New interpretations for noncrossing partitions of classical types

Jang Soo Kim

University of Paris 7
Discrete Math Seminar, KAIST, January 21, 2010

- $\mathrm{NC}(n)$ was first studied by Kreweras in 1972.
- NC(n) was first studied by Kreweras in 1972.
- Bessis (2003), Brady and Watt (2002) defined NC(W) for each finite reflection group W such that $\mathrm{NC}\left(A_{n-1}\right) \cong \mathrm{NC}(n)$.

Outline

- NC(n) was first studied by Kreweras in 1972.
- Bessis (2003), Brady and Watt (2002) defined NC(W) for each finite reflection group W such that $\mathrm{NC}\left(A_{n-1}\right) \cong \mathrm{NC}(n)$.
- $\mathrm{NC}\left(B_{n}\right) \cong \mathrm{NC}\left(C_{n}\right)$ has a combinatorial model $\mathrm{NC}_{B}(n)$ (Reiner, 1997).

Outline

- NC(n) was first studied by Kreweras in 1972.
- Bessis (2003), Brady and Watt (2002) defined $\mathrm{NC}(W)$ for each finite reflection group W such that $\mathrm{NC}\left(A_{n-1}\right) \cong \mathrm{NC}(n)$.
- $\mathrm{NC}\left(B_{n}\right) \cong \mathrm{NC}\left(C_{n}\right)$ has a combinatorial model $\mathrm{NC}_{B}(n)$ (Reiner, 1997).
- $\mathrm{NC}\left(D_{n}\right)$ has a combinatorial model $\mathrm{NC}_{D}(n)$ (Athanasiadis and Reiner, 2004).

Outline

- NC(n) was first studied by Kreweras in 1972.
- Bessis (2003), Brady and Watt (2002) defined NC(W) for each finite reflection group W such that $\mathrm{NC}\left(A_{n-1}\right) \cong \mathrm{NC}(n)$.
- $\mathrm{NC}\left(B_{n}\right) \cong \mathrm{NC}\left(C_{n}\right)$ has a combinatorial model $\mathrm{NC}_{B}(n)$ (Reiner, 1997).
- $\mathrm{NC}\left(D_{n}\right)$ has a combinatorial model $\mathrm{NC}_{D}(n)$ (Athanasiadis and Reiner, 2004).
- Main purpose : Find interpretations for $\mathrm{NC}_{B}(n)$.

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j .
$$

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j .
$$

- Each B_{i} is called block.

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j
$$

- Each B_{i} is called block.
- $\Pi(n)$: the set of partitions of $[n]$.

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j .
$$

- Each B_{i} is called block.
- $\Pi(n)$: the set of partitions of $[n]$.
- The standard representation of a partition $\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$:

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j .
$$

- Each B_{i} is called block.
- $\Pi(n)$: the set of partitions of $[n]$.
- The standard representation of a partition $\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$:

- A noncrossing partition is a partition without crossing in its standard representation.

Noncrossing partitions

- $[n]:=\{1,2, \ldots, n\}$
- A partition π of $[n]$ is a collection $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ such that

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{r}=[n], \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset \quad \forall i \neq j .
$$

- Each B_{i} is called block.
- $\Pi(n)$: the set of partitions of $[n]$.
- The standard representation of a partition $\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$:

- A noncrossing partition is a partition without crossing in its standard representation.

- $\mathrm{NC}(n)$: the set of noncrossing partitions of $[n]$.

The cardinality of $\mathrm{NC}(n)$

- The cardinality of $\mathrm{NC}(n)$ is the Catalan number $=\frac{1}{n+1}\binom{2 n}{n}$.

The cardinality of $\mathrm{NC}(n)$

- The cardinality of $\mathrm{NC}(n)$ is the Catalan number $=\frac{1}{n+1}\binom{2 n}{n}$.
- A bijection between $\mathrm{NC}(n)$ and Dyck paths:

Block size enumeration

- For $\pi \in \mathrm{NC}(n)$, block size vector of π is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ where

Block size enumeration

- For $\pi \in \mathrm{NC}(n)$, block size vector of π is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ where
- b is the number of blocks of π,

Block size enumeration

- For $\pi \in \mathrm{NC}(n)$, block size vector of π is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ where
- b is the number of blocks of π,
- b_{i} is the number of blocks of size i.

Block size enumeration

- For $\pi \in \mathrm{NC}(n)$, block size vector of π is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ where
- b is the number of blocks of π,
- b_{i} is the number of blocks of size i.
- The block size vector of the following is $(4 ; 2,1,0,1,0, \ldots, 0)$:

Block size enumeration

- For $\pi \in \mathrm{NC}(n)$, block size vector of π is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ where
- b is the number of blocks of π,
- b_{i} is the number of blocks of size i.
- The block size vector of the following is $(4 ; 2,1,0,1,0, \ldots, 0)$:

Theorem (Kreweras, 1972)
The number of $\pi \in \mathrm{NC}(n)$ with the block size vector $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{b-1}
$$

$\mathrm{NC}(n)$ as a poset

- $\pi_{1} \leq \pi_{2} \quad \Leftrightarrow \quad \pi_{1}$ is a refinement of π_{2}

$\mathrm{NC}(n)$ as a poset
- $\pi_{1} \leq \pi_{2} \quad \Leftrightarrow \quad \pi_{1}$ is a refinement of π_{2}

- $\mathrm{NC}(n)$ is graded with $\operatorname{rank}(\pi)=n-\mathrm{bk}(\pi)$.
$\mathrm{NC}(n)$ as a poset
- $\pi_{1} \leq \pi_{2} \quad \Leftrightarrow \quad \pi_{1}$ is a refinement of π_{2}

- $\mathrm{NC}(n)$ is graded with $\operatorname{rank}(\pi)=n-\mathrm{bk}(\pi)$.
- A multichain $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ has rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ if
$\mathrm{NC}(n)$ as a poset
- $\pi_{1} \leq \pi_{2} \quad \Leftrightarrow \quad \pi_{1}$ is a refinement of π_{2}

- $\mathrm{NC}(n)$ is graded with $\operatorname{rank}(\pi)=n-\mathrm{bk}(\pi)$.
- A multichain $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ has rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ if

$\mathrm{NC}(n)$ as a poset

- $\pi_{1} \leq \pi_{2} \quad \Leftrightarrow \quad \pi_{1}$ is a refinement of π_{2}

- $\mathrm{NC}(n)$ is graded with $\operatorname{rank}(\pi)=n-\mathrm{bk}(\pi)$.
- A multichain $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ has rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ if

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- If $\pi \in \mathrm{NC}(n)$ has k blocks, then it is a multichain with rank jump vector $(n-k, k-1)$.

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- If $\pi \in \mathrm{NC}(n)$ has k blocks, then it is a multichain with rank jump vector $(n-k, k-1)$.
- The number of such π 's is the Narayana number:

$$
\frac{1}{n}\binom{n}{n-k}\binom{n}{k-1}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}
$$

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- If $\pi \in \mathrm{NC}(n)$ has k blocks, then it is a multichain with rank jump vector $(n-k, k-1)$.
- The number of such π 's is the Narayana number:

$$
\frac{1}{n}\binom{n}{n-k}\binom{n}{k-1}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}
$$

- A maximal chain has rank jump vector $(\overbrace{1,1, \ldots, 1}^{n-1})$.

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- If $\pi \in \mathrm{NC}(n)$ has k blocks, then it is a multichain with rank jump vector ($n-k, k-1$).
- The number of such π 's is the Narayana number:

$$
\frac{1}{n}\binom{n}{n-k}\binom{n}{k-1}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}
$$

- A maximal chain has rank jump vector $(\overbrace{1,1, \ldots, 1}^{n-1})$.
- The number of maximal chains is $\mathbf{n}^{\mathbf{n}-2}$.

Chain enumeration

Theorem (Edelman, 1980)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\frac{1}{n}\binom{n}{s_{1}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- If $\pi \in \mathrm{NC}(n)$ has k blocks, then it is a multichain with rank jump vector ($n-k, k-1$).
- The number of such π 's is the Narayana number:

$$
\frac{1}{n}\binom{n}{n-k}\binom{n}{k-1}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}
$$

- A maximal chain has rank jump vector $(\overbrace{1,1, \ldots, 1}^{n-1})$.
- The number of maximal chains is $\mathbf{n}^{\mathbf{n}-2}$.
- Stanley (1996) : maximal chains in $\mathrm{NC}(n) \Leftrightarrow$ parking functions.

K-M Theorem of type A
Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

K-M Theorem of type A
Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$

K-M Theorem of type A
Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$

K-M Theorem of type A
Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$

K-M Theorem of type A

Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$
is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}} .
$$

- Krattenthaler and Müller proved analogous formulas for noncrossing partitions of type B and type D.

K-M Theorem of type A

Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$
is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}} .
$$

- Krattenthaler and Müller proved analogous formulas for noncrossing partitions of type B and type D.
- In the introduction, they wrote that their theorems for type A and B seem amenable to combinatorial proofs, however, to find a combinatorial proof of their theorem for type D seems rather hopeless.

K-M Theorem of type A

Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$
is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- Krattenthaler and Müller proved analogous formulas for noncrossing partitions of type B and type D.
- In the introduction, they wrote that their theorems for type A and B seem amenable to combinatorial proofs, however, to find a combinatorial proof of their theorem for type D seems rather hopeless.
- Since noncrossing partitions of type D are special noncrossing partitions of type B, we need to understand type B very well.

K-M Theorem of type A

Theorem (Krattenthaler and Müller, 2007)
The number of multichains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{\ell}$ in $\mathrm{NC}(n)$ such that

- rank jump vector is $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$
- block size vector of π_{1} is $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$
is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{s_{2}} \cdots\binom{n}{s_{\ell+1}}
$$

- Krattenthaler and Müller proved analogous formulas for noncrossing partitions of type B and type D.
- In the introduction, they wrote that their theorems for type A and B seem amenable to combinatorial proofs, however, to find a combinatorial proof of their theorem for type D seems rather hopeless.
- Since noncrossing partitions of type D are special noncrossing partitions of type B, we need to understand type B very well.
- Main purpose : Give a new interpretation for noncrossing partitions of type B

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \quad \Longleftrightarrow \quad \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Example

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Example

- Let $W=A_{n-1}$.

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Example

- Let $W=A_{n-1}$.
- $(1,2, \cdots, n)$ is a Coxeter element.

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Example

- Let $W=A_{n-1}$.
- $(1,2, \cdots, n)$ is a Coxeter element.
- $\pi \in \mathrm{NC}\left(A_{n-1}\right)$ if the elements of each cycle of π is in increasing order and if π is a noncrossing partition.

Definition of noncrossing partitions

- (W, S) : a finite Coxeter system, $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$
- $\ell_{T}(w):=\min \left\{k: w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$
- $u \leq_{T} w \Longleftrightarrow \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)$
- For a Coxeter element c of W, for example $c=s_{1} s_{2} \cdots s_{n}$,

$$
\mathrm{NC}(W) \cong \mathrm{NC}(W, c)=\left\{w \in W: 1 \leq_{T} w \leq_{T} c\right\}
$$

Example

- Let $W=A_{n-1}$.
- $(1,2, \cdots, n)$ is a Coxeter element.
- $\pi \in \mathrm{NC}\left(A_{n-1}\right)$ if the elements of each cycle of π is in increasing order and if π is a noncrossing partition.
- $\pi=(1,5,6,8)(2,3,4)(7) \leftrightarrow \pi=\{\{1,5,6,8\},\{2,3,4\},\{7\}\}$

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\}
$$

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\} .
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\} .
$$

- $\pi \in \Pi_{B}(n)$: an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\} .
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Definition

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\}
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Definition

- A partition of type B_{n} is a partition of $[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}$ such that

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\}
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Definition

- A partition of type B_{n} is a partition of $[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}$ such that
(1) $B \in \pi \Rightarrow-B=\{-x: x \in B\} \in \pi$,

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\} .
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Definition

- A partition of type B_{n} is a partition of $[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}$ such that
(1) $B \in \pi \Rightarrow-B=\{-x: x \in B\} \in \pi$,
(2) there is at most one block, called zero block, which satisfies $B=-B$.

Partitions of type B

- $\pi \in \Pi(n)$: an intersection of reflecting hyperplanes of the Coxeter group A_{n-1}.

$$
\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\}
$$

- $\pi=\{\{1,4,6\},\{2,3,7\},\{5\}\} \in \Pi(7)$ corresponds to

$$
\left\{\mathbf{x} \in \mathbb{R}^{7}: x_{1}=x_{4}=x_{6}, \quad x_{2}=x_{3}=x_{7}\right\}
$$

- $\pi \in \Pi_{B}(n):$ an intersection of reflecting hyperplanes of type B_{n}

$$
\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- $\left\{\mathbf{x} \in \mathbb{R}^{8}: x_{1}=-x_{3}=x_{6}, \quad x_{2}=x_{4}=0, \quad x_{5}=x_{8}\right\}$ corresponds to

$$
\begin{gathered}
\{ \pm\{1,-3,6\},\{2,4,-2,-4\}, \pm\{5,8\}, \pm\{7\}\} \\
=\{\{1,-3,6\},\{-1,3,-6\},\{2,4,-2,-4\},\{5,8\},\{-5,-8\},\{7\},-\{7\}\}
\end{gathered}
$$

Definition

- A partition of type B_{n} is a partition of $[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}$ such that
(1) $B \in \pi \Rightarrow-B=\{-x: x \in B\} \in \pi$,
(2) there is at most one block, called zero block, which satisfies $B=-B$.
- $\Pi_{B}(n)$: the set of partitions of type B_{n}

The number of elements in $\Pi_{B}(n)$

Theorem (K., 2009)
We have

$$
\# \Pi_{B}(n)=\sum_{k=1}^{n} S(n, k) t_{k+1},
$$

where $S(n, k)$ is the Stirling number of the second kind, t_{n} : the number of involutions of [n]

The number of elements in $\Pi_{B}(n)$

Theorem (K., 2009)
We have

$$
\# \Pi_{B}(n)=\sum_{k=1}^{n} S(n, k) t_{k+1}
$$

where $S(n, k)$ is the Stirling number of the second kind, t_{n} : the number of involutions of $[n]$

- Compare with

$$
\# \Pi(n)=\sum_{k=1}^{n} S(n, k)
$$

Combinatorial models for $\mathrm{NC}\left(B_{n}\right)$

Definition

A noncrossing partition of type B_{n} is a partition $\pi \in \Pi_{B}(n)$ without crossing in the standard representation of π with respect to the order
$1,2, \ldots, n,-1,-2, \ldots,-n$.

Combinatorial models for $\mathrm{NC}\left(B_{n}\right)$

Definition

A noncrossing partition of type B_{n} is a partition $\pi \in \Pi_{B}(n)$ without crossing in the standard representation of π with respect to the order

$$
1,2, \ldots, n,-1,-2, \ldots,-n .
$$

- $\mathrm{NC}_{B}(n)$: the set of noncrossing partitions of type B_{n}.

Combinatorial models for $\mathrm{NC}\left(B_{n}\right)$

Definition

A noncrossing partition of type B_{n} is a partition $\pi \in \Pi_{B}(n)$ without crossing in the standard representation of π with respect to the order
$1,2, \ldots, n,-1,-2, \ldots,-n$.

- $\mathrm{NC}_{B}(n)$: the set of noncrossing partitions of type B_{n}.
- $\mathrm{NC}_{B}(n) \cong \mathrm{NC}\left(B_{n}\right)$

Combinatorial models for $\mathrm{NC}\left(\boldsymbol{B}_{n}\right)$

Definition

A noncrossing partition of type B_{n} is a partition $\pi \in \Pi_{B}(n)$ without crossing in the standard representation of π with respect to the order $1,2, \ldots, n,-1,-2, \ldots,-n$.

- $\mathrm{NC}_{B}(n)$: the set of noncrossing partitions of type B_{n}.
- $\mathrm{NC}_{B}(n) \cong \mathrm{NC}\left(B_{n}\right)$
- The circular representation of $\pi \in \mathrm{NC}_{B}(n)$ is invariant under 180° rotation.

A very simple map

A very simple map

$\Downarrow \phi_{B}^{\mathrm{NC}}$

The inverse map

The inverse map

$\begin{array}{llllllllll}\bullet-1 & -2 & -3 & -4 & -5 & -6 & -7 & -8 & -9 & -10\end{array}$

The inverse map

The inverse map

The inverse map

$\mathrm{NC}^{\mathrm{NN}}(n)$: First Interpretation for $\mathrm{NC}_{B}(n)$

$\Downarrow \phi_{B}^{\mathrm{NC}}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & \bullet & 0 & 0 \\ 1 & 2 & 3 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\mathrm{NC}^{\mathrm{NN}}(n)$: First Interpretation for $\mathrm{NC}_{B}(n)$

$\Downarrow \phi_{B}^{\mathrm{NC}}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10\end{array}$

- A block B of $\pi \in \Pi(n)$ is nested if there is an edge (i, j) with $i<\min (B) \leq \max (B)<j$.

$\mathrm{NC}^{\mathrm{NN}}(n)$: First Interpretation for $\mathrm{NC}_{B}(n)$

$\Downarrow \phi_{B}^{\mathrm{NC}}$

- A block B of $\pi \in \Pi(n)$ is nested if there is an edge (i, j) with $i<\min (B) \leq \max (B)<j$.

- Otherwise, it is called nonnested.
$\mathrm{NC}^{\mathrm{NN}}(n)$: First Interpretation for $\mathrm{NC}_{B}(n)$

$\Downarrow \phi_{B}^{\mathrm{NC}}$

- A block B of $\pi \in \Pi(n)$ is nested if there is an edge (i, j) with $i<\min (B) \leq \max (B)<j$.

- Otherwise, it is called nonnested.
- $\mathrm{NC}^{\mathrm{NN}}(n)=\{(\sigma, X): \sigma \in \mathrm{NC}(n), X$ is a set of nonnested blocks of $\sigma\}$
$\mathrm{NC}^{\mathrm{NN}}(n)$: First Interpretation for $\mathrm{NC}_{B}(n)$

$\Downarrow \phi_{B}^{\mathrm{NC}}$

- A block B of $\pi \in \Pi(n)$ is nested if there is an edge (i, j) with $i<\min (B) \leq \max (B)<j$.

- Otherwise, it is called nonnested.
- $\mathrm{NC}^{\mathrm{NN}}(n)=\{(\sigma, X): \sigma \in \mathrm{NC}(n), X$ is a set of nonnested blocks of $\sigma\}$

Proposition (K., 2009)
The map $\phi_{B}^{\mathrm{NC}}: \mathrm{NC}_{B}(n) \rightarrow \mathrm{NC}^{\mathrm{NN}}(n)$ is a bijection.
$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(- the emptyset \emptyset,
$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either

Q the emptyset \emptyset,
(2) an edge of σ,

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either

Q the emptyset \emptyset,
(2) an edge of σ,
(3) a block of σ.

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
($)$ the emptyset \emptyset,
(2) an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(1) the emptyset \emptyset,
(2) an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(1) the emptyset \emptyset,
(2) an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(a) the emptyset \emptyset,
an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(1) the emptyset \emptyset,
an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n):$ Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(1) the emptyset \emptyset,
an edge of σ,
(3) a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n):$ Second Interpretation for $\mathrm{NC}_{B}(n)$
- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(a) the emptyset \emptyset,
an edge of σ,
a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n)$: Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either
(a) the emptyset \emptyset,
an edge of σ,
a block of σ.
- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n):$ Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either

Q the emptyset \emptyset,
an edge of σ,
a block of σ.

- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

$\mathfrak{B}(n):$ Second Interpretation for $\mathrm{NC}_{B}(n)$

- $\mathfrak{B}(n)$: the set of (σ, y) such that
- $\sigma \in \mathrm{NC}(n)$ and
- y is either

Q the emptyset \emptyset,
an edge of σ,
a block of σ.

- Note that $\mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]$.
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $\varphi_{B}(\sigma, X)$ as follows:

Proposition (K., 2009)
$\psi_{B}=\varphi_{B} \circ \phi_{B}^{\mathrm{NC}}: \mathrm{NC}_{B}(n) \rightarrow \mathfrak{B}(n)$ is a bijection.

Enumeration of $\mathrm{NC}_{B}(n)$ with fixed block sizes

Theorem (1972, Kreweras)
The number of $\pi \in \mathrm{NC}(n)$ with block size vector $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{b-1} .
$$

Enumeration of $\mathrm{NC}_{B}(n)$ with fixed block sizes

Theorem (1972, Kreweras)
The number of $\pi \in \mathrm{NC}(n)$ with block size vector $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{b-1} .
$$

Enumeration of $\mathrm{NC}_{B}(n)$ with fixed block sizes

Theorem (1972, Kreweras)
The number of $\pi \in \mathrm{NC}(n)$ with block size vector $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ is equal to

$$
\frac{1}{b}\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{b-1}
$$

Using the interpretation $\mathfrak{B}(n)$ for $\mathrm{NC}_{B}(n)$, we can easily prove the following.
Theorem (1998, Athanasiadis)
The number of $\pi \in \mathrm{NC}_{B}(n)$ with block size vector $\left(b ; b_{1}, b_{2}, \ldots, b_{n}\right)$ is equal to

$$
\binom{b}{b_{1}, b_{2}, \ldots, b_{n}}\binom{n}{b-1} .
$$

Lattice paths

- LP (n) : the set of lattice paths from $(0,0)$ to (n, n)

Lattice paths

- LP (n) : the set of lattice paths from $(0,0)$ to (n, n)
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $g(\sigma, X) \in \mathrm{LP}(n)$ as follows.

Lattice paths

- LP (n) : the set of lattice paths from $(0,0)$ to (n, n)
- For $(\sigma, X) \in \mathrm{NC}^{\mathrm{NN}}(n)$, define $g(\sigma, X) \in \mathrm{LP}(n)$ as follows.

Proposition (K., 2009)
The map $g: \mathrm{NC}^{\mathrm{NN}}(n) \rightarrow \mathrm{LP}(n)$ is a bijection.

Lattice paths

Corollary (K., 2009)
The following gives a new bijective proof of $\# \mathrm{NC}(n)=\frac{1}{n+1}\binom{2 n}{n}$:

$$
\mathrm{NC}_{B}(n) \longleftarrow \mathrm{NC}^{\mathrm{NN}}(n) \longrightarrow \mathfrak{B}(n)=\mathrm{NC}(n) \times[n+1]
$$

k-divisible noncrossing partitions

- π is k-divisible if each block of π is of size divisible by k
k-divisible noncrossing partitions
- π is k-divisible if each block of π is of size divisible by k
- $\mathrm{NC}^{(k)}(n)$: the poset of k-divisible noncrossing partitions of $[k n]$

k-divisible noncrossing partitions

- π is k-divisible if each block of π is of size divisible by k
- $\mathrm{NC}^{(k)}(n)$: the poset of k-divisible noncrossing partitions of $[k n]$
- The cardinality of $\mathrm{NC}^{(k)}(n)$ is the Fuss-Catalan number:

$$
\# \mathrm{NC}^{(k)}(n)=\frac{1}{k n+1}\binom{(k+1) n}{n}
$$

Armstrong's conjecture

- $\widetilde{\mathrm{NC}}^{(k)}(n)$: the subposet of $\mathrm{NC}^{(k)}(n)$ whose elements are fixed under the 180° rotation in the circular representation.

Armstrong's conjecture

- $\widetilde{\mathrm{NC}}^{(k)}(n)$: the subposet of $\mathrm{NC}^{(k)}(n)$ whose elements are fixed under the 180° rotation in the circular representation.
- $\widetilde{\mathrm{NC}}^{(k)}(2 n) \cong \mathrm{NC}_{B}^{(k)}(n)$

Armstrong's conjecture

- $\widetilde{\mathrm{NC}}^{(k)}(n)$: the subposet of $\mathrm{NC}^{(k)}(n)$ whose elements are fixed under the 180° rotation in the circular representation.
- $\widetilde{\mathrm{NC}}^{(k)}(2 n) \cong \mathrm{NC}_{B}^{(k)}(n)$
- $\widetilde{\mathrm{NC}}^{(2 k+1)}(2 n+1)=\emptyset$

Armstrong's conjecture

- $\widetilde{\mathrm{NC}}^{(k)}(n)$: the subposet of $\mathrm{NC}^{(k)}(n)$ whose elements are fixed under the 180° rotation in the circular representation.
- $\widetilde{\mathrm{NC}}^{(k)}(2 n) \cong \mathrm{NC}_{B}^{(k)}(n)$
- $\widetilde{\mathrm{NC}}^{(2 k+1)}(2 n+1)=\emptyset$
- $\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1)=$?

Armstrong's conjecture

- $\widetilde{\mathrm{NC}}^{(k)}(n)$: the subposet of $\mathrm{NC}^{(k)}(n)$ whose elements are fixed under the 180° rotation in the circular representation.
- $\widetilde{\mathrm{NC}}^{(k)}(2 n) \cong \mathrm{NC}_{B}^{(k)}(n)$
- $\widetilde{\mathrm{NC}}^{(2 k+1)}(2 n+1)=\emptyset$
- $\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1)=$?
- An element in $\widetilde{\mathrm{NC}}^{(2 \cdot 2)}(7)$

Armstrong's conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

$$
Z\left(\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1), \ell\right)=\binom{n+\ell(2 k n+k)}{n} .
$$

Armstrong's conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

$$
Z\left(\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1), \ell\right)=\binom{n+\ell(2 k n+k)}{n} .
$$

- Let $1 \leq r<k$.

Armstrong's conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

$$
Z\left(\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1), \ell\right)=\binom{n+\ell(2 k n+k)}{n} .
$$

- Let $1 \leq r<k$.
- $\pi \in \mathrm{NC}(k n+r)$ is augmented k-divisible if all but one blocks of π have sizes divisible by k.

Armstrong's conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

$$
Z\left(\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1), \ell\right)=\binom{n+\ell(2 k n+k)}{n} .
$$

- Let $1 \leq r<k$.
- $\pi \in \mathrm{NC}(k n+r)$ is augmented k-divisible if all but one blocks of π have sizes divisible by k.
- $\mathrm{NC}^{(2 k)}(n ; r)$: the poset of augmented k-divisible noncrossing partitions of [kn $+r$]

Armstrong's conjecture

Conjecture (Armstrong, 2006)
The zeta polynomial (the number of multichains of length ℓ) is equal to:

$$
Z\left(\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1), \ell\right)=\binom{n+\ell(2 k n+k)}{n} .
$$

- Let $1 \leq r<k$.
- $\pi \in \mathrm{NC}(k n+r)$ is augmented k-divisible if all but one blocks of π have sizes divisible by k.
- $\mathrm{NC}^{(2 k)}(n ; r)$: the poset of augmented k-divisible noncrossing partitions of [kn $+r$]

Theorem (K., 2009)
Let n and k be positive integers. Then

$$
\widetilde{\mathrm{NC}}^{(2 k)}(2 n+1) \cong \mathrm{NC}^{(2 k)}(n ; k) .
$$

Armstrong's conjecture

Corollary (K., 2009)
The number of multichains in $\widetilde{\mathrm{NC}}{ }^{(2 k)}(2 n+1)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\binom{n}{s_{1}}\binom{2 k n+k}{s_{2}} \ldots\binom{2 k n+k}{s_{\ell+1}}
$$

Armstrong's conjecture

Corollary (K., 2009)
The number of multichains in $\widetilde{\mathrm{NC}}{ }^{(2 k)}(2 n+1)$ with rank jump vector $\left(s_{1}, s_{2}, \ldots, s_{\ell+1}\right)$ is equal to

$$
\binom{n}{s_{1}}\binom{2 k n+k}{s_{2}} \ldots\binom{2 k n+k}{s_{\ell+1}}
$$

Corollary (K., 2009)
Armstrong's conjecture is true!

Nonnesting partitions

- Postnikov defined nonnesting partitions for each classical Coxeter group.

Nonnesting partitions

- Postnikov defined nonnesting partitions for each classical Coxeter group.
- Similarly we can interpret $\mathrm{NN}_{B}(n)$ in terms of $\mathrm{NN}(n)$.

Nonnesting partitions

- Postnikov defined nonnesting partitions for each classical Coxeter group.
- Similarly we can interpret $\mathrm{NN}_{B}(n)$ in terms of $\mathrm{NN}(n)$.
- A block B of $\pi \in \Pi(n)$ is aligned if there is an edge (i, j) with $\max (B)<i$.

Nonnesting partitions

- Postnikov defined nonnesting partitions for each classical Coxeter group.
- Similarly we can interpret $\mathrm{NN}_{B}(n)$ in terms of $\mathrm{NN}(n)$.
- A block B of $\pi \in \Pi(n)$ is aligned if there is an edge (i, j) with $\max (B)<i$.

- Otherwise, it is called nonaligned.

Nonnesting partitions

- Postnikov defined nonnesting partitions for each classical Coxeter group.
- Similarly we can interpret $\mathrm{NN}_{B}(n)$ in terms of $\mathrm{NN}(n)$.
- A block B of $\pi \in \Pi(n)$ is aligned if there is an edge (i, j) with $\max (B)<i$.

- Otherwise, it is called nonaligned.
- Let
$\mathrm{NN}^{\mathrm{NA}}(n)=\{(\sigma, X): \sigma \in \mathrm{NN}(n), X$ is a set of nonaligned blocks of $\sigma\}$.

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$
- $\mathrm{NN}_{B}(n) \leftrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NA}}(n)$

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$
- $\mathrm{NN}_{B}(n) \leftrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NA}}(n)$

Theorem (K., 2009)
There is an involution on $\mathrm{NC}(n)$ exchanging nonnested blocks and nonaligned blocks.

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$
- $\mathrm{NN}_{B}(n) \leftrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NA}}(n)$

Theorem (K., 2009)
There is an involution on $\mathrm{NC}(n)$ exchanging nonnested blocks and nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

$$
\begin{aligned}
\#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=i, \mathrm{na}(\pi)=j\} \\
=\quad \#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=j, \mathrm{na}(\pi)=i\} .
\end{aligned}
$$

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$
- $\mathrm{NN}_{B}(n) \leftrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NA}}(n)$

Theorem (K., 2009)
There is an involution on $\mathrm{NC}(n)$ exchanging nonnested blocks and nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

$$
\begin{aligned}
\quad \#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=i, \mathrm{na}(\pi)=j\} \\
=\quad \#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=j, \mathrm{na}(\pi)=i\} .
\end{aligned}
$$

Corollary (K., 2009)
The following is a block size preserving bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$.

$$
\mathrm{NC}_{B}(n)=\mathrm{NC}^{\mathrm{NN}}(n)=\mathrm{NC}^{\mathrm{NA}}(n) \longleftarrow \mathrm{NN}^{\mathrm{NA}}(n) \longleftarrow \mathrm{NN}_{B}(n)
$$

A bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$

- $\mathrm{NC}_{B}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NN}}(n)$
- $\mathrm{NN}_{B}(n) \leftrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftrightarrow \mathrm{NC}^{\mathrm{NA}}(n)$

Theorem (K., 2009)
There is an involution on $\mathrm{NC}(n)$ exchanging nonnested blocks and nonaligned blocks.

Corollary (K., 2009)
For any integers i and j,

$$
\begin{aligned}
\quad \#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=i, \mathrm{na}(\pi)=j\} \\
=\quad \#\{\pi \in \mathrm{NC}(n): \mathrm{nn}(\pi)=j, \mathrm{na}(\pi)=i\} .
\end{aligned}
$$

Corollary (K., 2009)
The following is a block size preserving bijection between $\mathrm{NC}_{B}(n)$ and $\mathrm{NN}_{B}(n)$.

$$
\mathrm{NC}_{B}(n)=\mathrm{NC}^{\mathrm{NN}}(n)-\mathrm{NC}^{\mathrm{NA}}(n) \longrightarrow \mathrm{NN}^{\mathrm{NA}}(n) \leftharpoonup \mathrm{NN}_{B}(n)
$$

- Our bijection is different from that of Fink and Giraldo.

Final remarks

- We have found two interpretations for $\mathrm{NC}_{B}(n)$.

Final remarks

- We have found two interpretations for $\mathrm{NC}_{B}(n)$.
- Many interesting properties of $\mathrm{NC}(n)$ can be translated to $\mathrm{NC}_{B}(n)$ using our interpretations.

Final remarks

- We have found two interpretations for $\mathrm{NC}_{B}(n)$.
- Many interesting properties of $\mathrm{NC}(n)$ can be translated to $\mathrm{NC}_{B}(n)$ using our interpretations.

Thank you for your attention!

