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o The eigenvalues of a graph G are the eigenvalues of its
adjacency matrix.

@ The spectrum of a graph G, denoted by Spec(G), is the
set of eigenvalues of G, together with their multiplicities.
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(v, k, \)-designs

o Let X ={x1,...,2,}, and B={Bjy,...,B,} be k-subsets
(blocks) of X. The pair (X, B) is called a (v, k, \)-design
if each two distinct B;, Bj (1 < 4,7 < v) intersect in A
elements; and 0 < A< k<wv—1.




(v, k, \)-designs

o Let X ={x1,...,2,}, and B={Bjy,...,B,} be k-subsets
(blocks) of X. The pair (X, B) is called a (v, k, \)-design
if each two distinct B;, Bj (1 < 4,7 < v) intersect in A
elements; and 0 < A< k<wv—1.

o Each combinatorial design is completely determined by its
corresponding incidence matrix; this is the (0, 1)-matrix
A = (a;j) defined by taking a;; =1 if x; € B; and a;; = 0 if
€4 §Z Bi.
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Characterization of graphs G of order n with one of the
following properties:







Ly i

Spec(Li) = {i(k —1), (i1)k—1}






82k+1

Spec(Sap1) = {+VE+1, 0, (£1)F1}






1 2 3 k
Hi k1

Spec(Hp k1) = {i\/k:Q k+1,0, 11“}
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The Heawood graph
The incidence graph of the Fano plane



The Heawood graph
The incidence graph of the Fano plane

Spec(Heawood) = {ig, (i\/i)ﬁ}
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Connections with combinatorial designs

n—

{G (1) spec(G)}

Al
’ Multiplicative designs ‘

I
{G1(v2)"F C Spec()

——

{G (1) spec(c;)}

il
’pseudo (v, k, )\)—designs‘

Ll
{61#v2)F  spec(G) }




Multiplicative designs

Multiplicative designs were introduced by Ryser (1942),
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Multiplicative designs

Multiplicative designs were introduced by Ryser (1942), and
have been studied by Bridges, Mena, Host (1980’s), and
recently by van Dam and Spence (2004).



Pseudo (v, k, \)-designs

Definition

A pseudo (v, k, \)-design is a pair (X, B) where X is a v-set
and B = {By,...,By_1} is a collection of k-subsets (blocks) of
X such that each two distinct B;, B; intersect in A elements;
and 0 < A< k<v—1




Pseudo (v, k, \)-designs

Definition

A pseudo (v, k, \)-design is a pair (X, B) where X is a v-set
and B = {By,...,By_1} is a collection of k-subsets (blocks) of
X such that each two distinct B;, B; intersect in A elements;
and 0 < A< k<v—1

Developed by O. Marrero, H.J. Ryser, and D.R. Woodall, etc. )
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Types of pseudo designs

A pseudo (v, k, \)-design is called primary if v\ # k? and is
called nonprimary when v\ = k2. It follows that in a
nonprimary pseudo design, v = 2k. Thus a pseudo

(v, k, A)-design is nonprimary if and only if v = 4\ and k = 2.
In fact, the existence of a nonprimary pseudo (v, k, \)-design is
equivalent to existence of a Hadamard design:



Types of pseudo designs

A pseudo (v, k, \)-design is called primary if v\ # k? and is
called nonprimary when v\ = k2. It follows that in a
nonprimary pseudo design, v = 2k. Thus a pseudo

(v, k, \)-design is nonprimary if and only if v = 4\ and k = 2.
In fact, the existence of a nonprimary pseudo (v, k, \)-design is
equivalent to existence of a Hadamard design:

Theorem (Marrero 1974)

The incidence matrix of a given pseudo (4, 2, A)-design can
always be obtained from the incidence matrix A of a

(4N —1,2X\ — 1, A — 1)-design by adjoining one column of all 1’s
to A and then possibly complementing some rows of A.




Primary pseudo (v, k, \)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, \)-design D
can be obtained from the incidence matrix of a (o, k, A)-design

whenever D satisfies one of the following arithmetical conditions
on its parameters.
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Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, \)-design D
can be obtained from the incidence matrix of a (o, k, A)-design
whenever D satisfies one of the following arithmetical conditions
on its parameters.
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adjoining a column of 1’s to the incidence matrix of a
(v—1, k—1, \)-design.
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Theorem (Marrero 1974)
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on its parameters.
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Primary pseudo (v, k, \)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, A)-design D

can be obtained from the incidence matrix of a (v, k, \)-design

whenever D satisfies one of the following arithmetical conditions

on its parameters.

(i) If (k—1)(k—2) = (A —1)(v—2), then A is obtained by

adjoining a column of 1’s to the incidence matrix of a
(v—1, k—1, \)-design.

(ii) If k(k — 1) = A(v — 2), then A is obtained by adjoining a column
of 0’s to the incidence matrix of a (v, k, \)-design.

(iii) If k(k —1) = A(v — 1), then A is obtained from discarding a row
from the incidence matrix of a (v, k, \)-design.

(iv) If k =2\, then A is obtained from the incidence matrix B of a
(v, k, X\)-design as follows: a row is discarded from B and then
the &k’ columns of B which had a 1 in the discarded row are

complemented (0’s and 1’s are interchanged in these columns).
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Graphs with (£1)"2

Let G be a connected graph of order n with
(1) 7 T C Spec(G).

It turns out that

e (G is bipartite with four distinct eigenvalues +X, +1, say.

2, _
ZA—IT—Ln2:>A:n2

o If G is regular = A\ = B



Graphs with (£1)"2

Let G be a connected graph of order n with
(1) 7 T C Spec(G).

It turns out that

e (G is bipartite with four distinct eigenvalues +X, +1, say.

° IfGisregular:>)\—2A2+7”_2:>/\:”T—2
= G = K» » minus a perfect matching (i.e L%

2°2

).

w[3
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o If G is not regular = @ is the incidence graph of a so
called “non-symmetric uniform multiplicative design”



Graphs with (£1)"2

o If G is not regular = @ is the incidence graph of a so
called “non-symmetric uniform multiplicative design”
= (van Dam & Spence, 2004) G has the adjacency

matrix of the form
O N
NT o )

_ JS*IB Jg 1 ].T
N‘( Os J3—13>0r (1 I4>'

where
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Theorem

Let G be a connected graph of order n with
(£1)"z T C Spec(G).

Then G is either ﬁ%,% or on the graph the graph G; and Gb.

e
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Graphs with (£1)"2

Let G be a connected graph of order n with
(£1) 7 T C Spec(G).

It turns out that

e (G is bipartite of order n = 2k 4+ 1 with five distinct
eigenvalues;

o The vertices in the smaller part of G have the same degree
d;
e G is the incidence graph of a pseudo (k, d, d — 1)-design.
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Pseudo (v, k, A\)-design with £k = A+ 1

Theorem

Let D be a pseudo (v, k, A\)-design with k = A + 1. Then D is
obtained from a

(v—1, 1, 0)-design or (v — 1, v — 2, v — 3)-design

by either adding an isolated point or a point which belongs to
all of the blocks.
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e (v—1, 1, 0)-design with a point added to all of its blocks

v

the graph &,

o (v—1, v—2, v — 3)-design with a point added to all of its
blocks



Graphs with (£1)"2

e (v—1, 1, 0)-design with a point added to all of its blocks

v

the graph &,

o (v—1, v—2, v — 3)-design with a point added to all of its
blocks

0

the graph Ho-1 vt1
2 0 2



Graphs with (£1)" 2

Theorem

Let G be a connected graph of order n. If (+1)"2 T C Spec(G),
then G is either S, or HnTlnT—Q—l
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The graph Hy, 41 is DS (i.e., determined by its spectrum).
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Graphs with (£1)"2

Corollary

The graph Sogy1 is DS if k& & S, where
S={-1|£eN}U{f?—¢|LeN}.

Moreover, for k € S we have

@ Si17 has exactly two cospectral mates which are
£373 UbKs U K7 and G1 U3Ks U Kq;

@ 831 has exactly two cospectral mates which are
£474 U1llKs U K7 and Gy U9Ks U K7

o if k =¢?—1and k # 8,15, Syr41 has exactly one
cospectral mate which is Ly U (k — £) Ko U K7;

o if k = ¢? — ¢, Sop11 has exactly one cospectral mate which
is Hg7g+1 U (k — E)Kg
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Let G be a connected graph of order n. If (:l:\/Q)nT_2 C Spec(G),
then G has an adjacency matrix of the form

O N
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e incidence matrix of the Fano plane (i.e., G is the Heawood
graph);
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where N is one of the




Graphs with (£v/2)2 C Spec(G)

Let G be a connected graph of order n. If (:l:\/ﬁ)nT_2 C Spec(G),
then G has an adjacency matrix of the form

O N
NT O )’

e incidence matrix of the Fano plane (i.e., G is the Heawood
graph);
@ incidence matrix of the complement of the Fano plane;

1 17 17
(glj{;>0r<1 e I >
T 1 I o=

where N1 and Ny are the incidence matrices of the Fano
plane and (7, 4, 2)-design, respectively.

where N is one of the

(*]
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Graphs with (£v/2)2 C Spec(G)

Let G be a connected graph of order n with
(£v2)"2" C Spec(Q).

Then,

o (G is bipartite of order n = 2k 4+ 1 with five distinct
eigenvalues;

o The vertices in the smaller part of G have the same degree
d;
e G is the incidence graph of a pseudo (k, d, d — 2)-design.
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Pseudo (v, k, A\)-design with k = A + 2

Theorem

Let D be a pseudo (v, k, A)-design with &k = XA + 2. Then D

@ is obtained by omitting one block either from the unique
(7, 4, 2)-design or the unique (7, 3, 1)-design (Fano plane);




Pseudo (v, k, A\)-design with k = A + 2

Theorem

Let D be a pseudo (v, k, A)-design with &k = XA + 2. Then D

@ is obtained by omitting one block either from the unique
(7, 4, 2)-design or the unique (7, 3, 1)-design (Fano plane);

@ or it is one of the

D; ={1238, 1458, 1678, 3568, 2478, 3468, 2568},
Dy ={4567, 1458, 1678, 2478, 2568, 3578, 3468},
D3 ={4567, 2367, 1678, 3578, 2478, 3468, 2568},
D4 ={4567, 1458, 1678, 3578, 1356, 1257, 2568},
D5 ={4567, 1458, 1678, 3578, 1356, 3468, 1347},
De ={1238, 2367, 2345, 3578, 1356, 3468, 1347},
D7 ={4567, 2367, 2345, 3578, 2478, 1257, 1347}.
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contains (£v/2) 2 , then G is the incidence graph of one of the
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Theorem

Let G be a connected graph of order n. If the spectrum of G
n—3

contains (£v/2) 2 , then G is the incidence graph of one of the

following 9 pseudo designs:

@ the unique pseudo (7, 3, 1)-design;
e the unique pseudo (7, 4, 2)-design; or




Graphs with (£v/2)2 C Spec(G)

Theorem

Let G be a connected graph of order n. If the spectrum of G
n—3

contains (£v/2) 2 , then G is the incidence graph of one of the

following 9 pseudo designs:

@ the unique pseudo (7, 3, 1)-design;
e the unique pseudo (7, 4, 2)-design; or

e one of the seven pseudo (8, 4, 2)-designs Dy, ..., Ds.
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