ℓ-RANKS OF CLASS GROUPS OF FUNCTION FIELDS

SUNGHAN BAE AND HWANYUP JUNG*

Abstract

In this paper we give asymptotic formulas for the number of ℓ-cyclic extensions of the rational function field $\mathrm{k}=\mathbb{F}_{q}(T)$ with prescribed ℓ-class numbers inside some cyclotomic function fields, and density results for ℓ-cyclic extensions of k with certain properties on the ideal class groups.

0. Introduction

Let \mathbb{Q} be the field of rational numbers and ℓ a prime number. In 1980's F. Gerth studied extensively the asymptotic behavior of ℓ-cyclic extensions of \mathbb{Q} with certain conditions on the ideal class groups and ramified primes. Let us recall Gerth's results more precisely. Write $N_{s, x}$ for the number of ℓ-cyclic extensions of \mathbb{Q} with conductor $\leq x$ and ℓ-class number ℓ^{s}. In [G2], it is shown that to obtain an asymptotic formula for $N_{s, x}$, it suffices to count the number $M_{s+1, x}$ of ℓ-cyclic extensions of \mathbb{Q} whose conductor is $\leq x$ and divisible by exactly $s+1$ distinct primes, and whose ℓ-class number is ℓ^{s}. In [G3], a matrix M over \mathbb{F}_{ℓ} is associated to each ℓ-cyclic extension F of \mathbb{Q} with $s+1$ ramified primes such that the ℓ-class number of F is ℓ^{n} precisely when $\operatorname{rank}(M)=s$, and an asymptotic formula for $N_{s, x}$ is given by studying the asymptotic behavior of the number of such matrices. In [G5], for $\ell=2$, an effective algorithm for computing the density $d_{t, e}$ (resp. $d_{t, e}^{\prime}$) of the quadratic fields with 4 -class rank e (in the narrow sense) in the set of imaginary (resp. real) quadratic fields with t ramified primes, and explicit formulas for their limiting densities $d_{\infty, e}=\lim _{t \rightarrow \infty} d_{t, e}$ and $d_{\infty, e}^{\prime}=\lim _{t \rightarrow \infty} d_{t, e}^{\prime}$ are given. An explicit formula for the limiting density $d_{\infty, e}$, which depends only on ℓ and e, is given in [G7] for arbitrary prime number ℓ. Similar results for ℓ^{n}-cyclic extensions of \mathbb{Q} with prescribed (narrow) genus groups are given in [G6].

Let $\mathrm{k}=\mathbb{F}_{q}(T)$ be the rational function field over the finite field \mathbb{F}_{q}. Let ℓ be a prime number different from the characteristic of k and r be the smallest positive integer such that $\ell \mid q^{r}-1$. In this article we study analogous problems for ℓ-cyclic extensions of k inside some cyclotomic function fields. The content of this paper is as follows. In $\S 1$ we recall several asymptotic formulas in $\mathbb{A}=\mathbb{F}_{q}[T]$, which can be found in $[\mathrm{Kn}]$ and $[\mathrm{R}]$. In $\S 2$ we recall the genus theory for function fields $[\mathrm{BK}]$ and extend

[^0]some results of Wittmann [W] to the narrow case. In $\S 3.1$ we give an asymptotic formula for the number $N_{s, r n}$ of ℓ-cyclic extensions F inside some cyclotomic function fields with ℓ-class number ℓ^{s} and with conductor N of degree $r n$ in the case $r>1$. Similar results of $\S 3.1$ in the case $r=1$ are given in $\S 3.2$. In $\S 4$ we give the density for ℓ-ranks in ℓ-cyclic function fields. In $\S 5$ we give a generalization of $\S 4$ to ℓ^{m}-cyclic extensions of k inside some cyclotomic function fields.

1. Some asymptotic formulas in $\mathbb{A}=\mathbb{F}_{q}[T]$

In this section we recall several asymptotic formulas in $\mathbb{A}=\mathbb{F}_{q}[T]$, which will be used later in this paper. For the details and proofs we refer to $[\mathrm{Kn}]$ and $[\mathrm{R}]$.

- $P(n):=$ the set of monic irreducible polynomials in \mathbb{A} of degree n, and $p(n)=$ $|P(n)|$. Then

$$
\begin{equation*}
p(n)=\frac{q^{n}}{n}+O\left(\frac{q^{n / 2}}{n}\right) \quad([\text { Kn, Chap. 8], [R, Theorem 2.2] }) . \tag{1.1}
\end{equation*}
$$

- $P(n, k):=$ the set of all square-free monic polynomials of degree n with k irreducible factors, and $p(n, k)=|P(n, k)|$. Then

$$
\begin{equation*}
p(n, k)=\frac{q^{n}(\log n)^{k-1}}{(k-1)!n}+O\left(\frac{q^{n}(\log n)^{k-2}}{n}\right) \quad([\mathrm{Kn}, \text { Theorem 9.9] }) . \tag{1.2}
\end{equation*}
$$

- $P_{r}(r n, k):=$ the set of all square-free monic polynomials of degree $r n$ with k irreducible factors whose degrees are divisible by r, and $p_{r}(r n, k)=\left|P_{r}(r n, k)\right|$. Following the method of [Kn, §9],

$$
\begin{equation*}
p_{r}(r n, k)=\frac{q^{r n}(\log n)^{k-1}}{(k-1)!r^{k} n}+O\left(\frac{q^{r n}(\log n)^{k-2}}{n}\right) . \tag{1.3}
\end{equation*}
$$

Intuitively, (1.3) follows from (1.2) and that the probability that a prime whose degree is divisible by r is $\frac{1}{r}$. For $A, M \in \mathbb{A}$, relatively prime,

- $P(n, A, M):=$ the set of monic irreducible polynomials of degree n, which are congruent to A modulo M, and $p(n, A, M)=|P(n, A, M)|$. Then

$$
\begin{equation*}
p(n, A, M)=\frac{q^{n}}{\phi(M) n}+O\left(\frac{q^{n / 2}}{n}\right) \quad([\mathrm{R}, \text { Theorem 4.8] }) \tag{1.4}
\end{equation*}
$$

Also, for a nontrivial Dirichlet character χ, we have

$$
\begin{equation*}
\sum_{P, \operatorname{deg} P=n} \chi(P)=O\left(\frac{q^{n / 2}}{n}\right) \quad([\mathrm{R}, \S 4(4),(5)]) \tag{1.5}
\end{equation*}
$$

From (1.1), we have

$$
\begin{align*}
& \sum_{P, \operatorname{deg} P \leq n} \frac{\operatorname{deg} P}{q^{\operatorname{deg} P}}=n+O(1), \tag{1.6}\\
& \sum_{P, r \mid \operatorname{deg} P \leq n r} \frac{\operatorname{deg} P}{q^{\operatorname{deg} P}}=n+O(1), \tag{1.7}
\end{align*}
$$

$$
\begin{gather*}
\sum_{P, \operatorname{deg} P \leq n} \frac{1}{q^{\operatorname{deg} P}}=\log n+O(1) \tag{1.8}\\
\sum_{P, r \mid \operatorname{deg} P \leq n r} \frac{1}{q^{\operatorname{deg} P}}=\frac{\log n}{r}+O(1) \tag{1.9}
\end{gather*}
$$

From (1.2), (1.3) and the partial summation formula, we have

$$
\begin{align*}
& \sum_{d=1}^{n} \sum_{P \in P(d, k)} \frac{1}{q^{d}} \sim \frac{(\log n)^{k}}{k!} \tag{1.10}\\
& \sum_{d=1}^{n} \sum_{P \in P_{r}(r d, k)} \frac{1}{q^{r d}} \sim \frac{(\log n)^{k}}{k!r^{k}} . \tag{1.11}
\end{align*}
$$

2. GEnus theory for function fields

Write ∞ for the place of k associated to $1 / T$. Let k_{∞} be the completion of k at ∞, i.e., $\mathrm{k}_{\infty}=\mathrm{k}((1 / T))$. Let $\mathrm{C}=\mathrm{k}_{\infty}(\sqrt[q-1]{-1 / T})$. We only consider those function fields which can be embedded into C. For a monic polynomial M of $\mathbb{A}, \mathrm{k}_{M}$ denotes the cyclotomic function field of conductor M (see $[\mathrm{R}, \S 12]$). Any abelian extension F of k inside C is contained in k_{M} for some M. The smallest such M is called the conductor of F . From now on we always assume that every extension of k is contained in some cyclotomic function field. Let ℓ be a prime number different from the characteristic of k and r be the smallest positive integer such that $\ell \mid q^{r}-1$.

Let F be a ℓ-cyclic extension of k , and write $N=N_{\mathrm{F}}$ for the conductor of F . Then N must be square-free and for each prime divisor P of N, $\operatorname{deg} P$ is divisible by r. Write $N=P_{1} \cdots P_{t}$. It is easy to see that the number of such extensions F with conductor $P_{1} \cdots P_{t}$ is $(\ell-1)^{t-1}$. Write H_{F} for the Hilbert class field of F and G_{F} for the genus field of F / k. Let $\mathcal{C l}(\mathrm{F})$ be the ideal class group of the integral closure \mathcal{O}_{F} of \mathbb{A} in F , and $\mathcal{C l}(\mathrm{F})_{\ell}$ be its ℓ-part. Let σ be a fixed generator of $G=\operatorname{Gal}(\mathrm{F} / \mathrm{k})$ and

$$
\lambda_{i}(\mathrm{~F}):=\operatorname{dim}_{\mathbb{F}_{\ell}}\left(\mathcal{C l}(\mathrm{F})_{\ell}^{(\sigma-1)^{i-1}} / \mathcal{C} l(\mathrm{~F})_{\ell}^{(\sigma-1)^{i}}\right) \quad \text { for } i \geq 1
$$

It is known that ([BK, §2])

$$
\mathcal{C l}(\mathrm{F})_{\ell} / \mathcal{C l}(\mathrm{F})_{\ell}^{\sigma-1} \simeq \mathcal{C l}(\mathrm{~F}) / \mathcal{C l}(\mathrm{F})^{\sigma-1} \simeq \operatorname{Gal}\left(\mathrm{G}_{\mathrm{F}} / \mathrm{F}\right) .
$$

It is well-known that $\mathcal{C l}(\mathrm{F})_{\ell}^{G}$ and $\mathcal{C l}(\mathrm{F})_{\ell} / \mathcal{C l}(\mathrm{F})_{\ell}^{\sigma-1}$ are elementary abelian group of rank λ_{1}. Since F is contained in some cyclotomic function field, the inertia degree f_{∞} at ∞ should be 1 , and the ramification degree e_{∞} is 1 if $r>1$.

Now we consider the narrow case. We define the narrow Hilbert class field $\mathrm{H}_{\mathrm{F}}^{+}$of F to be the maximal abelian extension of F in C , unramified outside the places over ∞. For each place v of F over ∞ we write F_{v} to denote the completion of F at v and N_{v} be the norm map from F_{v} to k_{∞}. We define a sign map $s g n_{v}: \mathrm{F}_{v} \rightarrow \mathbb{F}_{q}$ by $\operatorname{sgn}_{v}(x)=\operatorname{sgn}\left(N_{v}(x)\right)$, where sgn is the usaul sign map on k_{∞}. An element $x \in \mathrm{~F}$ is called totally positive if $\operatorname{sgn}_{v}(x)=1$ for any v lying over ∞. The narrow ideal class
group $\mathcal{C} l^{+}(\mathrm{F})$ of F is defined to be the quotient group of fractional ideals modulo principal fractional ideals generated by totally positive elements of F . The narrow genus field $\mathrm{G}_{\mathrm{F}}^{+}$of F / k is defined to be the maximal extension of F in $\mathrm{H}_{\mathrm{F}}^{+}$which is the compositum of F and some abelian extension of k . See [BK] for details on the genus theory of function fields. Let

$$
\lambda_{i}^{+}(\mathrm{F}):=\operatorname{dim}_{\mathbb{F}_{\ell}}\left(\mathcal{C} l^{+}(\mathrm{F})_{\ell}^{(\sigma-1)^{i-1}} / \mathcal{C} l^{+}(\mathrm{F})_{\ell}^{(\sigma-1)^{i}}\right) \quad \text { for } i \geq 1
$$

Note that if $r>1$, then $\mathcal{C l} l^{+}(\mathrm{F})_{\ell}=\mathcal{C l}(\mathrm{F})_{\ell}$ and so $\lambda_{i}^{+}(\mathrm{F})=\lambda_{i}(\mathrm{~F})$. We will use the following lemmas in [W]. The narrow case can be proved by the similar method as in [W].

Lemma 2.1. ([W, Theorem 2.1]) Let F be as above.
(i) If $r>1$, or $r=1$ and $\ell \mid \operatorname{deg} P_{i}$ for any i, then $\lambda_{1}(\mathrm{~F})=t-1$.
(ii) In all other cases, $\lambda_{1}(\mathrm{~F})=t-2+\log _{\ell}\left(e_{\infty} f_{\infty}\right)$.
(iii) $\lambda_{1}^{+}(\mathrm{F})=t-1$.

Let \mathfrak{p}_{i} be the unique prime ideal of F lying above P_{i}.
Lemma 2.2. ([W, Corollary 2.3, 2.4]) Let F be as above.
(i) If $r>1$, then $\mathcal{C l}(\mathrm{F})_{\ell}^{G}$ is generated by the classes $\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{t}\right]$.
(ii) If $r=1$, then

$$
\mathcal{C l}(\mathrm{F})_{\ell}^{G}=\left\langle\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{t}\right]\right\rangle
$$

except the case that $\ell \mid \operatorname{deg} P_{i}$ for any i and $N_{\mathrm{F} / \mathrm{k}}\left(\mathcal{O}_{\mathrm{F}}^{*}\right)=\left(\mathbb{F}_{q}^{*}\right)^{\ell}$. In this case,

$$
\mathcal{C} l(\mathrm{~F})_{\ell}^{G}=\left\langle\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{t}\right],[\mathfrak{a}]\right\rangle,
$$

where $\mathfrak{a}^{\sigma-1}=\alpha \mathcal{O}_{\mathrm{F}}$ and $N_{\mathrm{F} / \mathbf{k}}(\alpha) \in \mathbb{F}_{q}^{*} \backslash\left(\mathbb{F}_{q}^{*}\right)^{\ell}$.
(iii) $\mathcal{C} l^{+}(\mathrm{F})_{\ell}^{G}$ is generated by the classes $\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{t}\right]$.

Suppose first that $r=1$. In this case $\mathrm{F}=\mathrm{k}(\sqrt[\ell]{D})$, where $D=a P_{1}^{e_{1}} \cdots P_{t}^{e_{t}}$ with $1 \leq e_{i}<\ell$ and $a \in \mathbb{F}_{q}^{*}$. We will determine a. From [A, Lemma 3.2], it is known that if $\ell \mid \operatorname{deg} P_{i}$, then $\mathrm{k}\left(\sqrt[\ell]{P_{i}}\right) \subseteq \mathrm{k}_{P_{i}}$, and that if $\ell \nmid \operatorname{deg} P_{i}$, then $\mathrm{k}\left(\sqrt[\ell]{-P_{i}^{d_{i}}}\right) \subseteq \mathrm{k}_{P_{i}}$, where d_{i} is a positive integer such that $d_{i} \operatorname{deg} P_{i} \equiv 1 \bmod \ell$. Thus we see that a can be taken to be $(-1)^{m}$, where $m=\sum_{\ell \nmid \mathrm{deg} P_{i}} \nu_{i}$ and $d_{i} \nu_{i} \equiv e_{i} \bmod \ell$. When $\ell \neq 2$, or $q \equiv 1 \bmod 4$ and $\ell=2,-1$ is an ℓ-th power in \mathbb{F}_{q}^{*}. Thus one may take a to be 1 in these cases. If $q \equiv 3 \bmod 4$ and $\ell=2$, then we take $a=(-1)^{s}$, where s is the number of odd degree P_{i} 's.

Proposition 2.3. ([W, Theorem 2.5]) Let $\mathrm{F}=\mathrm{k}(\sqrt[\ell]{D})$ be as above.
(i) $\mathrm{G}_{\mathrm{F}}^{+}=\mathrm{k}\left(\sqrt[\ell]{(-1)^{\operatorname{deg} P_{1}} P_{1}}, \ldots, \sqrt[\ell]{(-1)^{\operatorname{deg} P_{t} P_{t}}}\right)$.
(ii) If $\ell \nmid \operatorname{deg} D$ or $\ell \mid \operatorname{deg} P_{i}$ for any i, then

$$
\mathrm{G}_{\mathrm{F}}=\mathrm{G}_{\mathrm{F}}^{+}=\mathrm{k}\left(\sqrt[\ell]{(-1)^{\operatorname{deg} P_{i}} P_{1}}, \ldots, \sqrt[\ell]{(-1)^{\operatorname{deg} P_{t} P_{t}}}\right)
$$

(iii) If $\ell \mid \operatorname{deg} D$ but $\ell \nmid \operatorname{deg} P_{i}$ for $1 \leq i \leq s$ and $\ell \mid \operatorname{deg} P_{j}$ for $s+1 \leq j \leq t$, then

$$
\mathrm{G}_{\mathrm{F}}=\mathrm{k}\left(\sqrt[\ell]{P_{1} P_{2}^{u_{2}}}, \ldots, \sqrt[\ell]{P_{1} P_{s}^{u_{s}}}, \sqrt[\ell]{P_{s+1}}, \ldots, \sqrt[\ell]{P_{t}}\right)
$$

where $\operatorname{deg} P_{1}+u_{i} \operatorname{deg} P_{i} \equiv 0 \bmod \ell$.
Let η be a fixed primitive ℓ-th root of unity in \mathbb{F}_{q}. Let $\left(\frac{A}{P}\right)_{\ell}$ be the ℓ-th power residue symbol. For a field F as above, we define a $t \times t$ matrix $M_{\mathrm{F}}=\left(m_{i j}\right)$ over \mathbb{F}_{ℓ} by, for $i \neq j$,

$$
\eta^{m_{i j}}=\left(\frac{\bar{P}_{i}}{P_{j}}\right)_{\ell},
$$

where $\bar{P}_{i}=(-1)^{\operatorname{deg} P_{i}} P_{i}$ and $m_{i i}$ is defined to satisfy

$$
\sum_{i=1}^{t} e_{i} m_{i j}=0
$$

Then it can be shown (cf, [W, §3]) that

$$
\lambda_{2}(\mathrm{~F})=t-1-\operatorname{rank}\left(M_{\mathrm{F}}\right), \text { when } \infty \text { ramifies in } \mathrm{F}
$$

and

$$
\lambda_{2}^{+}(\mathrm{F})=t-1-\operatorname{rank}\left(M_{\mathrm{F}}\right), \text { when } \infty \text { splits in } \mathrm{F} .
$$

Note that, if $\ell \mid \operatorname{deg} P_{i}$ for every i, then $\lambda_{2}^{+}(\mathrm{F})=\lambda_{2}(\mathrm{~F})$. In the case (iii) of Proposition 2.3, a $(t-1) \times t$ matrix M_{F}^{\prime} is defined in $[\mathrm{W}, \S 3]$ and was shown that

$$
\lambda_{2}(\mathrm{~F})=t-2-\operatorname{rank}\left(M_{\mathrm{F}}^{\prime}\right) .
$$

Now suppose that $r>1$. Let

$$
w=\sum_{i=1}^{t}\left(\operatorname{deg} P_{i}, r\right),
$$

where (a, b) denotes the greatest common divisor of a and b. A $t \times w$ matrix \tilde{M}_{F} over \mathbb{F}_{ℓ} is defined in $[\mathrm{W}, \S 4]$ and it is shown that

$$
\lambda_{2}(\mathrm{~F})=t-2-\operatorname{rank}\left(\tilde{M}_{\mathrm{F}}\right) .
$$

In fact, this matrix \tilde{M}_{F} is essentially the same as the matrix $M=M_{\mathrm{F}}$ defined in [G3, §2].

3. Asymptotic Behavior of ℓ-cyclic extensions with prescribed ℓ-class numbers

3.1. $r>1$ case. In this subsection we assume that $r>1$. Let

- $N_{s, n}$:= the number of ℓ-cyclic extensions F of k with $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{s}$ and with conductor N of degree n,
- $M_{s, n}:=$ the number of ℓ-cyclic extensions F of k with $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{s-1}$ and with conductor N of degree n such that N has exactly s distinct prime factors,
- $G_{s, n}:=$ the number of ℓ-cyclic extensions F of k with conductor $N=P_{1} \cdots P_{s}$ of degree n such that P_{m} is an ℓ-th power residue modulo P_{1}, \ldots, P_{m-2} but an ℓ-th power nonresidue modulo P_{m-1}.
Since we know that r must divide the degrees of prime factors of N, we replace n by $r n$ and write $\operatorname{deg} P_{i}=r k_{i}$.

Let $\chi_{P_{i}}$ be a Dirichlet charater of exponent ℓ of conductor P_{i}, that is, a character of $\operatorname{Gal}\left(\mathrm{k}_{P_{i}} / \mathrm{k}\right)$. For a prime $P_{m} \neq P_{1}, \ldots, P_{m-1}$, let

$$
\begin{equation*}
W_{m}:=\frac{1}{\ell^{m-1}}\left(\sum_{j_{1}=0}^{\ell-1} \chi_{P_{1}}^{j_{1}}\left(P_{m}\right)\right) \cdots\left(\sum_{j_{m-2}=0}^{\ell-1} \chi_{P_{m-2}}^{j_{m-2}}\left(P_{m}\right)\right)\left(\sum_{j_{m-1}=0}^{\ell-1} \zeta^{j_{m-1}} \chi_{P_{m-1}}^{j_{m-1}}\left(P_{m}\right)\right) \tag{3.1}
\end{equation*}
$$

where ζ is a primtive ℓ-th root of unity. Then we have

$$
M_{t, r n} \geq G_{t, r n} \geq \sum W_{2} \cdots W_{t}
$$

where the sum is over the distinct primes P_{1}, \ldots, P_{t} with $\operatorname{deg}\left(P_{1} \cdots P_{t}\right)=r n$ and $r \mid \operatorname{deg} P_{i}$. Let $y_{i}:=2^{i} \sqrt{n}$. Then $y_{1}+\cdots+y_{t-1}<y_{t}=y$. Let

$$
A_{t, r n}:=\sum W_{2} \cdots W_{t-1} \sum_{P_{t}, \operatorname{deg} P_{t}=r n-\operatorname{deg} P_{1}-\cdots-\operatorname{deg} P_{t-1}} W_{t}
$$

where the first sum is over distinct $P_{i}, 1 \leq i \leq t-1$ with $\operatorname{deg} P_{i-1} \leq \operatorname{deg} P_{i} \leq y_{i}$. Write

$$
W_{t}=\frac{1}{\ell^{t-1}}\left(1+\sum_{J} \zeta^{j_{t-1}} \chi_{P_{1}}^{j_{1}} \cdots \chi_{P_{t-1}}^{j_{t-1}}\left(P_{t}\right)\right)
$$

where $J=\left(j_{1}, \ldots, j_{t-1}\right) \neq(0, \ldots, 0)$. Then, by (1.1) and (1.5),

$$
\sum_{\operatorname{deg} P_{t}=r\left(n-k_{1}-\cdots-k_{t-1}\right)} W_{t}=\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{\ell^{t-1} r\left(n-k_{1}-\cdots-k_{t-1}\right)}+O\left(\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right) / 2}}{n-k_{1}-\cdots-k_{t-1}}\right)
$$

For $k_{i} \leq y_{i}$, since $n-y=n-2^{t} \sqrt{n}>n / 2$ for large n,

$$
\begin{aligned}
\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{r\left(n-k_{1}-\cdots-k_{t-1}\right)} & =\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{r n}+\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}\left(k_{1}+\cdots+k_{t-1}\right)}{r n\left(n-k_{1}-\cdots-k_{t-1}\right)} \\
& =\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{r n}+O\left(\frac{\left(k_{1}+\cdots+k_{t-1}\right) q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{n^{2}}\right)
\end{aligned}
$$

and

$$
\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right) / 2}}{\left(n-k_{1}-\cdots-k_{t-1}\right)}=O\left(\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{n^{2}}\right) .
$$

Thus

$$
\sum_{\operatorname{deg} P_{t}=r\left(n-k_{1}-\cdots-k_{t-1}\right)} W_{t}=\frac{q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{\ell^{t-1} r n}+O\left(\frac{\left(k_{1}+\cdots+k_{t-1}\right) q^{r\left(n-k_{1}-\cdots-k_{t-1}\right)}}{n^{2}}\right)
$$

From (1.7) and (1.9) we have, for $y=y_{t}=2^{t} \sqrt{n}$,

$$
\sum_{\substack{P_{1}, \ldots, P_{t-1} \\ r \mid \operatorname{deg} P_{i} \leq r y_{i}}} \frac{q^{r n}\left(\operatorname{deg} P_{1}+\cdots+\operatorname{deg} P_{t-1}\right)}{n^{2} q^{\operatorname{deg} P_{1}} \cdots q^{\operatorname{deg} P_{t-1}}}=O\left(\frac{y(\log y)^{t-2} q^{r n}}{n^{2}}\right)=O\left(\frac{q^{r n}}{n}\right)
$$

Therefore

$$
A_{t, r n}=\frac{1}{\ell^{t-1}} \sum_{\substack{P_{1}, \ldots, P_{t-1}: \text { distinct } \\ r \mid \operatorname{deg} P_{i} \leq r y_{i}}} W_{2} \cdots W_{t-1} \frac{q^{n r}}{r n q^{\operatorname{deg} P_{1}} \cdots q^{\operatorname{deg} P_{t-1}}}+O\left(\frac{q^{r n}}{n}\right)
$$

Now

$$
W_{t-1}=\frac{1}{\ell^{t-2}}\left(1+\sum_{J} \zeta^{j_{t-1}} \chi_{P_{1}}^{j_{1}} \cdots \chi_{P_{t-2}}^{j_{t-2}}\left(P_{t-1}\right)\right)
$$

Let χ_{Q} be a nontrivial character with exponent ℓ and conductor $Q \mid P_{1} \cdots P_{t-2}$. Let

$$
S_{Q}(u):=\sum_{\operatorname{deg} P_{t-1}=r u} \chi_{Q}\left(P_{t-1}\right) .
$$

Then, by (1.5)

$$
\sum_{u=\frac{\operatorname{deg} P_{t-2}}{r}}^{\left[y_{t-1}\right]} \frac{S_{Q}(u)}{q^{r u}}=\sum_{u=\frac{\operatorname{deg}^{P} P_{t-2}}{r}}^{\left[y_{t-1}\right]} O\left(\frac{1}{u q^{\frac{r u}{2}}}\right)=O(1)
$$

Continuing the same process, we have

Thus

$$
A_{t, r n}=c \frac{q^{r n}(\log n)^{t-1}}{r n}+O\left(\frac{q^{r n}(\log n)^{t-2}}{n}\right)
$$

From (1.2), we have

$$
M_{s, r n}=O\left(\frac{q^{r n}}{n}(\log n)^{s-1}\right) .
$$

We finally get

$$
N_{s, r n}=M_{s+1, r n}+O\left(\frac{M_{s+1, r n}}{\log n}\right)
$$

We will compute $M_{s+1, r n}$. As in [G3, $\left.\S 2, \S 3\right]$, one can see easily that the ℓ-cyclic extension F has ℓ-class number ℓ^{s} precisely when $\operatorname{rank}\left(M_{\mathrm{F}}\right)=s$, and that the number of distinct $(s+1) \times(s+1)$ matrices Γ over \mathbb{F}_{ℓ} such that $\operatorname{rank}(\Gamma)=s$ and such that $\Gamma=M_{F}$ for some field F is

$$
\begin{equation*}
\ell^{\frac{s(s-1)}{2}}(\ell-1)^{s} \prod_{i=1}^{s}\left(\ell^{i}+\cdots+\ell+1\right) \tag{3.2}
\end{equation*}
$$

Now we consider the number $N(\Gamma)$ of F with conductor $N=P_{1} \cdots P_{s+1}$ of degree $r n$ and the corresponding matrix $M_{F}=\Gamma$. Let $\mathbf{k}=\mathbb{F}_{q^{r}} \mathrm{k}$ and H_{i} be as in $\S 2$. Let $\mathrm{L}_{i}=\mathbf{k H}_{i}$. Then $\mathrm{L}_{i} / \mathbf{k}$ is a Kummer extension $\mathrm{L}_{i}=\mathbf{k}\left(\sqrt[\ell]{\mu_{i}}\right)$ for some $\mu_{i} \in \mathbf{k}$. Then $\mathbf{k F}=\mathbf{k}(\sqrt[\ell]{\mu})$ with $\mu=\mu_{1}^{e_{1}} \cdots \mu_{s+1}^{e_{s+1}}$. Let $\mathrm{L}_{i}^{\prime}=\mathbf{k}\left(\sqrt[\ell]{P_{i}}\right)$. Define $\lambda_{i}\left(\mathfrak{p}_{j}\right)$ and $\omega_{i}\left(\mathfrak{p}_{j}\right)$ as follows;

$$
\left(\mathfrak{p}_{j}, \mathrm{~L}_{i} / \mathbf{k}\right)\left(\sqrt[\ell]{\mu_{i}}\right)=\lambda_{i}\left(\mathfrak{p}_{j}\right)^{-1} \sqrt[\ell]{\mu_{i}}, \quad\left(\mathfrak{p}_{j}, \mathrm{~L}_{i}^{\prime} / \mathbf{k}\right)\left(\sqrt[\ell]{P_{i}}\right)=\omega_{i}\left(\mathfrak{p}_{j}\right)^{-1} \sqrt[\ell]{P_{i}} .
$$

Let $\delta(n(i), m(j), u(i, j), v(j, i))$ be defined by 1 if $\left(\lambda_{i}^{n(i)}\left(\mathfrak{p}_{j}\right), \omega_{i}^{m(j)}\left(\mathfrak{p}_{j}\right)\right)=\left(\zeta^{u(i, j)}, \zeta^{v(j, i)}\right)$ and by 0 otherwise. Then we have

$$
\begin{equation*}
\sum_{\operatorname{deg} P_{j}=r m} \sum_{m(j)=1}^{\ell-1} \prod_{i=1}^{j-1} \delta(n(i), m(j), u(i, j), v(j, i)) \sim \frac{\ell-1}{\ell^{2(j-1)}} \frac{q^{r m}}{r m} . \tag{3.3}
\end{equation*}
$$

Note the difference of (3.3) from (3) of [G3]. In the classical case the condition $p \equiv 1 \bmod \ell$ is imposed instead of $\operatorname{deg} P_{i}$ is divisible by r, and the probability for a prime to satisfy $p \equiv 1 \bmod \ell$ is $1 /(\ell-1)$ by Dirichlet's theorem on arithmetic progression.

Following the idea of [G3] and adopting the similar method as above, we get
Theorem 3.1. We have

$$
N(\Gamma) \sim \frac{(\ell-1)^{s}}{s!r^{s+1} \ell^{s^{2}+s}} \frac{q^{r n}(\log n)^{s}}{n},
$$

and so

$$
N_{s, r n} \sim \frac{(\ell-1)^{2 s} \prod_{i=1}^{s}\left(\ell^{i}+\cdots+\ell+1\right)}{s!r^{s+1} \ell^{\left(s^{2}+3 s\right) / 2}} \frac{q^{r n}(\log n)^{s}}{n} .
$$

In the proof we need to replace $p_{i} \equiv 1 \bmod \ell$ by $r \mid \operatorname{deg} P_{i}$, which causes to replace the factor $\frac{1}{\ell-1}$ by $\frac{1}{r}$, and $p_{i}<p_{i+1} \leq\left(\frac{x}{p_{1} \cdots p_{i}}\right)^{\frac{1}{s+1-i}}$ by $\operatorname{deg} P_{i} \leq \operatorname{deg} P_{i+1} \leq \frac{1}{s+1-i}(r n-$ $\operatorname{deg} P_{1}-\cdots-\operatorname{deg} P_{i}$). We use (1.5) to show

$$
\sum_{P_{1}} \cdots \sum_{P_{s}} \eta\left(P_{s+1}\right)=O\left(\frac{q^{r n}(\log n)^{s}}{n}\right)
$$

and then use (1.11) to get the formula for $N(\Gamma)$.
3.2. $r=1$ case. Now we assume that $r=1$, that is $\ell \mid q-1$. We consider ℓ-cyclic extensions F of k with conductor N of degree n and with $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{s}$. We have two cases. One is real, that is, ∞ splits completely. The other is imaginary, that is, ∞ ramifies. The case that ∞ is inert cannot happen, since we have assumed that the field is contained in some cyclotomic function field. Let

- $N_{I, s, n}:=$ the number of imaginary ℓ-cyclic extensions F of k with conductor N of degree n and $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{s}$,
- $N_{R, s, n}:=$ the number of real ℓ-cyclic extensions F of k of degree ℓ with conductor N of degree n and $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{s}$,
- $M_{I, t, n}:=$ the number of imaginary ℓ-cyclic extensions F of k with conductor N of degree n such that N has exactly t distinct prime factors and $\left|\mathcal{C l}(\mathrm{F})_{\ell}\right|=\ell^{t-1}$,
- $M_{R, t, n}:=$ the number of real ℓ-cyclic extensions F of k with conductor N of degree n such that N has exactly t distinct prime factors and $\left|\mathcal{C} l(\mathrm{~F})_{\ell}\right|=\ell^{t-2}$.
In this case $\mathrm{F}=\mathrm{k}(\sqrt[\ell]{D})$ with $D=\alpha P_{1}^{e_{1}} \cdots P_{t}^{e_{t}}, 1 \leq e_{i} \leq l-1$. We may assume that $e_{1}=1$. Here $\alpha \in \mathbb{F}_{q}^{*}$ is chosen so that $\mathrm{F} \subseteq \mathrm{k}_{N}$, where $N=P_{1} \cdots P_{t}$. If ℓ divides $\operatorname{deg} D$, then it is real. If ℓ does not $\operatorname{divide} \operatorname{deg} D$, then it is imaginary. If $\ell=2$, then $\left(e_{1}, \ldots, e_{t}\right)=(1, \ldots, 1)$. In this case whether F is real or imaginary depends only on
the parity of $\operatorname{deg} N$. Otherwise, there always exist real fields and imaginary fields with conductor N. One can follow almost the same process as in the case $r>1$ to get

$$
N_{I, s, n}=M_{I, s+1, n}+O\left(\frac{M_{I, s+1, n}}{\log n}\right)
$$

and

$$
N_{R, s, n}=M_{R, s+2, n}+O\left(\frac{M_{R, s+2, n}}{\log n}\right) .
$$

4. Density for ℓ-RANKS of ℓ-CyCLIC FUNCTION FIELDS

4.1. $r>1$ case. In this subsection we assume $r>1$, that is $\ell \nmid q-1$. Let \mathbf{A}_{t} be the set of all ℓ-cyclic extensions F of k such that t finite primes ramify in F / k, and

$$
\begin{aligned}
& \mathbf{A}_{t ; n}:=\left\{\mathrm{F} \in \mathbf{A}_{t}: \operatorname{deg}(\operatorname{cond}(\mathrm{F}))=n\right\}, \\
& \mathbf{A}_{t, e}:=\left\{\mathrm{F} \in \mathbf{A}_{t}: \lambda_{2}(\mathrm{~F})=e\right\}, \\
& \mathbf{A}_{t, e ; n}:=\mathbf{A}_{t, e} \cap \mathbf{A}_{t ; n},
\end{aligned}
$$

where $\operatorname{cond}(\mathrm{F})$ denotes the conductor of F . We define the density $d_{t, e}$ by

$$
d_{t, e}:=\lim _{n \rightarrow \infty} \frac{\left|\mathbf{A}_{t, e ; r n}\right|}{\left|\mathbf{A}_{t, r n}\right|} .
$$

For any monic irreducible polynomials P_{1}, \ldots, P_{t} with $r \mid \operatorname{deg} P_{i}$, there are $(\ell-1)^{t-1}$ distinct fields F in \mathbf{A}_{t} with conductor $N=P_{1} \cdots P_{t}$. So by (1.3), we have

$$
\begin{equation*}
\left|\mathbf{A}_{t ; r n}\right|=(\ell-1)^{t-1} \sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ r \mid \operatorname{deg} P_{i}}} 1 \sim \frac{(\ell-1)^{t-1}}{(t-1)!r^{t}} \frac{q^{r n}(\log n)^{t-1}}{n} . \tag{4.1}
\end{equation*}
$$

Let M_{F} be the $t \times t$ matrix over \mathbb{F}_{ℓ} associated to F as in $\S 2$. Following the arguments in $[\mathrm{G} 3, \S 2, \S 3]$, we see that $\lambda_{2}(\mathrm{~F})=t-1-\operatorname{rank}\left(M_{\mathrm{F}}\right)$. Then $\left|\mathbf{A}_{t, e ; r n}\right|$ can be estimated as

$$
\begin{equation*}
\left|\mathbf{A}_{t, e ; r n}\right| \sim \sum_{\substack{\Gamma \\ \operatorname{rank}(\Gamma)=t-1-e}} \sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ r \mid \operatorname{deg} P_{i}}} \sum_{\substack{\mathrm{F} \\ \operatorname{cond}(\mathrm{~F})=P_{1} \cdots P_{t}}} \delta_{\Gamma}, \tag{4.2}
\end{equation*}
$$

where $\delta_{\Gamma}=1$ if $M_{\mathrm{F}}=\Gamma$ and $\delta_{\Gamma}=0$ otherwise. Adapting the similar method as in $\S 3.1$, we get

$$
N(\Gamma)=\sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ r \mid \operatorname{deg} P_{i}}} \sum_{\substack{\mathrm{F} \\ \operatorname{cond}(\mathbb{F})=P_{1} \ldots P_{t}}} \delta_{\Gamma} \sim \frac{(\ell-1)^{t-1}}{(t-1)!r^{t} \ell^{t(t-1)}} \frac{q^{r n}(\log n)^{t-1}}{n} .
$$

It is known ([G4, Proposition 2.1]) that the number $N(t, t-1-e)$ of $t \times t$ matrices Γ over \mathbb{F}_{ℓ} with rank $t-1-e$ is

$$
N(t, t-1-e)=\left[\prod_{j=1}^{t-1-e}\left(\ell^{t}-\ell^{j-1}\right)\right]_{\substack{k_{1}+\cdots+k_{t-1-1} \leq e+1 \\ \text { each } k_{i} \geq 0}}\left(\prod_{s=1}^{t-1-e} \ell^{s k_{s}}\right) .
$$

So we have

$$
\left|\mathbf{A}_{t, e ; r n}\right| \sim \frac{(\ell-1)^{t-1}}{(t-1)!r^{t} \ell^{t(t-1)}} \frac{q^{r n}(\log n)^{t-1}}{n}\left[\prod_{j=1}^{t-1-e}\left(\ell^{t}-\ell^{j-1}\right)\right] \sum_{\substack{k_{1}+\cdots+k_{k-1-\infty} \leq e+1 \\ \text { each } k_{i} \geq 0}}\left(\prod_{s=1}^{t-1-e} \ell^{s k_{s}}\right),
$$

and

$$
d_{t, e}=\frac{1}{\ell^{t e}}\left[\prod_{j=1}^{t-1-e}\left(1-\frac{1}{\ell^{t+1-j}}\right)\right] \sum_{\substack{k_{1}+\cdots+k_{t-1-1} \leq \leq \leq+1 \\ \text { each } k_{k} \geq 0}}\left(\prod_{s=1}^{t-1-e} \ell^{s k_{s}}\right) .
$$

Let $d_{\infty, e}:=\lim _{t \rightarrow \infty} d_{t, e}$. Then we follow almost the same argument as in [G7, §3] to get

$$
d_{\infty, e}=\frac{\ell^{-e(e+1)} \prod_{k=1}^{\infty}\left(1-\ell^{-k}\right)}{\prod_{k=1}^{e}\left(1-\ell^{-k}\right) \prod_{k=1}^{e+1}\left(1-\ell^{-k}\right)} \quad \text { for } e=0,1,2, \ldots
$$

4.2. $r=1$ case. Now we assume $r=1$. Let \mathbf{A}_{t} be the set of all ℓ-cyclic extensions F such that t finite primes and ∞ ramify in F / k, and

$$
\begin{aligned}
& \mathbf{A}_{t ; n}:=\left\{\mathrm{F} \in \mathbf{A}_{t}: \operatorname{deg}(\operatorname{cond}(\mathrm{F}))=n\right\} \\
& \mathbf{A}_{t, e}:=\left\{\mathrm{F} \in \mathbf{A}_{t}: \lambda_{2}(\mathrm{~F})=e\right\} \\
& \mathbf{A}_{t, e ; n}:=\mathbf{A}_{t, e} \cap \mathbf{A}_{t ; n}
\end{aligned}
$$

Let \mathbf{B}_{t} be the set of all F as above such that t finite primes ramify and ∞ splits in F / k, and

$$
\begin{aligned}
& \mathbf{B}_{t ; n}:=\left\{\mathrm{F} \in \mathbf{B}_{t}: \operatorname{deg}(\operatorname{cond}(\mathrm{F}))=n\right\} \\
& \mathbf{B}_{t, e}:=\left\{\mathrm{F} \in \mathbf{B}_{t}: \lambda_{2}^{+}(\mathrm{F})=e\right\} \\
& \mathbf{B}_{t, e ; n}:=\mathbf{B}_{t, e} \cap \mathbf{B}_{t ; n}
\end{aligned}
$$

Note that $\lambda_{2}(\mathrm{~F})=t-1-\operatorname{rank}\left(M_{\mathrm{F}}\right)\left(\right.$ resp. $\left.\lambda_{2}^{+}(\mathrm{F})=t-1-\operatorname{rank}\left(M_{\mathrm{F}}\right)\right)$ for $\mathrm{F} \in \mathbf{A}_{t}$ (resp. $\mathrm{F} \in \mathrm{B}_{t}$).

Consider first the case that $q \not \equiv 3 \bmod 4$ or $\ell \neq 2$, that is, $a=1$ (See $\S 2$). It is shown in [W] that $M_{\mathrm{F}}=\left(m_{i j}\right)$ is given by; $m_{i j}=\left(\frac{P_{i}}{P_{j}}\right)_{\ell}$, for $i \neq j$, where $(-)_{\ell}$ is the ℓ th power residue, and $m_{j j}$ is defined by the relation $\sum_{i} e_{i} m_{i j}=0$. Then from the ℓ-th power reciprocity, M_{F} is symmetric. There is an algorithm to determine the number of $s \times s$ symmetric matrices with rank r over \mathbb{F}_{ℓ} from the following proposition.

Proposition 4.1. Let M be a symmetric $u \times u$ matrix of rank r over \mathbb{F}_{ℓ}. Let

$$
M_{1}=\left[\begin{array}{cc}
M & V \\
V^{T} & v
\end{array}\right],
$$

with $V \in \mathbb{F}_{\ell}^{u}, v \in \mathbb{F}_{\ell}$. Then among all possible M_{1},
(i) ℓ^{r} of them have rank r.
(ii) $\ell^{r}(\ell-1)$ of them have rank $r+1$.
(iii) $\ell^{u+1}-\ell^{r+1}$ of them have rank $r+2$.

Let $\mathbf{e}=\left(1, e_{2}, \ldots, e_{t}\right)$ with $1 \leq e_{i}<\ell$ and E the set of all such \mathbf{e} 's. Let

$$
\begin{aligned}
& \mathbf{I}_{t, \mathbf{e}, n}:=\left\{\mathrm{F}=\mathrm{k}(\sqrt[\ell]{D}): D=P_{1} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}, \operatorname{deg} P_{1}+\cdots+\operatorname{deg} P_{t}=n, \ell \nmid \operatorname{deg} D\right\}, \\
& \mathbf{R}_{t, \mathbf{e}, n}:=\left\{\mathrm{F}=\mathrm{k}(\sqrt[\ell]{D}): D=P_{1} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}, \operatorname{deg} P_{1}+\cdots+\operatorname{deg} P_{t}=n, \ell \mid \operatorname{deg} D\right\}, \\
& \mathbf{I}_{t, \mathbf{e}, u, n}:=\left\{\mathrm{F} \in \mathbf{I}_{t, \mathbf{e}, n}: \operatorname{rank}\left(M_{\mathrm{F}}\right)=u\right\}, \\
& \mathbf{R}_{t, \mathbf{e}, u, n}:=\left\{F \in \mathbf{R}_{t, \mathbf{e}, n}: \operatorname{rank}\left(M_{\mathrm{F}}\right)=u\right\} .
\end{aligned}
$$

Here 'I' (resp. 'R') means imaginary (resp. real). Then

$$
\left|\mathbf{A}_{t ; n}\right| \sim \sum_{\mathbf{e} \in E}\left|\mathbf{I}_{t, \mathbf{e}, n}\right|, \quad\left|\mathbf{B}_{t ; n}\right| \sim \sum_{\mathbf{e} \in E}\left|\mathbf{R}_{t, \mathbf{e}, n}\right|,
$$

and

$$
\left|\mathbf{A}_{t, e ; n}\right| \sim \sum_{\mathbf{e} \in E}\left|\mathbf{I}_{t, \mathbf{e}, t-1-e, n}\right|, \quad\left|\mathbf{B}_{t, e ; n}\right| \sim \sum_{\mathbf{e} \in E}\left|\mathbf{R}_{t, \mathbf{e}, t-1-e, n}\right| .
$$

When $\mathbf{e} \neq(1,1, \ldots, 1)$, then the linear equations

$$
x_{1}+e_{2} x_{2}+\cdots+e_{t} x_{t} \equiv a \bmod \ell
$$

and

$$
x_{1}+x_{2}+\cdots+x_{t}=n
$$

are not dependent. Thus, for $\mathbf{e} \neq(1, \ldots, 1)$,

$$
\left|\mathbf{I}_{t, \mathbf{e}, n}\right| \sim \frac{\ell-1}{\ell} p(n, t) \quad \text { and } \quad\left|\mathbf{R}_{t, \mathbf{e}, n}\right| \sim \frac{1}{\ell} p(n, t) .
$$

If $\mathbf{e}=(1, \ldots, 1)$, then

$$
\left|\mathbf{I}_{t, \mathbf{e}, n}\right|= \begin{cases}p(n, t) & \text { if } \ell \nmid n, \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left|\mathbf{R}_{t, \mathbf{e}, n}\right|= \begin{cases}p(n, t) & \text { if } \ell \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\left|\mathbf{A}_{t ; n}\right| \sim \begin{cases}\left(\frac{(\ell-1)}{\ell}\left((\ell-1)^{t-1}-1\right)+1\right) \frac{q^{n}(\log n)^{t-1}}{(t-1)!n} & \text { if } \ell \nmid n, \\ \frac{(\ell-1)}{\ell}\left((\ell-1)^{t-1}-1\right)^{\frac{q^{n}(\log n)!1}{(t-1)!n}} & \text { if } \ell \mid n,\end{cases}
$$

and

$$
\left|\mathbf{B}_{t ; n}\right| \sim \begin{cases}\left(\frac{1}{\ell}\left((\ell-1)^{t-1}-1\right)+1\right) \frac{q^{n}(\log n)^{t-1}}{(t-1)!n} & \text { if } \ell \mid n, \\ \frac{1}{\ell}\left((\ell-1)^{t-1}-1 \frac{q^{n}(\log n)^{t-1}}{(t-1)!n}\right. & \text { if } \ell \nmid n .\end{cases}
$$

For $N, N^{\prime} \in P(n, t)$, we say that N and N^{\prime} are equivalent if $\left(\frac{P_{j}}{P_{i}}\right)=\left(\frac{P_{j}^{\prime}}{P_{i}^{\prime}}\right)$, where $N=P_{1} \cdots P_{t}$ and $N^{\prime}=P_{1}^{\prime} \cdots P_{t}^{\prime}$. Let $\mathcal{N}(N)$ be the set of polynomials in $P(n, t)$, which are equivalent to N. Then it can be shown that (similar to §3.1)

$$
|\mathcal{N}(N)| \sim \ell^{-\frac{t^{2}-t}{2}} \frac{q^{n}(\log n)^{t-1}}{(t-1)!n}
$$

For $\mathbf{e}=\left(1, e_{2}, \ldots, e_{t}\right)$ and $N=P_{1} \cdots P_{t}$ we write

$$
N^{\mathrm{e}}:=P_{1} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}} .
$$

Let

$$
\mathcal{N}_{I}^{\mathrm{e}}(N):=\left\{N_{1} \in \mathcal{N}(N): \ell \nmid \operatorname{deg} N_{1}^{\mathrm{e}}\right\}
$$

and

$$
\mathcal{N}_{R}^{\mathrm{e}}(N):=\left\{N_{1} \in \mathcal{N}(N): \ell \mid \operatorname{deg} N_{1}^{\mathrm{e}}\right\}
$$

Then

$$
\left|\mathcal{N}_{I}^{\mathrm{e}}(N)\right| \sim \frac{\ell-1}{\ell}|\mathcal{N}(N)|
$$

and

$$
\left|\mathcal{N}_{R}^{\mathrm{e}}(N)\right| \sim \frac{1}{\ell}|\mathcal{N}(N)|
$$

if $\mathbf{e} \neq(1, \ldots, 1)$. If $\mathbf{e}=(1, \ldots, 1)$, then

$$
\left|\mathcal{N}_{I}^{\mathrm{e}}(N)\right|=\left\{\begin{array}{lc}
|\mathcal{N}(N)| & \text { if } \ell \nmid \operatorname{deg} N, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\left|\mathcal{N}_{R}^{\mathrm{e}}(N)\right|=\left\{\begin{array}{lc}
|\mathcal{N}(N)| & \text { if } \ell \mid \operatorname{deg} N \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $N(t-1, u)$ be the number of $(t-1) \times(t-1)$ symmetric matrices with rank u. Then

$$
\left|\mathbf{I}_{t, \mathbf{e}, u, n}\right| \sim N(t-1, u)\left|\mathcal{N}_{I}^{\mathrm{e}}(N)\right|,
$$

and

$$
\left|\mathbf{R}_{t, \mathbf{e}, u, n}\right| \sim N(t-1, u)\left|\mathcal{N}_{R}^{\mathrm{e}}(N)\right| .
$$

Therefore we have

$$
\left|\mathbf{A}_{t, \nu ; n}\right| \sim \begin{cases}\left(\frac{(\ell-1)}{\ell}\left((\ell-1)^{t-1}-1\right)+1\right) N(t-1, t-1-\nu)|\mathcal{N}(N)| & \text { if } \ell \nmid n \\ \frac{(\ell-1)}{\ell}\left((\ell-1)^{t-1}-1\right) N(t-1, t-1-\nu)|\mathcal{N}(N)| & \text { if } \ell \mid n\end{cases}
$$

and

$$
\left|\mathbf{B}_{t, \nu ; n}\right| \sim \begin{cases}\left(\frac{1}{\ell}\left((\ell-1)^{t-1}-1\right)+1\right) N(t-1, t-1-\nu)|\mathcal{N}(N)| & \text { if } \ell \mid n, \\ \frac{1}{\ell}\left((\ell-1)^{t-1}-1\right) N(t-1, t-1-\nu)|\mathcal{N}(N)| & \text { if } \ell \nmid n .\end{cases}
$$

Then the densities $d_{t, e, n}=\frac{\left|\mathbf{A}_{t, e ; n}\right|}{\left|\mathbf{A}_{t ; n}\right|}$ and $d_{t, e, n}^{\prime}=\frac{\left|\mathbf{B}_{t, e ; n}\right|}{\left|\mathbf{B}_{t ; n}\right|}$ are

$$
\begin{equation*}
d_{t, e, n} \sim d_{t, e, n}^{\prime} \sim N(t-1, t-1-e) \ell^{-\frac{t^{2}-t}{2}} \tag{4.3}
\end{equation*}
$$

The right hand side of (4.3) is just the density $g(t, e)$ of $(t-1) \times(t-1)$ symmetric matrices which have rank $t-1-e$. We will compute the $\operatorname{limit}_{\lim }^{t \rightarrow \infty}$ $g(t, e)$. From Proposition 4.1, we see that

$$
g(t+1, e)=\frac{1}{\ell^{e}} g(t, e-1)+\frac{\ell-1}{\ell^{1+e}} g(t, e)+\frac{\ell^{1+e}-1}{\ell^{1+e}} g(t, e+1), \text { if } e>0
$$

and

$$
g(t+1,0)=\frac{\ell-1}{\ell} g(t, 0)+\frac{\ell-1}{\ell} g(t, 1) .
$$

Let $G(t)=(g(t, 0), g(t, 1), \ldots, g(t, i), \ldots)$. One can show by induction that $G(t)$ converges to, as $t \rightarrow \infty$,

$$
G=\alpha\left(1, \frac{1}{\ell-1}, \ldots, \frac{1}{\prod_{i=1}^{k}\left(\ell^{i}-1\right)}, \ldots\right)
$$

where

$$
\alpha^{-1}=1+\frac{1}{\ell-1}+\frac{1}{(\ell-1)\left(\ell^{2}-1\right)}+\cdots
$$

Now assume that $q \equiv 3 \bmod 4$ and $\ell=2$. In order that $\mathbf{A}_{t ; n} \neq \emptyset\left(\right.$ resp. $\left.\mathbf{B}_{t ; n} \neq \emptyset\right)$, n must be odd (resp. even). Now the rest are almost the same as the classical case replacing ' $p \equiv 1 \bmod 4$ ' (resp. $p \equiv 3 \bmod 4)$ by ' $\operatorname{deg} P$ is even' (resp. odd). The result will be;

$$
\begin{aligned}
& \left|\mathbf{A}_{t, e ; n}\right| \sim \sum_{\substack{1 \leq d \leq t \\
d o d d}} N(t-1, d-1, t-1-e)\binom{t}{d} 2^{-\frac{t^{2}+t}{2}} \frac{q^{n}(\log n)^{t-1}}{(t-1)!n} \quad \text { for } n \text { odd, }, \\
& \left|\mathbf{B}_{t, e ; n}\right| \sim \sum_{\substack{1 \leq d \leq t \\
d \text { even }}} N(t-1, d-1, t-1-e)\binom{t}{d} 2^{-\frac{t^{2}+t}{2}} \frac{q^{n}(\log n)^{t-1}}{(t-1)!n} \quad \text { for } n \text { even, }
\end{aligned}
$$

and

$$
\begin{aligned}
& d_{t, e, n} \sim \sum_{\substack{1 \leq d \leq t \\
d o d d}} N(t-1, d-1, t-1-e)\binom{t}{d} 2^{-\frac{t^{2}+t}{2}} \quad \text { for } n \text { odd }, \\
& d_{t, e, n}^{\prime} \sim \sum_{\substack{1 \leq d \leq t \\
d \text { deven }}} N^{\prime}(t-1, d-1, t-1-e)\binom{t}{d} 2^{-\frac{t^{2}+t}{2}} \quad \text { for } n \text { even }
\end{aligned}
$$

where $N(s, d, r)$ is the number of $s \times s$ matrices $M=\left(m_{i j}\right)$ over \mathbb{F}_{2} with $m_{i j} \neq m_{j i}$ for $1 \leq i<j \leq d$ and with $m_{i j}=m_{j i}$ for $d+1 \leq i \leq s$ and $1 \leq j \leq s$ such that $\operatorname{rank}(M)=r$, and $N^{\prime}(s, d, r)$ is the number of $(s+1) \times s$ matrices $\overline{M^{\prime}}$ whose first column is the transpose of the vector $(1, \ldots, 1,0, \ldots, 0)$ with first d entries 1 and the rest part is an $s \times s$ matrix $M^{\prime}=\left(m_{i j}^{\prime}\right)$ over \mathbb{F}_{2} with $m_{i j}^{\prime} \neq m_{j i}^{\prime}$ for $1 \leq i<j \leq d$ and $m_{i j}^{\prime}=m_{j i}^{\prime}$ for $d+1 \leq i \leq s$ and $1 \leq j \leq s$ such that $\operatorname{rank}\left(\overline{M^{\prime}}\right)=r$. Then as in [G5, §4, §5],

$$
G(t):=\left(d_{t, 0,2 n+1}, d_{t, 1,2 n+1}, \ldots\right) \quad \text { and } \quad G^{\prime}(t):=\left(d_{t, 0,2 n}^{\prime}, d_{t, 1,2 n}^{\prime}, \ldots\right)
$$

converge to $\frac{Y}{2}$ and $\frac{Y^{\prime}}{2}$ as $t \rightarrow \infty$, where

$$
Y=\left[\prod_{m=1}^{\infty}\left(1-2^{-m}\right)\right]^{-1}\left(1,2, \ldots, 2^{-i^{2}} \prod_{m=1}^{i}\left(1-2^{-m}\right)^{-2}, \ldots\right)
$$

and

$$
Y^{\prime}=\left[\prod_{m=2}^{\infty}\left(1-2^{-m}\right)\right]\left(1,2 / 3, \ldots, 2^{-i(i+1)} \prod_{m=1}^{i}\left(1-2^{-m}\right)^{-1}\left(1-2^{-m-1}\right)^{-1}, \ldots\right)
$$

5. Generalization to ℓ^{m}-cyclic function fields

In this section we consider ℓ^{m}-cyclic extensions F of k and the following question as in [G6] : how likely is $\lambda_{2}^{+}(\mathrm{F})=0, \lambda_{2}^{+}(\mathrm{F})=1, \lambda_{2}^{+}(\mathrm{F})=2, \ldots$? When $m=1$, its answer is already obtained in $\S 4$. So we assume $m \geq 2$. Assume that we are given integers m_{1}, \ldots, m_{t} such that $m=m_{1} \geq m_{2} \geq \cdots \geq m_{t} \geq 1$. Let Δ be the abelian group of type $\left(\ell^{m_{2}}, \ldots, \ell^{m_{t}}\right)$. (When $t=1$, we let Δ be the trivial group.)

Assume first that $r>1$, that is $\ell \nmid q-1$. Write $\mathbf{A}(\Delta)$ for the set of all F as above such that the narrow genus group $\mathcal{C} l^{+}(\mathrm{F})_{\ell} / \mathcal{C} l^{+}(\mathrm{F})_{\ell}^{1-\sigma}$ is isomorphic to Δ, and

$$
\begin{align*}
& \mathbf{A}(\Delta)_{n}:=\{\mathrm{F} \in \mathbf{A}(\Delta): \operatorname{deg}(\operatorname{cond}(\mathrm{F}))=n\} \tag{5.1}\\
& \mathbf{A}_{e}(\Delta):=\left\{\mathrm{F} \in \mathbf{A}(\Delta): \lambda_{2}^{+}(\mathrm{F})=e\right\} \tag{5.2}\\
& \mathbf{A}_{e}(\Delta)_{n}:=\mathbf{A}_{e}(\Delta) \cap \mathbf{A}(\Delta)_{n} \tag{5.3}
\end{align*}
$$

Then we define the density $d_{e}(\Delta)$ of $\mathbf{A}_{e}(\Delta)$ in $\mathbf{A}(\Delta)$ by

$$
\begin{equation*}
d_{e}(\Delta):=\lim _{n \rightarrow \infty} \frac{\left|\mathbf{A}_{e}(\Delta)_{r n}\right|}{\left|\mathbf{A}(\Delta)_{r n}\right|} . \tag{5.4}
\end{equation*}
$$

It is easy to see that for any ordering $\left(m_{j_{i}}\right)$ of m_{1}, \ldots, m_{t} and monic irreducible polynomials P_{1}, \ldots, P_{t} with $q^{\operatorname{deg} P_{i}} \equiv 1 \bmod \ell^{m_{j_{i}}}$, there are

$$
\frac{\prod_{i=1}^{t}\left(\ell^{m_{j_{i}}}-\ell^{m_{j_{i}}-1}\right)}{\left(\ell^{m}-\ell^{m-1}\right)}=\prod_{i=2}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)
$$

distinct fields F in $\mathbf{A}(\Delta)$ such that the conductor of F is $P_{1} \cdots P_{t}$ and each P_{i} has the ramification index $\ell^{m_{j_{i}}}$ in F. So we have

$$
\begin{equation*}
\left|\mathbf{A}(\Delta)_{r n}\right| \sim\left[\prod_{i=2}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)\right]\left(\sum_{\left(m_{j_{i}}\right)} \sum_{\substack{\operatorname{deg}\left(P_{1} \cdots P_{t}\right)=r n \\ q^{\operatorname{deg}} P_{i} \equiv 1 \bmod \ell^{m_{j}}}}^{\left(m_{j_{i}}\right)} 1\right), \tag{5.5}
\end{equation*}
$$

where $\sum_{\left(m_{j_{i}}\right)}$ denotes a sum over all distinguishable orderings of m_{1}, \ldots, m_{t}, and $\sum^{\left(m_{j_{i}}\right)}$ is a sum for a fixed reordering $\left(m_{j_{i}}\right)$. For any positive integer k, write r_{k} for the smallest positive integer such that $\ell^{k} \mid q^{r_{k}}-1$. Then for any monic irreducible polynomial P in \mathbb{A}, we have $q^{\operatorname{deg} P} \equiv 1 \bmod \ell^{k}$ if and only if $r_{k} \mid \operatorname{deg} P$. Following the method of [Kn, §9], we have

$$
\begin{equation*}
\sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ \text { deg } \\ q^{\operatorname{deg}} P_{i} \equiv 1 \bmod \ell^{m} j_{i}}}^{\left(m_{j_{i}}\right)} 1=\sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ r_{m_{j}} \mid \operatorname{ldeg} P_{i}}}^{\left(m_{\left.j_{i}\right)}\right.} 1 \sim \frac{q^{r n}(\log n)^{t-1}}{(t-1)!\left(r_{m_{1}} \cdots r_{m_{t}}\right) n} . \tag{5.6}
\end{equation*}
$$

Let $v_{w}=\left|\left\{m_{i}: m_{i}=w\right\}\right|$ for $1 \leq w \leq m$. Since there are $\frac{t!}{\left(v_{1}!\cdots\left(v_{m}!\right)\right.}$ distinguishable orderings $\left(m_{j_{i}}\right)$ of m_{1}, \ldots, m_{t}, by (5.5) and (5.6), we have

$$
\begin{equation*}
\left|\mathbf{A}(\Delta)_{r n}\right| \sim \frac{t \prod_{i=2}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{\left(r_{m_{1}} \cdots r_{m_{t}}\right)\left(v_{1}!\right) \cdots\left(v_{m}!\right)} \frac{q^{r n}(\log n)^{t-1}}{n} \tag{5.7}
\end{equation*}
$$

Now we are going to obtain an asymptotic formula for $\mathbf{A}_{e}(\Delta)_{r n}$. Following the arguments in [F, §5, Theorem 5.3], one can associate a $t \times(t-1)$ matrix $\bar{M}_{\mathrm{F}}^{\prime}$ to F such that $\lambda_{2}^{+}(\mathrm{F})=t-1-\operatorname{rank}\left(\bar{M}_{\mathrm{F}}^{\prime}\right)$. Moreover, as in [G6, §2], one can replace the matrix $\bar{M}_{\mathrm{F}}^{\prime}$ with a $t \times t$ matrix \bar{M}_{F} such that $\operatorname{rank}\left(\bar{M}_{\mathrm{F}}^{\prime}\right)=\operatorname{rank}\left(\bar{M}_{\mathrm{F}}\right)$. Especially, if $\mathrm{F} \in \mathbf{A}_{e}(\Delta)$, then the matrix \bar{M}_{F} has rank $t-1-e$. Then $\left|A_{e}(\Delta)_{r n}\right|$ can be estimated as

$$
\begin{equation*}
\left|\mathbf{A}_{e}(\Delta)_{r n}\right| \sim \sum_{\substack{\Gamma \\ \operatorname{rank}(\Gamma)=t-1-e}} \sum_{\substack{\left(m_{j_{i}}\right)}} \sum_{\substack{\operatorname{deg}\left(P_{1} \cdots P_{t}\right)=r n \\ m_{m_{j}}}}^{\left(m_{j_{i}}\right)} \sum_{\substack{\mathrm{F} \\ \operatorname{ldg} P_{i}}} \delta_{\Gamma}, \tag{5.8}
\end{equation*}
$$

where the first sum is over all $t \times t$ matrices Γ over \mathbb{F}_{ℓ} with rank $t-1-e$. The fourth sum runs over all $\mathrm{F} \in \mathbf{A}(\Delta)$ with conductor $P_{1} \cdots P_{t}$ such that each P_{i} has ramification index $\ell^{m_{j_{i}}}$, and $\delta_{\Gamma}=1$ if $\bar{M}_{\mathrm{F}}=\Gamma$ and $\delta_{\Gamma}=0$ otherwise. If the ordering $\left(m_{j_{i}}\right)$ has $m_{j_{i}}=m_{i}$ for $1 \leq i \leq t$, then \bar{M}_{F} has the following form:

$$
M_{\mathrm{F}}=\left(\begin{array}{cc}
M_{1} & M_{2} \tag{5.9}\\
O & D
\end{array}\right)
$$

where M_{1} is a $v_{m} \times v_{m}$ matrix over \mathbb{F}_{ℓ} with zero row sums, M_{2} is a $v_{m} \times\left(t-v_{m}\right)$ matrix over \mathbb{F}_{ℓ}, O is the $\left(t-v_{m}\right) \times v_{m}$ zero matrix and D is a $\left(t-v_{m}\right) \times\left(t-v_{m}\right)$ diagonal matrix.

Let Γ be a $t \times t$ matrix over \mathbb{F}_{ℓ} such that Γ has the same form as the matrix on the right hand side of (5.9), and let

$$
N(\Gamma)=\sum_{\substack{\operatorname{deg}\left(P_{1} \ldots P_{t}\right)=r n \\ r m_{i} i \operatorname{deg} P_{i}}} \sum_{\substack{\mathrm{F} \\ \operatorname{cond}(\mathrm{~F})=P_{1} \ldots P_{t}}} \delta_{\Gamma},
$$

where $\delta_{\Gamma}=1$ if $\bar{M}_{\mathrm{F}}=\Gamma$ and $\delta_{\Gamma}=0$ otherwise. Following the idea of [G6, §2] and adopting the similar method as in $\S 3.1$, we get

Proposition 5.1. We have

$$
N(\Gamma) \sim \frac{\left(\ell^{m}-\ell^{m-1}\right)^{v_{m}-1} \prod_{=v_{m}+1}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{(t-1)!\left(r_{m_{1}} \cdots r_{m_{t}}\right) \ell^{v_{m}(t-1)+t-v_{m}}} \frac{q^{r n}(\log n)^{t-1}}{n}
$$

and so

$$
\begin{align*}
\left|\mathbf{A}_{e}(\Delta)_{r n}\right| \sim & \frac{t N\left(t, v_{m}, t-1-e\right)\left(\ell^{m}-\ell^{m-1}\right)^{v_{m}-1} \prod_{i=v_{m}+1}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{\left(r_{m_{1}} \cdots r_{m_{t}}\right)\left(v_{1}!\right) \cdots\left(v_{n}!\right) \ell^{v_{m}(t-1)+t-v_{m}}} \\
& \times \frac{q^{r n}(\log n)^{t-1}}{n}, \tag{5.10}
\end{align*}
$$

where $N\left(t, v_{m}, t-1-e\right)$ denote the number of Γ 's as above with $\operatorname{rank}(\Gamma)=t-1-e$.
Finally, by (5.7) and (5.10), we have

$$
\begin{equation*}
d_{e}(\Delta)=\frac{N\left(t, v_{m}, t-1-e\right)}{\ell^{v_{m}(t-1)+t-v_{m}}} \quad \text { for } 0 \leq e \leq t-1 \tag{5.11}
\end{equation*}
$$

We note that the number $N\left(t, v_{m}, t-1-e\right)$ can be computed as in Lemma 2.4 and the remark following it in [G6].

Let \mathbf{B}_{t} be the set of all ℓ^{m}-cyclic extensions F of k such that t finite primes ramify in F / k, and

$$
\begin{align*}
& \mathbf{B}_{t ; n}:=\left\{\mathrm{F} \in \mathbf{B}_{t}: \operatorname{deg}(\operatorname{cond}(\mathrm{F}))=n\right\}, \tag{5.12}\\
& \mathbf{B}_{t, e}:=\left\{\mathrm{F} \in \mathbf{B}_{t}: \lambda_{2}^{+}(\mathrm{F})=e\right\} \tag{5.13}\\
& \mathbf{B}_{t, e ; n}:=\mathbf{B}_{t, e} \cap \mathbf{B}_{t ; n} . \tag{5.14}
\end{align*}
$$

Then as in [G6] we see that the density $d_{t, e}:=\lim _{n \rightarrow \infty} \frac{\left|\mathbf{B}_{t, e, r n}\right|}{\left|\mathbf{B}_{t ; r n}\right|}$ is given by

$$
\begin{equation*}
d_{t, e}=\frac{\sum_{u=1}^{t} \frac{N(t, u, t-1-e)}{\ell^{u}(t-1)+t-u}\binom{t}{u} \frac{(m-1)^{t-u}}{m^{t}}}{1-\left(\frac{m-1}{m}\right)^{t}} \tag{5.15}
\end{equation*}
$$

and its limit $d_{\infty, e}:=\lim _{t \rightarrow \infty} d_{t, e}=0$.
Now suppose that $r=1$. There are many cases to consider. Let $\ell^{a}=\left(\ell^{m}, q-1\right)$. For each $b=0,1, \ldots, a$, we have to consider ℓ^{m}-cyclic extensions F whose ramification index at ∞ is ℓ^{b}. Let p_{b} be the asymptotic probability of ℓ^{m}-cyclic extensions F of k with ramification index at ∞ to be ℓ^{b}.

Write $\mathbf{A}^{(b)}(\Delta)$ for the set of all ℓ^{m}-cyclic extensions F of k such that the ramification index at ∞ is ℓ^{b} and the narrow genus group $\mathcal{C} l^{+}(\mathrm{F})_{\ell} / \mathcal{C} l^{+}(\mathrm{F})_{\ell}^{1-\sigma}$ is isomorphic to Δ. Define $\mathbf{A}^{(b)}(\Delta)_{n}, \mathbf{A}_{e}^{(b)}(\Delta)$ and $\mathbf{A}_{e}^{(b)}(\Delta)_{n}$ similarly as in (5.1), (5.2) and (5.3), respectively. Then the analog of (5.7) is

$$
\begin{equation*}
\left|\mathbf{A}^{(b)}(\Delta)_{n}\right| \sim \frac{p_{b} t \prod_{i=1}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{\left(r_{m_{1}} \cdots r_{m_{t}}\right)\left(v_{1}!\right) \cdots\left(v_{m}!\right)\left(\ell^{m}-\ell^{m-1}\right)} \frac{q^{n}(\log n)^{t-1}}{n} \tag{5.16}
\end{equation*}
$$

and if $\ell>2$, the analog of (5.10) is

$$
\begin{align*}
\left|\mathbf{A}_{e}^{(b)}(\Delta)_{n}\right| \sim & \frac{p_{b} t N\left(t, v_{m}, t-1-e\right)\left(\ell^{m}-\ell^{m-1}\right)^{v_{m}-1} \prod_{i=v_{m}+1}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{\left(r_{m_{1}} \cdots r_{m_{t}}\right)\left(v_{1}!\right) \cdots\left(v_{n}!\right) \ell^{v_{m}(t-1)+t-v_{m}}} \\
& \times \frac{q^{n}(\log n)^{t-1}}{n} . \tag{5.17}
\end{align*}
$$

When $\ell=2$, as in [G6, $\S 4]$, the analog of (5.9) is

$$
M_{\mathrm{F}}=\left(\begin{array}{cc}
M_{1} & M_{2} \tag{5.18}\\
O & D
\end{array}\right)
$$

where M_{1} is a symmetric $v_{m} \times v_{m}$ matrix over \mathbb{F}_{2} with zero row sums, M_{2} is a $v_{m} \times\left(t-v_{m}\right)$ matrix over \mathbb{F}_{2}, O is the $\left(t-v_{m}\right) \times v_{m}$ zero matrix and D is the $\left(t-v_{m}\right) \times\left(t-v_{m}\right)$ diagonal matrix with each diagonal entry equal to the sum of the entries in the corresponding column of M_{2}. Let $N^{\prime}(t, u, s)$ denote the number of matrices Γ of the form specified on the right side of (5.18) such that $\operatorname{rank}(\Gamma)=s$, where $0 \leq s \leq t-1$. Then the analog of (5.10) is

$$
\begin{align*}
\left|\mathbf{A}_{e}^{(b)}(\Delta)_{n}\right| \sim & \frac{p_{b} t N^{\prime}(t, u, t-1-e)\left(\ell^{m}-\ell^{m-1}\right)^{v_{m}-1} \prod_{i=v_{m}+1}^{t}\left(\ell^{m_{i}}-\ell^{m_{i}-1}\right)}{\left.\left(r_{m_{1}} \cdots r_{m_{t}}\right)\left(v_{1}!\right) \cdots\left(v_{n}!\right)\right)^{\frac{v_{m}\left(v_{m}-1\right)}{2}+v_{m}\left(t-v_{m}\right)}} \\
& \times \frac{q^{n}(\log n)^{t-1}}{n} . \tag{5.19}
\end{align*}
$$

Thus the density $d_{e}^{(b)}(\Delta):=\lim _{n \rightarrow \infty} \frac{\left|\mathbf{A}_{e}^{(b)}(\Delta)_{n}\right|}{\left|\mathbf{A}^{(b)}(\Delta)_{n}\right|}$ is given by the formula (5.11) if $\ell>2$, and if $\ell=2$,

$$
d_{e}^{(b)}(\Delta)=\frac{N^{\prime}\left(t, v_{m}, t-1-e\right)}{\ell^{\frac{v_{m}\left(v_{m}-1\right)}{2}+v_{m}\left(t-v_{m}\right)}} .
$$

Write $\mathbf{B}_{t}^{(b)}$ for the set of all ℓ^{m}-cyclic extensions F of k such that the ramification index at ∞ is ℓ^{n} and t finite primes ramify in F / k. Define $\mathbf{B}_{t ; n}^{(b)}, \mathbf{B}_{t, e}^{(b)}$ and $\mathbf{B}_{t, e ; n}^{(b)}$ similarly as in (5.12), (5.13) and (5.14), respectively. Then we see that the density $d_{t, e}^{(b)}:=\lim _{n \rightarrow \infty} \frac{\left|\mathbf{B}_{t, e, j}^{(b)}\right|}{\left|\mathbf{B}_{t ; n}^{(b)}\right|}$ is given by the formula (5.15) if $\ell>2$, and if $\ell=2$,

$$
d_{t, e}^{(b)}=\frac{\sum_{u=1}^{t} \frac{N^{\prime}(t, u, t-1-e)}{\ell^{\frac{u(u-1)}{2}+u(t-u)}}\binom{t}{u} \frac{(m-1)^{t-u}}{m^{t}}}{1-\left(\frac{m-1}{m}\right)^{t}}
$$

and its limit $d_{\infty, e}^{(b)}:=\lim _{t \rightarrow \infty} d_{t, e}^{(b)}=0$.
Remark 5.2. Since $G=\operatorname{Gal}(\mathrm{F} / \mathrm{k})$ is cyclic of order ℓ^{m}, there is a unique subgroup H of order ℓ^{a}, and the inertia group G_{∞} at ∞ is contained in H. Let $\mathrm{F}_{1}=\mathrm{F}^{H}$. Then ∞ splits completely in F_{1}, and F is a cyclic extension of F_{1} of order ℓ^{a}. Then $\mathrm{F}=\mathrm{F}_{1}(\sqrt[\ell^{a}]{\alpha})$ for some $\alpha \in \mathcal{O}_{\mathrm{F}_{1}}$. Thus the asymptotic probability p_{b} seems to be $\frac{\ell^{b}-\ell^{b-1}}{\ell^{a}}$.

References

[A] B. Angles, Class field towers of global function fields. Drinfeld modules, modular schemes and applications. World Scientific (1997), 261-271.
[BK] S. Bae and J. Koo, Genus theory for function fields. J. Austral. MAth. Soc. (Ser. A) 60 (1996), 301-310.
[F] A. Frohlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields. American Mathematical Society, Providence, R.I. (1983).
[G1] F. Gerth, Number fields with prescribed ℓ-class groups. Proc. AMS 49 (1975), 284-288.
[G2] , Asymptotic behavior of number fields with prescribed ℓ-class numbers. J. Number Theory 17 (1983), 191-203.
[G3] , Counting certain number fields with prescribed ℓ-class numbers. J. reine angew. Math. 337 (1982), 195-207.
[G4] , An application of matrices over finite fields to algebraic number theory. Math. Comp. 41 (1983), 229-234.
[G5] , The 4-class ranks of quadratic fields. Invent. Math. 77 (1984), 489-515.
[G6] , Densities for certain ℓ-ranks in cyclic fields of degree ℓ^{n}. Compos. Math. 60 (1986), 295-322.
[G7] , Densities for ranks of certain parts of p-class groups. Proc. Amer. Math. Soc. 99 (1987), 1-8.
[Kn] J. Knopfmacher, Analytic arithmetic of algebraic function fields. Marcel Decker Inc., New York-Basel (1979).
[R] M. Rosen, Number theory in function fields. GTM vol. 210, Springer (2001).
[W] C. Wittman, ℓ-Class groups of cyclic function fields of degree ℓ. Finite fields and their applications 13 (2007), 327-347.

Department of Mathematics, KAIST, Taejon 305-701, Korea
E-mail address: shbae@kaist.ac.kr
Department of Mathematics Education, Chungbuk National University, Cheongju 361-763, Korea E-mail address: hyjung@chungbuk.ac.kr

[^0]: 2000 Mathematics Subject Classification. 11R58, 11R29, 11R45.
 *Corresponding author.
 This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) (No. R01-2006-000-10320-0).

