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Abstract. Let R be a complete discrete valuation ring with fraction field K
and with algebraically closed residue field of positive characteristic p. Let X be
a smooth fibered surface over R. Let G be a finite, étale and solvable K-group
scheme and assume that either |G| = pn or G has a normal series of length
2. We prove that for every connected and pointed G-torsor Y over the generic
fibre Xη of X there exist a regular fibered surface X̃ over R and a model map

X̃ → X such that Y can be extended to a torsor over X̃ possibly after extending
scalars.
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1 Introduction

1.1 Aim and scope

Let S be a connected Dedekind scheme of dimension one and η = Spec(K) its
generic point; let X be a scheme, f : X → S a faithfully flat morphism of finite
type and fη : Xη → η its generic fiber. Assume we are given a finite K-group
scheme G and a G-torsor Y → Xη. The problem of extending a torsor Y → Xη
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consists of searching a finite and flat S-group scheme G′ whose generic fibre is
isomorphic to G and a G′-torsor T → X whose generic fibre is isomorphic to
Y → Xη as a G-torsor. Some solutions to this problems are known in some
particular relevant cases, that we briefly recall hereafter. The first important
answer to this problem is due to Grothendieck: he proves that, possibly after
extending scalars, the problem has a solution when S is the spectrum of a com-
plete discrete valuation ring with algebraically closed residue field of positive
characteristic p, with X proper and smooth over S with geometrically con-
nected fibres and (|G|, p) = 1 ([11], Exposé X, or [22], Theorem 5.7.10). When
S is the spectrum of a discrete valuation ring of residue characteristic p, X is
a proper and smooth curve over S then Raynaud suggests a solution, possibly
after extending scalars, for G commutative of order a power of p ([19] §3). A
similar problem has been studied by Säıdi in [20], §2.4 for formal curves of finite
type and G = (Z/pZ)K . When S is the spectrum of a d.v.r. R of mixed char-
acteristic (0, p) Tossici provides a solution, possibly after extending scalars, for
G commutative when X is a regular scheme, faithfully flat over S, with integral
fibres provided that the normalization of X in Y has reduced special fibre ([23],
Corollary 4.2.8). Finally in [3], §3.3 we provide a solution for G commutative,
when S is a connected Dedekind scheme and f : X → S is a relative smooth
curve with geometrically integral fibres endowed with a section x : S → X pro-
vided that Y is pointed over xη (or, in higher dimension, f : X → S is a smooth
morphism satisfying additional assumptions, cf. [3], §3.2). We stress that in
this last case we do not need to extend scalars.

In this paper we study the problem of extending the G-torsor Y → Xη when
G is finite, étale and solvable. In general we are not able to extend it over X
but we first need to modify X in order to find a solution. More precisely the
aim of this paper is to prove the following:

Theorem 1.1. (Theorem 3.27, Corollary 3.28) Let R be a complete discrete
valuation ring with fraction field K and with algebraically closed residue field
of characteristic p > 0. Let X be a smooth fibered surface over R. Let G be a
finite, étale and solvable K-group scheme. We prove that for every connected
and pointed G-torsor Y over the generic fibre Xη of X there exist a regular

fibered surface X̃ over R and a model map X̃ → X such that Y can be extended
to a torsor over X̃ possibly after extending scalars in the following two cases:

1. |G| = pn;

2. G has a normal series of length 2.
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this topic. I would like to thank Vikram Mehta for inviting me at T.I.F.R.
(Mumbai) where I have developed further this paper. Finally I would like to
thank Hausdorff Center (Bonn) for hospitality and Michel Emsalem and Lorenzo
Ramero for helpful remarks.
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1.2 Notations and conventions

Let S be a connected Dedekind scheme (thus including spectra of fields and dis-
crete valuation rings) and X a S-scheme. We will consider in this article torsors
over X under affine and flat S-group schemes G. They are affine, faithfully flat
and G-invariant morphisms p : Y → X, locally trivial for the fpqc topology (i.e.
Y ×X Y ' Y ×G), where Y is a S-scheme endowed with a right action of G and
X is endowed with the trivial action. We say that a G-torsor is finite if G is
finite and flat. Likewise we say that a G-torsor is commutative (resp. solvable)
if G is commutative (resp. solvable). We say that a G-torsor p : Y → X is
pointed if there exists a section y ∈ Y (S).

When S has dimension one we will denote by η := Spec(K) the generic point
of S. For any S-scheme T we will denote by Tη its generic fibre T ×S Spec(K).
Thus Tη will always stand for the generic fibre of a scheme T , and not just a
scheme over Spec(K). In a similar way for any S-morphism of schemes v : T →
T ′ we will denote by vη : Tη → T ′η the reduction of v over Spec(K). When
vη is an isomorphism we will often say that v is a model map. Let Z be any
K-scheme. Any S-scheme T whose generic fibre Tη is isomorphic to Z will be
called a model (or S-model) of Z. When Z has an additional structure of group
scheme, a model T will be tacitly assumed to have a S-group scheme structure
extending the given one on Z. A model map between models of group scheme
will be tacitly assumed to be a S-group scheme morphism.

Now let X be a S-scheme, G a finite K-group scheme and Y → Xη a G-
torsor. As mentioned in section 1.1 we say that Y → Xη can be extended to X
if there exist a finite and flat S-model G′ of G and a G′-torsor T → X whose
generic fibre is isomorphic to Y → Xη as a G-torsor.

When S = Spec(R), with R a discrete valuation ring, then s := Spec(k) will
always denote the special point of S. For any R-scheme T we will denote by
Ts its special fibre T ×Spec(R) Spec(k). Again for any S-morphism of schemes
v : T → T ′ we will denote by vs : Ts → T ′s the reduction of v over Spec(k).

2 Towers of torsors and solvable torsors

2.1 Solvable torsors

Let S be any connected Dedekind scheme, recall that a finite and flat S-group
scheme G is said to be solvable if it has a normal series (or solvable series)

0 = Hn / Hn−1 / .. / H1 / H0 = G (1)

where each Hi is a finite and flat S-group scheme and each quotient Hi/Hi+1

exists as a S-group scheme and is finite, flat and commutative (i = 0, .., n− 1).
As usual n is called the length of such a normal series.

Remark 2.1. When the Hi are finite and flat then each Hi/Hi+1 exists and is
a finite and flat S-group scheme ([21], §3, Theorem).
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Let G be as in (1) then a G-torsor Y → X can be seen as a tower of
commutative torsors, each of them being a Hi/Hi+1-torsor: they are called the
commutative components of the solvable G-torsor. If for instance n = 2 consider
the contracted product Y ′ := Y ×GG/H1 ([8], III, §4, n◦ 3) in order to factor Y
into a tower of two commutative torsors: a commutative G/H1-torsor Y ′ → X
and a commutative H1-torsor Y → Y ′:

Y
H1 //

G   @@@@@@@@ Y ′

G/H1~~}}}}}}}}

X

If n > 2 we iterate the process factoring Y → Y ′ and so on.

2.2 Towers of torsors

Let S be any connected Dedekind scheme of dimension one, X a scheme and
f : X → S a faithfully flat morphism of finite type. We first consider the
following general situation: we are given a finite K-group scheme G (here G is
not necessarily solvable) and a G-torsor Y → Xη pointed in y ∈ Y (K); let G2

be a non trivial (but not necessarily commutative) normal K-subgroup scheme
of G and G1 := G/G2; we can see Y → Xη as a tower of two torsors: a G2-torsor
Y2 = Y → Y1 and a G1-torsor Y1 → Xη pointed in y1 ∈ Y1(K), image of y.
In Theorem 2.3 we prove that Y → Xη can be extended if and only if both
Y1 → Xη and Y2 → Y1 can be extended. We will need Lemma 2.2 which has
been pointed out to the author by Marco Garuti. A similar statement with a
similar proof (but with different assumptions) can be found in [17], Lemma 1,
so we only sketch the proof.

Lemma 2.2. Let T1 and T2 be (resp.) a G1-torsor over X pointed in t1 ∈ T1(S)
and a G2-torsor over X pointed in t2 ∈ T2(S). Let ϕ : T1 → T2 be a X-
morphism sending t1 7→ t2, then there is a unique homomorphism ρ : G1 → G2

such that ϕ commutes with the actions of G1 and G2.

Proof. Let x : S → X be the image of t1 (and t2) in X(S). Thus pulling back
ϕ over x we get a morphism ϕx : T1x → T2x. But by assumptions we have
isomorphisms µG1

: G1 → T1x, g 7→ g · x and µG2
: G2 → T2x, h 7→ h · y. Then

we set ρ := µ−1G2
◦ ϕx ◦ µG1

. Now from

T1 ×G1
//

ϕ×ρ
��

T1 ×X T1

ϕ×ϕ
��

T2 ×G2
// T2 ×X T2
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one deduces the commutative diagram

T1 ×G1
//

ϕ×ρ
��

T1

ϕ

��
T2 ×G2

// T2

which first says that ρ is a group scheme morphism (since the actions are free)
and finally that ϕ commutes with the actions of G1 and G2.

We are now ready to prove the following

Theorem 2.3. The G-torsor Y → Xη can be extended to X if and only if the
G1-torsor Y1 → Xη can be extended to X and the G2-torsor Y → Y1 can be
extended to Z1 where Z1 → X is a G′1-torsor extending Y1 → Xη, for some
S-model G′1 of G1.

Proof. The “only if” part is easy and left to the reader. So let us assume we are
able to extend each component, i.e. there exist finite and flat S-group schemes
G′1 and G′2 models (resp.) of G1 and G2, a G′1-torsor Z1 → X extending
Y1 → Xη and a G′2-torsor Z2 → Z1 extending Y2 → Y1 (pointed resp. in
z1 ∈ Z1(S) and z2 ∈ Z2(S), sections extending y1 and y). Then we are in the
situation described by the following diagram:

Y = Y2

G2

��

// Z2

G′
2

��
Y1

G1

��

// Z1

G′
1

��
Xη

��

// X

��
Spec(K) // S

(2)

In general Z2 → X need not be a torsor, but from the tower Z2 → Z1 → X
we can obtain a torsor whose generic fibre is isomorphic to the G-torsor Y →
Xη. Indeed by a result of Garuti ([9], §2, Theorem 1) there exist flat S-group
schemes of finite type N , M and H, a S-scheme T (provided with t ∈ T (S)) and
morphisms T → Z2, T → Z1 and T → X which are respectively a N -torsor,
M -torsor and H-torsor (all pointed), such that the following diagram commutes:
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T
N

~~~~~~~~~~

M
�������

���������

H

		����������������������

Z2

G′
2

��
Z1

G′
1

��
X

then in particular there are canonical faithfully flat group scheme morphisms
γ2 : M → G′2 and γ1 : H → G′1 over S where M ' ker(γ1) and N ' ker(γ2).
First we observe that N is normal in H: indeed generically Nη E Hη because
Nη is the kernel of the natural morphism Hη → G; but N coincides with the
schematic closure of Nη in H then N EH ([1], 1.2.5, Remarques d)). Hence we
can construct the quotient H/N , which is a S-flat group scheme ([1] Théorème
4.C) that fits in the following exact sequence ([8], III, §3, n◦ 3, 3.7 a))

0 // G′2 // H/N // G′1 // 0 (3)

then in particular H/N is finite since G′2 and G′1 are ([6], Proposition 9.2, (viii)).
Let γ : H → (H/N) be the canonical faithfully flat morphism and let us consider
the contracted product Z := T ×H (H/N) via γ which is a H/N -torsor. The
contracted product commuting with base change ([8], III, §4, n◦ 3, 3.1), we
have Zη := (T ×H (H/N))η ' Tη ×Hη (H/N)η ' Tη ×Hη Hη/Nη (where the

last isomorphism follows by [6], Proposition 9.2 (v)) then in particular Tη ×Hη
Hη/Nη ' Y as a G-torsor over X (cf. Lemma 2.2) and Z is a pointed H/N -
torsor over X extending the starting one.

Remark 2.4. Keeping notations of Theorem 2.3 we observe that Z factors
through Z1 and in particular Z → Z1 is a G′2-torsor. Indeed

Z ×H/N G′1 ' (T ×H H/N)×H/N G′1 ' T ×H G′1 ' Z1

then Z → Z1 is a ker(H/N → G′1)-torsor.

Corollary 2.5. Let G be a finite and solvable K-group scheme and Y → Xη a
pointed G-torsor. Then Y → Xη can be extended to a finite solvable G′-torsor
Z → X for some model G′ of G if and only if its commutative components can
be extended.

Proof. The case where G has a normal series of length n = 2 is exactly Theorem
2.3. With a little effort this procedure can be generalized to the case where G
has no normal series of length n = 2, simply repeating Garuti’s construction
and Theorem 2.3.
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3 Extension of solvable torsors

Let S and X be as in section 2.2. We recall a definition that we will often use
from now on:

Definition 3.1. Assume X is endowed with a section x ∈ X(S). A G-torsor
Y → X over S, pointed at y ∈ Yx(S), is said to be quotient if X has a fundamen-
tal group scheme π1(X,x) (it always happens when X is connected according to
[4]) and the canonical morphism of S-group schemes π1(X,x)→ G is faithfully
flat.

Remark 3.2. Let S be the spectrum of a field. Then a pointed quotient G-
torsor Y → X is always connected and if G is étale (it will always be the case
in section 3.2) then the converse is also true.

In the situation of diagram (2) we now assume that G1 and G2 are com-
mutative. In [3], Theorem 3.10 we have explained how to extend finite pointed
quotient commutative torsors from Xη to X where X needs to satisfy some
strong assumptions ([3], Notation 2.20). Thus for such X, it is not difficult to
find a finite, flat and commutative S-group scheme G′1 as well as a G′1-torsor
Z1 → X that extends the G1-torsor Y1 → Xη. Unfortunately, even if we can
easily find schemes X satisfying these strong conditions (loc. cit. §3.2), it is
improbable that Z1 → S satisfies the same assumptions. Consider for instance
the case of curves: Theorem 3.10 of [3] holds when X → S is smooth, projective
with geometrically integral fibres. However in general Z1 needs not be smooth.
So it is necessary to weaken the assumptions of [3] Theorem 3.10 and this will be
done in Theorem 3.12. The idea is to replace in the statement smooth by regular
so that if Z1 is not regular we know at least how to make it regular (through the
desingularization process) even if not smooth. This will be explained in section
3.1.

3.1 Commutative torsors over curves

Notation 3.3. Even if some results that we will recall hold in a more general
setting from now till the end of the paper, if not stated otherwise, R will be
a complete discrete valuation ring with fraction field K and residue field k.
Moreover S will denote Spec(R) while η := Spec(K) and s := Spec(k) will
denote respectively the generic and special points (see section 1.2).

For the sake of completeness we recall in a few lines the definition of Néron
model and some properties which will be used in this paper. The reader can
refer to [7] for a deep discussion on the subject. Here we only consider Néron
models of abelian varieties since it is the only case we will use.

Definition 3.4. Let A be an abelian variety over K. A Néron model of A
is a smooth and separated R-scheme of finite type NA whose generic fibre is
isomorphic to A and which satisfies the following universal property (called the
Néron mapping property): for each smooth R-scheme Y and each K-morphism
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u : Yη → A there exists a unique morphism u′ : Y → NA extending u where as
usual Yη denotes the generic fibre of Y .

Proposition 3.5. With notation as in Definition 3.4, then A admits a Néron
model NA over R.

Proof. See for instance [7], §1.3, Corollary 2.

By the Néron mapping property the Néron model NA of A is unique up to
canonical isomorphism and it is a commutative group scheme. Unfortunately
in general NA is not an abelian scheme and not even a semi-abelian scheme.

When NA is an abelian scheme then we simply say that A has abelian (or
good) reduction. If NA is not an abelian scheme but there exists a finite Galois
extension L/K such that the Néron model NAL of AL := A ×Spec(K) Spec(L)
is an abelian scheme over the integral closure R′ of R in L then we say that A
has potentially abelian (or potentially good) reduction.

Let X be an S-scheme and X → S a proper morphism of finite type, then
in what follows we denote by Pic(X/S)(fppf) the sheaf, in the fppf topology,
associated to the relative Picard functor given by

PicX/S(T ) := Pic(X ×S T )/P ic(T )

for any S-scheme T (see [3], §2 for a brief introduction and [13] for a com-
plete reference on this topic)1. It is known that for any s ∈ S the sheaf
Pic(Xs/k(s))(fppf) is represented by a group scheme PicXs/k(s) whose identity

component is denoted by Pic0Xs/k(s); over S we denote by Pic0X/S the subfunctor
of Pic(X/S)(fppf) which consists to all elements whose restrictions to all fibres

Xs, s ∈ S belong to Pic0Xs/k(s). Now we recall both the well known definition

of fibered surface and a result concerning the representability of Pic0X/S , for X
a fibered surface.

Definition 3.6. Let f : X → S be a projective and flat morphism. We say
that f : X → S is a fibered surface if X is an integral scheme of dimension 2.
We say that f : X → S is a regular fibered surface if moreover X is regular.

Theorem 3.7. Let f : X → S be a regular fibered surface with smooth generic
fibre Xη and provided with a section x ∈ X(S). Then Pic0X/S is represented

by a separated and smooth S-scheme Pic0X/S and coincides with the identity

component of the Néron model of J := Pic0Xη/K .

Proof. First observe that Xη is geometrically integral (this will be recalled in
Remark 3.15). Then observe that under these assumptions J is an abelian
variety. According to [7], §9.5 Remark 5 the existence of a section implies that
the greatest common divisor of the geometric multiplicities of the irreducible

1N.B.: here we have used Kleiman’s notation. In [7], §8.1, Definition 2, however, our
Pic(X/S)(fppf) is called “the relative Picard functor” and denoted PicX/S .
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components of the special fibre Xs of X in Xs is one. Then by loc. cit. §9.5,
Theorem 4 (b), Pic0X/S is represented by a separated and smooth S-scheme

Pic0X/S which coincides with the identity component of the Néron model of

J := Pic0Xη/K .

Let us denote by u : Xη → J the natural closed immersion usually known as
the Abel-Jacobi map sending xη to 0J , where J := Pic0Xη/K is the Jacobian of
Xη. In Proposition 3.10 we construct, when possible, a morphism u′ : X → NJ
whose generic fibre is isomorphic to u, where NJ denotes the Néron model NJ
of J .

In the following theorem, which is due to Lipman (cf. [14] and [5]), we
recall the desingularization process for surfaces in the particular case of fibered
surfaces with smooth generic fibre (see also [15], §8.3.4) that we will use several
times:

Theorem 3.8. Let Y be any fibered surface over S with smooth generic fibre
Yη. Let

..→ Yi → Yi−1 → Yi−2 → ..→ Y1 → Y0 = Y (4)

denote the sequence of blowing ups where for each i, the morphism Yi → Yi−1
denotes

• the normalization morphism if i is odd (it can be an isomorphism if Yi−1
is already normal);

• the blowing up at the singular points of Yi−1 if i is even.

At each step, when i is even, the singular locus Sing(Yi−1) of Yi−1 is a finite set
of closed points contained in the special fibre (Yi−1)s while when i is odd then
Yi → Yi−1 is a finite morphism. Moreover there exists an integer n ≥ 0 such

that Ỹ := Yn is regular and the morphism Ỹ → Y is proper and generically an
isomorphism.

Definition 3.9. We call the sequence Ỹ = Yn → .. → Y1 → Y0 = Y the
canonical desingularization of Y .

Proposition 3.10. Let f : X → S be a regular fibered surface with smooth
generic fibre Xη and provided with a section x ∈ X(S). Let J be the Jacobian
of Xη, NJ its Néron model and u : Xη → J the canonical closed immersion.
Assume moreover that J has abelian reduction. Then there exists a morphism
u′ : X → NJ whose generic fibre is isomorphic to u.

Proof. If X were smooth this would be the Néron mapping property of the
Néron modelNJ . Since in general this does not happen then we argue as follows:
again we observe that Xη is geometrically integral; then by assumption NJ is
an abelian scheme (thus proper), then construct the schematic closure C := Xη

of Xη in NJ , i.e. the only closed subscheme of NJ , flat over S with generic fibre
isomorphic to Xη. It is an integral scheme ([10] Proposition 9.5.9), proper over S
(becauseNJ is) whose special fibre is equidimensional of dimension one ([15], Ch.
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4, Proposition 4.16). Now we desingularize C, i.e. we construct a proper regular

model (thus projective according to [15], Ch. 8, Theorem 3.16) C̃ of Xη, flat

over S ([15], Ch 4, Corollary 3.10) and a morphism C̃ → C which is generically
an isomorphism. In particular NJ ' N 0

J ' Pic0X/S ' Pic0
C̃/S

by Theorem 3.7

and from C̃ → Pic0X/S one obtains the desired morphism u′ : X → NJ . Indeed

the morphism C̃ → Pic0X/S is an element of Pic0X/S(C̃), then in particular this
corresponds to an element

ξ ∈ Pic(X × C̃)

Pic(C̃)
= PicX/S(C̃) = Pic(X/S)(fppf)(C̃)

(use [15], Ch. 8, Corollary 3.6, (c) then apply [7], §8.1 Proposition 4) but since

C̃ and X are both regular then Pic(X) ' Pic(Xη) ' Pic(C̃) and consequently

Pic(X × C̃)

Pic(C̃)
' Pic(X × C̃)

Pic(X)
= PicC̃/S(X) = Pic(C̃/S)(fppf)(X).

Hence, starting from ξ, we get a morphism X → Pic(C̃/S)(fppf) that on the

generic and special fibres factors (resp.) through u : Xη → J and Xs →
Pic0

C̃s/k(s)
since X has geometrically connected fibres, thus obtaining a mor-

phism X → Pic0
C̃/S

that composed with Pic0
C̃/S
' N 0

J ' NJ , gives the desired

morphism u′ : X → NJ extending u : Xη → J as described by the following
diagram:

Xη

u

##HHHHHHHHHH
//

��

X

u′

  AAAAAAAA

J

��{{vvvvvvvvv
// NJ

~~}}}}}}}}

Spec(K) // S

A result due to Raynaud, that we state in our setting in the following theo-
rem, shows that the hypothesis of Proposition 3.10 are satisfied in many relevant
cases possibly after extending scalars:

Theorem 3.11. Assume that char(k) = p > 0. Let X be a smooth fibered
surface over R provided with a section x ∈ X(S). Let G be a finite and étale
K-group scheme of order pn and Y → Xη a connected G-torsor over the generic
fibre of X, then the Jacobian JY of Y has potential abelian reduction. In par-
ticular every commutative component Yi of Y has a Jacobian JYi with potential
abelian reduction.
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Proof. It is known that G becomes constant after a finite Galois extension L
of K. Moreover since Xη is integral, then it is connected and geometrically
connected (this will be recalled in Remark 3.15); this implies that Xs is ge-
ometrically connected ([15], Ch. 8, Corollary 3.6, (b)), then finally use [19],
Théorème 1.

Next theorem, that will be used later, concludes this section:

Theorem 3.12. Let f : X → S be a regular fibered surface provided with a
section x ∈ X(S). Assume that f has smooth generic fibre Xη → η. Assume
moreover that the Jacobian J of Xη has abelian reduction. Then every finite,
quotient, commutative torsor over Xη, pointed over xη, can be extended to a
finite commutative torsor over X, pointed over x.

Proof. First we observe that Xη is geometrically connected. Now let NJ be
the Néron model of J and u′ : X → NJ the Abel-Jacobi map constructed in
Proposition 3.10. Let G be a finite and commutative K-group scheme, then
according to [3], Corollary 3.8 we know that every finite, pointed (over xη ∈
Xη(K)) quotient and commutative G-torsor T ′ → Xη is the pull back of a
finite, pointed (over 0J) quotient and commutative G-torsor T → J . Now it is
easy to find an R-model H of G (commutative, finite and flat) and a pointed
(over 0NJ ), quotient H-torsor Y → NJ whose generic fibre is isomorphic to
T → J (cf. [2], §2.2). Then finally Y ′ := Y ×NJ X, the pull back over u′, is a
finite, commutative H-torsor over X (pointed over x) extending T ′ → Xη.

Remark 3.13. In the situation of Theorem 3.12, if one is interested in extending
only one fixed torsor f : Y → Xη pointed at y ∈ Y (K), then he can take

f(y) ∈ Xη(K) and then its closure f(y) ∈ X(S). So it is not necessary to
fix x ∈ X(S) a priori since one can obtain a section S → X for any single
torsor. This will be our point of view from now on without explicitly mentioning
anymore.

3.2 Solvable torsors over curves

Notation 3.14. In this section R, S, K, k will be as in Notation 3.3. We ask
moreover k to be algebraically closed and of positive characteristic p > 0: this
will be used in Lemma 3.23 and not before. Furthermore from now on f : X → S
will be a regular fibered surface with smooth generic fibre Xη → Spec(K). For
any surjective S-scheme T the Néron blowing up of T at a closed subscheme C
of Ts will be denoted by TC : we refer the reader to [7], §3.2, [24], §1 or [1], §2.1
for the definition and properties.

In the following remark we recall some general properties that will be tacitly
used in the reminder of this paper:

Remark 3.15. Let T be any S-scheme of finite type. If Tη is geometrically
reduced (resp. geometrically irreducible) then Tη is reduced (resp. irreducible);
if moreover T (S) 6= ∅ then its generic fibre Tη is geometrically connected if and
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only if it is connected ([15], Ch. 3, §2, ex. 2.11 and 2.13). Of course the same is
true for the special fibre Ts. Finally we recall that T integral implies Tη integral
and that if T is flat over S and Tη is integral then so is T ([10] Proposition
9.5.9).

Before stating the principal result we need some preliminary lemmas. Lem-
mas 3.16 and 3.17, as recalled in their proofs, slightly generalize [24] Lemma 1.3
and Theorem2 1.4, that we strongly use.

Lemma 3.16. Let Y and Ỹ be two schemes faithfully flat and of finite type
over S and h : Ỹ → Y an affine model map. If the special fibre hs : Ỹs → Ys
of h is a schematically dominant morphism (i.e. OYs ↪→ hs∗(OỸs) is injective)
then h is an isomorphism.

Proof. Let U = Spec(A) be any open affine subset of Y and V = Spec(A′) :=
h−1(U) then consider h|V : V → U and its special fibre (h|V )s : Vs → Us
where Vs = Spec(A′k) = Spec(A′ ⊗R k), Us = Spec(Ak) = Spec(A ⊗R k) and
by assumption Ak ↪→ A′k. We are thus reduced to consider the affine case, then
one just needs to argue as in [24], Lemma 1.3.

Lemma 3.17. Let Y and Ỹ be two schemes faithfully flat and of finite type over
S and h : Ỹ → Y an affine model map. Then h is isomorphic to a composite of
a finite number of Néron blowing ups.

Proof. If hs : Ỹs → Ys is schematically dominant the result follows from Lemma
3.16, otherwise consider the scheme theoretic image C1 := hs(Ỹs) of Ỹs in Ys.
It is a closed subscheme of Ys ([10], §9.5). Now consider the Néron blowing up
Y C1 of Y in C1 then h factors through Y1 := Y C1 . Denote by h1 : Y → Y1 the
S-morphism obtained. If its special fibre (h1)s is schematically dominant then

we are done otherwise we set C2 := (h1)s(Ỹs), Y2 := Y C2
1 and so on. If Y and

Ỹ are affine then by means of [24] Theorem 1.4 we conclude that there exists

n ≥ 0 such that Ỹ ' Yn. Otherwise Ỹ ' lim←−iYi and let {Uj}j∈J be an affine

open cover of Y and
{
Vj := h−1(Uj)

}
j∈J the induced affine open cover of Ỹ .

Since Y is quasi compact we can take |J | < ∞. To give h is equivalent to give
the family of morphisms

{hj := (Vj
h|Vj // Uj // Y )}j∈J

where we have given the Vj and Uj the induced subscheme structure ([12], II,
Theorem 3.3, Step 3). For any j ∈ J let us set C1,j := C1×Y Uj (i.e. the scheme

theoretic image (h|Vj )s((Vj)s), [10], Proposition 9.5.8) and U1,j := Uj
C1,j ; the

latter is isomorphic to Y C1 ×Y Uj by means of the universal property of Néron
blowing ups. Then we define C2,j , U2,j and so on: it follows that Vj ' lim←−iUi,j
but since Uj and Vj are affine then the projective limits become stable after

2This result is stated by Waterhouse and Weisfeiler only for affine group schemes but, as
observed by themselves, the group structure is never used ([24], page 552, Remark (4)).
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n(j) ≥ 0 steps. Take n := maxj∈J{n(j)}: this is the number of steps after
which we can stop.

Lemma 3.18. Let Y be a scheme faithfully flat and of finite type over S, C2

a closed subscheme of Ys and C1 a closed subscheme of C2. Denote by Y Ci the
Néron blowing up of Y in Ci (i = 1, 2). Let C ′ := (Y C2)s ×C2

C1 the induced

closed subscheme of (Y C2)s then Y C1 ' (Y C2)
C′

.

Proof. This follows directly from the universal property of the Néron blowing
up and the following diagram:

(Y C1)s
//_______

""FFFFFFFF C ′

��~~~~~~~~
� � // (Y C2)s

||xxxxxxxx

C1
� � //� p

  AAAAAAAA C2nN

~~}}}}}}}}

Ys

Lemma 3.19. Let Y be a fibered surface. Let f : Y → X be a finite and flat
morphism, C a closed subscheme of Ys and Y C the Néron blowing up of Y in C.
Then there exist a regular fibered surface X ′ and an affine model map X ′ → X
such that Y C ' Y ×X X ′.

Proof. Let fs : Ys → Xs be the special fibre of f and D1 := fs(C) the scheme
theoretic image of C: it is a closed subscheme of Xs. Now consider the fibre
product C1 := D1 ×Xs Ys and the natural closed immersion C ↪→ C1: if it is an
isomorphism then, by the universal property of the Néron blowing up, Y C '
XD1 ×X Y hence X ′ := XD1 is the required solution. Otherwise let Y1 := Y C1 ,
X1 := XD1 and f1 : Y1 → X1 the pull back of f over X1 → X. The morphism
Y C → Y now factors through Y1; then we analyze the morphism Y C → Y1:

by Lemma 3.18 Y C ' Y
C′

1
1 where C ′1 := C ×C1

(Y1)s, thus we are in the same

situation as before: let D2 := (f1)s(C
′
1), C2 := D2 ×(X1)s

(Y1)s, Y2 := Y1
C2 ,

X2 := XD2
1 , C ′2 := C ′1 ×C2 (Y2)s and so on. We finally obtain the isomorphism

Y C ' lim←−iYi (where we have set Y0 := Y ). Now using arguments similar to
those used in the last part of the proof of Lemma 3.17 we are reduced to study
the case where X (then also Y and Y C) is affine: so let us set Yi := Spec(Ai)
and Y C = Spec(B) then since every Ai is integral ([10], Corollaire 1.2.7) the
morphisms Yi → Yi−1 induce a sequence of inclusions

A0 ⊆ A1 ⊆ A2 ⊆ .. ⊆ Ai ⊆ .. ⊆ B;

and equality occurs at some finite stage because B is finitely generated.
Hence Y C ' Yn and X ′ := Xn allows us to conclude.
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Remark 3.20. In Lemma 3.19 we never use the assumption that the absolute
dimension of X and Y is 2, but it is the only case of interest in this paper.

Lemma 3.21. Let f : Y → X be a finite and flat morphism with Y integral.
Let h : Ỹ → Y be an affine model map. Then there exist a regular fibered surface
X̃ and an affine model map X̃ → X such that Ỹ ' Y ×X X̃. Moreover X̃ → X
is isomorphic to a composite of a finite number of Néron blowing ups.

Proof. This is just a consequence of Lemmas 3.17 and 3.19.

Corollary 3.22. Let f : Y → X be a finite and flat morphism with Y integral.
Assume that the generic fibre Yη of Y is smooth and geometrically integral. Let
h : Y → Y be the normalization morphism. Then there exist a regular fibered
surface X and a finite model map X → X such that Y ' Y ×X X.

Proof. In this context the normalization morphism h : Y → Y is a finite (then
affine) model map (cf. Theorem 3.8). Then the result is just a consequence of
Lemma 3.21.

Lemma 3.23. Let G be a finite and flat S-group scheme with infinitesimal
special fibre Gs and f : Y → X a G-torsor. Assume that the generic fibre Yη of

Y is smooth and geometrically integral. Let moreover Ỹ → Y be the blowing-up
of Y centered at a closed point q of the special fibre Ys of Y . Then Ỹ ' Y ×X X̃
where X̃ → X is the blowing up centered at p := fs(q).

Proof. The residue field k being algebraically closed then q : Spec(k)→ Y and
also p : Spec(k) → X are k-rational points ([15], Ch.2 ex. 5.9). Thus, since
fs : Ys → Xs is a Gs-torsor, Yp := Spec(k)×X Y ' Gs and the canonical closed
immersion q → Gs identifies q with (Gs)red (recall that Gs is infinitesimal).
Then the blowing up Y ′ of Y centered at Yp is isomorphic to the blowing up of

Y centered at q ([15], Ch. 2, ex. 3.11 (a)). But since Y ′ ' Y ×X X̃ ([15], Ch.

8, Proposition 1.12 (c)) then Ỹ ' Y ×X X̃, as required.

Proposition 3.24. Let G be a finite and flat S-group scheme with infinitesimal
special fibre Gs and f : Y → X a G-torsor. Assume that the generic fibre
Yη of Y is smooth and geometrically integral. Let moreover Ỹ → Y be the

canonical desingularization of Y . Then there exist a regular fibered surface X̃
and a morphism X̃ → X such that Ỹ ' Y ×X X̃. In particular Ỹ → X̃ is a
G-torsor.

Proof. According to Theorem 3.8 Ỹ → Y is a sequence of normalization mor-
phisms (which are finite morphisms) and blowing ups centered at a finite set of
singular closed points. Then in order to conclude it is sufficient to use Lemma
3.23 and Corollary 3.22.

Before stating the main theorem of this paper we need a last lemma:
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Lemma 3.25. Let Z → X be a finite (Z/pZ)R-torsor. Then there exist a finite
and flat R-group scheme G with infinitesimal special fiber, a G-torsor Y → X
and a model map ϕ : Z → Y commuting with the actions of (Z/pZ)R and G.

Proof. That a model map ρ : (Z/pZ)R → G such that Gs is infinitesimal exists is
clear from [16], §3.2 when char(K) = p and from [18], I, §2, when char(K) = 0,
then the model map ϕ : Z → Y is given by the contracted product (through ρ)
Y = Z ×(Z/pZ)R G .

Remark 3.26. The G-torsor Y → X obtained in Lemma 3.25 has trivial special
fibre but this will not affect the following discussion.

Theorem 3.27. Let X be a smooth fibered surface over R. Let G be a finite,
étale, solvable K-group scheme of order pn and Y → Xη a connected G-torsor,
pointed at y ∈ Y (K). Then, possibly after a finite extension of scalars, there

exist a regular fibered surface X̃, a model map X̃ → X, a finite flat and solvable
R-group scheme G′ such that Y → Xη can be extended to a G′-torsor Y ′ → X̃.
Moreover we can construct Y ′ in such a way to make it regular.

Proof. First of all we observe that we can decompose Y → Xη into a tower of
n torsors Y1 → Xη, Yi → Yi−1 (for i = 2, .., n, where Yn = Y ) each one being
a quotient pointed Gi-torsor where |Gi| = p. Possibly after extending scalars
we can assume that Gi ' (Z/pZ)K (for all i = 1, .., n) and that the Jacobian
JYi has abelian reduction (Theorem 3.11). Assume first that n = 2: according
to Theorem 3.12 there exist a finite and flat R-group scheme G′1 of order p,
generically isomorphic to G1, and a G′1-torsor Z1 → X extending Y1 → Xη. We
can assume by Lemma 3.25 that (G1)s is infinitesimal. If Z1 is regular we go on
extending Y2 → Y1, otherwise we desingularize Z1 as recalled in Theorem 3.8,
i.e. we find a regular fibered surface Z ′1 and a model map Z ′1 → Z1. Moreover
by Proposition 3.24 there exist a regular fibered surface X ′ and a model map
X ′ → X such that Z ′1 → X ′ is a G′1-torsor. Now we proceed as before: there
exist a finite and flat R-group scheme G′2 of order p, generically isomorphic to
G2, and a G′2-torsor Z2 → Z ′1 extending Y2 → Y1. Again we can assume that
(G2)s is infinitesimal. Then by Theorem 2.3 there exist a finite, flat S-group
scheme G′ generically isomorphic to G, with infinitesimal special fibre and a
G′-torsor Z → X ′ extending Y → Xη and we are done setting Y ′ := Z. We
only mention how to proceed when n > 2: we start from Z and, as before,
we desingularize it, i.e. we find a regular fibered surface Z ′2 and a model map
Z ′2 → Z. As before there exist a regular fibered surface X ′′ → X ′ such that
Z ′2 → X ′′ is a G′1-torsor; then we can extend Y3 → Y2 to a torsor over Z ′2 and
so on. We argue in the same way to prove that we can find a regular Y ′ (if it is
not we desingularize, etc.).

Corollary 3.28. Let X be a smooth fibered surface over R. Let G be a finite,
étale, K-group scheme having a normal series of length n = 2. Let Y → Xη be a
connected G-torsor, pointed in y ∈ Y (K). Then, possibly after a finite extension

of scalars, there exist a regular fibered surface X̃, a model map X̃ → X, a finite

15



flat and solvable R-group scheme G′ such that Y → Xη can be extended to a

G′-torsor over X̃.

Proof. We can assume that the K-group scheme G is constant (it is always true
possibly after extending scalars). Let us decompose Y → Xη into a tower of
two commutative torsors: a G1-torsor Y1 → Xη and a G2-torsor Y → Y1. If
p - |G1| then the problem has an easy answer (see the introduction), otherwise
let pn be the maximal p-power dividing |G1| and pG1 a (normal) K-subgroup of
G1 of order pn. Then the Jacobian JY1

of Y1 has potentially abelian reduction.
Indeed Y1 can be decomposed into a tower of two torsors: a pG1-torsor Y1 → T
and a G1/

pG1-torsor T → Xη. The latter can be extended, possibly after
extending scalars, to a finite and étale torsor T ′ → X (we refer the reader to
the introduction of this paper) then we apply Theorem 3.11 to Y1 → T . Now
we forget this decomposition for Y1 → Xη and we assume that over K the
Jacobian JY1

has abelian reduction (we have seen it is always true possibly after
extending scalars). We would rather consider the following decomposition for
Y1 → Xη as a tower of two torsors: a pG1-torsor P → Xη and a G1/

pG1-torsor
Y1 → P . Theorem 3.11 tells us that the Jacobian JP of P has potentially
abelian reduction; again we can assume that it has in fact abelian reduction.
Hence according to Theorem 3.27 there exist a regular fibered surface X̃, a
model map X̃ → X, a finite flat and commutative R-group scheme H1 such that
P → Xη can be extended to a H1-torsor P ′ → X̃ with P ′ regular. Furthermore
by Theorem 3.12 there exists a finite flat and commutative R-group scheme H2

such that Y1 → P can be extended to a H2-torsor Y ′1 → P ′; by Theorem 2.3
there exist a finite and flat S-group scheme H generically isomorphic to G1

and a H-torsor Z → X̃ extending Y1 → Xη. Since p - |H2| then H2 is étale;

moreover Z → X̃ factors through P ′, more precisely Z → P ′ is a H2-torsor
(Remark 2.4) so Z → P ′ is smooth, then Z is regular as P ′ is (see for instance
[7], §2.3 Proposition 9). Finally we can apply again Theorem 3.12 to Y → Y1
and 2.3 in order to conclude.

Remark 3.29. It is obvious that the tools we have presented allows us to
extend solvable torsors even if they do not have a normal series of length 2 but
only in some particular cases, for example if every commutative component Yi
of the torsor Y → Xη has a Jacobian JYi that has potentially abelian reduction.
As clear from the proof of Corollary 3.28 this condition is satisfied, for instance,
when all the Gi but G1 have order not divisible by p.
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