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The spectrum of a graph

Definition
The eigenvalues of a graph G are the eigenvalues of its
adjacency matrix.
The spectrum of a graph G, denoted by Spec(G), is the
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(v, k, λ)-designs

Definition
Let X = {x1, . . . , xv}, and B = {B1, . . . , Bv} be k-subsets
(blocks) of X. The pair (X,B) is called a (v, k, λ)-design
if each two distinct Bi, Bj (1 6 i, j 6 v) intersect in λ
elements; and 0 6 λ < k < v − 1.
Each combinatorial design is completely determined by its
corresponding incidence matrix; this is the (0, 1)-matrix
A = (aij) defined by taking aij = 1 if xj ∈ Bi and aij = 0 if
xj 6∈ Bi.
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24 1 Graphs

Exercises

1.3.1

a) Show that the graph in Figure 1.18 is isomorphic to the Heawood graph (Fig-
ure 1.16).

Fig. 1.18. Another drawing of the Heawood graph

b) Deduce that the Heawood graph is vertex-transitive.

1.3.2 Show that the following three graphs are isomorphic:

� the intersection graph of the Desargues configuration,
� the line graph of K5,
� the complement of the Petersen graph.

1.3.3 Show that the line graph of K3,3 is self-complementary.

1.3.4 Show that neither of the graphs displayed in Figure 1.19 is a line graph.

1.3.5 Let H := (V,F) be a hypergraph. The number of edges incident with a
vertex v of H is its degree, denoted d(v). A degree sequence of H is a vector
d := (d(v) : v ∈ V ). Let M be the incidence matrix of H and d the corresponding
degree sequence of H. Show that the sum of the columns of M is equal to d.

1.3.6 Let H := (V,F) be a hypergraph. For v ∈ V , let Fv denote the set of edges
of H incident to v. The dual of H is the hypergraph H∗ whose vertex set is F and
whose edges are the sets Fv, v ∈ V .

Fig. 1.19. Two graphs that are not line graphs

The Heawood graph
The incidence graph of the Fano plane

Spec(Heawood) =
{
±3, (±

√
2)6
}
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and
have been studied by Bridges, Mena, Host (1980’s), and
recently by van Dam and Spence (2004).
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A pseudo (v, k, λ)-design is a pair (X,B) where X is a v-set
and B = {B1, . . . , Bv−1} is a collection of k-subsets (blocks) of
X such that each two distinct Bi, Bj intersect in λ elements;
and 0 < λ < k < v − 1.

Developed by O. Marrero, H.J. Ryser, and D.R. Woodall, etc.
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Examples of pseudo designs

X = {1, 2, . . . , 7, 8}
B = {124, 235, 346, 457, 561, 671, 712}
pseudo (8, 3, 1)-design
X = {1, 2, . . . , 7, 8}
B = {1248, 2358, 3468, 4578, 5618, 6718, 7128}
pseudo (8, 4, 2)-design
X = {1, 2, . . . , 7}
B = {235, 346, 457, 561, 671, 712}
pseudo (7, 3, 1)-design
X = {1, 2, . . . , 7, 8}
B = {1238, 1458, 1678, 3568, 2478, 3468, 2568}
pseudo (8, 4, 2)-design
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Types of pseudo designs

A pseudo (v, k, λ)-design is called primary if vλ 6= k2 and is
called nonprimary when vλ = k2. It follows that in a
nonprimary pseudo design, v = 2k. Thus a pseudo
(v, k, λ)-design is nonprimary if and only if v = 4λ and k = 2λ.
In fact, the existence of a nonprimary pseudo (v, k, λ)-design is
equivalent to existence of a Hadamard design:

Theorem (Marrero 1974)

The incidence matrix of a given pseudo (4λ, 2λ, λ)-design can
always be obtained from the incidence matrix A of a
(4λ− 1, 2λ− 1, λ− 1)-design by adjoining one column of all 1’s
to A and then possibly complementing some rows of A.
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Primary pseudo (v, k, λ)-designs

Theorem (Marrero 1974)

The incidence matrix A of a primary pseudo (v, k, λ)-design D
can be obtained from the incidence matrix of a (v̄, k̄, λ̄)-design
whenever D satisfies one of the following arithmetical conditions
on its parameters.

(i) If (k − 1)(k − 2) = (λ− 1)(v − 2), then A is obtained by
adjoining a column of 1’s to the incidence matrix of a
(v − 1, k − 1, λ)-design.

(ii) If k(k − 1) = λ(v − 2), then A is obtained by adjoining a column
of 0’s to the incidence matrix of a (v, k, λ)-design.

(iii) If k(k − 1) = λ(v − 1), then A is obtained from discarding a row
from the incidence matrix of a (v, k, λ)-design.

(iv) If k = 2λ, then A is obtained from the incidence matrix B of a
(v, k, λ)-design as follows: a row is discarded from B and then
the k′ columns of B which had a 1 in the discarded row are
complemented (0’s and 1’s are interchanged in these columns).
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Graphs with (±1)
n−2

2 ⊂ Spec(G)

Let G be a connected graph of order n with

(±1)
n−2

2 ⊂ Spec(G).

It turns out that

G is bipartite with four distinct eigenvalues ±λ,±1, say.
If G is regular ⇒ λ = 2λ2+n−2

n ⇒ λ = n−2
2

⇒ G = Kn
2
,n
2

minus a perfect matching (i.e., Ln
2
,n
2
).
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If G is not regular ⇒ G is the incidence graph of a so
called “non-symmetric uniform multiplicative design”
⇒ (van Dam & Spence, 2004) G has the adjacency
matrix of the form (

O N
N> O

)
,

where

N =
(

J3 − I3 J3

O3 J3 − I3

)
or

(
1 1>

1 I4

)
.
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Let G be a connected graph of order n with

(±1)
n−3

2 ⊂ Spec(G).

It turns out that

G is bipartite of order n = 2k + 1 with five distinct
eigenvalues;
The vertices in the smaller part of G have the same degree
d;
G is the incidence graph of a pseudo (k, d, d− 1)-design.
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Let D be a pseudo (v, k, λ)-design with k = λ+ 1. Then D is
obtained from a

(v − 1, 1, 0)-design or (v − 1, v − 2, v − 3)-design

by either adding an isolated point or a point which belongs to
all of the blocks.
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Let G be a connected graph of order n. If (±1)
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then G is either Sn or Hn−1
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Corollary

The graph Hk,k+1 is DS (i.e., determined by its spectrum).
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2 ⊂ Spec(G)

Corollary

The graph S2k+1 is DS if k 6∈ S, where

S = {`2 − 1 | ` ∈ N} ∪ {`2 − ` | ` ∈ N}.

Moreover, for k ∈ S we have
S17 has exactly two cospectral mates which are
L3,3 ∪ 5K2 ∪K1 and G1 ∪ 3K2 ∪K1;
S31 has exactly two cospectral mates which are
L4,4 ∪ 11K2 ∪K1 and G2 ∪ 9K2 ∪K1;
if k = `2 − 1 and k 6= 8, 15, S2k+1 has exactly one
cospectral mate which is L`,` ∪ (k − `)K2 ∪K1;
if k = `2 − `, S2k+1 has exactly one cospectral mate which
is H`,`+1 ∪ (k − `)K2.
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Theorem

Let G be a connected graph of order n. If (±
√

2)
n−2

2 ⊂ Spec(G),
then G has an adjacency matrix of the form(

O N
N> O

)
,

where N is one of the
incidence matrix of the Fano plane (i.e., G is the Heawood
graph);
incidence matrix of the complement of the Fano plane;

(
N1 J7

O7 N2

)
or

(
1 1> 1>

1 I5 I5
1 I5 J5 − I5

)
,

where N1 and N2 are the incidence matrices of the Fano
plane and (7, 4, 2)-design, respectively.
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Let G be a connected graph of order n with

(±
√

2)
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2 ⊂ Spec(G).

Then,

G is bipartite of order n = 2k + 1 with five distinct
eigenvalues;
The vertices in the smaller part of G have the same degree
d;
G is the incidence graph of a pseudo (k, d, d− 2)-design.
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Pseudo (v, k, λ)-design with k = λ+ 2

Theorem
Let D be a pseudo (v, k, λ)-design with k = λ+ 2. Then D

is obtained by omitting one block either from the unique
(7, 4, 2)-design or the unique (7, 3, 1)-design (Fano plane);
or it is one of the

D1 ={1238, 1458, 1678, 3568, 2478, 3468, 2568},
D2 ={4567, 1458, 1678, 2478, 2568, 3578, 3468},
D3 ={4567, 2367, 1678, 3578, 2478, 3468, 2568},
D4 ={4567, 1458, 1678, 3578, 1356, 1257, 2568},
D5 ={4567, 1458, 1678, 3578, 1356, 3468, 1347},
D6 ={1238, 2367, 2345, 3578, 1356, 3468, 1347},
D7 ={4567, 2367, 2345, 3578, 2478, 1257, 1347}.
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D4 ={4567, 1458, 1678, 3578, 1356, 1257, 2568},
D5 ={4567, 1458, 1678, 3578, 1356, 3468, 1347},
D6 ={1238, 2367, 2345, 3578, 1356, 3468, 1347},
D7 ={4567, 2367, 2345, 3578, 2478, 1257, 1347}.



Pseudo (v, k, λ)-design with k = λ+ 2

Theorem
Let D be a pseudo (v, k, λ)-design with k = λ+ 2. Then D

is obtained by omitting one block either from the unique
(7, 4, 2)-design or the unique (7, 3, 1)-design (Fano plane);
or it is one of the

D1 ={1238, 1458, 1678, 3568, 2478, 3468, 2568},
D2 ={4567, 1458, 1678, 2478, 2568, 3578, 3468},
D3 ={4567, 2367, 1678, 3578, 2478, 3468, 2568},
D4 ={4567, 1458, 1678, 3578, 1356, 1257, 2568},
D5 ={4567, 1458, 1678, 3578, 1356, 3468, 1347},
D6 ={1238, 2367, 2345, 3578, 1356, 3468, 1347},
D7 ={4567, 2367, 2345, 3578, 2478, 1257, 1347}.



Graphs with (±
√
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n−3

2 ⊂ Spec(G)

Theorem
Let G be a connected graph of order n. If the spectrum of G
contains (±

√
2)

n−3
2 , then G is the incidence graph of one of the

following 9 pseudo designs:

the unique pseudo (7, 3, 1)-design;
the unique pseudo (7, 4, 2)-design; or
one of the seven pseudo (8, 4, 2)-designs D1, . . . ,D7.
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Thank You!


