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® NC(n) was first studied by Kreweras in 1972.

@ Bessis (2003), Brady and Watt (2002) defined NC(W) for each finite
reflection group W such that NC(A,—1) =2 NC(n).

@ NC(Bn) = NC(Cy) has a combinatorial model NCg(n) (Reiner, 1997).

® NC(Dn) has a combinatorial model NCp(n) (Athanasiadis and Reiner,
2004).

@ Main purpose : Find interpretations for NCg(n).
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@ A partition = of [n] is a collection {Bs, B, ..., B/} such that
BiUBU---UB; = [n], B #0, BNB =0 Vi#]j.

@ Each B; is called block .
@ II(n) : the set of partitions of [n].

@ The standard representation of a partition
{{1,4,6},{2,3,7},{5}} € IL(7):

°
1 2 3 456 7

@ A noncrossing partition is a partition without crossing in its standard
representation.

e v e °
1 2 3 456 7 8
@ NC(n) : the set of noncrossing partitions of [n].



4/26

The cardinality of NC(n)

@ The cardinality of NC(n) is the Catalan number = == <2n> .



4/26

The cardinality of NC(n)

@ The cardinality of NC(n) is the Catalan number = Fll <2nn> .

@ A bijection between NC(n) and Dyck paths :

o »

o & o ®» o <
1 2 3 45 6 7 8 9 10
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Block size enumeration

® For m € NC(n), block size vector of wis (b; b1, by, ..., br) where

@ bis the number of blocks of ,
@ by is the number of blocks of size i.

@ The block size vector of the following is (4;2,1,0, 1,0, ...,0):

v v e

°
1 2 3 456 7 8

Theorem (Kreweras, 1972)
The number of = € NC(n) with the block size vector (b; by, by, ..., bn) is

equal to
il b n
b\by,b,...;b0 ) \b—-1/"
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o m<m <& misarefinement of m

1 2 3
e o o« o Do o o e
1 2 3 1 2 3 1 2 3
[ ] [ ] [ ]
1 2 3
@ NC(n) is graded with rank(m) = n — bk().
® A multichain m1 < 7 < --- < 7, has rank jump vector (s1,,...,Se+1) if
rank+s;  rank +s; rank +s,  rank +Sp41
TN N 7~ N\ N
0 < T < [ 7wz (X | S metr | =< ome | =1
N~ S

bk +s1 bk +s bk +s,  PK+Seia
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Chain enumeration

Theorem (Edelman, 1980)
The number of multichains 1 < 7 < --- < 7, in NC(n) with rank jump
vector (s, %, ..., Se+1) is equal to

(@) E)- ()

@ If m € NC(n) has k blocks, then it is a multichain with rank jump vector
(n—kk—-1).
@ The number of such «'s is the Narayana number :

(6 =266

-1
® A maximal chain has rank jump vector (1,1,...,1).
@ The number of maximal chains is N"~2.
@ Stanley (1996) : maximal chains in NC(n) < parking functions
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@ In the introduction, they wrote that their theorems for type A and B seem
amenable to combinatorial proofs, however, to find a combinatorial proof
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of type B, we need to understand type B very well.

@ Main purpose : Give a new interpretation for noncrossing partitions of
type B
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Definition of noncrossing partitions

@ (W, 9): afinite Coxeter system, T = {wsw * :s€ Sw e W}
@ (r(w) :=min{k: w=titz-- - tx,ti € T}

QuUSTW = fr(w) = Lfr(u) + Lr(uTw)

@ For a Coxeter element c of W, for example c = 15 - - - &,

NC(W) = NC(W,c) = {we W: 1 <t w <t c}.

Example
o LetW=A_1.
® (1,2,---,n) is a Coxeter element.

® 1 € NC(An_1) if the elements of each cycle of = is in increasing order
and if 7 is a noncrossing partition.

o 7=(1,56,8)(23,4)(7) —« 7 ={{1,5,6,8},{2,3,4},{7}}
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The number of elements in I1g(n)

Theorem (K., 2009)
We have

#11a(n) = > S, Ktir1,
k=1

where S(n, k) is the Stirling number of the second kind, t, : the number of
involutions of [n]

@ Compare with

#TI(n) = > S(n k).
k=1
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Combinatorial models for NC(B,)
Definition
A noncrossing partition of type B, is a partition = € IIg(n) without crossing
in the standard representation of 7 with respect to the order
1,2,...,n,—1-2...,—n.

NN

1 2 3 45 -1-2-3-4-5

® NCg(n) : the set of noncrossing partitions of type Bh.

@ NCs(n) = NC(Bn)

@ The circular representation of 7 € NCg(n) is invariant under 180°
rotation. -5 1 -5 1
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[ 2 ]

[ ]
1 23 456 7 8 910-1-2-3-4-5-6-7-8-9-10
U g8°
o« e o/N/
1 2 3 456 7 8 910

@ Ablock B of = € II(n) is nested if there is an edge (i,]) with
i < min(B) < max(B) < j.
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U g8°
e v e v o
1 23 456 7 8 9 10

@ Ablock B of = € II(n) is nested if there is an edge (i,]) with
i < min(B) < max(B) < j.

@ Otherwise, it is called nonnested .

@ NC™(n) = {(0,X) : 0 € NC(n), X is a set of nonnested blocks of o'}
Proposition (K., 2009)

The map ¢8¢ : NCg(n) — NC"V(n) is a bijection.
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B(n) : Second Interpretation for NCg(n)

@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
ablock of 0.
@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:

e ¢ e oo o o —

°
1 2 3 456 7 8 9101



B(n) : Second Interpretation for NCg(n)

[ 2

1

2

@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
ablock of 0.

@ Note that B(n) = NC(n) x [n+ 1].

@ For (o,X) € NC"N(n), define (o, X) as follows:

— e o & oo e e

« oo e oo o

°
3 456 7 8 9101 1 2 3
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6

7
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@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
ablock of 0.

@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:

e ¢ o e 9 6 = oo 0 & o o o

o »

12345686 7 8 91011 12345686 7 8 91011
r\//o/o’ﬁ\r‘wr‘//é

123456 7 8 91011
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@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
ablock of 0.
@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:

e ¢ o e 9 6 = oo 0 & o o o

)
1 2 3 45 6 7 8 9101 1 2 3 45 6 7 8 9101
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B(n) : Second Interpretation for NCg(n)

@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
a block of o.
@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:

% 06 & o e v 6 = e o & e e e o
1 2 3 45 6 7 8 9101 1 2 3 45 6 7 8 9101
1 2 3 45 6 7 10 11 1 2 3 45 6 7 8 9 1011
r“-/o/o/o"_‘o\r“-/r“//é

1 2 3 45 6 7 8 10 11
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@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
a block of o.

@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:
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1 2 3 45 6 7 8 9101 1 2 3 45 6 7 8 9101
1 2 3 45 6 7 10 11 1 2 3 45 6 7 8 9 1011
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B(n) : Second Interpretation for NCg(n)

@ B(n) : the set of (o,y) such that

@ o € NC(n) and
9 yis either

the emptyset @,
an edge of o,
a block of o.

@ Note that B(n) = NC(n) x [n+ 1].
@ For (o,X) € NC"N(n), define (o, X) as follows:

% 06 & o e v 6 = e o & e e e o
1 2 3 45 6 7 8 9101 1 2 3 45 6 7 8 9101
1 2 3 45 6 7 10 11 1 2 3 45 6 7 8 9 1011
1 2 3 45 6 7 8 10 11 1 2 3 45 6 7 8 9 1011

Proposition (K., 2009)
e = g o $8C : NCa(n) — B(n) is a bijection.
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Enumeration of NCg(n) with fixed block sizes

Theorem (1972, Kreweras)
The number of 7 € NC(n) with block size vector (b; by, by, ..., bn) is equal to

1 b n
b\by,be,...,bn ) \b=1)

Using the interpretation 98 (n) for NCg(n), we can easily prove the following.

Theorem (1998, Athanasiadis)
The number of 7 € NCg(n) with block size vector (b; by, by, ..., by) is equal

to
b n
by, bz,...,bn )/ \b—1]"
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Lattice paths

@ LP(n): the set of lattice paths from (0, 0) to (n, n)
@ For (0, X) € NC"N(n), define g(o, X) € LP(n) as follows.

o«

) « o e
1 2 3 45 6 7 8 9 10
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Lattice paths

@ LP(n): the set of lattice paths from (0, 0) to (n, n)
@ For (0, X) € NC"N(n), define g(o, X) € LP(n) as follows.

o«

) « o e
1 2 3 45 6 7 8 9 10

Proposition (K., 2009)
The map g : NCYN(n) — LP(n) is a bijection.
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Lattice paths

Corollary (K., 2009)
The following gives a new bijective proof of # NC(n) = Fll F

NCg(n) —— NC"™(n) ——— B(n) = NC(n) x [n+ 1]

LP(n)
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k-divisible noncrossing partitions

@ 7 is k-divisible if each block of r is of size divisible by k
@ NC™®(n) : the poset of k-divisible noncrossing partitions of [kn]
@ The cardinality of NC™ (n) is the Fuss-Catalan number :

#NCY (n) = kn::_ - ((kt}Dn)
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— (k
o NC! )(n) : the subposet of NC¥) (n) whose elements are fixed under the
180° rotation in the circular representation.
(k) ~ (k)
@ NC "(2n) = NCy” (n)
° @(2k+1)(2n +1) =0

o Nc™(2n+ 1) =2
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Armstrong’s conjecture

] NNC(k)(n) : the subposet of NC¥) (n) whose elements are fixed under the
180° rotation in the circular representation.

—~— (k) ~ (k)

NC " (2n) 22 NCg” (n)

NC® P 2n 4 1) =0

(%)

NC "(2n+1) ="

An element in NG

(7) 7 28 1
26

25

23
22
21

20

17 12
16 15 14 13
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Armstrong’s conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length /) is equal to:

— () n+ £(2kn + k))

ZINC ™ (2n+1),0) = < |

o Letl<r<k

@ m € NC(kn+r) is augmented k-divisible if all but one blocks of = have
sizes divisible by k.

@ NC® (n;r): the poset of augmented k-divisible noncrossing partitions of
[kn+r]

Theorem (K., 2009)

Let nand k be positive integers. Then

NC® (2n+ 1) = NC® (n: k).



Armstrong’s conjecture

Corollary (K., 2009)

The number of multichains in ﬁé(ZK)(Zn + 1) with rank jump vector
(s1,%,..-,Se+1) is equal to

(@) () Ce)

23/26
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Armstrong’s conjecture

Corollary (K., 2009)

The number of multichains in ﬁé(ZK)(Zn + 1) with rank jump vector
(s1,%,..-,Se+1) is equal to

n\ (2kn+k o 2kn + k
S1 S Ser1 )
Corollary (K., 2009)

Armstrong’s conjecture is true!
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Nonnesting partitions

@ Postnikov defined nonnesting partitions for each classical Coxeter group.
@ Similarly we can interpret NNg(n) in terms of NN(n).
@ Ablock B of = € TI(n) is aligned if there is an edge (i, j) with max(B) < i.

e e e o
1 2 3 456 7 8

@ Otherwise, it is called nonaligned .
® Let

NN (n) = {(0,X) : 0 € NN(n), X is a set of nonaligned blocks of o}.
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A bijection between NCg(n) and NNg(n)
@ NCg(n) « NC"(n)
@ NNg(n) <> NN™(n) <> NC¥(n)

Theorem (K., 2009)

There is an involution on NC(n) exchanging nonnested blocks and
nonaligned blocks.

Corollary (K., 2009)
For any integersi and j,

#{m € NC(n) : nn(w) =i,na(m) =j}
= #{m € NC(n) :nn(w) =j,na(w) =i}.

Corollary (K., 2009)
The following is a block size preserving bijection between NCg(n) and NNg(n).

NCg(n)

NCN(n) NCM (n) NN (n) NNg(n)

@ Our bijection is different from that of Fink and Giraldo.
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Final remarks

@ We have found two interpretations for NCg(n).

® Many interesting properties of NC(n) can be translated to NCg(n) using
our interpretations.

Thank you for your attention!



