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Outline

NC(n) was first studied by Kreweras in 1972.

Bessis (2003), Brady and Watt (2002) defined NC(W) for each finite
reflection group W such that NC(An−1) ∼= NC(n).

NC(Bn) ∼= NC(Cn) has a combinatorial model NCB(n) (Reiner, 1997).

NC(Dn) has a combinatorial model NCD(n) (Athanasiadis and Reiner,
2004).

Main purpose : Find interpretations for NCB(n).
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A partition π of [n] is a collection {B1,B2, . . . ,Br} such that

B1 ∪ B2 ∪ · · · ∪ Br = [n], Bi 6= ∅, Bi ∩ Bj = ∅ ∀i 6= j.

Each Bi is called block .

Π(n) : the set of partitions of [n].

The standard representation of a partition
{{1, 4, 6}, {2, 3, 7}, {5}} ∈ Π(7):

1 2 3 4 5 6 7

A noncrossing partition is a partition without crossing in its standard
representation.

1 2 3 4 5 6 7 8

NC(n) : the set of noncrossing partitions of [n].
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The cardinality of NC(n) is the Catalan number =
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A bijection between NC(n) and Dyck paths :

1 2 3 4 5 6 7 8 9 10
⇔

b

b

b b

b b

b

b

b b

b



5 / 26

Block size enumeration

For π ∈ NC(n), block size vector of π is (b; b1, b2, . . . , bn) where



5 / 26

Block size enumeration

For π ∈ NC(n), block size vector of π is (b; b1, b2, . . . , bn) where
b is the number of blocks of π,



5 / 26

Block size enumeration

For π ∈ NC(n), block size vector of π is (b; b1, b2, . . . , bn) where
b is the number of blocks of π,
bi is the number of blocks of size i.



5 / 26

Block size enumeration

For π ∈ NC(n), block size vector of π is (b; b1, b2, . . . , bn) where
b is the number of blocks of π,
bi is the number of blocks of size i.

The block size vector of the following is (4; 2, 1, 0, 1, 0, . . . , 0):

1 2 3 4 5 6 7 8



5 / 26

Block size enumeration

For π ∈ NC(n), block size vector of π is (b; b1, b2, . . . , bn) where
b is the number of blocks of π,
bi is the number of blocks of size i.

The block size vector of the following is (4; 2, 1, 0, 1, 0, . . . , 0):

1 2 3 4 5 6 7 8

Theorem (Kreweras, 1972)
The number of π ∈ NC(n) with the block size vector (b; b1, b2, . . . , bn) is
equal to

1
b

 

b
b1, b2, . . . , bn

! 

n
b − 1

!

.
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NC(n) as a poset

π1 ≤ π2 ⇔ π1 is a refinement of π2

1 2 3

1 2 31 2 3 1 2 3

1 2 3
NC(n) is graded with rank(π) = n − bk(π).

A multichain π1 ≤ π2 ≤ · · · ≤ πℓ has rank jump vector (s1, s2, . . . , sℓ+1) if

b0 ≤ π1 ≤ π2 ≤ · · · ≤ πℓ−1 ≤ πℓ ≤ b1

rank +s1 rank +s2 rank +sℓ rank +sℓ+1

bk +s1 bk +s2 bk +sℓ
bk +sℓ+1



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.

If π ∈ NC(n) has k blocks, then it is a multichain with rank jump vector
(n − k, k − 1).



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.

If π ∈ NC(n) has k blocks, then it is a multichain with rank jump vector
(n − k, k − 1).

The number of such π’s is the Narayana number :

1
n

 

n
n − k

! 

n
k − 1

!

=
1
n

 

n
k

! 

n
k − 1

!

.



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.

If π ∈ NC(n) has k blocks, then it is a multichain with rank jump vector
(n − k, k − 1).

The number of such π’s is the Narayana number :

1
n

 

n
n − k

! 

n
k − 1

!

=
1
n

 

n
k

! 

n
k − 1

!

.

A maximal chain has rank jump vector (

n−1
z }| {

1, 1, . . . , 1).



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.

If π ∈ NC(n) has k blocks, then it is a multichain with rank jump vector
(n − k, k − 1).

The number of such π’s is the Narayana number :

1
n

 

n
n − k

! 

n
k − 1

!

=
1
n

 

n
k

! 

n
k − 1

!

.

A maximal chain has rank jump vector (

n−1
z }| {

1, 1, . . . , 1).

The number of maximal chains is nn−2.



7 / 26

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains π1 ≤ π2 ≤ · · · ≤ πℓ in NC(n) with rank jump
vector (s1, s2, . . . , sℓ+1) is equal to

1
n

 

n
s1

! 

n
s2

!

· · ·

 

n
sℓ+1

!

.

If π ∈ NC(n) has k blocks, then it is a multichain with rank jump vector
(n − k, k − 1).

The number of such π’s is the Narayana number :

1
n
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n − k

! 

n
k − 1

!

=
1
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! 

n
k − 1

!

.

A maximal chain has rank jump vector (

n−1
z }| {

1, 1, . . . , 1).

The number of maximal chains is nn−2.

Stanley (1996) : maximal chains in NC(n) ⇔ parking functions .
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amenable to combinatorial proofs, however, to find a combinatorial proof
of their theorem for type D seems rather hopeless.

Since noncrossing partitions of type D are special noncrossing partitions
of type B, we need to understand type B very well.

Main purpose : Give a new interpretation for noncrossing partitions of
type B
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(W, S) : a finite Coxeter system, T = {wsw−1 : s ∈ S,w ∈ W}

ℓT(w) := min{k : w = t1t2 · · · tk, ti ∈ T}

u ≤T w ⇐⇒ ℓT(w) = ℓT(u) + ℓT(u−1w)

For a Coxeter element c of W, for example c = s1s2 · · · sn,

NC(W) ∼= NC(W, c) = {w ∈ W : 1 ≤T w ≤T c}.

Example

Let W = An−1.

(1, 2, · · · , n) is a Coxeter element.

π ∈ NC(An−1) if the elements of each cycle of π is in increasing order
and if π is a noncrossing partition.

π = (1, 5, 6, 8)(2, 3, 4)(7) ↔ π = {{1, 5, 6, 8}, {2, 3, 4}, {7}}
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1 B ∈ π ⇒ −B = {−x : x ∈ B} ∈ π,
2 there is at most one block, called zero block , which satisfies B = −B.
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Theorem (K., 2009)
We have

#ΠB(n) =

n
X

k=1

S(n, k)tk+1,

where S(n, k) is the Stirling number of the second kind, tn : the number of
involutions of [n]

Compare with

#Π(n) =
n
X

k=1

S(n, k).
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in the standard representation of π with respect to the order
1, 2, . . . , n,−1,−2, . . . ,−n.

1 2 3 4 5 -1 -2 -3 -4 -5

NCB(n) : the set of noncrossing partitions of type Bn.
NCB(n) ∼= NC(Bn)
The circular representation of π ∈ NCB(n) is invariant under 180◦

rotation. 1

−1

2

−2

3−3

4

−4

5

−5 1

−1

2

−2

3−3

4

−4

5
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⇓ φNC
B

1 2 3 4 5 6 7 8 9 10

A block B of π ∈ Π(n) is nested if there is an edge (i, j) with
i < min(B) ≤ max(B) < j.

1 2 3 4 5 6 7 8

Otherwise, it is called nonnested .
NCNN(n) = {(σ,X) : σ ∈ NC(n), X is a set of nonnested blocks of σ}

Proposition (K., 2009)
The map φNC

B : NCB(n) → NCNN(n) is a bijection.



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 117 84



16 / 26

B(n) : Second Interpretation for NCB(n)

B(n) : the set of (σ, y) such that
σ ∈ NC(n) and
y is either

1 the emptyset ∅,
2 an edge of σ,
3 a block of σ.

Note that B(n) = NC(n) × [n + 1].

For (σ,X) ∈ NCNN(n), define ϕB(σ,X) as follows:

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
⇒

1 2 3 4 5 6 7 8 9 10 117 84

Proposition (K., 2009)
ψB = ϕB ◦ φNC

B : NCB(n) → B(n) is a bijection.
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Enumeration of NCB(n) with fixed block sizes

Theorem (1972, Kreweras)
The number of π ∈ NC(n) with block size vector (b; b1, b2, . . . , bn) is equal to
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n
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The number of π ∈ NC(n) with block size vector (b; b1, b2, . . . , bn) is equal to

1
b

 

b
b1, b2, . . . , bn

! 

n
b − 1

!

.

Using the interpretation B(n) for NCB(n), we can easily prove the following.

Theorem (1998, Athanasiadis)
The number of π ∈ NCB(n) with block size vector (b; b1, b2, . . . , bn) is equal
to

 

b
b1, b2, . . . , bn

! 

n
b − 1

!

.
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Lattice paths

LP(n): the set of lattice paths from (0, 0) to (n, n)

For (σ,X) ∈ NCNN(n), define g(σ,X) ∈ LP(n) as follows.

1 2 3 4 5 6 7 8 9 10

⇒

Proposition (K., 2009)
The map g : NCNN(n) → LP(n) is a bijection.
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Lattice paths

Corollary (K., 2009)
The following gives a new bijective proof of # NC(n) = 1

n+1

`2n
n

´

:

NCB(n) NCNN(n) B(n) = NC(n) × [n + 1]

LP(n)
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k-divisible noncrossing partitions

π is k-divisible if each block of π is of size divisible by k

NC(k)(n) : the poset of k-divisible noncrossing partitions of [kn]

The cardinality of NC(k)(n) is the Fuss-Catalan number :

# NC(k)(n) =
1

kn + 1

 

(k + 1)n
n

!
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(n) : the subposet of NC(k)(n) whose elements are fixed under the

180◦ rotation in the circular representation.
fNC

(k)
(2n) ∼= NC(k)

B (n)

fNC
(2k+1)

(2n + 1) = ∅

fNC
(2k)

(2n + 1) =?

An element in fNC
(2·2)

(7) 1

15

2

16

3

17

4

18

5

19

6

20

7

21 8

22

9

23

10

24

11

25

12

26

13

27

14

28
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Armstrong’s conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

Z(fNC
(2k)

(2n + 1), ℓ) =

 

n + ℓ(2kn + k)
n
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Armstrong’s conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

Z(fNC
(2k)

(2n + 1), ℓ) =

 

n + ℓ(2kn + k)
n

!

.

Let 1 ≤ r < k.

π ∈ NC(kn + r) is augmented k-divisible if all but one blocks of π have
sizes divisible by k.

NC(2k)(n; r): the poset of augmented k-divisible noncrossing partitions of
[kn + r]

Theorem (K., 2009)
Let n and k be positive integers. Then

fNC
(2k)

(2n + 1) ∼= NC(2k)(n; k).
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Armstrong’s conjecture

Corollary (K., 2009)
The number of multichains in fNC

(2k)
(2n + 1) with rank jump vector

(s1, s2, . . . , sℓ+1) is equal to
 

n
s1

! 

2kn + k
s2

!

· · ·

 

2kn + k
sℓ+1

!
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Corollary (K., 2009)
The number of multichains in fNC

(2k)
(2n + 1) with rank jump vector

(s1, s2, . . . , sℓ+1) is equal to
 

n
s1

! 

2kn + k
s2

!

· · ·

 

2kn + k
sℓ+1

!

.

Corollary (K., 2009)
Armstrong’s conjecture is true!
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Nonnesting partitions

Postnikov defined nonnesting partitions for each classical Coxeter group.

Similarly we can interpret NNB(n) in terms of NN(n).

A block B of π ∈ Π(n) is aligned if there is an edge (i, j) with max(B) < i.

1 2 3 4 5 6 7 8

Otherwise, it is called nonaligned .

Let

NNNA(n) = {(σ,X) : σ ∈ NN(n), X is a set of nonaligned blocks of σ}.



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)

NNB(n) ↔ NNNA(n) ↔ NCNA(n)



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)

NNB(n) ↔ NNNA(n) ↔ NCNA(n)

Theorem (K., 2009)
There is an involution on NC(n) exchanging nonnested blocks and
nonaligned blocks.



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)

NNB(n) ↔ NNNA(n) ↔ NCNA(n)

Theorem (K., 2009)
There is an involution on NC(n) exchanging nonnested blocks and
nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

#{π ∈ NC(n) : nn(π) = i, na(π) = j}

= #{π ∈ NC(n) : nn(π) = j, na(π) = i}.



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)

NNB(n) ↔ NNNA(n) ↔ NCNA(n)

Theorem (K., 2009)
There is an involution on NC(n) exchanging nonnested blocks and
nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

#{π ∈ NC(n) : nn(π) = i, na(π) = j}

= #{π ∈ NC(n) : nn(π) = j, na(π) = i}.

Corollary (K., 2009)
The following is a block size preserving bijection between NCB(n) and NNB(n).

NCB(n) NCNN(n) NCNA(n) NNNA(n) NNB(n)



25 / 26

A bijection between NCB(n) and NNB(n)

NCB(n) ↔ NCNN(n)

NNB(n) ↔ NNNA(n) ↔ NCNA(n)

Theorem (K., 2009)
There is an involution on NC(n) exchanging nonnested blocks and
nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

#{π ∈ NC(n) : nn(π) = i, na(π) = j}

= #{π ∈ NC(n) : nn(π) = j, na(π) = i}.

Corollary (K., 2009)
The following is a block size preserving bijection between NCB(n) and NNB(n).

NCB(n) NCNN(n) NCNA(n) NNNA(n) NNB(n)

Our bijection is different from that of Fink and Giraldo.
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Final remarks

We have found two interpretations for NCB(n).

Many interesting properties of NC(n) can be translated to NCB(n) using
our interpretations.

Thank you for your attention!


