rt,e,n : rank(MF) = u}.

Here ‘I’ (resp. ‘R’) means imaginary (resp. real). Then

|At;n| ∼
∑
e∈E

|It,e,n|, |Bt;n| ∼
∑
e∈E

|Rt,e,n|,

and

|At,e;n| ∼
∑
e∈E

|It,e,t−1−e,n|, |Bt,e;n| ∼
∑
e∈E

|Rt,e,t−1−e,n|.

When e 6= (1, 1, . . . , 1), then the linear equations

x1 + e2x2 + · · ·+ etxt ≡ a mod `

and

x1 + x2 + · · ·+ xt = n

are not dependent. Thus, for e 6= (1, . . . , 1),

|It,e,n| ∼
`− 1

`
p(n, t) and |Rt,e,n| ∼

1

`
p(n, t).

If e = (1, . . . , 1), then

|It,e,n| =

p(n, t) if ` - n,

0 otherwise,

and

|Rt,e,n| =

p(n, t) if ` | n,

0 otherwise.

Therefore

|At;n| ∼


(

(`−1)
`

((`− 1)t−1 − 1) + 1
)

qn(log n)t−1

(t−1)!n
if ` - n,

(`−1)
`

((`− 1)t−1 − 1) qn(log n)t−1

(t−1)!n
if ` | n,

and

|Bt;n| ∼


(

1
`
((`− 1)t−1 − 1) + 1

)
qn(log n)t−1

(t−1)!n
if ` | n,

1
`
((`− 1)t−1 − 1) qn(log n)t−1

(t−1)!n
if ` - n.

For N, N ′ ∈ P (n, t), we say that N and N ′ are equivalent if (
Pj

Pi
) = (

P ′
j

P ′
i
), where

N = P1 · · ·Pt and N ′ = P ′
1 · · ·P ′

t . Let N (N) be the set of polynomials in P (n, t),

which are equivalent to N . Then it can be shown that (similar to §3.1)

|N (N)| ∼ `−
t2−t

2
qn(log n)t−1

(t− 1)!n
.
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For e = (1, e2, . . . , et) and N = P1 · · ·Pt we write

Ne := P1P
e2
2 · · ·P et

t .

Let

N e
I (N) := {N1 ∈ N (N) : ` - deg Ne

1 }
and

N e
R(N) := {N1 ∈ N (N) : ` | deg Ne

1 }.
Then

|N e
I (N)| ∼ `− 1

`
|N (N)|

and

|N e
R(N)| ∼ 1

`
|N (N)|,

if e 6= (1, . . . , 1). If e = (1, . . . , 1), then

|N e
I (N)| =

|N (N)| if ` - deg N ,

0 otherwise,

and

|N e
R(N)| =

|N (N)| if ` | deg N ,

0 otherwise.

Let N(t − 1, u) be the number of (t − 1) × (t − 1) symmetric matrices with rank u.

Then

|It,e,u,n| ∼ N(t− 1, u)|N e
I (N)|,

and

|Rt,e,u,n| ∼ N(t− 1, u)|N e
R(N)|.

Therefore we have

|At,ν;n| ∼


(

(`−1)
`

((`− 1)t−1 − 1) + 1
)

N(t− 1, t− 1− ν)|N (N)| if ` - n,

(`−1)
`

((`− 1)t−1 − 1)N(t− 1, t− 1− ν)|N (N)| if ` | n,

and

|Bt,ν;n| ∼


(

1
`
((`− 1)t−1 − 1) + 1

)
N(t− 1, t− 1− ν)|N (N)| if ` | n,

1
`
((`− 1)t−1 − 1)N(t− 1, t− 1− ν)|N (N)| if ` - n.

Then the densities dt,e,n = |At,e;n|
|At;n| and d′t,e,n = |Bt,e;n|

|Bt;n| are

dt,e,n ∼ d′t,e,n ∼ N(t− 1, t− 1− e)`−
t2−t

2 . (4.3)

The right hand side of (4.3) is just the density g(t, e) of (t− 1)× (t− 1) symmetric

matrices which have rank t− 1− e. We will compute the limit limt→∞ g(t, e). From

Proposition 4.1, we see that

g(t + 1, e) =
1

`e
g(t, e− 1) +

`− 1

`1+e
g(t, e) +

`1+e − 1

`1+e
g(t, e + 1), if e > 0
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and

g(t + 1, 0) =
`− 1

`
g(t, 0) +

`− 1

`
g(t, 1).

Let G(t) = (g(t, 0), g(t, 1), . . . , g(t, i), . . .). One can show by induction that G(t)

converges to, as t →∞,

G = α
(
1,

1

`− 1
, . . . ,

1∏k
i=1(`

i − 1)
, . . .

)
,

where

α−1 = 1 +
1

`− 1
+

1

(`− 1)(`2 − 1)
+ · · · .

Now assume that q ≡ 3 mod 4 and ` = 2. In order that At;n 6= ∅ (resp. Bt;n 6= ∅),
n must be odd (resp. even). Now the rest are almost the same as the classical case

replacing ‘p ≡ 1 mod 4’ (resp. p ≡ 3 mod 4) by ‘deg P is even’ (resp. odd). The

result will be;

|At,e;n| ∼
∑
1≤d≤t
d odd

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2

qn(log n)t−1

(t− 1)!n
for n odd,

|Bt,e;n| ∼
∑
1≤d≤t
d even

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2

qn(log n)t−1

(t− 1)!n
for n even,

and

dt,e,n ∼
∑
1≤d≤t
d odd

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2 for n odd,

d′t,e,n ∼
∑
1≤d≤t
d even

N ′(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2 for n even,

where N(s, d, r) is the number of s × s matrices M = (mij) over F2 with mij 6= mji

for 1 ≤ i < j ≤ d and with mij = mji for d + 1 ≤ i ≤ s and 1 ≤ j ≤ s such that

rank(M) = r, and N ′(s, d, r) is the number of (s + 1) × s matrices M ′ whose first

column is the transpose of the vector (1, . . . , 1, 0, . . . , 0) with first d entries 1 and the

rest part is an s × s matrix M ′ = (m′
ij) over F2 with m′

ij 6= m′
ji for 1 ≤ i < j ≤ d

and m′
ij = m′

ji for d + 1 ≤ i ≤ s and 1 ≤ j ≤ s such that rank(M ′) = r. Then as in

[G5, §4, §5],

G(t) := (dt,0,2n+1, dt,1,2n+1, . . .) and G′(t) := (d′t,0,2n, d
′
t,1,2n, . . .)

converge to Y
2

and Y ′

2
as t →∞, where

Y =
[ ∞∏

m=1

(1− 2−m)
]−1(

1, 2, . . . , 2−i2
i∏

m=1

(1− 2−m)−2, . . .
)

and

Y ′ =
[ ∞∏

m=2

(1− 2−m)
](

1, 2/3, . . . , 2−i(i+1)

i∏
m=1

(1− 2−m)−1(1− 2−m−1)−1, . . .
)
.
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5. Generalization to `m-cyclic function fields

In this section we consider `m-cyclic extensions F of k and the following question

as in [G6] : how likely is λ+
2 (F) = 0, λ+

2 (F) = 1, λ+
2 (F) = 2, . . . ? When m = 1, its

answer is already obtained in §4. So we assume m ≥ 2. Assume that we are given

integers m1, . . . ,mt such that m = m1 ≥ m2 ≥ · · · ≥ mt ≥ 1. Let ∆ be the abelian

group of type (`m2 , . . . , `mt). (When t = 1, we let ∆ be the trivial group.)

Assume first that r > 1, that is ` - q − 1. Write A(∆) for the set of all F as above

such that the narrow genus group Cl+(F)`/Cl+(F)1−σ
` is isomorphic to ∆, and

A(∆)n := {F ∈ A(∆) : deg(cond(F)) = n}, (5.1)

Ae(∆) := {F ∈ A(∆) : λ+
2 (F) = e}, (5.2)

Ae(∆)n := Ae(∆) ∩A(∆)n. (5.3)

Then we define the density de(∆) of Ae(∆) in A(∆) by

de(∆) := lim
n→∞

|Ae(∆)rn|
|A(∆)rn|

. (5.4)

It is easy to see that for any ordering (mji
) of m1, . . . ,mt and monic irreducible

polynomials P1, . . . , Pt with qdeg Pi ≡ 1 mod `mji , there are∏t
i=1(`

mji − `mji
−1)

(`m − `m−1)
=

t∏
i=2

(`mi − `mi−1)

distinct fields F in A(∆) such that the conductor of F is P1 · · ·Pt and each Pi has

the ramification index `mji in F. So we have

|A(∆)rn| ∼

[
t∏

i=2

(`mi − `mi−1)

]∑
(mji

)

(mji
)∑

deg(P1···Pt)=rn

qdeg Pi≡1 mod `
mji

1

 , (5.5)

where
∑

(mji
) denotes a sum over all distinguishable orderings of m1, . . . ,mt, and∑(mji

) is a sum for a fixed reordering (mji
). For any positive integer k, write rk for

the smallest positive integer such that `k|qrk − 1. Then for any monic irreducible

polynomial P in A, we have qdeg P ≡ 1 mod `k if and only if rk| deg P . Following the

method of [Kn, §9], we have

(mji
)∑

deg(P1···Pt)=rn

qdeg Pi≡1 mod `
mji

1 =

(mji
)∑

deg(P1···Pt)=rn
rmji

| deg Pi

1 ∼ qrn(log n)t−1

(t− 1)!(rm1 · · · rmt)n
. (5.6)

Let vw = |{mi : mi = w}| for 1 ≤ w ≤ m. Since there are t!
(v1!)···(vm!)

distinguishable

orderings (mji
) of m1, . . . ,mt, by (5.5) and (5.6), we have

|A(∆)rn| ∼
t
∏t

i=2(`
mi − `mi−1)

(rm1 · · · rmt)(v1!) · · · (vm!)

qrn(log n)t−1

n
. (5.7)
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Now we are going to obtain an asymptotic formula for Ae(∆)rn. Following the

arguments in [F, §5, Theorem 5.3], one can associate a t × (t − 1) matrix M̄ ′
F to F

such that λ+
2 (F) = t − 1 − rank(M̄ ′

F). Moreover, as in [G6, §2], one can replace the

matrix M̄ ′
F with a t × t matrix M̄F such that rank(M̄ ′

F) = rank(M̄F). Especially, if

F ∈ Ae(∆), then the matrix M̄F has rank t−1− e. Then |Ae(∆)rn| can be estimated

as

|Ae(∆)rn| ∼
∑

Γ
rank(Γ)=t−1−e

∑
(mji

)

(mji
)∑

deg(P1···Pt)=rn
rmji

| deg Pi

∑
F

cond(F)=P1···Pt

δΓ, (5.8)

where the first sum is over all t × t matrices Γ over F` with rank t − 1 − e. The

fourth sum runs over all F ∈ A(∆) with conductor P1 · · ·Pt such that each Pi has

ramification index `mji , and δΓ = 1 if M̄F = Γ and δΓ = 0 otherwise. If the ordering

(mji
) has mji

= mi for 1 ≤ i ≤ t, then M̄F has the following form:

MF =

(
M1 M2

O D

)
(5.9)

where M1 is a vm × vm matrix over F` with zero row sums, M2 is a vm × (t − vm)

matrix over F`, O is the (t − vm) × vm zero matrix and D is a (t − vm) × (t − vm)

diagonal matrix.

Let Γ be a t × t matrix over F` such that Γ has the same form as the matrix on

the right hand side of (5.9), and let

N(Γ) =
∑

deg(P1···Pt)=rn
rmi | deg Pi

∑
F

cond(F)=P1···Pt

δΓ,

where δΓ = 1 if M̄F = Γ and δΓ = 0 otherwise. Following the idea of [G6, §2] and

adopting the similar method as in §3.1, we get

Proposition 5.1. We have

N(Γ) ∼
(`m − `m−1)vm−1

∏t
i=vm+1(`

mi − `mi−1)

(t− 1)!(rm1 · · · rmt)`
vm(t−1)+t−vm

qrn(log n)t−1

n
,

and so

|Ae(∆)rn| ∼
tN(t, vm, t− 1− e)(`m − `m−1)vm−1

∏t
i=vm+1(`

mi − `mi−1)

(rm1 · · · rmt)(v1!) · · · (vn!)`vm(t−1)+t−vm

×qrn(log n)t−1

n
, (5.10)

where N(t, vm, t− 1− e) denote the number of Γ’s as above with rank(Γ) = t− 1− e.

Finally, by (5.7) and (5.10), we have

de(∆) =
N(t, vm, t− 1− e)

`vm(t−1)+t−vm
for 0 ≤ e ≤ t− 1. (5.11)

We note that the number N(t, vm, t− 1− e) can be computed as in Lemma 2.4 and

the remark following it in [G6].
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Let Bt be the set of all `m-cyclic extensions F of k such that t finite primes ramify

in F/k, and

Bt;n := {F ∈ Bt : deg(cond(F)) = n}, (5.12)

Bt,e := {F ∈ Bt : λ+
2 (F) = e}, (5.13)

Bt,e;n := Bt,e ∩Bt;n. (5.14)

Then as in [G6] we see that the density dt,e := limn→∞
|Bt,e;rn|
|Bt;rn| is given by

dt,e =

∑t
u=1

N(t,u,t−1−e)

`u(t−1)+t−u

(
t
u

) (m−1)t−u

mt

1− (m−1
m

)t
, (5.15)

and its limit d∞,e := limt→∞ dt,e = 0.

Now suppose that r = 1. There are many cases to consider. Let `a = (`m, q − 1).

For each b = 0, 1, . . . , a, we have to consider `m-cyclic extensions F whose ramification

index at ∞ is `b. Let pb be the asymptotic probability of `m-cyclic extensions F of k

with ramification index at ∞ to be `b.

Write A(b)(∆) for the set of all `m-cyclic extensions F of k such that the ramification

index at ∞ is `b and the narrow genus group Cl+(F)`/Cl+(F)1−σ
` is isomorphic to

∆. Define A(b)(∆)n,A
(b)
e (∆) and A

(b)
e (∆)n similarly as in (5.1), (5.2) and (5.3),

respectively. Then the analog of (5.7) is

|A(b)(∆)n| ∼ pbt
∏t

i=1(`
mi − `mi−1)

(rm1 · · · rmt)(v1!) · · · (vm!)(`m − `m−1)

qn(log n)t−1

n
, (5.16)

and if ` > 2, the analog of (5.10) is

|A(b)
e (∆)n| ∼

pbtN(t, vm, t− 1− e)(`m − `m−1)vm−1
∏t

i=vm+1(`
mi − `mi−1)

(rm1 · · · rmt)(v1!) · · · (vn!)`vm(t−1)+t−vm

×qn(log n)t−1

n
. (5.17)

When ` = 2, as in [G6, §4], the analog of (5.9) is

MF =

(
M1 M2

O D

)
(5.18)

where M1 is a symmetric vm × vm matrix over F2 with zero row sums, M2 is a

vm × (t − vm) matrix over F2, O is the (t − vm) × vm zero matrix and D is the

(t − vm) × (t − vm) diagonal matrix with each diagonal entry equal to the sum of

the entries in the corresponding column of M2. Let N ′(t, u, s) denote the number of

matrices Γ of the form specified on the right side of (5.18) such that rank(Γ) = s,

where 0 ≤ s ≤ t− 1. Then the analog of (5.10) is

|A(b)
e (∆)n| ∼

pbtN
′(t, u, t− 1− e)(`m − `m−1)vm−1

∏t
i=vm+1(`

mi − `mi−1)

(rm1 · · · rmt)(v1!) · · · (vn!)`
vm(vm−1)

2
+vm(t−vm)

×qn(log n)t−1

n
. (5.19)
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Thus the density d
(b)
e (∆) := limn→∞

|A(b)
e (∆)n|

|A(b)(∆)n|
is given by the formula (5.11) if ` > 2,

and if ` = 2,

d(b)
e (∆) =

N ′(t, vm, t− 1− e)

`
vm(vm−1)

2
+vm(t−vm)

.

Write B
(b)
t for the set of all `m-cyclic extensions F of k such that the ramification

index at ∞ is `n and t finite primes ramify in F/k. Define B
(b)
t;n,B

(b)
t,e and B

(b)
t,e;n

similarly as in (5.12), (5.13) and (5.14), respectively. Then we see that the density

d
(b)
t,e := limn→∞

|B(b)
t,e;n|

|B(b)
t;n|

is given by the formula (5.15) if ` > 2, and if ` = 2,

d
(b)
t,e =

∑t
u=1

N ′(t,u,t−1−e)

`
u(u−1)

2 +u(t−u)

(
t
u

) (m−1)t−u

mt

1− (m−1
m

)t
,

and its limit d
(b)
∞,e := limt→∞ d

(b)
t,e = 0.

Remark 5.2. Since G = Gal(F/k) is cyclic of order `m, there is a unique subgroup

H of order `a, and the inertia group G∞ at ∞ is contained in H. Let F1 = FH .

Then ∞ splits completely in F1, and F is a cyclic extension of F1 of order `a. Then

F = F1( `a√
α) for some α ∈ OF1 . Thus the asymptotic probability pb seems to be

`b−`b−1

`a .
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