An Erdős–Ko–Rado Theorem for cross t-intersecting families

Sang June Lee KAIST Algebraic Structure and its Applications Research Center sjlee242@gmail.com

A central result in extremal set theory is the Erdős-Ko-Rado Theorem (1961) which investigates the maximum size of families $\mathcal{A} \subset {[n] \choose k} := \{S \subset [n] : |S| = k\}$ such that for every choice of $A_1, A_2 \in \mathcal{A}$ we have $|A_1 \cap A_2| \ge t$.

Two families $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}} := \{S \subset [n] : |S| = k\}$ are cross t-intersecting if for every choice of subsets $A \in \mathcal{A}$ and $B \in \mathcal{B}$ we have $|A \cap B| \ge t$. The following was conjectured as the cross t-intersecting version of the Erdős– Ko–Rado Theorem: For all $t \ge 1$, $k \ge t$ and $n \ge (t+1)(k-t+1)$, the maximum value of $|\mathcal{A}||\mathcal{B}|$ for two cross t-intersecting families $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}}$ is ${\binom{n-t}{k-t}}^2$. In this talk we verify this for $t \ge 14$, large enough k (depending on t and

In this talk we verify this for $t \ge 14$, large enough k (depending on t and any $\delta > 0$), and $n \ge (t + 1 + \delta)k$. Note that this range of n is arbitrarily close to $n \ge (t + 1)(k - t + 1)$ in the conjecture if δ is small and k is large. Our proofs make use of a *weight* version of the problem and *randomness*.

This is joint work with Peter Frankl, Norihide Tokushige, and Mark Siggers.