-RANKS OF CLASS GROUPS OF FUNCTION FIELDS
SUNGHAN BAE AND HWANYUP JUNG*

ABSTRACT. In this paper we give asymptotic formulas for the number of ¢-cyclic
extensions of the rational function field k = F,(7") with prescribed ¢-class numbers
inside some cyclotomic function fields, and density results for ¢-cyclic extensions of

k with certain properties on the ideal class groups.

0. INTRODUCTION

Let Q be the field of rational numbers and ¢ a prime number. In 1980’s F. Gerth
studied extensively the asymptotic behavior of (-cyclic extensions of Q with certain
conditions on the ideal class groups and ramified primes. Let us recall Gerth’s results
more precisely. Write N, for the number of /-cyclic extensions of Q with conductor
< x and f-class number ¢*. In [G2], it is shown that to obtain an asymptotic formula
for N, it suffices to count the number M, ;, of f-cyclic extensions of Q whose
conductor is < z and divisible by exactly s + 1 distinct primes, and whose /-class
number is ¢°. In [G3], a matrix M over F, is associated to each (-cyclic extension F
of Q with s+ 1 ramified primes such that the ¢-class number of F is £ precisely when
rank(M) = s, and an asymptotic formula for N, is given by studying the asymptotic
behavior of the number of such matrices. In [G5], for ¢ = 2, an effective algorithm
for computing the density d;. (resp. d;.) of the quadratic fields with 4-class rank
e (in the narrow sense) in the set of imaginary (resp. real) quadratic fields with ¢
ramified primes, and explicit formulas for their limiting densities do e = limy_ o0 dy e
and d, . = lim; . d} . are given. An explicit formula for the limiting density due,
which depends only on ¢ and e, is given in [G7] for arbitrary prime number ¢. Similar
results for ¢"-cyclic extensions of Q with prescribed (narrow) genus groups are given
in [G6).

Let k = F,(7") be the rational function field over the finite field F,. Let ¢ be a
prime number different from the characteristic of k and r be the smallest positive
integer such that ¢|¢" — 1. In this article we study analogous problems for ¢-cyclic
extensions of k inside some cyclotomic function fields. The content of this paper is as
follows. In §1 we recall several asymptotic formulas in A = F,[7"], which can be found
in [Kn] and [R]. In §2 we recall the genus theory for function fields [BK] and extend
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some results of Wittmann [W] to the narrow case. In §3.1 we give an asymptotic
formula for the number N ,,, of /-cyclic extensions F inside some cyclotomic function
fields with ¢-class number ¢° and with conductor N of degree rn in the case r > 1.
Similar results of §3.1 in the case r = 1 are given in §3.2. In §4 we give the density
for {-ranks in /-cyclic function fields. In §5 we give a generalization of §4 to ¢™-cyclic
extensions of k inside some cyclotomic function fields.

1. SOME ASYMPTOTIC FORMULAS IN A = [F [T

In this section we recall several asymptotic formulas in A = F, [T, which will be
used later in this paper. For the details and proofs we refer to [Kn| and [R].

e P(n):= the set of monic irreducible polynomials in A of degree n, and p(n) =
|P(n)|. Then
n/2

_q" q
p(n) = n+0< "

) ([Kn, Chap. 8], [R, Theorem 2.2]). (1.1)

e P(n,k):= the set of all square-free monic polynomials of degree n with k-
irreducible factors, and p(n, k) = |P(n, k)|. Then

k—2

k—1 n
(¢ osn

oy = T

e P.(rn,k):= the set of all square-free monic polynomials of degree rn with k-

) ([Kn, Theorem 9.9]). (1.2)

irreducible factors whose degrees are divisible by r, and p,.(rn, k) = |P.(rn, k)|.
Following the method of [Kn, §9],

pr(rn, k) = ¢ (logn)"! O<M>. (1.3)

T m
Intuitively, (1.3) follows from (1.2) and that the probability that a prime whose degree
is divisible by r is % For A, M € A, relatively prime,

e P(n, A, M):= the set of monic irreducible polynomials of degree n, which are

congruent to A modulo M, and p(n, A, M) = |P(n, A, M)|. Then

n n/2

q q
P, A M) = S+ of . ) (R, Theorem 48)) (1.4)
Also, for a nontrivial Dirichlet character x, we have
qn/2
> P =0(t=) (R (), G)). (15)

P,deg P=n

From (1.1), we have

deg P
Z TgP :n+0(1), (16)
P,deg P<n
deg P
Yo SR —nron), (1.7)

qdeg P
P,r|deg P<nr
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1
Z qde? :logn+0(1), (18)
P,deg P<n
1 logn
Y s = +0(1). (1.9)
P,r|deg P<nr

From (1.2), (1.3) and the partial summation formula, we have

Z Z log") , (1.10)

d=1 PeP(d,k)

Z oL _(1‘;%;) . (1.11)

qrd
d=1 PeP,(rd,k)

2. GENUS THEORY FOR FUNCTION FIELDS

Write oo for the place of k associated to 1/7T. Let ky, be the completion of k at oo,
i.e., koo = k((1/T)). Let C = koo ( “/—1/T). We only consider those function fields
which can be embedded into C. For a monic polynomial M of A, k;; denotes the
cyclotomic function field of conductor M (see [R, §12]). Any abelian extension F of k
inside C is contained in kj; for some M. The smallest such M is called the conductor
of F. From now on we always assume that every extension of k is contained in some
cyclotomic function field. Let ¢ be a prime number different from the characteristic
of k and r be the smallest positive integer such that ¢ | ¢" — 1.

Let F be a (-cyclic extension of k, and write N = N for the conductor of F. Then
N must be square-free and for each prime divisor P of N, deg P is divisible by 7.
Write N = P;--- P,. It is easy to see that the number of such extensions F' with
conductor P; --- P is (£ — 1)*=. Write Hy for the Hilbert class field of F and Gy for
the genus field of F/k. Let CI(F) be the ideal class group of the integral closure Op
of A in F, and CI(F), be its {-part. Let o be a fixed generator of G = Gal(F/k) and

Ai(F) = dimg, <CZ(F)§"*”“ /CZ(F)gf’*”Z) for i > 1.
It is known that ([BK, §2])
CI(F),/CUF); ™ =~ CI(F)/CL(F)™" ~ Gal(G /F).
It is well-known that CI(F)$ and CI(F),/CI(F)J " are elementary abelian group of

rank A;. Since F is contained in some cyclotomic function field, the inertia degree
foo at 0o should be 1, and the ramification degree e, is 1 if r > 1.

Now we consider the narrow case. We define the narrow Hilbert class field Hy: of
F to be the maximal abelian extension of F in C, unramified outside the places over
oo. For each place v of F over oo we write F, to denote the completion of F at v
and N, be the norm map from F, to k... We define a sign map sgn, : ¥, — F, by
sgny(z) = sgn(N,(x)), where sgn is the usaul sign map on k... An element z € F is

called totally positive if sgn,(x) = 1 for any v lying over co. The narrow ideal class
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group CIT(F) of F is defined to be the quotient group of fractional ideals modulo
principal fractional ideals generated by totally positive elements of F. The narrow
genus field Gt of F/k is defined to be the maximal extension of F in H;i which is the
compositum of F and some abelian extension of k. See [BK] for details on the genus
theory of function fields. Let

AF(F) = dims, (cﬁ( )= e (F) ”") for i > 1.

Note that if r > 1, then CI*(F), = CI(F), and so A\ (F) = X\;(F). We will use the
following lemmas in [W]. The narrow case can be proved by the similar method as
in [W].
Lemma 2.1. ([W, Theorem 2.1]) Let F be as above.
(i) If r > 1, or r = 1 and ¢ | deg P; for any i, then \(F) =t — 1.
(ii) In all other cases, A\ (F) =t — 2 + log,(ex foo)-
(ifi) \{(F) =¢ — 1.
Let p; be the unique prime ideal of F lying above P;.

Lemma 2.2. ([W, Corollary 2.3, 2.4]) Let F be as above.

(i) If r > 1, then CI(F)¢ is generated by the classes [p1], ..., [pi-
(ii) If r = 1, then

CLUT) = (Ip1], .- .. [p]),

except the case that ¢ | deg P; for any i and Ny (Of) = (F;)". In this case,

CZ(F)? = <[p1]7 M) [pt]7 [a]>7

where a”~! = aOp and Np(a) € F; \ (F;)".
(iii) CIT(F)$ is generated by the classes [pi], ..., [p:].

Suppose first that » = 1. In this case F = k(v/D), where D = aP{* - -- Pf* with
1 <e < (anda € F,. We will determine a. From [A, Lemma 3.2], it is known
that if £ | deg P,, then k(v/P;) C kp,, and that if £ { deg P;, then k({/—P%) C kp,,
where d; is a positive integer such that d; deg P, = 1 mod /. Thus we see that a can
be taken to be (—1)", where m = ZM’degPi v; and d;v; = e; mod £. When £ # 2, or

= 1mod 4 and £ = 2, —1 is an {-th power in F;. Thus one may take a to be 1
in these cases. If ¢ = 3 mod 4 and ¢ = 2, then we take a = (—1)*, where s is the
number of odd degree P;’s.

Proposition 2.3. ([W, Theorem 2.5]) Let F = k(v/D) be as above.

G; — / degP1P1 l/(_l)degPtRe)

(11) If ¢4 degD or ¢ | deg P; for any 4, then

Gp = Gf = k(Y/(—1)®eP. Py, ..., {/(—1)%EPp).
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(iii) If ¢ | deg D but £t deg P, for 1 <i < s and ¢ | degP; for s+ 1 < j <t, then

Gp =k(V/P P, ..., \/PiP* /P, ....\/P),

where deg P, 4+ u; deg P, = 0 mod /.

Let 1 be a fixed primitive ¢-th root of unity in F,. Let (4), be the {-th power
residue symbol. For a field F as above, we define a t x t matrix Mp = (m;;) over F,

by, for i # j, )
- ()
77 - P] Z’
where P, = (—1)%&" P, and my; is defined to satisfy

t

Z €iMy; = 0.

i=1

Then it can be shown (cf, [W, §3]) that
Ao(F) =t — 1 —rank(Mp), when co ramifies in F

and

A (F) =t —1—rank(Mp), when oo splits in F.
Note that, if £| deg P; for every 4, then A\J (F) = X\o(F). In the case (iii) of Proposition
2.3, a (t — 1) x t matrix M}, is defined in [W, §3] and was shown that

Ao(F) =t — 2 — rank(M7,).

Now suppose that r > 1. Let

t

w=Y) (degPyr),

=1

where (a, b) denotes the greatest common divisor of @ and b. A ¢ x w matrix Mg over
[y, is defined in [W, §4] and it is shown that

Ao(F) =t — 2 — rank(Mg).

In fact, this matrix My is essentially the same as the matrix M = Mg defined in [G3,
§2].

3. ASYMPTOTIC BEHAVIOR OF /-CYCLIC EXTENSIONS
WITH PRESCRIBED /-CLASS NUMBERS

3.1. > 1 case. In this subsection we assume that » > 1. Let

e N,,:= the number of ¢-cyclic extensions F of k with |CI(F),| = ¢° and with
conductor N of degree n,
e M, ,:= the number of ¢-cyclic extensions F of k with |CI(F),| = ¢57! and with

conductor N of degree n such that N has exactly s distinct prime factors,
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e (4, ,:= the number of /-cyclic extensions F of k with conductor N = P, - - - P
of degree n such that P,, is an ¢-th power residue modulo P, ..., P,_ but

an ¢(-th power nonresidue modulo P,,_;.

Since we know that r must divide the degrees of prime factors of N, we replace n by
rn and write deg P; = rk;.

Let xp, be a Dirichlet charater of exponent ¢ of conductor F;, that is, a character
of Gal(kp,/k). For a prime P,, # P, ..., P, 1, let

/—1
e s (Scatrn) (8 i) 8 o i)

(3.1)

where ( is a primtive /-th root of unity. Then we have
Mt,rn Z Gt,rn Z Z W2 e Wta

where the sum is over the distinct primes Py, ..., P, with deg(P;---F;) = rn and
r | deg B;. Let y; :=2%/n. Then y; + -+ + ;-1 < y; = y. Let
At,m = Z Wy - Wiy Z Wu
P;,deg Pr=rn—deg Py —---—deg P;_1
where the first sum is over distinct P;, 1 < ¢ <t — 1 with deg P,_; < deg P; < ;.
Write

W, = /- 1( +Z<ﬁ 1Xl§1' Xﬁz 11(Pt)>’
where J = (j1, ..., ji—1) # (0, ..., 0). Then, by (1.1) and (1.5),

r(n—ki——ke—1)

W q 0 q (n—k1—-—ke—1)/2
2 LTSS v ey T e T <n—k1—---—kt_1>'

deg Pr=r(n—ki1—--—k¢_1)

For k; < y;, since n —y = n — 2'/n > n/2 for large n,

qr(n,klf...fkt,l) qr(nfklf...—ktfl) qT(TL*’ﬂ*---fktfl)(kl 44 k’t—l)

r(n—ky — - — k1) ™ * rn(n —ky — -+ — k1)
_ogrthehey 0((’“1 +o kt_l)QqT(”’““"“-”>
n n
and
qT(”*kl*---*ktfl)/2 B O(qT(”kl---ktl))
(n—ky—-— ki) n? '
Thus

r(n—k1—~~—kt_1) k ... k _ T(n—kl—m—k‘t_l)
Z Wt:q +O<(1+ + ki-1)q )

(t=lrp n?
deg Pr=r(n—k1—-—k¢_1)
From (1.7) and (1.9) we have, for y =y, = 2'\/n,
Z q""(deg P, + -+ -+ deg P,_) _ O(?J(log y)t_zqm> _ O(q"”)

n2qdegP1 - qdeg Py n2 n

Py, P
r|deg P;<ry;
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Therefore
1 q“” qrn
Atpn = > Wa - W, 0 ,
t,rn ft—1 2 t 1rrnqdegP1 T qdegptﬂ + n
Py,..., Py _1: distinct
r|deg P;<ry;
Now

1 S .
Wi = =) (1 + Z Cjt_ngoll i 'X%ii (Ptq)).
J
Let x¢o be a nontrivial character with exponent ¢ and conductor @ | P, - -- P,_5. Let

Sow) = 3 volPia).

deg Pr_1=ru

Then, by (1.5)

(]

Y Salw) _ [ﬁf] O(—L7>=CXD.

qru

_degPy_o u_degPt—Q
- T - T

u

Continuing the same process, we have

1 Tn n

_ q q t—2
B fr(t=1)/2 - Zp andegPl . qdegPt,l + O( n (log y) )
Lseeey t—1

At,rn

Thus

qrn (10g n)t—l N O <qrn<log n)t—2> |
™m n

From (1.2), we have

My = O(q (log n)s_l).
n
We finally get
MS ™
Ns,rn - s+1,rn + O( 1, )
logn

We will compute M1 ,,. As in [G3, §2,83], one can see easily that the ¢-cyclic
extension F has (-class number ¢° precisely when rank(My) = s, and that the number
of distinct (s + 1) x (s + 1) matrices I' over Fy such that rank(I') = s and such that
I' = My for some field F is

S
s(s—1)

e (RS Vil | (GRS e ) (3.2)
i=1
Now we consider the number N(I") of F with conductor N = P; - -- Py, of degree
rn and the corresponding matrix Mp = I'. Let k = F-k and H; be as in §2. Let
L; = kH;. Then L;/k is a Kummer extension L; = k(/z;) for some p; € k. Then
kF = k(¢u) with g = pf* - pgyy. Let L) = k(v/P;). Define \;(p;) and w;(p;) as
follows;

(pj Li/%) (1) = Xipy) e, (0, Li/K)(V/P) = wilpy)~'V/P.
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Let 6(n(i), m(j), u(i, §),v(j, ) be defined by 1if (" (p,), wi" " (p;)) = (¢4, ¢*0)
and by 0 otherwise. Then we have
-1 -1 N (=1 gm

3 TTm) i ol ~ G (53
Note the difference of (3.3) from (3) of [G3]. In the classical case the condition
p = 1 mod ¢ is imposed instead of deg P; is divisible by 7, and the probability for
a prime to satisfy p = 1mod ¢ is 1/(¢ — 1) by Dirichlet’s theorem on arithmetic
progression.

Following the idea of [G3] and adopting the similar method as above, we get

Theorem 3.1. We have
— 1) (] s
() o (=D g (logn)

slpstlps®+s n ’

and so
(=)l (0 +---+£+1) g (logn)®

glpst+1p(s2+3s)/2 n

Ns,rn ~

In the proof we need to replace p; = 1 mod ¢ by r|deg P;, which causes to replace
the factor ;= by —,and p; < iy < (p1 - )s+§—i by deg P; < deg P;11 <
deg P, — --- —deg P;). We use (1.5) to show

Z"'ZU(Psﬂ) :O<@>y

and then use (1.11) to get the formula for N(T').

s+1 % (’I"TL -

3.2. r =1 case. Now we assume that r = 1, that is £ | ¢ — 1. We consider ¢-cyclic
extensions F of k with conductor N of degree n and with |CI(F),| = ¢*. We have two
cases. One is real, that is, oo splits completely. The other is imaginary, that is, oo
ramifies. The case that oo is inert cannot happen, since we have assumed that the
field is contained in some cyclotomic function field. Let

® Nj,n:= the number of imaginary ¢-cyclic extensions F of k with conductor
N of degree n and |CI(F),| = ¢*,

® Npn:= the number of real ¢-cyclic extensions F of k of degree ¢ with con-

ductor N of degree n and |CI(F),| = ¢2,
® M, := the number of imaginary (-cyclic extensions F of k with conductor NV
of degree n such that N has exactly ¢ distinct prime factors and |CI(F),| = ¢/,
® Mp:y := the number of real ¢-cyclic extensions F' of k with conductor N of
degree n such that N has exactly ¢ distinct prime factors and |CI(F),| = ¢/72.
In this case F = k(v/D) with D = aP{*---Pf*, 1 < ¢; <1 — 1. We may assume
that e; = 1. Here a € I} is chosen so that F' C ky, where N = P, --- F. If ¢ divides
deg D, then it is real. If ¢ does not divide deg D, then it is imaginary. If ¢ = 2, then

(e1,...,6;) = (1,...,1). In this case whether F is real or imaginary depends only on
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the parity of deg N. Otherwise, there always exist real fields and imaginary fields
with conductor N. One can follow almost the same process as in the case r > 1 to

get
Miroiin
Nmm:MnHm+o@J¢L%
logn
and
Mp sion
NR,s,n - MR,S—}—Q,TL + O(M> .
logn

4. DENSITY FOR ¢/-RANKS OF /-CYCLIC FUNCTION FIELDS

4.1. 7 > 1 case. In this subsection we assume r > 1, that is £ ¢ — 1. Let A; be the
set of all ¢-cyclic extensions F of k such that ¢ finite primes ramify in F/k, and

A, = {F € A, : deg(cond(F)) = n},

Ao ={FeA : \F) =e},

At,e;n = At,e N At;Tu

where cond(F) denotes the conductor of F. We define the density d;. by

A, ..
di. = lim | t’e’m|

n—oo |At;rn| '

For any monic irreducible polynomials Py, ..., P, with r|deg P;, there are (¢ — 1)1
distinct fields F in A; with conductor N = P; --- P.. So by (1.3), we have
{ — 1)1571 qrn(log n)tfl
Al =0 =11 1~( . 4.1
| t; | ( ) Z (t — 1)!7“t n ( )

deg(Py---Pg)=rn
r| deg P;

Let My be the t x t matrix over Fy associated to F as in §2. Following the arguments
in [G3, §2, §3], we see that A\o(F) =t —1—rank(Mp). Then |A,..,,| can be estimated

as
|At,e;rn‘ ~ Z Z Z 51“, (42)

r deg(Py---Pp)=rn F
rank(T)=t—1—e | deg P; cond(F)=Py - Py

where or = 1 if Mg = I' and or = 0 otherwise. Adapting the similar method as in
§3.1, we get

N(F) _ Z Z 61“ ~ (6 — 1)t_1 qrn(log n)t_l )

(- DD g

deg(Py---Py)=rn F
r| deg P; cond(F)=Py - Pt

It is known ([G4, Proposition 2.1]) that the number N(¢,t — 1 — ¢) of t x t matrices
I' over Fy, with rank ¢t — 1 — e is

N(t,t—1—¢) = [tﬁewf . zjl)] 3 (tﬁw)

7=1 k14 tki_1_e<e+l s=1
each k; >0
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So we have
—l—e t—1—e
(=)= g ogn) ™" |71 0 _ i
’At,e;rn’ ~ (t _ l)lrtgt(t—l) n (g - gj ) Z ( H g )’
j:l ki+-4ki_1_e<e+1 s=1
each k; >0
and

t—1—e t—1—e

o | 0s)] X ()

=1 k14 4ki_1_e<et+l
each k; >0

<

Let dw e = limy_,o di . Then we follow almost the same argument as in [G7, §3] to

get
(meler) HZil(l — g_k)

L (= T — )

4.2. r =1 case. Now we assume r = 1. Let A; be the set of all /-cyclic extensions

doo,e

fore=0,1,2,....

F such that ¢ finite primes and oo ramify in F/k, and

A, = {F € A, : deg(cond(F)) = n},

Ao ={FeA : \F) =e},

At,e;n = At,e N At;n'
Let B, be the set of all F as above such that ¢ finite primes ramify and oo splits in
F/k, and

B.., ;== {F € B, : deg(cond(F)) = n},

Bt7€ = {F € Bt : )\;(F) = 6},

Bt,e;n = Bt,e N Bt;n-
Note that A\o(F) =t — 1 — rank(My) (resp. Ay (F) = ¢ — 1 — rank(Mr)) for F € A,
(resp. F € By).

Consider first the case that ¢ # 3 mod 4 or ¢ # 2, that is, a = 1 (See §2). It is

shown in [W] that My = (m;;) is given by; m;; = (%)e’ for i # j, where (=), is the ¢-
th power residue, and m;; is defined by the relation ) . e;m;; = 0. Then from the (-th

power reciprocity, My is symmetric. There is an algorithm to determine the number

of s X s symmetric matrices with rank r over I, from the following proposition.

Proposition 4.1. Let M be a symmetric u X u matriz of rank r over Fy. Let

MV

My = VT v

Y

with V € ¥y, v € F,. Then among all possible M,
(i) €7 of them have rank r.
(i) £7(¢ — 1) of them have rank r + 1.
(iii) £utt — 071 of them have rank r + 2.
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Let e = (1,e9,...,¢) with 1 <e; < ¢ and FE the set of all such e’s. Let
L, ={F=k(VD):D=PP? - P degP, +---+deg P, = n, {{deg D},
Rion = {F=k(VD): D= PP P deg P, +--- +deg P, = n, (| deg D},
Leun :={F € Lie, : rank(My) = u},
Ricun :={F € Rieyn : rank(Mp) = u}.

Here ‘I’ (resp. ‘R’) means imaginary (resp. real). Then
|At;n| ~ Z |It,e,n|a |Bt;n| ~ Z |Rt,e,n|a
eck eckE

and
|At,e;n| ~ Z |It,e,tflfe,n’7 |Bt,e;n| ~ Z |Rt,e,tflfe,n .

eck eckE
When e # (1,1,...,1), then the linear equations

1+ esxo + -+ + ery = a mod
and
T1+To+ -+ 2Tr=n
are not dependent. Thus, for e # (1,...,1),

?—1 1
Lten| ~ Tp(n,t) and |Ryepn| ~ Zp(n,t).

Ife=(1,...,1), then
p(n,t) i,

|It,e,n| - )
0 otherwise,
and
p(n,t) if ¢ |n,
|Rt,e,n| - )
0 otherwise.
Therefore
{— _ n(logn)t—1 .
ALl (SR =1t =)+ 1) e i e,
tin (571)((8 . 1)t—1 . 1>q"(logn)t*1 if 0 |
¢ (t—1)n 1 n,
and

((0—1)t = 1)+ 1) L0sn i g |,
if 01 n.

t—1

(0—1)1 — 1)%

For N,N" € P(n,t), we say that N and N’ are equivalent if (%) = (;’_/}), where
N =P ---P,and N = P]---P/. Let N(N) be the set of polynomials in P(n,t),
which are equivalent to N. Then it can be shown that (similar to §3.1)

g (logn)~!

NN~ € t—Dn



12 S. BAE AND H. JUNG

For e = (1,eq,...,¢;) and N = P, --- P, we write

N®:= PPg... P2,

Let
NF(N) :={Ny e N(N) : £ { deg N7}
and
NG(N) :={N; e N(N) : (| deg Ny}.
Then 01
INT ()] N%IN(N)I
and

1
NN ~ IV ()],
ife#(1,...,1). Ife=(1,...,1), then

IN(N)| if £+degN,

0 otherwise,

INT (V)| =

and
V(N[ = IN(N)| if £ | d.egN,
0 otherwise.
Let N(t — 1,u) be the number of (t — 1) x (t — 1) symmetric matrices with rank u.
Then
Lreunl ~ N(t =1, u)NF(N)],
and
Rieun| ~ Nt —1,u)Ng(N)I.
Therefore we have

A (G2~ ) =) 1) NG~ Lt = 1= )NV i O,
tyn|

ED((— 1)1 )Nt = 1,t— 1 — »)|N(N)] ite|n,
and
By, ~ (=1 = 1)+ 1) N(t = 1,t — 1L = )N (N)| if € |n,
- (= 1) = 1)N(t = 1,t — 1 — v)|N(N)] if 4 n.
Then the densities d; ., = |‘C{:ﬂ‘ and d; ., = % are
drom ~ dy o~ N(t— 1,8 —1— )05 (4.3)

The right hand side of (4.3) is just the density g(¢,e) of (t — 1) x (t — 1) symmetric
matrices which have rank ¢t — 1 — e. We will compute the limit lim; ., g(¢,€). From

Proposition 4.1, we see that

1 (-1 re — )
gt+1e) = g—eg(t,e— 1) + Jite g(t,e)+Wg(t,e—|— 1), ife>0
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and (-1 (-1
g(t+1,0) = ——g(t,0) + ——g(t,1).

Let G(t) = (9(t,0),9(t,1),...,9(t,7),...). One can show by induction that G(t)
converges to, as t — 00,

where

1
—1:1
N Vs VTR N

Now assume that ¢ = 3 mod 4 and ¢ = 2. In order that A, # 0 (resp. By, # 0),
n must be odd (resp. even). Now the rest are almost the same as the classical case
replacing ‘p = 1 mod 4’ (resp. p = 3 mod 4) by ‘deg P is even’ (resp. odd). The
result will be;

t\, e q"(logn)~!
Avonl~ SO Nt -1,d=1,6—1— g~ 08T dd,
Al ~ Y M o) FIEER S oo
dodd

t\ 2+t q"(logn)"!
) e3¢ (logn)"™ for n even,

B,..,| ~ Nit—1,d—1,t—1— 2
Bieal~ > N(t—1d-1, 6)(d (t—1n

1<d<t
deven

and

t 24t
diemn ~ Z N(t—l,d—l,t—l—e)(d)Q—; for n odd,

1<d<t
dodd

t 24t
d:ﬁ,e,nN Z Nl(t—l,d—Lt—l—e)(d)Q; forneven,

1<d<t
deven

where N(s,d,r) is the number of s x s matrices M = (m;;) over Fy with m;; # m;
for 1 <i < j < dand with m;; = mj; ford+1 <i <sand 1 < j < s such that
rank(M) = 7, and N’(s,d,r) is the number of (s 4+ 1) x s matrices M’ whose first
column is the transpose of the vector (1,...,1,0,...,0) with first d entries 1 and the
rest part is an s x s matrix M’ = (mj;) over Fy with mj; # m/, for 1 <i < j <d
and m;j = m;Z ford+1<i<sand 1< j<ssuch that rank(M’) = r. Then as in
G5, §4, §5),

G(t) := (dro2ns1,diiontr, ) and  G'(t) = (d;,O,Qnu d;,l,an )

converge to % and Y?, as t — oo, where
00 1 ' A
Y:[Hu—z—m)} (2,2 JJa-2"72..)
m=1 m=1
and

(2

Y = [ ﬁ (1 — 2_m)] (17 2/37 ool 9—i(i+1) H (1 _ 2—m)—1(1 . 2_m_1)_1, o )

m=2 m=1
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5. GENERALIZATION TO {™-CYCLIC FUNCTION FIELDS

In this section we consider ¢™-cyclic extensions F of k and the following question
as in [G6] : how likely is A\J (F) = 0, A\ (F) = 1,\5(F) = 2,... 7 When m = 1, its
answer is already obtained in §4. So we assume m > 2. Assume that we are given
integers my,...,my such that m = m; > mo > --- > m; > 1. Let A be the abelian
group of type (¢™2,...,¢™). (When t = 1, we let A be the trivial group.)

Assume first that » > 1, that is £1 ¢ — 1. Write A(A) for the set of all F as above
such that the narrow genus group CI*(F),/CI*(F), ™ is isomorphic to A, and

A(A), :={F € A(A) : deg(cond(F)) = n}, (5.1)
A (A):={F e A(A): \J(F) = e}, (5.2)
A(A), :=A(A)NA(A),. (5.3)

Then we define the density d.(A) of A.(A) in A(A) by

. |A(B)rn
d.(A) = lim ——————. (5.4)
n—oo [A(A)m]
It is easy to see that for any ordering (m;,) of my,...,m; and monic irreducible
polynomials P, ..., P, with ¢4®" =1 mod ¢, there are

HE: (fmh _ gmjiil) . m; m;—1
=2

distinct fields F in A(A) such that the conductor of F is P; --- P, and each P; has

the ramification index ¢™ in F. So we have

t (mh)

|A(A>rn| ~ [H(Eml - émi_l)] Z L, (55)
(mj;)

=2 deg(Py -+ Py)=rn
qug Pi=1 mod ¢"'Ji

where Z(mji) denotes a sum over all distinguishable orderings of mq,...,m;, and
S°(mii) is a sum for a fixed reordering (mj,). For any positive integer k, write rj, for
the smallest positive integer such that ¢*|¢"* — 1. Then for any monic irreducible
polynomial P in A, we have ¢4 = 1 mod ¢* if and only if ;| deg P. Following the
method of [Kn, §9], we have

(mji) (qu,) t—1
g™ (logn)
S 1= Y 1 , (5.6)
vy deg(FroByy=rn (t =D rmy -+ Ty )0
g8 Pi=1 mod ¢"Ji rmy, | deg Py

t

Let vy, = [{m; : m; = w}| for 1 < w < m. Since there are m distinguishable

orderings (mj,) of mq,...,my, by (5.5) and (5.6), we have

A(A)| ~ (rnil‘_[‘i._iili’;(ivl—!)éii‘(zm!) qm(loi n)'~ .

(5.7)



(-RANKS OF CLASS GROUPS OF FUNCTION FIELDS 15

Now we are going to obtain an asymptotic formula for A.(A),,. Following the
arguments in [F, §5, Theorem 5.3], one can associate a t x (t — 1) matrix M}, to F
such that A (F) =t — 1 — rank(M},). Moreover, as in [G6, §2], one can replace the
matrix M} with a t x t matrix My such that rank(M}) = rank(Mg). Especially, if
F € A.(A), then the matrix Mg has rank t — 1 —e. Then |A.(A),,| can be estimated

as
mji)

(
Ac(D)m] ~ > > e (5.8)

(my,) deg(Py--Pr)=rn F
rank(T)=t—1—e¢ v rm; | deg P; cond(F)=Py - Py
1

where the first sum is over all ¢ x ¢t matrices I' over IF, with rank ¢t — 1 — e. The
fourth sum runs over all F € A(A) with conductor Pj --- P, such that each P; has
ramification index ¢™i, and or = 1 if My = I' and ér = 0 otherwise. If the ordering
(mj,) has m;, = m; for 1 <4 <t, then My has the following form:

M, M,
Mp = < 0 D) (5.9)

where M; is a v, X v, matrix over [F, with zero row sums, Ms is a v, X (t — v,,)
matrix over Fy, O is the (t — v,,) X v, zero matrix and D is a (t — v,,) X (t — vp)
diagonal matrix.

Let I' be a ¢t x ¢ matrix over [F, such that I" has the same form as the matrix on
the right hand side of (5.9), and let

NIy = > > o

deg(Py---Pp)=rn F
rm;|deg P;  cond(F)=Py--Py

where op = 1 if Mp = I' and 6r = 0 otherwise. Following the idea of [G6, §2] and
adopting the similar method as in §3.1, we get

Proposition 5.1. We have

(m — gm=tyom =t H::varl(gmi — ™71 g (log n)tt
(£ — D)l (ry -+ - 1o, ) om =D F=0m n ;

N(T) ~

and so
tN(t, Uyt — 1 — e) (0™ — =1y TS (emi — pmi=1)

1=vm+1
(’r’ml . o Tmt)(vll) e (/Un!)gvm(t_l)"!‘t—vm
(] t—1
™ (logn)
n
where N (t,v,,t —1—e) denote the number of I'’s as above with rank(I') =t —1—e.

‘Ae(A)rn| ~

7 (5.10)

Finally, by (5.7) and (5.10), we have

N(t,vm,t —1—¢€)
gvm(tfl)thfvm

d.(A) = for0<e<t-—1. (5.11)

We note that the number N(¢,v,,,t — 1 — e) can be computed as in Lemma 2.4 and
the remark following it in [G6].
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Let B; be the set of all £™-cyclic extensions F of k such that ¢ finite primes ramify
in F/k, and

B.., == {F € B, : deg(cond(F)) = n}, (5.12)
Bt,e = {F c Bt : )\;(F) = 6}, (513)
Btﬁm = Bt,e N Bt;n- (514)
Then as in [G6] we see that the density d;. := lim, %fﬂ‘ is given by
t N(tut—1—e) (t\ (m—1)—¢
dte — Zu:l fu(t—1)+t—u (u) mt ’ (515)

1— (=)
and its limit dog ¢ 1= limy_ oo dy e = 0.

Now suppose that 7 = 1. There are many cases to consider. Let ¢* = ({™, q — 1).
Foreach b =10,1,...,a, we have to consider {™-cyclic extensions F whose ramification
index at oo is £°. Let p, be the asymptotic probability of ¢™-cyclic extensions F of k
with ramification index at oo to be .

Write A®)(A) for the set of all £™-cyclic extensions F of k such that the ramification
index at oo is ¢* and the narrow genus group CI*(F),/CI*(F); 7 is isomorphic to
A. Define A®(A),, Aéb)(A) and Ag’)(A)n similarly as in (5.1), (5.2) and (5.3),
respectively. Then the analog of (5.7) is

pot [Tiy (07 — 071 g"(logn)"!
(Pmy = Ty ) (01]) -+ (1) (07 — m=1) n ’
and if £ > 2, the analog of (5.10) is
PotN(t, v, t — 1 — e) (0™ — gm—Hyem=1 T (mi — gmi=1)

1=vm+1
(rml [P Tmt)@l!) e (Un!)gl)m(tfl)‘i’t*vm
n(] t—1
 d"(logn)"™
n

When ¢ = 2, as in [G6, §4], the analog of (5.9) is

M, M
My = <o D) (5.18)

AD(A),] ~ (5.16)

(5.17)

where M, is a symmetric v,, X v, matrix over Fy with zero row sums, M is a
Um X (t — v,,) matrix over Fy, O is the (t — v,,) X v, zero matrix and D is the
(t — vy) X (t — v,,) diagonal matrix with each diagonal entry equal to the sum of
the entries in the corresponding column of Ms. Let N'(t,u, s) denote the number of
matrices I' of the form specified on the right side of (5.18) such that rank(I') = s,
where 0 < s <t — 1. Then the analog of (5.10) is

PetN'(t,u,t — 1 —e)(em — gm=Hyem =1 TT0 (0 — i)

1=vm+1
(Fyay Ty ) (011) - - (Uny)gi”m(”g”’”ﬂm(mm)

nl t—1
, 4" (logn)™"
n

AD(A)] ~

(5.19)
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®)
Thus the density d,(gb)(A) = lim,, 0o W is given by the formula (5.11) if £ > 2,
and if £ =2,

~ N'(t,vm,t—1—¢)

givm (”27” —1) +Um (t—vm)

dP () -
Write ng) for the set of all £™-cyclic extensions F of k such that the ramification
index at oo is ¢" and t finite primes ramify in F/k. Define ngz,B,Ebe) and B,Ebe)n

similarly as in (5.12), (5.13) and (5.14), respectively. Then we see that the density

(b)
) = lim, o |]\313<T|| is given by the formula (5.15) if £ > 2, and if £ = 2,
tin
t N'(taut—1—e) (t\ (m—1)t"¢
d(b) B Zu:l Zu(u2—1)+u(t,u) (u) mt
te — 1 — (mT_l)t !

and its limit dgé),e = limy_, o di”e) = 0.

Remark 5.2. Since G = Gal(F/k) is cyclic of order ¢™, there is a unique subgroup
H of order ¢, and the inertia group G at oo is contained in H. Let F; = F.
Then oo splits completely in Fy, and F is a cyclic extension of F; of order ¢*. Then

F = Fi( §/a) for some o € Op,. Thus the asymptotic probability p, seems to be
eb_zb—l
@
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