Solving p-Max-r-Satisfiability Above a Tight Lower Bound

Eun Jung Kim

Joint work with with N.Alon, G.Gutin, S.Szeider and A.Yeo
Department of Computer Science
Royal Holloway, University of London
eunjungkim78@gmail.com

23 December 2009

Outline

(1) Introduction

- Maximum Satisfiability
- The class FPT
(2) p-Max- r-Sat for general r
(3) $\mathrm{p}-$ Max- r-Sat for $r=2$

Maximum Satisfiability

Maximum Satisfiability

- Given a CNF formula, find a truth assignment that satisfies as many clauses as possible.

Max-r-Sat

- Given a CNF formula, each clause having exactly r literals, find a truth assignment that satisfies as many clauses as possible.

Even MAx-2-Sat is NP-hard and hard to approximate (i.e. cannot have $((C-\epsilon)$-approximation for some constant C unless $\mathrm{P}=\mathrm{NP})$, in strong contrast with 2-SAT which is solvable in linear time.

Parameterized Problems and FPT

FPT

A parameterized problem is fixed-parameter tractable if there is $f(k) n^{c}$ time algorithm for some constant c.

- Vertex Cover: Is there a vertex cover of size at most k ? Best known $O^{*}\left(1.2832^{k}\right)$.
- Steiner Tree: Find a minimum weight subgraph connecting k prescribed terminal vertices of G. Best known $O^{*}\left(2^{k}\right)$.
- k-path: Does G contain a path of length k ? Best $O^{*}\left(4^{k}\right)$.

Parameterized Intractability

There are also problems which are unlikely to be FPT. Such as: k-weighted CNF, Independent Set, Hitting Set, Dominating Set, Set Cover...

FPT and Kernel

Reduction To Problem Kernel

A kernelization of a parameterized problem Π is a many-to-one transformation from $(I, k) \in \Sigma^{*}$ to $\left(I^{\prime}, k^{\prime}\right) \in \Sigma^{*}$ s.t.

- $(I, k) \in \Pi$ if and only if $\left(I^{\prime}, k^{\prime}\right) \in \Pi$.
- $k^{\prime} \leq k$ and $\left|I^{\prime}\right| \leq g(k)$ for some computable function g.
- Transformation computable in time polynomial in $|I|$ and k.

Theorem

A parameterized problems belongs to FPT if and only if it allows a kernelization.

Example: Vertex Cover

- LP Relaxation of ILP formulation has a half-integral optimal solution.

Tight Bound and Parameterization

It is always possible to satisfy a $1-2^{-r}$ fraction of a given multiset of clauses.

- Random truth assignment satisfies a clause with $p=1-\frac{1}{2^{r}}$.
- Derandomization yields $\left(1-2^{-r}\right)$-approximation. Best possible.

p-Max-r-Sat

Instance: A pair (F, k) where F is a set of m clauses of size r and k is a nonnegative integer.
Parameter: The integer k.
Question: Is $\# \operatorname{sat}(F) \geq\left(\left(2^{r}-1\right) m+k\right) / 2^{r}$?

Algebraic Representation

Let F be an r-CNF formula with clauses C_{1}, \ldots, C_{m} in the variables $x_{1}, x_{2}, \ldots, x_{n}$.

Random Variable X

- $X=\sum_{C \in F}\left[1-\prod_{x_{i} \in \operatorname{var}(C)}\left(1-\epsilon_{i} x_{i}\right)\right]$
- $\epsilon_{i}=1$ if x_{i} is in $C, \epsilon_{i}=-1$ if $\overline{x_{i}}$ is in C.

Example 1: $F=\left\{x_{1} x_{2}, x_{1} \overline{x_{2}}, \overline{x_{1}} x_{3}, \overline{x_{2}} x_{3}, x_{2} x_{3}\right\}: X=x_{1}+3 x_{3}+x_{1} x_{3}$
Example 2: $F=\left\{x_{1} x_{2}, x_{1} \overline{x_{2}}, \overline{x_{1} x_{3}}, \overline{x_{2}} x_{3}, x_{2} x_{3}\right\}: X=x_{1}+x_{3}-x_{1} x_{3}$

Lemma

For a truth assignment $\tau, X=2^{r}\left(\# \operatorname{sat}(\tau, F)-\left(1-2^{-r}\right) m\right)$. That is, $X \geq k$ iff F is a $Y E S$-instance.

Probabilistic Inequality Come Into Play

Intuitively, if the variance of X is large enough we may have $X \geq k$.

N.Alon, G.Gutin and M.Krivelevich

Let X be a random variable. Suppose that X satisfies
(1) $\mathbb{E}(X)=0$
(2) $\mathbb{E}\left(X^{2}\right)=\sigma^{2}>0$ and
(3) $\mathbb{E}\left(X^{4}\right) \leq b \sigma^{4}$

Then $\operatorname{Prob}\left(X>\frac{\sigma}{4 \sqrt{b}}\right) \geq \frac{1}{4^{4 / 3} b}>0$
If we can express $\mathbb{E}\left(X^{2}\right)$ in terms of $|I|$, say $\mathbb{E}\left(X^{2}\right) \geq|I|^{2}$, then

- either $|I|$ is large enough $(\geq k)$ and I is a YES-instance
- or $|I|$ is upper-bounded in terms of k, meaning quadratic kernel.

Probabilistic Inequality Come Into Play

$X=X\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be written as $X=\sum_{I \in \mathcal{S}} X_{I}$, where

- $X_{I}=c_{l} \prod_{i \in I} x_{i}$, each c_{l} is a nonzero integer and
- \mathcal{S} is a family of nonempty subsets of $\{1, \ldots, n\}$ each with at most r elements.

1st Moment

$\mathbb{E}(X)=0$

2nd Moment: Parseval's Theorem says

For any $f:\{-1,1\} \rightarrow \mathbb{R}, \mathbb{E}\left(f(x)^{2}\right)=\sum_{I \subseteq[n]} \hat{f}(I)^{2}$.
(in our case, $\mathbb{E}\left(X^{2}\right)=\sum_{I \in \mathcal{S}} c_{l}^{2}$)

Probabilistic Inequality Come Into Play

4th Moment: Hypercontractive Inequality says

Let $f(x)=\sum_{|| | \leq r} \hat{f}(I) \prod_{i \in \mid} x_{i}$ denote an arbitrary multilinear polynomial over x_{1}, \ldots, x_{n} of degree at most r. Define a random variable $X=f\left(x_{1}, \ldots, x_{n}\right)$ by choosing a vector $\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}$ uniformly at random and setting $X=f\left(x_{1}, \ldots, x_{n}\right)$. Then $\mathbb{E}\left(X^{4}\right) \leq 9^{r}\left(\mathbb{E}\left(X^{2}\right)\right)^{2}$.

The Main Result for General r

Theorem

The problem P-MAX-r-SAT is fixed-parameter tractable and can be solved in time $O(m)+2^{O\left(k^{2}\right)}$. Moreover, there exists a kernel of size $O\left(k^{2}\right)$.

Outline

- $\operatorname{Prob}\left(X \geq \frac{\sqrt{\mathbb{E}\left(X^{2}\right)}}{2 \sqrt{b}}\right)>0$, where $b=9^{r}$
- $\mathbb{E}\left(X^{2}\right)=\sum_{I \in \mathcal{S}} c_{I}^{2} \geq|\mathcal{S}|$
- Therefore $\operatorname{Prob}\left(X \geq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^{r}}\right)>0$.
- Now, if $k \leq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 8^{r}}$ then YES-instance.
- Otherwise, $|\mathcal{S}|=O\left(k^{2}\right) \ldots$

Semicomplete Reduction

- Two clauses Y, Z has a conflict if there is a literal $p \in Y$ such that $\bar{p} \in Z$.
- r-CNF formula F is semicomplete if the number of clauses is $m=2^{r}$ and every pair of distinct clauses of F has a conflict. ex) $\{x y, x \bar{y}, \bar{x} z, \overline{x z}\}$.

Lemma

Every truth assignment to a semicomplete r-CNF formula satisfies exactly $2^{r}-1$ clauses.

Semicomplete Reduction Rule \& Lemma

Given an r-CNF formula F that contains a semicomplete subset $F^{\prime} \subseteq F$, delete F^{\prime} from F and consider $F \backslash F^{\prime}$ instead. The semicomplete reduction is safe.

The Main Result for $r=2$

Terminology

- A variable $x \in \operatorname{var}(F)$ is insignificant if for each literal y the numbers of occurrences of the two clauses $x y$ and $\bar{x} y$ in F are the same.
ex) $F=\left\{x_{1} x_{2}, x_{1} \overline{x_{2}}, \overline{x_{1}} x_{3}, \overline{x_{2}} x_{3}, x_{2} x_{3}\right\}$
- A variable $x \in \operatorname{var}(F)$ is significant if it is not insignificant.

Theorem

Let F be a 2-CNF formula which is irreducible w.r.t. semicomplete reduction and let $k \geq 0$ be an integer. If F has more than $3 k-2$ significant variables, then $\# \operatorname{sat}(F) \geq(3|F|+k) / 4$, i.e. F is a YES-instance.

Proof Outline of the Main Theorem

(1) Transform P-MAX-2-SAT to the problem of finding max-weighted subgraph in G^{0}
(2) Switch some vertices of G^{0}, if necessary, to ensure the existence of a subgraph of G^{0} with weight k.
(3) When we cannot ensure a weight- k subgraph of G^{0} : Use Tutte-Berge formula to show that G^{0} is small enough (kernel).

Switching a variable

We switch a variable x in F by replacing x with \bar{x} and \bar{x} with x for each occurrence of x.
Switching a set X of variables in F is naturally defined. We say that F_{X} is obtained from F by switching X.

Lemma
$\# \operatorname{sat}(F)=\# \operatorname{sat}\left(F_{X}\right)$.
We are allowed to switch a variable x instead of assigning $x=F A L S E$.

Construction of Auxiliary Graph G^{0}

Let $c(x)(c(x y)$ respectively) denote the number of clauses in F containing x ($x y$ respectively).

Transformation Lemma

For each subset $R=\left\{x_{1}, \ldots, x_{q}\right\} \subseteq \operatorname{var}(F)$ we have $\# \operatorname{sat}(F) \geq\left(3 m+k_{R}\right) / 4$, for k_{R} equals

$$
\sum_{1 \leq i \leq q}\left(c\left(x_{i}\right)-c\left(\overline{x_{i}}\right)\right)+\sum_{1 \leq i<j \leq q}\left(c\left(x_{i} \overline{x_{j}}\right)+c\left(\overline{x_{i}} x_{j}\right)-c\left(x_{i} x_{j}\right)-c\left(\overline{x_{i} x_{j}}\right)\right) .
$$

We construct a canonical auxiliary graph $G=(V, E)$ from F with weights:

- $w(x):=c(x)-c(\bar{x})$
- $w(x y):=c(x \bar{y})+c(\bar{x} y)-c(x y)-c(\overline{x y})$

Operations on G^{0}

Let G^{0} be the graph obtained from G by removing all edges of weight zero.
Switching a variable x in F corresponds to the followings.

- Reversing the sign of $w(x)$
- Reversing the sign of all edges adjacent with x.

Switching a set of variables X corresponds to the followings.

- Reversing the signs of $w(x)$ for all $x \in X$.
- Reversing the signs of all edges between X and $V \backslash X$.

Lemma

If there exists a set $X \subset V(G)$ and an induced subgraph $Q=(U, H)$ of G with $w_{X}(Q) \geq k$, then $\operatorname{sat}(F) \geq(3 m+k) / 4$.

Induced Tree allows nice strategy

Let Q be an induced tree. Then

- We can find a set $X \subset V(Q)$ such that $w_{X}(Q) \geq|E(Q)|$.
- Search and switch, if necessary, and take a random switching of the whole Q.

Let Q_{1}, \ldots, Q_{m} be a collection of vertex-disjoint induced trees. Then

- We can find a set $X \subset V(Q)$ such that $w_{X}\left(\bigcup_{i=1}^{m} Q_{i}\right) \geq \sum_{i=1}^{m}\left|E\left(Q_{i}\right)\right|$
- Perform a sequence of independent random switchings of Q_{1}, \ldots, Q_{m}.

YES-instance, or a small matching

If NO-instance, we do NOT have a collection of vertex-disjoint induced trees with at least k edges in total.
Consequently, there is no matching of size k.

Tutte-Berge Formula

The size of a maximum matching in G^{0} equals

$$
\min _{S \subseteq V\left(G^{0}\right)} \frac{1}{2}\left\{\left|V\left(G^{0}\right)\right|+|S|-o c\left(G^{0}-S\right)\right\}
$$

where oc $\left(G^{0}-S\right)$ is the number of odd components (connected components with an odd number of vertices) in $G^{0}-S$.

It suffices to prove that $o c\left(G^{0}-S\right) \leq k-1+\#$ insig. vars.

We consider the parameterized MAX-r-SAT problem and proved that

- the problem is fixed-parameter tractable for each fixed r.
- the problem can be reduced to an equivalent problem of size $O\left(k^{2}\right)$ for each fixed r.
- when $r=2$, there is a problem kernel with at most $3 k$ variables.

Some interesting problems to consider includes

- Establishing FPT / W[t]-hardness for parameterization-above/below type problems such as: Planar independent set problem, Max-Lin-p, Max-Cut, Max-SAT... Only a few results available.
- In particular, Satisfiability Type Problems from parameterized perspective: been studied a lot, but not coping with inapproximability results yet.

