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Abstract

Let G be a solvable subgroup of the automorphism group Aut(X) of
a compact Kähler manifoldX of complex dimension n, and let N(G) be
the normal subgroup of G consisting of elements with null entropy. Let
us denote by G∗ the image of G under the natural map from Aut(X)
to GL(V,R), where V is the Dolbeault cohomology group H1,1(X,R).
Assume that the Zariski closure of G∗ in GL(VC) is connected. In this
paper we show that G/N(G) is a free abelian group of rank r(G) ≤
n − 1 and that the rank estimate is optimal. This gives a proof of
the conjecture of Tits type. Our approach also gives some non-obvious
implications on the structure of solvable subgroups of automorphisms
of a compact Kähler manifold that are analogous to abelian subgroups
of automorphisms. Moreover, if the rank r(G) of the quotient group
G/N(G) is equal to n − 1 and the identity component of Aut(X) is
trivial, then it will be shown by using a theorem of Lieberman that
N(G) is a finite set.

1 Introduction and Main Results

Let X be a compact Kähler manifold of complex dimension n, and let us
denote by Aut(X) the biholomorphism (or automorphism) group of X. In
this paper we study the structure of solvable subgroups of Aut(X). One
motivation for this study comes from the paper [4] of Dinh and Sibony that
deals with only abelian subgroups of automorphisms of a compact Kähler
manifold. It will be worth pointing out the fact that the class of solvable
subgroups of automorphisms of a compact Kähler manifold is not exhausted
by abelian subgroups.

In order to describe our results in more detail, we first need to set up
some notation and terminology. Let f be an automorphism of X. The
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spectral radius
ρ(f) = ρ(f∗|H2(X,C))

of the action of f on the cohomology ring H2(X,C) is defined to be the
maximum of the absolute values of eigenvalues on the C-linear extension of
f∗|H2(X,R). It is easy to show from the definition that ρ(f±1) is always less
than or equal to ρ(f∓)n−1 (e.g., see [6]). We call f of null entropy (resp. of
positive entropy) if the spectral radius ρ(f) is equal to 1 (resp. > 1). It is
known by the results of Gromov and Yomdin in [5] and [11] that

ρ(f∗|H2(X,C)) = ρ(f∗|H1,1(X,C)).

We say that a subgroup G of automorphisms is of null entropy (resp. of
positive entropy) if all non-trivial elements of G are of null entropy (resp. of
positive entropy).

Now let G∗ denote the image of a subgroup G of Aut(X) under the nat-
ural map from Aut(X) to GL(V,R), where V is the Dolbeault cohomology
group H1,1(X,R). Then clearly G∗ is a subgroup of GL(V,R). We call a
group virtually solvable if it has a solvable subgroup of finite index. Let VC
be the complexification of V so that VC is now a finite dimensional vector
space over C. Then G∗ can be regarded as a subgroup of GL(VC) in a
natural way, and a solvable subgroup G∗ of GL(VC) is called connected if
its Zariski closure Ḡ∗ in GL(VC) is connected. One important point to note
here is that G∗ itself may not be connected, in general. From now on, for
the sake of simplicity, we will say that G is connected if G∗ is connected.

It is easy to see that given a virtually solvable subgroup G∗ of GL(VC),
one can find a connected solvable finite-index subgroup G1 of G∗. Moreover,
any subgroup of a solvable group G∗ and any quotient group of G∗ are also
solvable, and the closure of G∗ is solvable as well (see Section 2 of [7]).

For a subgroup of GL(VC), we then recall that Tits proved the following
well-known alternative theorem in [10].

Theorem 1.1 (Tits). Let G∗ be a subgroup of GL(VC). Then either G∗ is
virtually solvable or it contains a non-commutative free group Z ∗ Z.

On the other hand, in the paper [4] Dinh and Sibony proved that if G is
an abelian subgroup of Aut(X) and N(G) is the set consisting of elements
with null entropy, then N(G) is a normal subgroup of G and G/N(G) is a
free abelian group of rank ≤ n−1. So, in view of the above Tits’ alternative
and Dinh-Sibony’s theorem, it is natural to ask the following interesting
conjecture which is usually called a conjecture of Tits type.
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Conjecture 1.2. Let X be a compact Kähler manifold of complex dimension
n, and let G be a connected solvable subgroup of the automorphism group
Aut(X). Let

N(G) = {f ∈ G | f is of null entropy}.
Then G/N(G) is a free abelian group of rank ≤ n− 1.

It is easy to see that the rank estimate is optimal from the case X = En,
where E is an elliptic curve. In fact, the conjecture has been proved by
Keum, Oguiso, and Zhang in the paper [7] except for the rank estimate (see
also [2] or Section 2). In the same paper [7], they also exhibited various ex-
amples such as complex tori, hyperkähler manifolds and minimal threefolds
for which the full conjecture of Tits type holds. After that, a proof of the
conjecture in full generality has appeared in the paper [12] of Zhang.

The aim of this paper is to give another proof of the conjecture of Tits
type whose original idea traces back to the preprint [8] and which is more
applicable to other related problems, and to show some more non-trivial
results concerning the structure of solvable subgroups of automorphisms of
a compact Kähler manifold. We remark that results of this paper are some
applications of the excellent paper [4] of Dinh and Sibony and a theorem
of Birkhoff-Perron-Frobenius (or a theorem of Lie-Kolchin type in [7]). One
argument of Zhang originated from the paper of Dinh and Sibony also plays
an important role in Section 3 (cf. Theorem 3.5).

To be precise, our first main result is

Theorem 1.3. Let X be a compact Kähler manifold of complex dimension
n, and let G be a connected solvable subgroup of the automorphism group
Aut(X). Let

N(G) = {f ∈ G | f is of null entropy}.
Then the following properties hold:

(a) G/N(G) is a free abelian group of rank r(G) ≤ n − 1. Furthermore,
the rank estimate is optimal.

(b) Let hk be the real dimension of the cohomology group Hk,k(X,R). If
r(G) = n− 1, then hk satisfies

(1.1) hk ≥
(
n− 1

k

)
, 1 ≤ k ≤ n− 1.

In addition, if k divides n − 1, then the lower bound of (1.1) can be
improved by one, i.e., we have

hk ≥
(
n− 1

k

)
+ 1.
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(c) Let K̄ denote the closure of the Kähler cone K. Then there exist
(r(G) + 1) many non-zero classes c1, . . . , cr(G)+1 in K̄ such that

c1 ∧ c2 ∧ · · · ∧ cr(G)+1 6= 0.

Clearly this theorem generalizes results of Dinh and Sibony for abelian
subgroups of automorphisms with positive entropy to solvable subgroups.
The proofs of Theorem 1.3 (a) and Theorem 1.3 (b)–(c) will be given in
Theorem 3.5 and Proposition 3.6 of Section 3, respectively.

In their paper [4], Dinh and Sibony also proved that if G is abelian
and the rank r(G) is equal to n − 1, then N(G) is finite ([4], Proposition
4.7). Let Aut0(X) denote the identity component of Aut(X) consisting
of automorphisms homotopically equivalent to the identity. In a recent
paper [13], Zhang investigated a question of finiteness of N(G) for solvable
subgroups G of Aut(X). As a consequence, he proved that if r(G) = n−1 =
2 and Aut0(X) is trivial, then N(G) is finite ([13], Theorem 1.1 (3)). As a
consequence of Theorem 1.1 and its approach, we significantly extend the
result of Zhang, which holds only for complex dimension equal to 3, to an
arbitrary complex dimension n.

Our second main result of this paper which affirmatively and also com-
pletely answers to Question 2.18 in [12] is

Theorem 1.4. Let X be a compact Kähler manifold of complex dimension
n, and let G be a connected solvable subgroup of the automorphism group
Aut(X). Assume that the rank r(G) of the quotient group G/N(G) is equal
to n− 1 and that Aut0(X) is trivial. Then N(G) is a finite set.

If G is further assumed to be abelian in Theorem 1.4, it was shown in
[4] that, even without the triviality of Aut0(X), N(G) is finite (see also [9],
Proposition 2.2). However, it is known as in Example 4.5 of [4] that there
is an abelian variety X of complex dimension n with a solvable subgroup G
of Aut(X) such that N(G) = Aut0(X) ∼= X and the rank r(G) = n− 1 (see
also [13], Remark 1.3 (1)).

In fact, it is easy to construct an example of a solvable subgroup which
is not abelian by using an abelian variety as above. More precisely, let
E = C/(Z+

√
−1Z) and X = En. Then we let C4 = 〈

√
−1〉 act diagonally on

the n-dimensional abelian varietyX. Next, setG = C4oT be the semi-direct
product of the cyclic group C4 and the group T of translations of X. Then
clearly G is not abelian, but G(1) = [G,G] = T and so G(2) = [G(1), G(1)] =
0. Thus G is indeed a solvable subgroup of the whole automorphism group
Aut(X). Consequently, once again we stress that a solvable subgroup of
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the automorphism group of a compact Kähler manifold is not necessarily
abelian.

We organize this paper as follows. In Section 2, we first collect some basic
facts which are relavent to the proof of Theorem 1.3, and then construct a
homomorphism from a solvable subgroup of automorphisms to the abelian
group (Rm,+). Here one of the key technical ingredients is a theorem of
Birkhoff-Perron-Frobenius in [1] (or a theorem of Lie-Kolchin type in [7]).
In Section 3, we give a detailed proof of Theorem 1.3. Finally, Section 4 is
devoted to giving a proof of Theorem 1.4.

2 Theorem of Birkhoff-Perron-Frobenius and its
Applications

The goal of this section is to set up some preliminary results necessary
for the proof of our main Theorem 1.3. As mentioned earlier, one of the
key ingredients is a theorem of Birkhoff-Perron-Frobenius in [1] (or more
generally a theorem of Lie-Kolchin type established in [7]).

Let V be a finite dimensional real vector space and let VC be its com-
plexification. For a solvable group G, let ρ : G → GL(VC) be a complex
linear representation of G. Then we take the Zariski closure, denoted by
Z, of ρ(G) in GL(VC). Let Z0 be the connected component of the identity
in Z and let G0 = ρ−1(Z0). Since G is a solvable group, the group Z0

is conjugate to a group of upper triangular matrices whose determinant is
non-zero. Let N(G0) be the subgroup of G0 whose elements are defined by
the statement that f is an element of N(G0) if and only if all eigenvalues
of f on VC are equal to 1. Now observe that N(G0) is a normal subgroup
of G0 and that the abelian group G0/N(G0) embeds into (C∗)dimVC . Hence
the rank of an abelian group G0/N(G0) should be finite and, moreover,
bounded from above by dimVC. In order to obtain a sharp upper bound on
the rank of G0/N(G0), however, considerably more refined arguments need
to be involved as in our paper. From now on, we shall denote by G the
group G0.

Then we will need the following lemma whose proof is simple (e.g., see
[7], Lemma 2.5).

Lemma 2.1. Let Z0 be a connected solvable subgroup of GL(VC). Then the
eigenvalues of every element of the commutator subgroup [Z0, Z0] of Z0 are
all equal to 1.
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Since G is solvable, there exists a derived series of G, as follows.

G = G(0) . G(1) . G(2) . · · · . G(k) . G(k+1) = {id},

where G(i+1) is a normal subgroup of G(i) and G(i+1) is the commutator
subgroup [G(i), G(i)] of G(i) (0 ≤ i ≤ k). Let A = G(k). Then A is an
abelian subgroup of G, and clearly A is a subset of [G,G]. Thus, by Lemma
2.1, every element of A has all the eigenvalues equal to 1.

Recall that if C is a subset of a real vector space V , then C is said to be
a strictly convex closed cone of V if C is closed in V , closed under addition
and multiplication by a non-negative scalar, and contains no 1-dimensional
linear space. In this paper, we also need the following theorem of Birkhoff-
Perron-Frobenius in [1].

Theorem 2.2. Let C be a non-trivial strictly convex closed cone of V with
non-empty interior in V . Then any element f of GL(V ) such that f(C) ⊂ C
has an eigenvector vf in C whose eigenvalue is the spectral radius ρ(f) of f
in V .

In fact, if we use the subgroup A of [G,G] and Lemma 2.1, we obtain a
stronger version for connected solvable subgroups of GL(V ) as in [7] which
is called the theorem of Lie-Kolchin type for a cone. For more precise state-
ment of Theorem 2.3, see Theorem 2.1 in [7].

Theorem 2.3. Let V be a finite dimensional real vector space, and let
C 6= {0} be a strictly convex closed cone of V . Let G be a connected solvable
subgroup of GL(V ) such that G(C) ⊂ C. Then there exists a nonzero vector
in C\{0} which spans a one-dimensional subcone of C invariant under G.

From now on, let X be a compact connected Kähler manifold of complex
dimension n as before, and let V denote the Dolbeault cohomology group
H1,1(X,R). In this paper, we will apply the above general discussion to a
solvable subgroup G of Aut(X) acting on VC = V ⊗C = H1,1(X,R) ⊗C.
Since every element of [G,G] has all the eigenvalues equal to 1 (i.e., every
element of [G,G] is unipotent) and A is a subset of [G,G], every element
of A also has all the eigenvalues equal to 1. In other words, this says that
every element of A is of null entropy.

Now let K denote the Kähler cone in the Dolbeault cohomology group
H1,1(X,R). Then K is the cone of strictly positive smooth (1, 1)-forms in
H1,1(X,R), and it is a strictly convex open cone in H1,1(X,R) whose closure
K̄ is also a strictly convex closed cone such that K̄ ∩ −K̄ = {0}.

With these understood, we have the following corollary which is an im-
mediate consequence of Theorem 2.3 and its proof in [7].
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Corollary 2.4. Let G be a connected solvable group of automorphisms of
a compact Kähler manifold, and let f0 ∈ G. Then the following properties
hold:

(a) For all f ∈ G, there exist a non-zero class cf0 in K̄ and a positive real
number χ(f) ≤ ρ(f) such that cf0 spans a one-dimensional subcone of
C invariant under G, i.e.,

f∗(cf0) = χ(f)cf0 ,

and such that χ(f0) is greater than or equal to 1.

(b) If f ∈ G is of null entropy, then χ(f) is exactly equal to 1.

Remark 2.5. This corollary is a generalization of Lemma 4.1 in [4]. That is,
if G is abelian and f0 is of positive entropy, then the statement holds to be
true with χ(f0) replaced by the spectral radius ρ(f0) of f0 greater than 1.

Proof. To prove (a), we simply take C := K̄ in order to apply Theorem 2.3.
Then it follows from Theorem 2.3 of Lie-Kolchin type (or [7], Theorem 2.1
and its proof) that there exists a non-zero eigenvector cf0 ∈ C = K̄ for G
which spans a one-dimensional subcone of C invariant under all of G. That
is, we have f∗(cf0) = χ(f)cf0 with a positive real number χ(f) ≤ ρ(f).
Moreover, the proof of Theorem 2.3 (or [7], Theorem 2.1) actually shows
that given an element f0 ∈ G, χ(f0) is always taken to be a positive real
number greater than or equal to 1. This completes the proof of Corollary
2.4 (a).

For the proof of (b), note first that if f is of null entropy, then so is
f−1. Hence, if χ(f) is less than 1, it follows from (f−1)∗(cf0) = χ(f)−1cf0
that f−1 cannot be of null entropy. This contradicts the choice of f . Note
also that, again by the choice of f , χ(f) cannot be greater than 1. This
completes the proof of Corollary 2.4 (b).

To give a proof of Theorem 1.3, we need one more notation.

Definition 2.6. Let τ = (τ(f))f∈G ∈ RG, and let Γτ be the cone of classes
c in K̄ such that

f∗(c) = exp(τ(f))c

for all f ∈ G.

Then we set
F = {τ ∈ RG |Γτ 6= {0}}.
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If Γτ 6= {0}, then exp(τ(f)) is an eigenvalue of f∗ on V = H1,1(X,R). Since
V is finite dimensional, clearly F must be finite. So, let τ1, τ2, · · · , τm be all
the elements of a finite set F . We then define a map π : G→ Rm given by

(2.1) π : G→ Rm, f 7→ (τ1(f), τ2(f), . . . , τm(f)).

It is not difficult to show that the following lemma holds:

Lemma 2.7. (a) The integer m satisfies the inequality

m ≤ h1 := dimH1,1(X,R).

(b) The map π is always a homomorphism into the abelian group (Rm,+).
In particular, the image π(G) is also abelian.

Proof. For the proof of (a), since τ1, τ2, · · · , τm are all distinct, there exists
an element f0 ∈ G such that τi(f0) 6= τj(f0) for 1 ≤ i < j ≤ m. Thus f∗0
on V has at most m distinct eigenvalues. Since the number of eigenvalues
is clearly less than or equal to the dimension of V , m should be less than or
equal to the dimension of V that is equal to h1 in our case. This completes
the proof of (a).

For the proof of (b), it suffices to prove that π is a homomorphism. To
do so, for each ci ∈ Γτi observe first that

(f ◦ g)∗ci = exp(τi(f) + τi(g))ci.

Hence we have π(f ◦g) = π(f)+π(g) for all f and g in G, which means that
π is a group homomorphism. This completes the proof of Lemma 2.7.

3 Proof of Theorem 1.3

In this section we give a proof of Theorem 1.3. The proof of this section
is essentially an adaptation of the proof of the Principal Theorem by Dinh
and Sibony in [4]. For the sake of reader’s convenience, however, we shall
show how to prove Theorem 1.3 relatively in detail. See [4] for more details.

First we need the following key technical lemma ([4], Lemma 4.3) from
the paper [4] of Dinh and Sibony. Assume that X is a compact Kähler
manifold of dimension n, as before.

Lemma 3.1. Let c, c′, and ci be the non-zero classes in K̄, 1 ≤ i ≤ t ≤ n−2,
and let f ∈ Aut(X). Assume that there exist two distinct positive real
constants λ and λ′ such that

f∗(c1 ∧ · · · ∧ ct ∧ c) = λc1 ∧ · · · ∧ ct ∧ c,
f∗(c1 ∧ · · · ∧ ct ∧ c′) = λ′c1 ∧ · · · ∧ ct ∧ c′.
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Assume also that c1 ∧ · · · ∧ ct ∧ c 6= 0 and c1 ∧ · · · ∧ ct ∧ c ∧ c′ = 0. Then we
have

c1 ∧ · · · ∧ ct ∧ c′ = 0.

Proof. This lemma has nothing to do with a solvable subgroup of automor-
phisms of X. So we are done by Lemma 4.3 in [4].

Lemma 3.1 will play an essential role in the proofs of Lemma 3.2, The-
orem 3.5, Proposition 3.6, and Theorem 1.4.

As the proof of Theorem 3.5 below shows, if the rank r̃ of the image
of the homomorphism π defined in (2.1) is greater than or equal to n − 1,
it will be enough to use the homomorphism π in order to prove Theorem
1.3. On the other hand, if r̃ is less than or equal to n − 2, it turns out
that we need some more homomorphisms from G to R other than τi’s, in
order to obtain an injective homomorphism from G/N(G). The following
lemma provides such additional homomorphisms. Here we adapt a variation
of some arguments originated from [4] (see also [12]).

Lemma 3.2. Let r̃ denote the rank of the image of the homomorphism π
defined in (2.1). Then the following properties hold:

(a) There exist non-zero classes cj (j = 1, 2, · · · , r̃) in K̄ such that

c1 ∧ c2 ∧ · · · ∧ cr̃ 6= 0, and f∗(cj) = exp(τj(f))cj for all f ∈ G,

where τj : G→ R is a homomorphism.

(b) Assume that r̃ ≤ n − 2. Then there exist additional non-zero classes
cr̃+j in K̄ and homomorphisms τ̃r̃+j : G → R (j = 1, · · · , n − r̃ − 1)
such that

c1 ∧ c2 ∧ · · · ∧ cn−2 ∧ cn−1 6= 0

and such that for all f ∈ G

f∗(c1 ∧ c2 ∧ · · · ∧ cr̃ ∧ cr̃+1 ∧ · · · ∧ cr̃+j)
= exp(τ1(f)) · · · exp(τr̃(f)) exp(τ̃r̃+1(f)) · · · exp(τ̃r̃+j(f))

· c1 ∧ c2 ∧ · · · ∧ cr̃ ∧ cr̃+1 ∧ · · · ∧ cr̃+j .
(3.1)

Remark 3.3. By the way of construction, it is obvious that that each subcone
of V spanned by a non-zero class cr̃+j in K̄ in the statement of Lemma 3.2
(b) is not necessarily invariant under G. However, it follows from Corollary
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2.4 (b) that those additional classes cr̃+j (j = 1, 2, · · · , n− r̃− 1) as well as
c1, c2, · · · , cr̃ are all invariant under N(G). That is, all of

τ1(f), · · · , τr̃(f), τ̃r̃+1(f), · · · , τ̃n−1(f)

are zero for all f ∈ N(G). This fact will play a crucial role later. In
particular, it enables us to prove Theorem 1.4.

Proof of Lemma 3.2. For the proof of (a), we assume without loss of gen-
erality that the first r̃ coordinates of the map π generate the image of the
map π. Let us denote by τ1, · · · , τr̃ such r̃ coordinates. Let ci be a non-zero
class in Γci (1 ≤ i ≤ r̃). Then for any I = {i1, · · · , ik} ⊂ {1, 2, · · · , r̃}, set

cI = ci1 ∧ · · · ∧ cik−1
∧ cik .

To prove (a), it suffices to show that cI 6= 0 for any subset I of {1, 2, · · · , r̃},
and we prove it only for the case of I = {1, 2, · · · , k}, since other cases are
similar. Indeed, if k = 1, by construction we have c1 6= 0 and so there is
nothing to prove. For k ≥ 2, we want to prove c1 ∧ c2 ∧ · · · ∧ ck 6= 0 by
contradiction. So suppose that

c1 ∧ · · · ∧ ck−2 ∧ ck−1 6= 0, c1 ∧ · · · ∧ ck−2 ∧ ck 6= 0, and

c1 ∧ · · · ∧ ck−1 ∧ ck = 0.

We then apply Lemma 3.1 for t = k − 2, c = ck−1, and c′ = ck. By Lemma
3.1, it is easy to see that τk−1(f) = τk(f) for all f ∈ G. But, this implies
that the image of π lies in the hyperplane {xk−1 = xk}, which contradicts
the choice of τi’s. This completes the proof of (a).

For the proof of (b), we continue to use the notations used in the proof
of (a). Then consider the induced action of G on the real subspace c1∧· · ·∧
cr̃ ∧H1,1(X,R) of H r̃+1,r̃+1(X,R). Here c1, · · · , cr̃ are the non-zero classes
that have been obtained in (a) above. Note that c1 ∧ · · · ∧ cr̃ ∧ K̄ spans
c1 ∧ · · · ∧ cr̃ ∧H1,1(X,R).

Note also that c1 ∧ · · · ∧ cr̃ ∧ K̄ is a strictly convex closed cone in c1 ∧
· · · ∧ cr̃ ∧ H1,1(X,R) that is invariant under G. To see it, we first make
use of an elementary argument to show that c1 ∧ · · · ∧ cr̃ ∧ K̄ is closed in
c1 ∧ · · · ∧ cr̃ ∧ H1,1(X,R). Indeed, let {αj}dim K̄

j=1 be a basis for the vector

space spanned by K̄. Then extend it to a basis of H1,1(X,R), denoted by
{αj}h1j=1. For the sake of simplicity, we assume that

{c1 ∧ · · · ∧ cr̃ ∧ αj}h1j=1
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is a basis for c1 ∧ · · · ∧ cr̃ ∧H1,1(X,R). Now, let

{c1 ∧ · · · ∧ cr̃ ∧
dim K̄∑
j=1

x
(k)
j αj}∞k=1, x

(k)
j ∈ R≥0

be a sequence converging to an element

β = c1 ∧ · · · ∧ cr̃ ∧
h1∑
j=1

xjαj ∈ c1 ∧ · · · ∧ cr̃ ∧H1,1(X,R)

for some xj ∈ R, with respect to the standard topology. Then it is clear

that each x
(k)
j converges to xj as k goes to ∞. So all of the coefficients xj ’s,

except possibly for 1 ≤ j ≤ dim K̄, are zero. That is, β is an element of
c1 ∧ · · · ∧ cr̃ ∧ K̄. This finishes the proof of the claim.

The fact that c1 ∧ · · · ∧ cr̃ ∧ K̄ is a strictly convex cone in c1 ∧ · · · ∧ cr̃ ∧
H1,1(X,R) which is invariant under G is well-known (see, e.g., [12], Lemma
2.3 (1)).

Next, by Theorem 2.3 of Lie-Kolchin type applied to c1 ∧ · · · ∧ cr̃ ∧ K̄ in
c1 ∧ · · · ∧ cr̃ ∧H1,1(X,R), we obtain a non-zero class cr̃+1 in K̄ such that

f∗(c1 ∧ c2 ∧ · · · ∧ cr̃+1)

= exp(τ1(f)) exp(τ2(f)) · · · exp(τ̃r̃+1(f))c1 ∧ c2 ∧ · · · ∧ cr̃+1

for some functions τ̃r̃+1 : G→ R. Finally, in order to obtain the rest of the
non-zero classes cr̃+j ∈ K̄ satisfying the equation (3.1) one may apply the
mathematical induction, which is now fairly straightforward. So we leave it
to the reader.

As in the proof of Lemma 2.7, it is also easy to show that each τ̃r̃+j
(j = 1, 2, · · · , n − r̃ − 1) is a homomorphism. This completes the proof of
(b) and so Lemma 3.2.

With these preliminaries, we next give a definition of the homomorphism
Π which will be used in Theorem 3.5.

Definition 3.4. Let r̃ denote the rank of the image of the homomorphism
π. From now on, we assume without loss of generality that the first r̃
coordinates of the map π generate the image of the map π. Let us denote
by τ1, · · · , τr̃ such r̃ coordinates.

(a) If r̃ ≥ n− 1, a homomorphism Π : G→ Rn−1 is just defined to be the
homomorphism π in (2.1) composed by the canonical projection onto
the first n− 1 factors.
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(b) On the other hand, if 1 ≤ r̃ ≤ n − 2, by using the additional homo-
morphisms τ̃r̃+j (j = 1, 2, · · · , n− r̃−1) constructed in Lemma 3.2 (b)
we define a homomorphism Π as follows.

Π : G→ Rn−1, f 7→ (τ1(f), · · · , τr̃(f), τ̃r̃+1(f), · · · , τ̃n−1(f)).

We are now in a position to prove Theorem 3.5, which also gives a proof
of Theorem 1.3.

Theorem 3.5. Let G be a connected solvable group of automorphisms of
a compact Kähler manifold X of complex dimension n, and let N(G) be
the normal subgroup of G defined as in Theorem 1.3. Then the induced
homomorphism Π : G/N(G) → Rn−1 is injective and its image is discrete.
In particular, G/N(G) is a free abelian group of rank ≤ n− 1.

Proof. The proof is divided into three steps.

Step 1 : We shall first show that Π(G/N(G)) is discrete in the additive
group Rn−1 with the standard topology. To do so, it suffices to prove that
(0)n−1

i=1 is an isolated point in the image of Π with the induced topology from
Rn−1. This is because the map Π is a homomorphism.

First we deal with the case when r̃ ≥ n − 1. Fix an arbitrary positive
real number δ. Then consider the set of all elements f ∈ G/N(G) satisfying
the following condition:

(3.2) |τj(f)| < δ, j = 1, 2, · · · , n− 1.

By Theorem 2.2 of Birkhoff-Perron-Frobenius, there exist non-zero classes
κi (i = 1, 2) in the closure of the Kähler cone such that f∗(κi) = λiκi with
λ1 = ρ(f) > 1 and λ−1

2 = ρ(f−1) > 1. Moreover, it follows from Lemma 3.2
(a) that there exist non-zero classes cj ∈ K̄ (j = 1, 2, · · · , n− 1) such that

c1 ∧ c2 ∧ · · · ∧ cn−1 6= 0 and f∗(cj) = exp(τj(f))cj

for all f ∈ G. Thus we have

c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ κi = f∗(c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ κi)
= exp(τ1(f)) · · · exp(τn−1(f))λi(c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ κi),

where in the first equality we used the fact that deg(f) = 1.
If c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ κi 6= 0 for all i = 1, 2, then we have

exp(τ1(f)) · · · exp(τn−1(f))λi = 1.
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Thus we have 1 < λ1 = λ2 < 1, which is a contradiction.
Next, we assume that c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ κ1 = 0 by changing the role

of f−1 by f and vice versa, if necessary. If c1 ∧ κ1 = 0, then it follows from
Corollary 3.2 of [4] that c1 is parallel to κ1. So we have

ρ(f) = λ1 = exp(τ1(f)) < eδ.

On the other hand, if c1 ∧ κ1 6= 0, then we let l be the minimal integer ≥ 2
such that c1 ∧ c2 ∧ · · · ∧ cl ∧ κ1 = 0. It then follows from the definition of l
that c1 ∧ c2 ∧ · · · ∧ cl−1 ∧ κ1 6= 0, and so clearly c1 ∧ c2 ∧ · · · ∧ cl−2 ∧ cl−1 6= 0
and c1 ∧ c2 ∧ · · · ∧ cl−2 ∧ κ1 6= 0. Furthermore, by its construction and the
fact that l ≤ n− 1 ≤ r̃, we have

c1 ∧ c2 ∧ · · · ∧ cl−1 ∧ cl 6= 0.

Note that the following two identities hold:

f∗(c1 ∧ · · · ∧ cl−1 ∧ κ1)

= exp(τ1(f)) exp(τ2(f)) · · · exp(τl−1(f))λ1c1 ∧ · · · ∧ cl−1 ∧ κ1,

f∗(c1 ∧ · · · ∧ cl−1 ∧ cl)
= exp(τ1(f)) exp(τ2(f)) · · · exp(τl(f))c1 ∧ · · · ∧ cl−1 ∧ cl.

(3.3)

Now, by applying Lemma 3.1 to the equations in (3.3) with the roles of
t = l − 1, c = κ1 and c′ = cl, we have

exp(τ1(f)) exp(τ2(f)) · · · exp(τl−1(f))λ1

= exp(τ1(f)) exp(τ2(f)) · · · exp(τl−1(f)) exp(τl(f)).

Thus we obtain
λ1 = ρ(f) = exp(τl(f)) < eδ.

Since ρ(f±1) is always less than or equal to ρ(f∓)n−1 as observed in Section
1, we should have ρ(f−1) ≤ exp((n− 1)δ). For all f ∈ G satisfying (3.2), the
absolute values of all the eigenvalues of f∗|H1,1(X,C) are therefore bounded
from above by exp((n− 1)δ).

Finally, let Ψf (x) be the characteristic polynomial of f∗ on H1,1(X,C).
Since G can be regarded as a subgroup of GL(H2(X,Z)), Ψf (x) can also
be assumed to be a polynomial with integer coefficients. Recall that the
absolute values of all the eigenvalues of f∗|H1,1(X,C) of f satisfying (3.2) are
shown to be bounded from above by exp((n− 1)δ). Thus the coefficients of
the characteristic polynomials Ψf (x) of all such f∗’s are also all bounded.

13



This implies that there are only finitely many such characteristic polynomi-
als, so the set of the vectors π(f) for all f satisfying (3.2) is finite. As a
consequence, we see that the zero vector (0)n−1

i=1 is isolated in π(G/N(G))
and the image π(G/N(G)) is discrete. This completes the proof of Step 1.

Step 2 : We next show that the kernel of π coincides with N(G). To see it,
suppose that there is an element f of positive entropy with π(f) = (0)n−1

i=1 ∈
Rn−1. Then it follows from the exactly same arguments as in Step 1 that
there exists a τl(f) for some 1 ≤ l ≤ n− 1 such that ρ(f) = exp(τl(f)) > 1.
But, this contradicts the choice of f . So the kernel of the map π is just
N(G), and the induced map π : G/N(G)→ Rn−1 is actually injective.

For the case of r̃ ≥ n− 1, this completes the proof that G/N(G) is free
abelian of rank n− 1, and, in fact, in this case r̃ should be equal to n− 1.

Step 3 : The proof of other cases when r̃ ≤ n − 2 is completely similar.
But this time we need to use τ1, · · · , τr̃, τ̃r̃+1, · · · , τ̃n−1 instead of τ1, · · · ,
τn−1. We leave its detailed proof to a reader.

This completes the proof of Theorem 3.5.

As another interesting consequence of the injectivity of Π in Theorem 3.5,
the following proposition holds, which is now straightforward from Proposi-
tion 4.4 of [4].

Proposition 3.6. Let G be a connected solvable subgroup of the automor-
phism group Aut(X) and let N(G) be the normal subgroup of null entropy, as
in Theorem 1.3. Let r denote the rank r(G) of the quotient group G/N(G).
Then the following properties hold:

(a) Let hk be the real dimension of the cohomology group Hk,k(X,R).
Assume that r = n− 1. Then hk satisfies

hk ≥
(
n− 1

k

)
, 1 ≤ k ≤ n− 1.

In addition, if k divides n− 1 as well, then we have hk ≥
(
n−1
k

)
+ 1.

(b) There exist (r + 1) non-zero classes c1, . . . , cr+1 in K̄ such that

c1 ∧ c2 ∧ · · · ∧ cr+1 6= 0.

Proof. To prove the proposition, it suffices to notice that the proof of Propo-
sition 4.4 of [4] works also for solvable subgroups of automorphisms. The
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reason is essentially due to the fact that there exists an induced homomor-
phism Π : G/N(G)→ Rn−1 which is injective by Theorem 3.5. To be a bit
more precise, for the proof we need to use Theorem 2.3 and its Corollary 2.4
(or Theorem 2.2) instead of Lemma 4.1 in [4] as well as Lemma 3.1 (refer
to the proof of Theorem 1.4 in Section 4). But this does not make any
significant difference in the proof, since in any case Π(G/N(G)) cannot be
contained in a finite union of hyperplanes in Rr. This completes the proof
of Proposition 3.6.

Note that Theorem 2.2 instead of Theorem 2.3 can also be used to obtain
Proposition 3.6 (b). But then the last non-zero class cn may not be invariant
under N(G). So c1, c2, · · · , cn−1, and cn obtained in that way cannot be used
for the proof of Theorem 1.4. See the proof of Theorem 1.4 in Section 4 for
some details.

As an interesting consequence of Proposition 3.6 (b), we see that r + 1
is less than or equal to n, due to the dimensional reason of X. Therefore r
should be less than or equal to n − 1. This proves Theorem 1.3 (a), once
again.

4 Proof of Theorem 1.4

The aim of this section is to give a proof of Theorem 1.4. For the proof, it
should be pointed out that it is enough to use the homomorphism π instead
of Π.

To begin with the proof, assume first that the rank r(G) of G/N(G) is
equal to n− 1. Then we claim that there exist non-zero classes c1, · · · , cn in
the closure K̄ of the Kähler cone K such that

(i) f∗ci = ci for all 1 ≤ i ≤ n and all f ∈ N(G),

(ii) c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ cn 6= 0.

The proof of the claim essentially follows from that of Proposition 3.6 (b).
Indeed, by Remark 3.3 we have f∗ci = ci for all 1 ≤ i ≤ n − 1 and all
f ∈ N(G). Since the image of the injective homomorphism π : G/N(G) →
Rn−1 spans Rn−1, there exists an f0 ∈ G/N(G) such that all of τj(f0)’s
(1 ≤ j ≤ n− 1) are negative.

Applying Theorem 2.3 of Lie-Kolchin type for a cone (or Corollary 2.4
(a)) to the closure K̄ of the Kähler cone, we see that there exists a non-zero
class cn ∈ K̄ such that cn spans a one-dimensional subcone of C invariant
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under G and such that

f∗0 (cn) = exp(τn(f0))cn

for a non-negative real number τn(f0). In particular, this implies that τj(f0)
is not equal to τn(f0) for all 1 ≤ j ≤ n − 1 and, by Corollary 2.4 (b),
f∗(cn) = cn for all f ∈ N(G). But then, it follows from Lemma 3.2 (a) that
c1 ∧ · · · ∧ cn−2 ∧ cn−1 is a non-zero class. Furthermore, by repeating the
standard argument in the first step of the proof of Theorem 3.5, it is easy
to show that c1 ∧ · · · ∧ cn−2 ∧ cn is also a non-zero class.

Now we want to show that c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ cn 6= 0. So suppose that,
on the contrary, c1 ∧ c2 ∧ · · · ∧ cn = 0. Note that we have

f∗0 (c1 ∧ · · · ∧ cn−2 ∧ cn−1)

= exp(τ1(f0)) · · · exp(τn−2(f0)) exp(τn−1(f0))c1 ∧ · · · ∧ cn−2 ∧ cn−1,

f∗0 (c1 ∧ · · · ∧ cn−2 ∧ cn)

= exp(τ1(f0)) · · · exp(τn−2(f0)) exp(τn(f0))c1 ∧ · · · ∧ cn−2 ∧ cn.

(4.1)

Applying Lemma 3.1 to the equations in (4.1) for f0 with t = n−2, c = cn−1,
and c′ = cn, we obtain

exp(τ1(f0)) · · · exp(τn−2(f0)) exp(τn−1(f0))

= exp(τ1(f0)) · · · exp(τn−2(f0)) exp(τn(f0)).

This implies that 0 > τn−1(f0) = τn(f0) ≥ 0, which is a contradiction. Thus
we have

c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ cn 6= 0.

This finishes the proof of the claim.
Next, let c = c1 + c2 + · · ·+ cn−1 + cn. Then clearly f∗(c) = c for all f in

N(G), but not in the whole of G. Since c1 ∧ c2 ∧ · · · ∧ cn 6= 0, it is also clear
that cn 6= 0. It is known by a theorem of Demailly and Paun in [3] that the
Kähler cone K is connected and that every class of K is characterized by the
condition

∫
X c

n > 0. By construction, c lies in K̄ and cn 6= 0. Thus we may
assume by using the theorem of Demailly and Paun above that c lies in the
Kähler cone K. That is, we may assume that c is a Kähler class.

Finally, let Autc(X) denote the automorphism group preserving the
Kähler class c. Then N(G) is a subgroup of Autc(X). Recall that the
quotient group Autc(X)/Aut0(X) is a finite group by a theorem of Liber-
man ([9], Proposition 2.2). So, if Aut0(X) is trivial, then Autc(X) should
be finite. This implies that N(G) is also finite, which completes the proof
of Theorem 1.4.

16



Acknowledgements: This research was supported by Basic Science Re-
search Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (KRF-2007-
312-C00025, 2010-0001651, 2011-0001181). We also want to acknowledge
the support by the second stage of the Brain Korea 21 Project, The Devel-
opment Project of Human Resources in Mathematics, KAIST in 2011.

References

[1] G. Birkhoff, Linear transformations with invariant cones, Amer. Math.
Monthly 74 (1967), 274–276.

[2] S. Cantat, Groupes de transformations birationnelles du plan, preprint;
available at http://perso.univ-rennes1.fr/serge.cantat/Articles/
cremona court.pdf.

[3] J. P. Demailly and M. Paun, Numerical characterization of the Kähler
cone of a compact Kähler manifold, Ann. Math 159 (2004), 1247–1274;
arXiv:math/0105176v2.

[4] T.-C. Dinh and N. Sibony, Groupes commutatifs d’automorphismes
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