▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Solving p-Max-*r*-Satisfiability Above a Tight Lower Bound

Eun Jung Kim

Joint work with with N.Alon, G.Gutin, S.Szeider and A.Yeo

Department of Computer Science Royal Holloway, University of London eunjungkim78@gmail.com

23 December 2009

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

- Maximum Satisfiability
- The class FPT

Maximum Satisfiability

Maximum Satisfiability

Maximum Satisfiability

• Given a CNF formula, find a truth assignment that satisfies as many clauses as possible.

Max-r-Sat

• Given a CNF formula, each clause having exactly *r* literals, find a truth assignment that satisfies as many clauses as possible.

Even MAX-2-SAT is NP-hard and hard to approximate (i.e. cannot have $((C - \epsilon)$ -approximation for some constant C unless P=NP), in strong contrast with 2-SAT which is solvable in linear time.

The class FPT

Parameterized Problems and FPT

FPT

A parameterized problem is fixed-parameter tractable if there is $f(k)n^c$ time algorithm for some constant c.

- Vertex Cover: Is there a vertex cover of size at most k? Best known O*(1.2832^k).
- Steiner Tree: Find a minimum weight subgraph connecting k prescribed terminal vertices of G. Best known $O^*(2^k)$.
- *k*-path: Does G contain a path of length k? Best $O^*(4^k)$.

Parameterized Intractability

There are also problems which are unlikely to be FPT. Such as: *k*-weighted CNF, Independent Set, Hitting Set, Dominating Set, Set Cover... The class FPT

FPT and Kernel

Reduction To Problem Kernel

A kernelization of a parameterized problem Π is a many-to-one transformation from $(I, k) \in \Sigma^*$ to $(I', k') \in \Sigma^*$ s.t.

- $(I, k) \in \Pi$ if and only if $(I', k') \in \Pi$.
- $k' \leq k$ and $|I'| \leq g(k)$ for some computable function g.
- Transformation computable in time polynomial in |I| and k.

Theorem

A parameterized problems belongs to FPT if and only if it allows a kernelization.

Example: Vertex Cover

• LP Relaxation of ILP formulation has a half-integral optimal solution.

The class FPT

Tight Bound and Parameterization

It is always possible to satisfy a $1 - 2^{-r}$ fraction of a given multiset of clauses.

- Random truth assignment satisfies a clause with $p = 1 \frac{1}{2^r}$.
- Derandomization yields $(1 2^{-r})$ -approximation. Best possible.

p-Max-*r*-Sat

Instance: A pair (F, k) where F is a set of m clauses of size r and k is a nonnegative integer. Parameter: The integer k. Question: Is $\#sat(F) \ge ((2^r - 1)m + k)/2^r$?

Algebraic Representation

Let *F* be an *r*-CNF formula with clauses C_1, \ldots, C_m in the variables x_1, x_2, \ldots, x_n .

Random Variable *X*

•
$$X = \sum_{C \in F} [1 - \prod_{x_i \in \mathsf{var}(C)} (1 - \epsilon_i x_i)]$$

• $\epsilon_i = 1$ if x_i is in C, $\epsilon_i = -1$ if $\overline{x_i}$ is in C.

Example 1: $F = \{x_1x_2, x_1\overline{x_2}, \overline{x_1}x_3, \overline{x_2}x_3, x_2x_3\}$: $X = x_1 + 3x_3 + x_1x_3$

Example 2: $F = \{x_1x_2, x_1\overline{x_2}, \overline{x_1x_3}, \overline{x_2}x_3, x_2x_3\}$: $X = x_1 + x_3 - x_1x_3$

Lemma

For a truth assignment τ , $X = 2^r (\# \operatorname{sat}(\tau, F) - (1 - 2^{-r})m)$. That is, $X \ge k$ iff F is a YES-instance.

Probabilistic Inequality Come Into Play

Intuitively, if the variance of X is large enough we may have $X \ge k$.

N.Alon, G.Gutin and M.Krivelevich

Let X be a random variable. Suppose that X satisfies

2
$$\mathbb{E}(X^2) = \sigma^2 > 0$$
 and

Then Prob(
$$X > \frac{\sigma}{4\sqrt{b}}$$
) $\geq \frac{1}{4^{4/3}b} > 0$

If we can express $\mathbb{E}(X^2)$ in terms of |I|, say $\mathbb{E}(X^2) \ge |I|^2$, then

- either |I| is large enough $(\geq k)$ and I is a YES-instance
- or |*I*| is upper-bounded in terms of *k*, meaning quadratic kernel.

Probabilistic Inequality Come Into Play

$$X = X(x_1, x_2, \dots, x_n)$$
 can be written as $X = \sum_{I \in \mathcal{S}} X_I$, where

• $X_I = c_I \prod_{i \in I} x_i$, each c_I is a nonzero integer and

• S is a family of nonempty subsets of $\{1, ..., n\}$ each with at most r elements.

1st Moment

 $\mathbb{E}(X) = 0$

2nd Moment: Parseval's Theorem says

For any
$$f : \{-1,1\} \to \mathbb{R}$$
, $\mathbb{E}(f(x)^2) = \sum_{I \subseteq [n]} \hat{f}(I)^2$.
(in our case, $\mathbb{E}(X^2) = \sum_{I \in S} c_I^2$)

(日) (同) (三) (三) (三) (○) (○)

Probabilistic Inequality Come Into Play

4th Moment: Hypercontractive Inequality says

Let $f(x) = \sum_{|I| \le r} \hat{f}(I) \prod_{i \in I} x_i$ denote an arbitrary multilinear polynomial over x_1, \ldots, x_n of degree at most r. Define a random variable $X = f(x_1, \ldots, x_n)$ by choosing a vector $(x_1, \ldots, x_n) \in \{-1, 1\}^n$ uniformly at random and setting $X = f(x_1, \ldots, x_n)$. Then $\mathbb{E}(X^4) \le 9^r (\mathbb{E}(X^2))^2$.

The Main Result for General r

Theorem

The problem P-MAX-*r*-SAT is fixed-parameter tractable and can be solved in time $O(m) + 2^{O(k^2)}$. Moreover, there exists a kernel of size $O(k^2)$.

Outline

•
$$\operatorname{Prob}(X \geq \frac{\sqrt{\mathbb{E}(X^2)}}{2\sqrt{b}}) > 0$$
, where $b = 9^r$

•
$$\mathbb{E}(X^2) = \sum_{I \in \mathcal{S}} c_I^2 \ge |\mathcal{S}|$$

• Therefore
$$\operatorname{Prob}(X \geq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^r}) > 0.$$

• Now, if $k \leq \frac{\sqrt{|S|}}{2 \cdot 8^r}$ then YES-instance.

• Otherwise,
$$|\mathcal{S}| = O(k^2)$$
..

Semicomplete Reduction

- Two clauses Y, Z has a conflict if there is a literal p ∈ Y such that p̄ ∈ Z.
- *r*-CNF formula *F* is semicomplete if the number of clauses is $m = 2^r$ and every pair of distinct clauses of *F* has a conflict. ex) {*xy*, $x\overline{y}$, $\overline{x}z$, $\overline{x}\overline{z}$ }.

Lemma

Every truth assignment to a semicomplete r-CNF formula satisfies exactly $2^r - 1$ clauses.

Semicomplete Reduction Rule & Lemma

Given an *r*-CNF formula *F* that contains a semicomplete subset $F' \subseteq F$, delete *F'* from *F* and consider $F \setminus F'$ instead. The semicomplete reduction is *safe*.

The Main Result for r = 2

Terminology

 A variable x ∈ var(F) is insignificant if for each literal y the numbers of occurrences of the two clauses xy and x̄y in F are the same.

ex)
$$F = \{x_1x_2, x_1\overline{x_2}, \overline{x_1}x_3, \overline{x_2}x_3, x_2x_3\}$$

• A variable $x \in var(F)$ is significant if it is not insignificant.

Theorem

Let F be a 2-CNF formula which is irreducible w.r.t. semicomplete reduction and let $k \ge 0$ be an integer. If F has more than 3k - 2significant variables, then $\#sat(F) \ge (3|F| + k)/4$, i.e. F is a YES-instance.

Proof Outline of the Main Theorem

- Transform P-MAX-2-SAT to the problem of finding max-weighted subgraph in G^0
- Switch some vertices of G^0 , if necessary, to ensure the existence of a subgraph of G^0 with weight k.
- When we cannot ensure a weight-k subgraph of G^0 : Use Tutte-Berge formula to show that G^0 is small enough (kernel).

Switching a variable

We switch a variable x in F by replacing x with \overline{x} and \overline{x} with x for each occurrence of x. Switching a set X of variables in F is naturally defined. We say

that F_X is obtained from F by switching X.

Lemma

 $\#sat(F) = \#sat(F_X).$

We are allowed to *switch* a variable x instead of assigning x = FALSE.

Construction of Auxiliary Graph G⁰

Let c(x) (c(xy) respectively) denote the number of clauses in F containing x (xy respectively).

Transformation Lemma

For each subset
$$R = \{x_1, \ldots, x_q\} \subseteq var(F)$$
 we have $\#sat(F) \ge (3m + k_R)/4$, for k_R equals

$$\sum_{1\leq i\leq q} (c(x_i)-c(\overline{x_i})) + \sum_{1\leq i< j\leq q} (c(x_i\overline{x_j})+c(\overline{x_i}x_j)-c(x_ix_j)-c(\overline{x_i}\overline{x_j})).$$

We construct a canonical *auxiliary graph* G = (V, E) from F with weights:

•
$$w(x) := c(x) - c(\overline{x})$$

• $w(xy) := c(x\overline{y}) + c(\overline{x}y) - c(xy) - c(\overline{xy})$

Operations on G⁰

Let G^0 be the graph obtained from G by removing all edges of weight zero.

Switching a variable x in F corresponds to the followings.

- Reversing the sign of w(x)
- Reversing the sign of all edges adjacent with x.

Switching a set of variables X corresponds to the followings.

- Reversing the signs of w(x) for all $x \in X$.
- Reversing the signs of all edges between X and $V \setminus X$.

Lemma

If there exists a set $X \subset V(G)$ and an induced subgraph Q = (U, H) of G with $w_X(Q) \ge k$, then sat $(F) \ge (3m + k)/4$.

Induced Tree allows nice strategy

Let Q be an induced tree. Then

- We can find a set $X \subset V(Q)$ such that $w_X(Q) \ge |E(Q)|$.
- Search and switch, if necessary, and take a random switching of the whole *Q*.

Let Q_1, \ldots, Q_m be a collection of vertex-disjoint induced trees. Then

- We can find a set $X \subset V(Q)$ such that $w_X(\bigcup_{i=1}^m Q_i) \ge \sum_{i=1}^m |E(Q_i)|$
- Perform a sequence of independent random switchings of Q_1, \ldots, Q_m .

YES-instance, or a small matching

If NO-instance, we do NOT have a collection of vertex-disjoint induced trees with at least k edges in total. Consequently, there is no matching of size k.

Tutte-Berge Formula

The size of a maximum matching in G^0 equals

$$\min_{S \subseteq V(G^0)} \frac{1}{2} \{ |V(G^0)| + |S| - oc(G^0 - S) \}$$

where $oc(G^0 - S)$ is the number of odd components (connected components with an odd number of vertices) in $G^0 - S$.

It suffices to prove that $oc(G^0 - S) \le k - 1 + \#$ insig. vars.

We consider the parameterized $\mathrm{MAX}\mathchar`-\mathrm{SAT}$ problem and proved that

- the problem is fixed-parameter tractable for each fixed r.
- the problem can be reduced to an equivalent problem of size $O(k^2)$ for each fixed r.
- when r = 2, there is a problem kernel with at most 3k variables.

Some interesting problems to consider includes

- Establishing FPT / W[t]-hardness for parameterization-above/below type problems such as: Planar independent set problem, Max-Lin-p, Max-Cut, Max-SAT... Only a few results available.
- In particular, Satisfiability Type Problems from parameterized perspective: been studied a lot, but not coping with inapproximability results yet.