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A simplicial polytope P is said to be cohomologically rigid if its dual simple polytope P ∗

is cohomologically rigid, that is, P ∗ supports a quasitoric manifold M , and its combinatorial
face structure is determined by H∗(M). Simply, we say M is over a simplicial polytope P if
P ∗ supports M .

Choi et al. [1] have shown that H∗(M) ∼= H∗(N) implies βi,j(P ) = βi,j(Q) for all i, j,
where M (resp, N) is a quasitoric manifold over P (resp, Q) and βi,j(P ) is the bigraded Betti

numbers of P which are important invariant coming from combinatorial commutative algebra.
Now we define that a simplicial polytope is combinatorially rigid (or simply, rigid) if

its combinatorial structure is determined by its bigraded Betti numbers. Note that if P is
combinatorially rigid and if P supports a quasitoric manifold, then P is cohomologically rigid.

We find a necessary condition to be combinatorially rigid for 3-dimensional reducible sim-
plicial polytopes and provide some rigid reducible simplicial polytopes.

Let T4, C8, O6, D20 and I12 be the five Platonic solids: the tetrahedron, the cube, the
octahedron, the dodecahedron and the icosahedron respectively. See Figures 1, 3 and 4 for
the definition of ξ1(C8), ξ2(C8), ξ1(D20), ξ2(D20) and Bn, the bipyramid with n vertices.

Theorem 1. Let P be a 3-dimensional simplicial polytope. If P is reducible and combinato-

rially rigid, then P is either T4#T4#T4 or P1#P2, where

P1 ∈ {T4, O6, I12},

P2 ∈ {T4, O6, I12, ξ1(C8), ξ2(C8), ξ1(D20), ξ2(D20)} ∪ {Bn : n ≥ 7}.

Note that Bn is defined for n ≥ 5 and we have B5 = T4#T4 and B6 = O6.
In fact, T4#T4#T4 is known to be rigid, see [1]. We also prove that P1#P2 is rigid for

some P1 and P2 in Theorem 1.

Theorem 2. The following polytopes are combinatorially rigid:

T4#T4, T4#O6, T4#I12, T4#Bn, O6#O6, O6#Bn,

where n ≥ 7.

# T4 O6 I12 Bn, n ≥ 7 ξ1(C8) ξ2(C8) ξ1(D20) ξ2(D20)
T4 rigid rigid rigid rigid ? ? ? ?
O6 - rigid ? rigid ? ? ? ?
I12 - - ? ? ? ? ? ?

We remark that the following proposition is essential for the proofs above; Let P be a prism
which is a product of a k-gon and an interval. Let e be an edge of one of the two k-gons
of P . Then we can obtain another simple polytope from P by ‘cutting’ the edge e. We will
call such polytope edge-cut-prism. A semi-bipyramid is the dual of an edge-cut-prism. See
Figure 2.
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dual
←→

Figure 1. A prism and a bipyramid.

dual
←→

Figure 2. An edge-cut-prism and a semi-bipyramid.

Figure 3. C8, ξ1(C8) and ξ2(C8).

Figure 4. D20, ξ1(D20) and ξ2(D20).

Proposition 3. A bipyramid and a semi-bipyramid are rigid.

We note that all 3-polytopes support quasitoric manifolds. Hence, the above all rigid
polytopes are cohomologically rigid as well. This work is jointly with Jang Soo Kim.
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